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Abstract. We prove a representation formula for solutions of Schrödinger equations with potentials
multiplied by a temporal real-valued white noise in the Stratonovich sense. Using this formula, we obtain
a dispersive estimate which allows us to study the Cauchy problem in L2 or in the energy space of
model equations arising in Bose Einstein condensation [1] or in fiber optics [2]. Our results also give a
justification of diffusion-approximation for stochastic nonlinear Schrödinger equations.

1. Introduction

The following nonlinear Schrödinger equations perturbed by a potential, deterministic in space and
white noise in time have been used as model equations in several applications in Physics.

i∂tψ =
1

2
(−∆ψ + V (x)ψ)− iγψ + λ|ψ|2ψ +

1

2
K(x)ψξ̇(t), t ≥ 0, x ∈ Rd. (1.1)

For example, in [1] and [16], the authors propose the above equation with V (x) = K(x) = |x|2 to describe
Bose condensate wave function in all-optical far-off-resonance laser trap, arguing that fluctuations of the
laser intensity are observed in this case. In this model, the term ξ̇(t) represents the relative deviations of
the laser intensity E(t) around its mean value (see [1]), and is assumed to be a real-valued white noise

in time with correlation function E(ξ̇(t)ξ̇(s)) = σ2
0δ0(t − s). Here, δ0 denotes the Dirac measure at the

origin, and σ0 ∈ R. The damping term, with a coefficient γ ≥ 0, describes the interactions with the
thermal cloud created by non-condensed atoms. Finally, the sign of λ is related to the sign of the atomic
scattering length, which may be positive or negative, and it may be assumed without loss of generality
that λ = ±1.

Related equations may also be found in the context of optic fibers. In [2] e.g., equation (1.1) without

the potential in the drift but with a multiplicative noise, i.e., V (x) = 0, K(x) = |x|2, and ξ̇(t) as above,
was considered as a model for optical soliton propagation in fibers with random inhomogeneities.

Our aim in this paper is, in order to justify these model equations (1.1) from the mathematical point of
view, first to construct the fundamental solution of (1.1) with λ = γ = 0, and establish the corresponding
dispersive estimates. This result will then enable us to prove the global existence of solutions of Eq.
(1.1) (with a more general nonlinear term) in L2, in subcritical cases, since the L2 norm of the evolution

1991 Mathematics Subject Classification. 35Q55, 60H15 .
Key words and phrases. Nonlinear Schrödinger equation, stochastic partial differential equations, white noise,

Feynman path integral, stationary phase method, diffusion-approximation.

1



equation is bounded if γ ≥ 0. For this purpose, we need some “good” properties of the integral kernel of
the linear evolution propagator (with γ = 0), which can be expressed in terms of classical orbits, as is often
used in semiclassical analysis. Using these classical paths, we can write the propagator as an oscillatory
integral operator associated to the action integral. Such oscillatory integral operators have been studied
by many authors in the context of deterministic Schrödinger equations (see e.g. [13, 14, 15, 18, 20, 28]). In
the present paper we follow Yajima [28] who derived dispersive estimates for Schrödinger equations with
magnetic fields. We use the following gauge transformation. We define G(t, x) = 1

2 (V (x)t + K(x)ξ(t))
and consider the change of gauge:

ψ(t, x) = e−iG(t,x)u(t, x) (1.2)

where ψ(t, x) verifies Eq. (1.1) with γ = λ = 0. After this transformation, u satisfies the following
Schrödinger equation with a random magnetic field:

i∂tu = −1

2

d∑
j=1

(∂xj − iAj(t, x))2u, A = ∇G(t, x) =
1

2
(∇V (x)t+∇K(x)ξ(t)). (1.3)

The theory of [28] does not apply directly to equation (1.3), since it requires that the time derivative of
the vector potential A(t, x) is uniformly bounded, while this time derivative only exists as a distribution

in our case, since ξ̇(t) is a white noise. We will however prove, making use of the almost sure Cα regularity
of the Brownian motion, with 0 < α < 1/2, that the estimates in [28] can be generalized to our case.
Actually, in our study, ξ(t) could be replaced by any real valued Cα function of the time variable, with
α > 0. After having completed this work, we were told about the existence of the paper [23] where
an explicit formula is given for solutions of linear equations of the form (1.3) with purely quadratic
Hamiltonian and continuous coefficients in time. However, with our extra regularity assumptions in time
(Cα instead of C0) we get a slightly more precise description for small times (see (3.21) below). We will
see below that this regularity also allows us to prove the continuous dependence of the solution of (1.1)
on the Brownian paths.

Some linear stochastic equations similar to (1.1) with λ = 0 have been studied in the context of
stochastic quantum mechanics. In [26], e.g. an equation of the form (1.1) (with λ = 0), but with in
addition a stochastic magnetic field is considered in the semi-classical limit, and semi-classical expansions
at any order are given. In [29], a representation formula using Fresnel type path integral is given for
the solution of (1.1) with λ = 0, when V (x) and K(x) are Fourier transforms of bounded complex Borel
measures on Rd (this is clearly not the case in our situation). This representation is similar to that given
in [3] for deterministic linear Schrödinger equations. However, it is not clear whether this representation,
which involves an integral on infinite dimensional space, would lead to Strichartz estimates as those we
use here to study the nonlinear equation (see Proposition 7 below).

We are also interested in the convergence, as ε tends to zero, of the solution of the following equation
to Eq. (1.1),

i∂tϕ =
1

2
(−∆ + V (x))ϕ− iγϕ+ λ|ϕ|2ϕ+

1

2ε
m
( t
ε2

)
K(x)ϕ, t ≥ 0, x ∈ Rd (1.4)

where m(t) is a centered stationary random process, and σ2
0 = 2E

∫ +∞
0

m(0)m(t)dt. Garnier, Abdullaev
and Baizakov in [16] studied this type of diffusion approximation limit in order to investigate the collapse
time of the Bose-Einstein Condensate. They use this analysis for the differential equations of the action-
angle variables in order to explicit the structure of the width of the BEC, which satisfy a closed form
ODE in the variational ansatz. The same kind of study has been performed in [11, 21] for some model
equations in optical fibers with dispersion management. We will address this diffusion-approximation for
Eq. (1.1), but only in the subcritical cases (see Remark 2.4).
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In order to state precisely the problem and our results, we consider a probability space (Ω,F ,P)
endowed with a standard filtration (Ft)t≥0 such that F0 is complete, and a standard real valued Brownian

motion W (t) on R+ starting at 0, associated with the filtration (Ft)t≥0. We set ξ̇ = σ0
dW
dt and then

consider the stochastic nonlinear Schrödinger equation with a more general nonlinear term than Eq. (1.1)

idψ +
1

2
(∆ψ − V (x)ψ)dt− λ|ψ|2σψdt =

σ0

2
K(x)ψ ◦ dW, (1.5)

where σ > 0, σ0 ∈ R, λ = ±1, and ◦ stands for the Stratonovich product in the right hand side of (1.5),
which is natural since the noise here arises as the limit of processes with nonzero correlation length. Note
that we set γ = 0 for the sake of simplicity, but the global existence and convergence results of Theorems
2 and 3 can be easily generalized to the case γ > 0 (see Remarks 4.1 and 5.1).

We define

Σ(k) =
{
v ∈ L2(Rd),

∑
|α|+|β|≤k

|xβ∂αx v|2L2 = |v|2Σ(k) < +∞
}

for k ∈ N, and write Σ(−k) for the dual space of Σ(k) in the L2 sense. In particular we denote Σ(1) by
Σ.

Note that for the deterministic case V (x) = |x|2 and K ≡ 0, it is known that Eq.(1.5) is locally well
posed in Σ, for λ = ±1, σ < 2d

d−2 if d ≥ 3 or σ < +∞ if d = 1, 2 and globally well posed if either λ = 1 or

λ = −1 and σ < 2/d (see Oh [24]). These results in the deterministic case may be proved with the help
of the dispersive estimate for small time : for p ∈ [2,∞],

|U0(t)f |Lp(Rd) ≤ C|t|−d(1/2−1/p)|f |Lp′ (Rd), f ∈ Lp
′
(Rd), (1.6)

where U0(t) is the propagator of Eq. (1.5) with V (x) = |x|2, K ≡ 0 and λ = 0. This estimate is obtained,
for example, by using the transformation which connects Eq.(1.5) with V (x) = |x|2 to Eq.(1.5) with
V (x) = 0 for the case of K = λ ≡ 0 :

u(t, x) =
1

(cos t)d/2
e−

i
2x

2 tan tv
(

tan t,
x

cos t

)
,

where v is the solution of Eq. (1.5) with V = K = λ ≡ 0 (see e.g. [5]). However, this transformation
does not seem useful in the stochastic case, i.e., in the case where K 6≡ 0. Using a compactness method,
we generalized in [12] the deterministic existence and uniqueness results to Eq. (1.5), but only in space
dimensions one and two (and with restrictions on σ) due to the lack of dispersive estimate of the form
(1.6). In the present paper, we prove such a dispersive estimate for equation (1.5) with λ = 0. As a
consequence, we will improve the results in [12], showing some existence results in d ≥ 3. We then prove
the continuity of the solution on the Brownian path in the subcritical case σ < 2/d and deduce the
convergence of the solution of (1.4) to the solution of (1.1) as ε goes to zero.

Let us give some notations. We denote by ek (1 ≤ k ≤ d) the unit vector pointing in the direction
of the xk axis in Rd. The number p′ is the conjugate of p ∈ [1,∞] given by 1

p + 1
p′ = 1. In all the

paper, ΘM ∈ C∞0 (Rd) is a cut-off function with suppΘM ⊂ {x ∈ Rd, |x| ≤ 2M} and ΘM ≡ 1 on
{x ∈ Rd, |x| ≤M} for M > 0.

If I is an interval of R, E is a Banach space, and 1 ≤ r ≤ ∞, then Lr(I, E) is the space of strongly
Lebesgue measurable functions v from I into E such that the function t→ |v(t)|E is in Lr(I). We define
similarly the space C(I, E). The inner product in the Hilbert space L2(Rd) is denoted by 〈·, ·〉, i.e.,
〈u, v〉 =

∫
Rd u(x)v̄(x)dx for u, v ∈ L2(Rd).
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The paper is organized as follows. In Section 2, we mention precisely our results. In Section 3, we study
the linear problem. We first give some properties of the classical orbits associated with the Schrödinger
operator with magnetic field 1

2 (∇−iA(t, x))2. Using these properties, we define the action functional, and
we construct the integral kernel of the oscillatory integral propagator. Note that we give only outlines
in Section 3, the reader will find the proofs for this section in the appendix. In Section 4 we prove the
existence of solutions of a modified equation (see Proposition 1 below), which will immediately give the
proof of the existence of solutions for (1.5). Section 5 is devoted to the continuous dependence of solutions
on the Brownian paths in L2(Rd). Using this latter result, we also show the convergence of the solution of
(1.4) to the solution of (1.5) in distribution in C([0, T ];L2(Rd)), as ε goes to zero. To lighten notations,
we denote sometimes in what follows by Cθ,··· a constant which depends on θ and so on.

2. Main results

First, we mention our results for linear Schrödinger equations. We will deal with the specific case

where V (x) =
∑d
j=1 νjx

2
j , and K(x) =

∑d
j=1 κjx

2
j , with νj and κj ∈ R. Then, using transformation (1.2)

with

G(t, x) =
1

2
(V (x)t+ σ0K(x)W (t)), (2.1)

we are led to consider the equation (1.3), with, for 1 ≤ j ≤ d,

Aj(t, x) =
1

2
(∂xjV (x)t+ σ0∂xjK(x)W (t)) = xj(νjt+ σ0κjW (t)).

Remark 2.1. For each t ≥ 0, and each ω such that W (·, ω) is continuous at t, the linear operator

Hω(t) =
(
∇ − iA(t, x)

)2

is essentially self-adjoint on C∞0 (Rd), and its closure is identical with its

maximal extension which is denoted by the same symbol (see, e.g. [25], Theorem X.34). The domain of
Hω(t) is given, for each t ≥ 0, by

D(Hω(t)) = {v ∈ L2(Rd), Hω(t)v ∈ L2(Rd)},

and contains the space Σ(2).

We now state our result on the propagator of the linear evolution equation (1.3).

Theorem 1. Let T0 > 0 and 0 < α < 1/2 be fixed, and let ω ∈ Ω be such that W (·, ω) ∈ Cα([0, T0]) .
There exists a positive number Tω and a unique propagator {Uω(t, s), t, s ∈ [0, T0], |t− s| ≤ Tω} with the
following properties.

(i) Uω(t, s) can be written in the form of an oscillatory integral operator as follows :

Uω(t, s)f(x) = (2πi(t− s))−d/2a(t, s)

∫
Rd
eiS(t,s,x,y)f(y)dy, f ∈ C∞0 (Rd),

where a(t, s) is a C1 function, depending on ω, of t, s ∈ [0, T0] with |t − s| ≤ Tω satisfying
|a(t, s) − 1| ≤ Cω,T0

|t − s| for some constant Cω,T0
. The real valued phase function S(t, s, x, y)

depending on ω satisfies the Hamilton-Jacobi equations:

(∂tS)(t, s, x, y) + (1/2)
(
(∇xS)(t, s, x, y)−A(t, x)

)2
= 0,

(∂sS)(t, s, x, y)− (1/2)
(
(∇yS)(t, s, x, y) +A(s, y)

)2
= 0,

and the following property : for any multi-index γ, β, ∂γx∂
β
y S ≡ 0 if |γ + β| ≥ 3 and∣∣∣∂γx∂βy{S(t, s, x, y)− |x− y|

2

2(t− s)

}∣∣∣ ≤ Cγ,β,ω,T0 , if |γ + β| = 2.
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(ii) The operator Uω(t, s) is a linear, unitary operator in L2(Rd), and satisfies

Uω(t, s) = Uω(t, h)Uω(h, s), for 0 ≤ s < h < t ≤ T0, |t− s| ≤ Tω.

Moreover, if f ∈ L2(Rd), then Uω(·, s)f is continuous in t with values in L2(Rd), and ∂tU
ω(·, s)f

is continuous with values in Σ(−2) and satisfies

i∂tU
ω(t, s)f = −1

2

(
∇− iA(t, x)

)2
Uω(t, s)f, in Σ(−2).

Remark 2.2. We could construct the propagator of (1.3) for more general potentials V (x) and K(x),
for example for smooth real-valued V (x), K(x) satisfying

sup
x∈Rd

|∂αxV (x)|, sup
x∈Rd

|∂αxK(x)| ≤ Cα

for any multi-index α with |α| ≥ 2. For the construction, one could follow the same arguments as in [28],
which uses the approximation of the propagator Uω(t, s) by the semi-classical propagator whose amplitude
function is defined as the series of solutions to the associated transport equation. The iteration procedure
would be justified similarly to [13, 14, 28], making use of Kumanogo-Taniguchi techniques in [19] for multi-

product of pseudo-differential operators. In the case where V (x) =
∑d
j=1 νjx

2
j , and K(x) =

∑d
j=1 κjx

2
j ,

the system satisfied by the classical paths is linear (see (3.1) below), thus only the first term in the series
is nonvanishing.

In order to apply the above results to the nonlinear equation (1.5), we first solve the following equation
for u, which is related to ψ by (1.2) :

i∂tu = −1

2

(
∇− iA(t, x)

)2

u+ λ|u|2σu. (2.2)

More precisely, we consider the mild form of Eq. (2.2) which, as is well known, is equivalent to equation
(2.2) as long as we consider solutions which are, at least, continuous in time with values in L2(Rd); the
initial data u(0) = u0 is in L2(Rd).

u(t) = Uω(t, 0)u0 − iλ
∫ t

0

Uω(t, s)|u(s)|2σu(s)ds. (2.3)

Remark 2.3. Here, we have defined Uω(t, s) for any t, s ∈ [0, T0] by setting Uω(t, s) = Uω(sn, sn−1) ◦
· · · ◦ Uω(s1, s0) where [s, t] has been decomposed into [s0, s1] ∪ [s1, s2] ∪ · · · ∪ [sn−1, sn] with s = s0 and
t = sn so that |sj+1 − sj | ≤ Tω, 0 ≤ j ≤ n− 1.

Equations of the form (2.2), but with magnetic vector potentials A independent of time or with
bounded time derivatives have been studied e.g. in [9, 22] using the results of [28] on the propagator of
the linear equation. Here, we generalize those results to our case, by using standard arguments in the
deterministic theory (see e.g. [17, 27]).

Proposition 1. Assume σ > 0 and λ = ±1. Let 2/r = d(1/2− 1/(2σ + 2)).

(i) Let u0 ∈ L2(Rd) and σ < 2/d. Then there exists a unique global solution u of (2.3), adapted to
(Ft)t≥0, almost surely in C([0, T0];L2(Rd))∩Lr(0, T0;L2σ+2(Rd)) for any T0 > 0. Moreover, the
L2 norm is conserved:

|u(t)|L2 = |u(0)|L2 , a.s. in ω, for all t ≥ 0,

and u depends continuously on the initial data u0 in the following sense: if u0,n → u0 in L2(Rd),
and if un denotes the solution of (2.3) with u0 replaced by u0,n, then un → u in L∞(0, T0;L2).
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(ii) Let u0 ∈ Σ and σ < 2/d. Then there exists a unique global adapted solution u of (2.3) almost
surely in C(R+; Σ).

(iii) Let u0 ∈ Σ, σ < 2/(d − 2) if d ≥ 3 and σ < +∞ if d = 1, 2. Then there exists a maximal time
T ∗ = T ∗u0,ω > 0 such that there exists a unique adapted solution u(t) of (2.3) almost surely in
C([0, T ∗); Σ), and the following alternative holds: T ∗ = +∞ or T ∗ < +∞ and limt↑T∗ |u(t)|Σ =
+∞.

Transformation (1.2) changes only the phase of the solution, so it preserves the form of the nonlinear
term. Also since the solution u(t) of (2.2) given by Proposition 1 is adapted, so is ψ(t) (see (1.2)). We
then obtain the following results concerning equation (1.5).

Theorem 2. Assume σ > 0 and λ = ±1. Let 2/r = d(1/2− 1/(2σ + 2)).

(i) Let ψ0 ∈ L2(Rd) and σ < 2/d. Then there exists a unique global solution ψ(t) of (1.5), adapted
to (Ft)t≥0 with ψ(0) = ψ0, which is almost surely C(R+;L2(Rd)) ∩ Lrloc(R+;L2σ+2). Moreover,
the L2 norm is conserved by the time evolution, that is,

|ψ0|L2 = |ψ(t)|L2 , a.s. in ω, for all t ≥ 0.

(ii) Let ψ0 ∈ Σ and σ < 2/d. Then there exists a unique global solution ψ(t) of (1.5), adapted to
(Ft)t≥0 with ψ(0) = ψ0, almost surely in C(R+; Σ).

(iii) Let ψ0 ∈ Σ and σ < 2/(d − 2) if d ≥ 3, σ < +∞ if d = 1, 2. Then there exist a stopping time
τ∗ = τ∗ψ0,ω

> 0 and a unique solution ψ(t) of (1.5), adapted to (Ft)t≥0 with ψ(0) = ψ0, almost

surely in C([0, τ∗); Σ). In fact, τ∗ = T ∗, defined in Proposition 1 (iii).
(iv) Let λ = 1, ψ0 ∈ Σ and σ < 2/(d − 2) if d ≥ 3, σ < +∞ if d = 1, 2. Then there exists a unique

global solution ψ(t) of (1.5) adapted to (Ft)t≥0, with ψ(0) = ψ0, almost surely in C(R+; Σ).

In (iv) above, we use the Hamiltonian

H(ψ) =
1

4
|∇ψ|2L2 +

1

4

d∑
j=1

νj |xjψ|2L2 +
λ

2σ + 2
|ψ|2σ+2

L2σ+2 , (2.4)

which is a conserved quantity of the deterministic equation, that is (1.5) with K ≡ 0. H(ψ) is well
defined for ψ in Σ, thanks to the embedding Σ ⊂ H1(Rd) ⊂ L2σ+2(Rd), for σ < 2d

d−2 if d ≥ 3 or σ < +∞
if d = 1, 2.

At last, we prove that equation (1.5) is the diffusion-approximation limit of the equation driven by a
stationary process m(t) . We will assume the following.

Assumption (A). The real valued centered stationary random process m(t) has trajectories a.s. in

L∞(0, T ) for any T > 0, and is such that for any T > 0, the process t 7→ ε
σ0

∫ t/ε2
0

m(s)ds converges in

distribution in C([0, T ]) to a standard real valued Brownian motion as ε tends to zero.

Remark 2.4. It is classical that such an assumption holds if e.g. m is a homogeneous, centered, sta-

tionary and ergodic Markov process such that σ2
0 = 2

∫ +∞
0

E(m(0)m(t))dt < +∞. Two classical examples
are given by

(i) m(t) = mn for t ∈ [n, n+ 1), where (mn) is an iid family of random variables with finite second
moment

(ii) m is a Ornstein-Uhlenbeck process, i.e. a stationary solution of

dX = −λXdt+ dW

with λ > 0 fixed, and W a real valued Brownian motion.
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Theorem 3. Let 0 < σ < 2/d and λ = ±1. Suppose that m(t) satisfies Assumption (A) above. Then, for
any ε > 0 and ψ0 ∈ L2(Rd) there exists a unique solution ϕε, with continuous paths on R+ with values
in L2(Rd), of the following equation:{

i∂tϕ =
1

2
(−∆ + V (x))ϕ+ λ|ϕ|2σϕ+

1

2ε
m
( t
ε2

)
K(x)ϕ,

ϕ(0) = ψ0.
(2.5)

Moreover for any fixed T > 0, the process ϕε converges in distribution in C([0, T ];L2(Rd)) as ε tends to
zero, to the solution ψ of (1.5).

Theorem 3 is proved as in [11, 21] , by making use of the following proposition concerning the continuous
dependence of the solution of (2.2) on the Brownian paths W (·, ω).

Proposition 2. Assume 0 < σ < d/2. Let T0 > 0 and 0 < α < 1/2 be fixed, and for R > 0, let BR be
the closed ball of radius R in Cα([0, T0]). Then, for any u0 ∈ L2(Rd), the mapping

W 7→ uW

BR → C([0, T0];L2(Rd))

is continuous, where uW is the unique solution of (2.2) given in (i) of Proposition 1, and where BR is
endowed with the topology of C([0, T0]).

Remark 2.5. In the proof of Proposition 2, a uniform estimate on uW , for W ∈ BR is required on a
fixed (possibly small) time interval. This is the reason why Theorem 3 does not cover the supercritical
cases σ ≥ 2/d, as e.g. d = 3 and σ = 1, although the latter is an interesting physical case (see [16]). The
reader may refer to Remark 5.2 for details.

Remark 2.6. The occurrence of blow-up with positive probability for a certain initial data was proved
for the equation (1.5) with V = K = |x|2, λ = 1 and σ ≥ 2/d (see [12]) establishing the associated
virial identity. This identity does not give any information about the exact time of blow-up even in the
deterministic case. Seeing the influence by the noise on the blow-up time would be an interesting question,
but this problem is under investigation by numerical simulations.

3. Linear problem, phase flow, construction of the propagator

In this section, we consider the linear equation (1.3) and follow closely Section 2 of [28]. Our aim is
the construction of the propagator of (1.3), and the investigation of some properties of its integral kernel.
We only give the outline of the arguments in this section since most of them follow those of Yajima [28].
Some brief proofs corresponding to the statements in this section will be found in the appendix. In all
the section, T0 > 0 is fixed.

We first study the small time behaviour of the phase flow generated by the Hamiltonian

H0(t, x, ξ) =
1

2

(
ξ −A(t, x)

)2

,

where we recall that A(t, x) = 1
2 (∇V (x)t + σ0∇K(x)W (t)), i.e. Aj(t, x) = xj(νjt + σ0κjW (t)). In all

what follows, we denote by N (resp. Γ) the diagonal d × d matrix such that 1
2∇V (x) = Nx (resp.

σ0

2 ∇K(x) = Γx) for any x ∈ Rd. Then, the Hamilton’s equations read as follows: ẋ(t) = ∂ξH0(t, x, ξ) = ξ(t)− tNx(t)−W (t)Γx(t)

ξ̇(t) = −∂xH0(t, x, ξ) = (tN +W (t)Γ)(ξ(t)− tNx(t)−W (t)Γx(t))
(3.1)
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with (x(s), ξ(s)) = (y, η) ∈ R2d. We assume that ω ∈ Ω is such that W (·, ω) ∈ Cα([0, T0]), where
0 < α < 1/2 is fixed. It follows from a fixed point argument in C([s, s+T ];R2d), with T sufficiently small,
and the fact that the system (3.1) is linear in (x, ξ), that for any s ∈ [0, T0], there exists a unique solution
of the above system, in C([0, T0];R2d), with (x(s), ξ(s)) = (y, η), denoted by (x(., s, y, η), ξ(., s, y, η)), and
verifying

sup
t∈[0,T0]

(|x(t)|+ |ξ(t)|) ≤ Cω,T0
(1 + |y|+ |η|). (3.2)

Remark 3.1. It will be useful to remark here that (x, ξ) is linear with respect to y and η because the
system (3.1) is linear. Moreover, it is immediate that (x, ξ) ∈ C1([0, T0];R2d).

We also set for t 6= s,

x̃(t, s, y, η) = x
(
t, s, y,

η

t− s

)
, ξ̃(t, s, y, η) = (t− s)ξ

(
t, s, y,

η

t− s

)
(3.3)

and x̃(s, s, y, η) = y + η, ξ̃(s, s, y, η) = η.

We then have the following properties concerning x̃ and ξ̃. We omit the proofs, except the C1 regularity
in time for |t− s| small (Proposition 5 below), which is given in the appendix.

Proposition 3. For t, s ∈ [0, T0], t 6= s, let (x̃(., s, y, η), ξ̃(., s, y, η)) be defined by (3.3).

(1) For any multi-indices α and β, ∂αy ∂
β
η x̃(t, s, y, η) and ∂αy ∂

β
η ξ̃(t, s, y, η) are C1 in (t, s, y, η) for

t, s ∈ [0, T0], t 6= s, and (y, η) ∈ R2d. Moreover, for 1 ≤ j, l ≤ d,∣∣∣∂αy ∂βη{∂x̃j∂yl
− δjl

}∣∣∣+
∣∣∣∂αy ∂βη{∂x̃j∂ηl

− δjl
}∣∣∣

+
∣∣∣∂αy ∂βη{∂ξ̃j∂yl

}∣∣∣+
∣∣∣∂αy ∂βη{∂ξ̃j∂ηl

− δjl
}∣∣∣ ≤ Cα,β,ω,T0

|t− s|.

(2) There exists a positive number Tω > 0 such that, for t, s ∈ [0, T0] with |t− s| ≤ Tω, the mappings

(y, η) 7→ (x, η) = (x̃(t, s, y, η), η), (y, η) 7→ (y, ξ) = (y, ξ̃(t, s, y, η)) and

(y, η) 7→ (y, x) = (y, x̃(t, s, y, η)) (3.4)

are global diffeomorphisms on Rd × Rd.
(3) Let (y, η̃(t, s, y, x)) be the inverse of (3.4) and η(t, s, y, x) = η̃(t, s, y, x)/(t− s). Then

τ 7→ (q(τ), ξ(τ)) = (x̃(τ, s, y, η̃(t, s, y, x)), ξ̃(τ, s, y, η̃(t, s, y, x))) (3.5)

is the unique solution of (3.1) such that q(s) = y and q(t) = x.

We define, for |t− s| ≤ Tω and for (x, y) ∈ Rd × Rd, the action integral of the path (q(τ), v(τ)) given

by (3.5) and v(τ) = dq
dτ = ξ(τ)−A(τ, q(τ)) as follows:

S(t, s, x, y) =

∫ t

s

L(τ, q(τ), v(τ))dτ, (3.6)

where L(t, q, v) is the Lagrangian associated to H0(t, q, ξ), that is,

L(t, q, v) = v · ξ −H0(t, q, ξ) =
1

2
(ξ2 −A2(t, q)) =

v2

2
+ v · (tN +W (t)Γ)q. (3.7)

For t 6= s, it is easily seen that S(t, s, x, y) is C1 in (t, s, x, y), and that S(t, s, x, y) is a generating function
of the map (y, η) 7→ (x(t, s, y, η), ξ(t, s, y, η)). More precisely,
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Proposition 4. For t, s ∈ [0, T0], There exists Tω > 0 such that for any multi-indices α and β,
∂αx ∂

β
y S(t, s, x, y) is C1 in (t, s, x, y) for 0 < |t− s| ≤ Tω and (x, y) ∈ R2d, moreover

(∇xS)(t, s, x(t, s, y, η), y) = ξ(t, s, y, η), (3.8)

(∇yS)(t, s, x(t, s, y, η), y) = −η, (3.9)

(∂tS)(t, s, x, y) + (1/2)
(
(∇xS)(t, s, x, y)−A(t, x)

)2
= 0, (3.10)

(∂sS)(t, s, x, y)− (1/2)
(
(∇yS)(t, s, x, y) +A(s, y)

)2
= 0, (3.11)

∣∣∣∂αx ∂βy{S(t, s, x, y)− |x− y|
2

2(t− s)

}∣∣∣ ≤ Cα,β,ω,T0
, |α+ β| = 2; (3.12)

finally, S(t, s, x, y) is quadratic in (x, y), that is, ∂αx ∂
β
y S(t, s, x, y) = 0 for |α+ β| ≥ 3.

The proof of (3.12) may be performed as in Yajima [28], introducing S̃(t, s, x, y) = (t− s)S(t, s, x, y),

using the fact that S̃(t, s, x, y) is a generating function of the mapping (y, η) 7→ (x̃, ξ̃), that is,

(∂xS̃)(t, s, x, y) = ξ̃(t, s, y, η̃(t, s, y, x)), (3.13)

(∂yS̃)(t, s, x, y) = −η̃(t, s, y, x), (3.14)

and Proposition 3.
We will prove that the definition of S̃(t, s, x, y) eliminates the singularity at t = s in S(t, s, x, y), and

that the following smoothness properties hold.

Proposition 5. For any multi-indices γ and β, with |γ+ β| ≤ 2, ∂γx∂
β
y S̃(t, s, x, y) is C1 in (t, s, x, y) for

|t− s| ≤ Tω and (x, y) ∈ R2d. Moreover,∣∣∣∂γx∂βy (S̃(t, s, x, y)− 1

2
(x− y)2 − 1

2
(t− s)(x− y) · (sN +W (s)Γ)(x+ y)

)∣∣∣ (3.15)

≤ Cω,T0
|t− s|1+α(1 + |x|+ |y|)2−|γ+β|,∣∣∣∂γx∂βy ((∂tS̃)(t, s, x, y)− 1

2
(x− y) · (sN +W (s)Γ)(x+ y)

)∣∣∣ (3.16)

≤ Cω,T0
|t− s|α(1 + |x|+ |y|)2−|γ+β|,∣∣∣∂γx∂βy ((∂sS̃)(t, s, x, y) +

1

2
(x− y) · (sN +W (s)Γ)(x+ y)

)∣∣∣ (3.17)

≤ Cω,T0 |t− s|α(1 + |x|+ |y|)2−|γ+β|,

where we recall that 0 < α < 1/2 is such that W (·, ω) ∈ Cα([0, T0]).

Proof. see Appendix. �

Still following the idea in [28], we set, for |t− s| ≤ Tω,

R(t, s) = −(∆xS)(t, s) +
d

t− s
+ sTr(N) +W (s)Tr(Γ), (3.18)

and

a(t, s) = exp
(1

2

∫ t

s

R(τ, s)dτ
)
. (3.19)
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Note that in our case, R(t, s) and a(t, s) do not depend on (x, y) because S(t, s, x, y) is quadratic in (x, y).
We easily deduce from Propositions 4 and 5 that R(t, s) is a continuous function of (t, s) ∈ [0, T0]2 with
|t− s| ≤ Tω, and a(t, s) is a real valued C1 function of (t, s) ∈ [0, T0]2 with |t− s| ≤ Tω verifying

|a(t, s)− 1| ≤ Cω,T0
|t− s|. (3.20)

Next, we define, for t, s ∈ [0, T0] and 0 < |t− s| ≤ Tω, the oscillatory integral operator:

I(t, s, a)f(x) = (2πi(t− s))−d/2a(t, s)

∫
Rd
eiS(t,s,x,y)f(y)dy, f ∈ C∞0 (Rd). (3.21)

We now list the properties of the oscillatory integral operator I that will allow us to define the propagator
Uω and to conclude the proof of Theorem 1.

Proposition 6. Let (t, s) ∈ [0, T0]2 with 0 < |t−s| ≤ Tω. Let I(t, s, a) be the oscillatory integral operator
defined in (3.21), and a(t, s) be the function defined in (3.19). Then the following properties hold.

(1) The adjoint operator I(t, s, a)∗ of I(t, s, a) satisfies I(t, s, a)∗ = I(s, t, ã), with ã(t, s) = a(s, t).
(2) There exist bounded real valued functions ajk,lm(t, s), with l,m = 1, 2 and 1 ≤ j, k ≤ d, such that

xjI(t, s, a) = I(t, s, a)xj − (t− s)I(t, s, a)(i∂xj ) (3.22)

+(t− s)
d∑
k=1

{I(t, s, ajk,11)xk + I(t, s, ajk,12)(i∂xk)},

i∂xjI(t, s, a) = I(t, s, a)i∂xj +

d∑
k=1

{I(t, s, ajk,21)xk + (t− s)I(t, s, ajk,22)(i∂xk)}. (3.23)

(3) For any k ∈ N, I(t, s, a) is a continuous operator in Σ(k), and

|I(t, s, a)f |Σ(k) ≤ Cω,T0,k|f |Σ(k).

(4) For any s ∈ [0, T0] and f ∈ L2(Rd), we have limt→s |I(t, s, a)f − f |L2 = 0.

Proof. see Appendix.

It is not difficult, using (3.10), to prove that the operator I(t, s, a) satisfies, for any f ∈ C∞0 (Rd),(
i∂t +

1

2

(
∇− iA(t, x)

)2)
I(t, s, a)f(x) = 0. (3.24)

Thus, setting Uω(t, s) = I(t, s, a), Proposition 6 implies that Uω is a unitary propagator for equation
(1.3) (see the proof of Theorem 3 in [28]), that Uω(t, s)f satisfies (1.3) in L2(Rd) if f ∈ Σ(2), and that
Uω(t, s)f ∈ C([s, s+ Tω];L2) if f ∈ L2(Rd). These arguments prove Theorem 1.

Remark 3.2. Once Uω(t, s) is defined for all (t, s) ∈ [0, T0]2 (see Remark 2.3) one obtains that (u(t))t≥s =
U .(t, s)us is adapted to (Ft)t≥s, provided us ∈ L2(Ω,Fs, L2(Rd)). Indeed, it easily follows from (3.1) and

(2) of Proposition 3 that x̃(t, s, y, η), ξ̃(t, s, y, η) and η̃(t, s, y, x) are Ft-measurable, hence so is S(t, s, x, y)
by (3.6); on the other hand, (3.19) and (3.18) show that a(t, s) is Ft-measurable.

Remark 3.3. It may easily be seen that all the constants Cω,T0
appearing in this section are uniform in

the Cα([0, T0])-norm of W (., ω), that is, these constants depend only on R when W (., ω) belongs to the
ball of radius R in Cα([0, T0]). This remark will be useful in the proof of Theorem 3.
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4. Strichartz estimates and nonlinear evolution

We prove Proposition 1 and Theorem 2 in this section. For this purpose we first establish the Strichartz
estimates. We remark that the expression (3.21) gives L1 → L∞ estimate of the propagator and the Riesz-
Thorin interpolation theorem implies the following lemma 4.1. Tω > 0 will always be assumed sufficiently
small so that the previous arguments in Section 3 are satisfied.

Lemma 4.1. Let 2 ≤ p ≤ ∞ and t, s ∈ [0, T0], with |t − s| ≤ Tω. Let Uω(t, s) be the unique propagator

of (1.3) established in Section 3. For any f ∈ Lp′(Rd), the following estimate holds.

|Uω(t, s)f |Lp(Rd) ≤
Cω,T0

|t− s|d(1/2−1/p)
|f |Lp′ (Rd),

where p′ is the conjugate number of p given by 1
p + 1

p′ = 1.

Recall that a pair (q, r) is said to be admissible if 2
q = d

(
1
2 −

1
r

)
and 2 ≤ r < 2d

d−2 (2 ≤ r ≤ ∞ if d = 1,

2 ≤ r <∞ if d = 2).

Proposition 7. (Strichartz estimates) Let (q, r) be an admissible pair. There is a constant Cω,T0 such
that for any s ∈ [0, T0] and any us ∈ L2(Rd),

|Uω(·, s)us|Lq(s,s+Tω∧T0;Lr) ≤ Cω,T0
|us|L2 . (4.1)

If (γ, ρ) is an admissible pair and f ∈ Lγ′(s, s+ Tω;Lρ
′
(Rd)), then Λω(t, s)f defined as

Λω(t, s)f =

∫ t

s

Uω(t, τ)f(τ)dτ, t ∈ [s, s+ Tω ∧ T0]

belongs to Lq(s, s + Tω ∧ T0;Lr(Rd)) ∩ C([s, s + Tω ∧ T0];L2(Rd)). Furthermore, there exists a constant

Cω,T0 such that, for every f ∈ Lγ′(s, s+ Tω;Lρ
′
(Rd)),

|Λω(·, s)f |Lq(s,s+Tω∧T0;Lr) ≤ Cω,T0
|f |Lγ′ (s,s+Tω;Lρ′ ). (4.2)

Proof of Proposition 7. Here we give only the ideas of the proof since we can prove this proposition
similarly to Theorem 2.3.3 in [7]. First we obtain the estimate, for any admissible pair (q, r) and f ∈
Lq
′
(s, s+ Tω;Lr

′
(Rd)),

|Λω(·, s)f |Lq(s,s+Tω∧T0;Lr) ≤ Cω,T0
|f |Lq′ (s,s+Tω;Lr′ ) (4.3)

using the Riesz potential inequalities and Lemma 4.1. All the other inequalities are obtained using duality
and interpolation estimates (see [7]), e.g., for any admissible pair (q, r) and f ∈ Lq′(s, s + Tω;Lr

′
(Rd)),

knowing (4.3),

|Λω(t, s)f |2L2 = <
∫ t

s

∫ t

s

〈Uω(t, σ)f(σ), Uω(t, θ)f(θ)〉dσdθ

= <
∫ t

s

∫ t

s

〈f(σ), Uω(t, σ)∗Uω(t, θ)f(θ)〉dσdθ

= <
∫ t

s

〈f(σ),

∫ t

s

I(σ, θ, c)f(θ)dθ〉dσ

≤ |f |2
Lq′ (s,t;Lr′ )
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by duality for any t ∈ [s, s+Tω∧T0] and for some function c = c(t, s, x, y, ω). Note that c(t, s, ·, ·, ω) in the
third equality is a continuous and bounded function on Rd×Rd for (t, s) ∈ [0, T0]2 with 0 < |t− s| ≤ Tω,
whose existence is ensured by Proposition 6 and Lemma 3.1 of [28]. �

Once established the Strichartz estimate, we are in position to prove the local existence of solutions.

Proof of Proposition 1. Let 0 < T ≤ T0 ∧ Tω where T0 is fixed, and put I = [0, T ]. As in [17, 27], the
local existence in L2 is proved by a fixed point method in BXR0

= {v ∈ XT , |v|XT ≤ R0}, R0 > 0, where

XT = L∞(I;L2) ∩ Lr(I;L2σ+2),

with the metric |v|XT = |v|L∞(I;L2) + |v|Lr(I;L2σ+2) and r is such that (r, 2σ + 2) is an admissible pair.

Let u0 ∈ L2(Rd). We define the mapping T ω by

(T ωu)(t) = Uω(t, 0)u0 − iλ
∫ t

0

Uω(t, τ)(|u|2σu(τ))dτ = Uω(t, 0)u0 − iλΛω(t, 0)(|u|2σu). (4.4)

For u, v ∈ BXR0
, the estimates

|T ωu|XT ≤ Cω,T0
|u0|L2 + Cω,T0

T γ |u|2σ+1
XT

and

(4.5)

|T ωu− T ωv|XT ≤ Cω,T0
T γ(|u|2σ

LrIL
2σ+2
x

+ |v|2σ
LrIL

2σ+2
x

)|u− v|LrIL2σ+2
x

≤ Cω,T0T
γR0

2σ|u− v|XT (4.6)

hold with γ = 1− 2σ+2
r which is positive if σ < 2/d. Taking Rω0 = 2Cω,T0

|u0|L2 , and choosing T sufficiently

small, T ω maps BXRω0 into itself, and is a contraction mapping. T depends only on |u0|L2 , ω and T0.

Before proving the conservation of the L2 norm, let us prove the local existence of continuous solutions
with values in Σ. We define the space,

YT = {v ∈ XT , xv,∇v ∈ L∞(I;L2) ∩ Lr(I;L2σ+2)}.
Note that the ball BYR = {v ∈ YT , |v|YT ≤ R} is closed for the norm | · |XT . Let u0 ∈ Σ. We prove that
T ω defined above is a contraction mapping in the ball BYR , for a well chosen R. We remark here that
∂xj and the multiplication by xj do not commute with Uω(t, 0), but by virtue of (2) of Proposition 6, we
have the following estimates.

Lemma 4.2. For any f ∈ Σ, Uω(t, 0)f ∈ C(I,Σ) ∩ YT . Moreover,

|Uω(·, 0)f |YT ≤ C1|f |Σ, |Λω(·, 0)f |YT ≤ C2|f |Y ′T
with constants C1 and C2 independent of T (but depending on ω and T0), where

Y ′T = {v such that v, xv,∇v ∈ L1(I;L2) + Lr
′
(I;L

2σ+2
2σ+1 )}.

Proof. see Lemma 3.3 of [9].

Let u ∈ BYR . With the help of the above lemma, we can show, in addition to (4.6), that

|T ωu|YT ≤ C1|u0|Σ + C3T
γ |u|2σ

LrIL
2σ+2
x
|u|YT .

Since, from the proof of (i), we have |u|LrIL2σ+2
x
≤ 2Cω,T0

|u0|L2 , we may choose R = 2C1|u0|Σ and T > 0

sufficiently small so that T ω is a contraction mapping from BYR into itself (for the XT -norm). It may be
seen that T depends only on |u0|L2 , ω and T0, and thus the solution is in YT as long as it exists in XT .

Let us now prove the conservation of the L2 norm with the use of a regularization procedure. We
first assume that the initial data u0 is in Σ. Consider a function ρ ∈ C∞0 (Rd) satisfying ρ ≥ 0 and
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∫
Rd ρ(x)dx = 1. Let ρε(x) = ε−dρ(xε ). We regularize the equation (2.2) by this molifier ρε. Since A(x, t)

is linear in x, the regularized equation is written as follows.

i∂t(ρε ∗ u) = −1

2

(
∇− iA(t, x)

)2

(ρ ∗ u) + λρε ∗ (|u|2σu)− 1

2
(A2ρε) ∗ u− i(Aρε) ∗ ((∇− iA)u).

Thus, the evolution of L2 norm for this equation is, for any t ∈ [0, T ]

|ρε ∗ u(t)|2L2 = |ρε ∗ u0|2L2 + 2λ=
∫ t

0

〈ρε ∗ (|u|2σu), ρε ∗ u〉ds

−=
∫ t

0

〈(A2ρε) ∗ u, ρε ∗ u〉ds− 2<
∫ t

0

〈(Aρε) ∗ ((∇− iA)u), ρε ∗ u〉ds.

The last two terms in the right hand side tend to zero as ε goes to 0, since (Akρε) ∗ v with k = 1, 2
tends to zero in L2(0, t;L2) for any v ∈ L2(0, t, L2), and ρε ∗ u converges to u in L2(0, t;L2). We apply

the convergences ρε ∗ u → u in Lr(0, t;L2σ+2) and ρε ∗ (|u|2σu) → |u|2σu in Lr
′
(0, t;L(2σ+2)/(2σ+1)) to

the second term in the right hand side which also vanishes as ε goes to zero. On the other hand, by the
fact ρε ∗ u(t) converges to u(t) and ρε ∗ u0 converges to u0 in L2 as ε tends to zero, we obtain the L2

conservation for the solution of (2.2) for any t ∈ [0, T ], if the initial data u0 is in Σ. THis is obviously
still true for any initial data in L2 by regularization. Thanks to the conservation of the L2 norm, we get
the global existence of solutions in L2, and thus also in YT when the initial data is in Σ. Continuous
dependence on the initial data in L2 is shown similarly to Theorem 4.1 in [9]. This completes part (i)
and (ii) of the proof of Proposition 1.

Lastly, we give the arguments for proving (iii) of Proposition 1. In that case, we estimate the non-
linearity as ||u|2σu|Y ′T ≤ CT 1−θ|u|2σ+1

YT
for any u ∈ YT and θ = dσ

2(σ+1) < 1. Then, if u0 ∈ Σ, for any

u, v ∈ BYR , we have

|T ωu|YT ≤ C1|u0|Σ + C2T
1−θ|u|2σ+1

YT
,

and

|T ωu− T ωv|XT ≤ CT 1−θ(|u|2σYT + |v|2σYT )|u− v|XT ,

which implies that T ω is a contraction in BYR with R = 2C1|u0|Σ, for sufficiently small T > 0. This
allows us to show the local existence and the blow-up alternative in Σ (see [9]). Note that by virtue of
Proposition 7 and (4) of Proposition 6, in each case, T ωu belongs to C(I;L2) or C(I; Σ). The adaptivity
of u results from the adaptivity of Uω (see Remark 3.2), the fact that u is obtained by a fixed point
procedure, and the use of a cut-off argument (see e.g. [10] or [11]). In the supercritical case (iii), the
cut-off argument has to be performed for a fixed t, in L2σ+2 norm. Note that the adaptivity of u implies
that T ∗ is a stopping time. �

Proof of Theorem 2. We note that if u ∈ C([0, T0];L2(Rd)) then ψ given by (1.2) is also in
C([0, T0];L2(Rd)); moreover, if u is a solution of Eq. (2.2), then the Itô formula implies that ψ solves
Eq. (1.5) in C([0, T0]; Σ(−2)). Since in addition, u ∈ C([0, T0]; Σ) implies ψ ∈ C([0, T0]; Σ), it is easily
seen that the results of (i) and (ii) in Proposition 1 imply (i) and (ii) of Theorem 2. Concerning the local
existence in Σ, (iii), we define for R > 0, τR = inf{t ≥ 0, |u(·)|L∞(0,t;Σ) ≥ R} where u is the solution
obtained in (iii) of Proposition 1, with u0 = ψ0. Since {u(t)}t≥0 is adapted to (Ft)t≥0, τR is an increasing
stopping time. We then set τ∗ = limR→+∞ τR. On the other hand, by the deterministic theory, we know
that there exists a maximal time T ∗ = T ∗ω,u0

> 0 such that the following alternative holds; T ∗ = +∞
or limt↑T∗ |u(t)|Σ = +∞ if T∗ < +∞. If T ∗ = +∞, u exists globally, so ψ is global, too. If T ∗ < +∞,
the definition of τR implies τ∗ = T ∗. Part (iv) follows from the same argument as in (i) of Theorem 3 of
[12], combined with some ideas in [6]. Using the Itô formula, the evolution of the Hamiltonian H given
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by (2.4) of the solution of (1.5) is found to be, for any stopping time τ ≤ τR ∧ T :

H(ψ(τ)) = H(ψ0) +
1

4

∫ τ

0

∫
Rd
|Γx|2|ψ(x)|2dxdt− 1

2
Im

∫ τ

0

∫
Rd

Γx · ∇ψ(x)ψ̄(x)dxdW, a.s; (4.7)

on the other hand, again by the Itô formula,

|xψ(τ)|2L2 = |xψ0|2L2 + 2Im

∫ τ

0

∫
Rd
xψ̄ · ∇ψdxdt, for any τ ≤ τR ∧ T, a.s. (4.8)

Now, assume that λ = +1; one easily get form (4.7) that for any R > 0,

E
(

sup
t∈[0,τR∧T ]

|∇ψ|2L2

)
≤ |H(ψ0)|+ C|N |,dE

(
sup

t∈[0,τR∧T ]

|xψ(t)|2L2

)
+C|Γ|,d,σ0

E
(

sup
t∈[0,τR∧T ]

∫ t

0

|xψ(s)|2L2ds
)

+Cσ0E
(

sup
t∈[0,τR∧T ]

∣∣∣ ∫ t

0

∫
Rd
∇K · ∇ψψ̄dxdW

∣∣∣) (4.9)

The last term of the right hand side above is estimated thanks to Theorem 3.14 in [8], and is then
majorized by

3Cσ0
E
[( ∫ T∧τR

0

∣∣∣ ∫
Rd
∇K · ∇ψψ̄dx

∣∣∣2ds)1/2]
≤ 3Cσ0

TE
(

sup
t∈[0,τR∧T ]

|∇ψ(t)|L2 |xψ(t)|L2

)
≤ 1

2
E
(

sup
t∈[0,τR∧T ]

|∇ψ(t)|2L2

)
+ Cσ0,TE

(
sup

t∈[0,τR∧T ]

|xψ(t)|2L2

)
.

Plugging this estimate into (4.9), one gets

E
(

sup
t∈[0,τR∧T ]

|∇ψ|2L2

)
≤ 2|H(ψ0)|+ C|N |,d,T,σ0

E
(

sup
t∈[0,τR∧T ]

|xψ(t)|2L2

)
+C|Γ|,d,σ0

E
(

sup
t∈[0,τR∧T ]

∫ t

0

|xψ(s)|2L2ds
)
. (4.10)

On the other hand, by (4.8), one has

E
(

sup
t∈[0,τR∧T ]

|xψ(t)|2L2

)
≤ |xψ0|2L2

+E
(∫ T

0

1l[0,τR∧T ](|∇ψ(t)|2L2 + |xψ(t)|2L2)dt
)
. (4.11)

Hence, combining (4.10) and (4.11),

E
(

sup
t∈[0,τR∧T ]

|∇ψ(t)|2L2 + |xψ(t)|2L2

)
≤ C|N |,d,T,σ0,|ψ0|Σ + C|N |,d,T,σ0,|Γ|E

(∫ T

0

1l[0,τR∧T ](|∇ψ(t)|2L2 + |xψ(t)|2L2)dt
)
,

and one concludes using Gronwall’s lemma that

E
(

sup
t∈[0,τR∧T ]

|∇ψ(t)|2L2 + |xψ(t)|2L2

)
≤ C|ψ0|Σ,|N |,d,T,σ0,|Γ|.

This latter estimate implies τ∗ = +∞, a.s. �
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Remark 4.1. Note that the estimates proving the local existence of solutions in XT or YT in the proof
of Proposition 1 are still available in the presence of a damping term −iγu, with γ > 0, on the right hand
side of Eq.(2.2). In this case the L2 norm is not preserved but is decreasing. Moreover, in the proof of
(iv) of Theorem 2, (4.7) may be replaced by the equality (3.3) of [12] and (4.8) by

|xψ(τ)|2L2 = |xψ0|2L2 + 2Im

∫ τ

0

∫
Rd
xψ̄ · ∇ψdxdt− 2γ

∫ τ

0

|xψ(t)|2L2dt

if γ > 0 in Eq.(1.1), and this leads to the same conclusion.

5. Continuous dependence on the Brownian path and convergence

This section is devoted to the proof of Proposition 2, i.e. the continuous dependence of solutions on
the Brownian paths, and of Theorem 3.

We begin with introducing the following proposition which is a consequence of the properties of the
propagator Uω(t, s) that we studied in Section 3. We have already seen that for f ∈ C∞0 (Rd), Uω(·, s)f is

a strong solution of (1.3), and is a function of W (·, ω), provided ω ∈ Ω̃αT0
= {ω ∈ Ω, W (·, ω) ∈ Cα([0, T0])}

with 0 < α < 1/2. Note also that we could have replaced in Section 3 W (·, ω) by any function g(.) in
Cα([0, T0]) with α > 0 (all the constants appearing in the estimates would then depend on |g|Cα([0,T0]),

instead of ω and T0). Hence, we may fix ω ∈ Ω̃αT0
and we regard Uω(t, s)f as a function of the Brownian

path W (·, ω). We then denote Uω(t, s) by UW (t, s) to clarify the dependence.

Proposition 8. Let T0 > 0, R > 0 and M > 0 be fixed. There exist a TR > 0, and a constant
CR,T0,M > 0 such that if f ∈ C∞0 (Rd), with supp(f) ⊂ B(0,M), and if W1,W2 ∈ BR, then, for any
t, s ∈ [0, T0] with |t− s| < TR we have

|(UW1(t, s)− UW2(t, s))f |L2 ≤ CR,T0,M |W1 −W2|C([0,T0])

(
|f |L2 +

∑
|α|≤ d2 +3

|∂αy f |L1

)
, (5.1)

where BR is the centered ball in Cα([0, T0]) with radius R, and UW (t, s) is the unique propagator of (1.3).

Proof. see Appendix. �

Before giving the proof of Proposition 2, we state a corollary of Proposition 8.

Corollary 5.1. For T0, TR as in Proposition 8, f ∈ L2(Rd), and any s ∈ [0, T0], W 7→ UW (·, s)f is
continuous in the sense of Proposition 8, from C([0, T0]) ∩BR into C([s, s+ TR ∧ T0];L2(Rd)).

Proof. The proof of Corollary 5.1 follows easily from Proposition 8 and (3) of Proposition 6 (with k = 0)
which states that f 7→ UW (·, s)f is continuous on L2(Rd), uniformly for W ∈ BR. �

Proof of Proposition 2. We first consider a truncated version of equation (2.2). Let, for M > 0, χM
be a positive C∞0 (R+) function with suppχM ⊂ [0, 2M ], χM ≡ 1 on [0,M ], and 0 ≤ χM ≤ 1. We set
fM (u) = χM (|u|2)|u|2σu, and consider the following equation, which clearly possesses a unique solution,
denoted by uW,M , in C(R+;L2(Rd)), since fM is globally Lipschitz in L2(Rd) :

i∂tu = −1

2

(
∇− i(tN +W (t)Γ)

)2
u+ λfM (u), (5.2)

with u(0, x) = u0 ∈ L2(Rd). Equivalently, uW,M is the unique solution in C(R+;L2(Rd)) of the mild
equation

u(t) = UW (t, 0)u0 − iλ
∫ t

0

UW (t, τ)fM (u(τ))dτ. (5.3)
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Let us prove that W 7→ uW,M is continuous in the sense of Proposition 2 for any M > 0. It clearly follows

from the estimates of Section 3 that uW,M is the limit in C([0, T0];L2) of the sequence uW,Mk defined by

uW,M0 (t) = UW (t, 0)u0 and

uW,Mk+1 = UW (t, 0)u0 − iλ
∫ t

0

UW (t, τ)fM (uW,Mk (τ))dτ, (5.4)

and that this limit is uniform with respect toW ∈ BR. Hence, in order to get the continuity ofW 7→ uW,M ,

it is sufficient to prove that uW,Mk is continuous with respect to W in the sense of Proposition 2, for any
k. We use an induction argument. Thanks to Corollary 5.1 and (5.4), this continuity will hold true at
level k + 1, assuming it at level k, if we prove that for any W0 ∈ BR,

lim sup
t∈[0,T0]

∫ t

0

|UW (t, s)fM (uW,Mk (s))− UW0(t, s)fM (uW0,M
k (s))|L2ds = 0, (5.5)

when W tends to W0 in C([0, T0]), with W ∈ BR. But the left hand side of (5.5) is bounded above, for
W ∈ BR, by ∫ T0

0

sup
t∈[0,T0]

|UW (t, s)(fM (uW,Mk (s))− fM (uW0,M
k (s)))|L2ds

+

∫ T0

0

sup
t∈[0,T0]

|UW (t, s)fM (uW0,M
k (s))− UW0(t, s)fM (uW0,M

k (s))|L2ds

≤ CR,T0,M

∫ T0

0

|uW,Mk (s)− uW0,M
k (s)|L2ds

+

∫ T0

0

sup
t∈[0,T0]

|UW (t, s)fM (uW0,M
k (s))− UW0(t, s)fM (uW0,M

k (s))|L2ds.

The first term goes to zero by the induction assumption, and the second one by the dominated conver-
gence Theorem, since Corollary 5.1 implies the convergence of the term inside the integral, while the
boundedness of UW (t, s) in L2, which is uniform with respect to W ∈ BR, implies

|UW (t, s)fM (uW0,M
k (s))− UW0(t, s)fM (uW0,M

k (s))|L2 ≤ 2CR,T0,M |u
W0,M
k |L2 .

Hence, uW,M is continuous with respect to W ∈ BR in the sense of Proposition 2. It remains to get
rid of the cut-off function χM . Note that we may restrict ourselves to a sufficiently small time interval
[0, T ], provided that it depends only on R, T0 and |u0|L2 . Let (ρ, 2σ + 2) and (r, p) be admissible pairs,
with p > 2σ + 2 and r′(2σ + 1) < ρ (this is possible, since σ < 2/d implies ρ′(2σ + 1) < ρ). Note that
by Strichartz estimates (Proposition 7) applied to (5.3), uW,M ∈ Lρ(0, T ;L2σ+2), and for T sufficiently
small, depending only on R, T0 and |u0|L2 ,

|uW,M |Lρ(0,T ;L2σ+2) ≤ CR,T0 |u0|L2

and

|uW |Lρ(0,T ;L2σ+2) ≤ CR,T0
|u0|L2 .

Then, using again Proposition 7 for the difference between (5.3) and (2.3), we get for T as above,

|uW,M − uW |Lρ(0,T ;L2σ+2)∩L∞(0,T ;L2) ≤ CR,T0

∣∣∣(χM (|uW,M |)2 − 1
)
|uW,M |2σuW,M

∣∣∣
Lr′ (0,T ;Lp′ )

+CR,T0,|u0|L2 ,σT
γ |uW,M − uW |Lρ(0,T ;L2σ+2)
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with γ = 1 − 2σ+2
ρ , from which it follows, taking again T small enough depending on R, T0, |u0|L2 , σ,

that

|uW,M − uW |Lρ(0,T ;L2σ+2)∩L∞(0,T ;L2) ≤ CR,T0

∣∣∣(χM (|uW,M |)2 − 1
)
|uW,M |2σuW,M

∣∣∣
Lr′ (0,T ;Lp′ )

. (5.6)

On the other hand, ∣∣∣(χM (|uW,M |)2 − 1
)
|uW,M |2σuW,M

∣∣∣
Lr′ (0,T ;Lp′ )

≤
(∫ T

0

|1l{|uW,M (s,·)|2≥M}|uW,M (s)|2σ+1|r
′

Lp′
ds
)1/r′

≤
(∫ T

0

|1l{|uW,M (s,·)|2≥M}|r
′

Lq |uW,M (s)|(2σ+1)r′

L2σ+2 ds
)1/r′

(5.7)

with q > 1 such that 1
p′ = 2σ+1

2σ+2 + 1
q . Now, by Hölder inequality in time, this term is estimated by(∫ T

0

|1l{|uW,M (s,·)|2≥M}|βLqds
)1/β

|uW,M |2σ+1
Lρ(0,T ;L2σ+2)

≤ (CR,T0 |u0|L2)2σ+1
(∫ T

0

(meas{|uW,M (s, ·)|2 ≥M})β/qds
)1/β

(5.8)

where 1
r′ = 2σ+1

ρ + 1
β ; note that 1

β > 0, since (2σ + 1)r′ < ρ. In turn, we have(∫ T

0

(meas{|uW,M (s, ·)|2 ≥M})β/qds
)1/β

≤
(∫ T

0

( 1

M

∫
{|uW,M (s,x)|2≥M}

|uW,M (s, x)|2dx
)β/q

ds
)1/β

(5.9)

≤ 1

M1/q

(∫ T

0

|uW,M (s, ·)|2β/qL2 ds
)1/β

=
1

M1/q
T 1/β |u0|2/qL2 .

We have used in the last equality the fact that |uW,M (s, ·)|L2 = |u0|L2 , for any s. This fact is easily seen,
on a formal point of view, by multiplying equation (5.2) by ū, integrating on Rd and taking the imaginary
part, and may be justified, as is classical, using a regularization procedure.

Finally, collecting (5.6), (5.7), (5.8) and (5.9) shows that uW,M converges to uW in L∞(0, T ;L2) as M
goes to infinity, uniformly for W ∈ BR, and Proposition 2 follows. �

Proof of Theorem 3. By Assumption (A), BR being a Borel set of C([0, T0]), we have

lim
ε→0

P(Mε ∈ BR) = P(W ∈ BR),

where we put Mε(t) = ε
σ0

∫ t/ε2
0

m(s)ds. On the other hand, since P
(
W ∈ Cα([0, T0])

)
= 1 if α < 1/2, for

any η > 0 there exists R0 > 0 such that

P(W ∈ BR0
) ≥ 1− η/2.

Thus, there exists ε0 > 0 such that for any ε ∈ (0, ε0)

P(Mε ∈ BR0) ≥ 1− η,

and hence

P(W ∈ BR0
and Mε ∈ BR0

) ≥ 1− 3η/2.
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By Skohorod Theorem, there exist a probability space (Ω̃, F̃ , P̃), a subsequence of random variables {M̃ε}
and a Brownian motion W̃ such that L(M̃ε) = L(Mε), L(W̃ ) = L(W ) and M̃ε converges to W̃ , P̃-a.s.,
in C([0, T0]). Then, for any ε ∈ (0, ε0),

P̃
(
M̃ε ∈ BR0 and W̃ ∈ BR0

)
≥ 1− 3η/2.

Now, if M̃ε ∈ BR0
, then the solution uM̃

ε

of equation (2.3) with W replaced by M̃ε is well defined in
C([0, T0];L2(Rd)) by the proof of (i) of Proposition 1, and by Proposition 2, for any δ > 0,

P̃
(
M̃ε ∈ BR0 , W̃ ∈ BR0 and |uM̃

ε

− uW̃ |C([0,T0];L2)

)
> δ)

converges to 0 as ε goes to 0. Therefore, for any δ > 0,

P̃(|uM̃
ε

− uW̃ |C([0,T ];L2) > δ) ≤ 2η

provided that ε is sufficiently small. In particular, uM
ε

converges to uW in distribution in C([0, T0];L2).
One easily prove in the same way that (Mε, uM

ε

) converges in distribution in C([0, T0])×C([0, T0];L2(Rd))
to (W,uW ), and we deduce that

ψM
ε

(t, x) = e−i|x|
2(tN+Mε(t)Γ)uM

ε

(t, x),

which is clearly the unique solution in C([0, T0];L2(Rd)) of equation (2.5), converges in distribution in
C([0, T0];L2) to the solution ψ of equation (1.5) given by Theorem 2. �

Remark 5.1. The arguments of the proof of Proposition 2 and Theorem 3 are still valid in the presence
of a damping term, simply setting fM (u) = χM (|u|2)|u|2σu − iγu, γ > 0 and noting that L2 norm is
decreasing in the proof of Proposition 2. Thus the result of Theorem 3 is still true with a damping term.

Remark 5.2. In the case where σ ≥ 2/d, using the estimates |uW,M |YT , |uW |YT ≤ CR,T0 |u0|Σ in the
proof of Proposition 2, as in the proof of local existence of solutions in Σ, it is possible to get

|uW,M − uW |LρTL2σ+2∩L∞T L2 ≤
(
CR,T0

|u0|Σ
)2σ+1 1

M1/q
T 1/r′ |u0|2/qL2 .

for small time T > 0. For any fixed time T1 < T ∗u0,ω, we obtain the same estimate for |uW,M −
uW |LρT1

L2σ+2∩L∞T1
L2 but with |u0|Σ replaced by supt∈[0,T1] |u(t)|Σ. It is not clear that supt∈[0,T1] |u(t)|Σ

depends “only” on W ∈ BR, therefore the convergence uW,M → uW as M → +∞ may not be uniform in
W ∈ BR.

6. Appendix

Proof of Proposition 5. Since we already know that S(t, s, x, y) is C1 for 0 < |t− s| ≤ Tω, it suffices
to prove (3.15)-(3.17) and similar asymptotics for the partial derivatives in the space variable, which will

prove that ∂αx ∂
β
y S̃(t, s, x, y) is C1 for |t− s| ≤ Tω. We recall that 0 < α < 1/2 is fixed, and that ω is such

that W (·, ω) ∈ Cα([0, T0]). Using the system (3.1), with initial conditions (x(s), ξ(s)) = (y, η), and the
18



estimate (3.2), we get for any σ ∈ [s, t] with s, t ∈ [0, T0] :

|ξ(σ, s, y, η)− η − (σ − s)(sN +W (s)Γ)η + (σ − s)(sN +W (s)Γ)2y|

=
∣∣∣ ∫ σ

s

(uN +W (u)Γ)(ξ(u)− uNx(u)−W (u)Γx(u))du

−
∫ σ

s

(sN +W (s)Γ)ηdu+

∫ σ

s

(sN +W (s)Γ)2ydu
∣∣∣

=
∣∣∣ ∫ σ

s

((u− s)N + (W (u)−W (s))Γ)(ξ(u)− (uN +W (u)Γ)x(u))du

+

∫ σ

s

(sN +W (s)Γ)(ξ(u)− η − (uN +W (u)Γ)(x(u)− y))du

−(sN +W (s)Γ)

∫ σ

s

((u− s)N + (W (u)−W (s))Γ)ydu
∣∣∣

≤ Cω,T0
(1 + |y|+ |η|)|σ − s|1+α, (6.1)

where ξ(u) = ξ(u, s, y, η) and x(u) = x(u, s, y, η). Similarly,

|x(σ, s, y, η)− y − (σ − s)η + (σ − s)(sN +W (s)Γ)y| ≤ Cω,T0(1 + |y|+ |η|)|σ − s|1+α. (6.2)

Thus, we get ∣∣∣x(t, s, y, η)− y − (t− s)η +

∫ t

s

(σN +W (σ)Γ)ydσ
∣∣∣

=
∣∣∣ ∫ t

s

[ξ(σ, s, y, η)− η − (σ − s)(sN +W (s)Γ)η + (σ − s)(sN +W (s)Γ)2y

+((s− σ)N + (W (s)−W (σ))Γ)(x(σ, s, y, η)− y)

−(sN +W (s)Γ)(x(σ, s, y, η)− y − (σ − s)η + (σ − s)(sN +W (s)Γ)y)]dσ
∣∣∣

≤ Cω,T0 |t− s|2+α(1 + |y|+ |η|).

We deduce, using (3.3), that

|x̃(t, s, y, η)− y − η +

∫ t

s

(σN +W (σ)Γ)ydσ| ≤ Cω,T0
|t− s|1+α(1 + |y|+ |η|),

and also that

|x̃(t, s, y, η)− y − η + (t− s)(sN +W (s)Γ)y| ≤ Cω,T0
|t− s|1+α(1 + |y|+ |η|). (6.3)

Hence, plugging η = η̃(t, s, y, x) into (6.3) and using the fact that

|η̃(t, s, y, x)| ≤ Cω,T0(1 + |x|+ |y|),

as follows from Proposition 3, we deduce

|η̃(t, s, y, x)− x+ y − (t− s)(sN +W (s)Γ)y|
= |η̃(t, s, y, x)− x̃(t, s, y, η̃(t, s, y, x)) + y − (t− s)(sN +W (s)Γ)y| (6.4)

≤ Cω,T0
|t− s|1+α(1 + |x|+ |y|)

and ∣∣∣η(t, s, y, x)− x− y
t− s

− (sN +W (s)Γ)y
∣∣∣ ≤ Cω,T0

|t− s|α(1 + |x|+ |y|). (6.5)
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From (6.2) and (6.5), we get for s ≤ τ ≤ t:

|x(τ, s, y, η(t, s, y, x))− y − (τ − s)η(t, s, y, x) + (τ − s)(sN +W (s)Γ)y|
≤ Cω,T0(1 + |y|+ |η(t, s, y, x)|)|τ − s|1+α

≤ Cω,T0(1 + |x|+ |y|)|τ − s|α.

Hence, using again (6.5) :∣∣∣x(τ, s, y, η(t, s, y, x)− y − τ − s
t− s

(x− y)
∣∣∣ ≤ Cω,T0 |τ − s|α(1 + |x|+ |y|). (6.6)

On the other hand, (6.1) and (6.5) imply for s ≤ τ ≤ t :

∣∣∣ξ(τ, s, y, η(t, s, y, x))− x− y
t− s

− (sN +W (s)Γ)y − τ − s
t− s

(sN +W (s)Γ)(x− y)
∣∣∣

≤ Cω,T0 |τ − s|α(1 + |x|+ |y|). (6.7)

Now, from (3.7)

L(τ, q(τ), v(τ)) =
1

2
ξ2(τ, s, y, η(t, s, y, x))− 1

2
[(τN +W (τ)Γ)x(τ, s, y, η(t, s, y, x))]2.

Hence,we get from (6.6) and (6.7)∣∣∣L(τ, q(τ), v(τ))− 1

2

(
x− y
t− s

)2

− x− y
t− s

· (sN +W (s)Γ)y − τ − s
(t− s)2

(x− y) · (sN +W (s)Γ)(x− y)
∣∣∣

≤ Cω,T0 |τ − s|α−1(1 + |x|2 + |y|2)

from which we deduce that

S̃(t, s, x, y) = (t− s)
∫ t

s

L(τ, q(τ), v(τ))dτ

satisfies

|S̃(t, s, x, y)− 1

2
(x− y)2 − 1

2
(t− s)(x− y) · (sN +W (s)Γ)(x+ y)| ≤ Cω,T0 |t− s|1+α(1 + |x|2 + |y|2)

which is (3.15) except for the space derivatives.

We now consider the space derivatives of S̃. Note that (6.7) implies

|ξ̃(t, s, y, η̃(t, s, y, x))− (x− y)− (t− s)(sN +W (s)Γ)x| ≤ Cω,T0
|t− s|1+α(1 + |x|+ |y|) (6.8)

which, together with (3.13), gives (3.15) for ∂xS̃. The estimate for ∂yS̃ follows from (3.14) and (6.4).

Next, we note that (y, η) 7→ (y, x̃(t, s, y, η)) and (y, η) 7→ (y, ξ̃(t, s, y, η)) are linear, hence the same is true

for (y, x) 7→ (y, η̃(t, s, y, x)) and (y, x) 7→ (y, ξ̃(t, s, y, η̃(t, s, y, x))). It follows that

∂xj S̃(t, s, x, y) = ξ̃j(t, s, y, η̃(t, s, y, x))

=

d∑
k=1

yk ξ̃j(t, s, ek, η̃(t, s, ek, 0)) +

d∑
k=1

xk ξ̃j(t, s, 0, η̃(t, s, 0, ek)). (6.9)

Hence by (6.8)

∂xl∂xj S̃(t, s, y, x) = ξ̃j(t, s, 0, η̃(t, s, 0, el))

= δjl + (t− s)(sνj +W (s)κj)δjl +O(|t− s|1+α)
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and

∂yl∂xj S̃(t, s, y, x) = ξ̃j(t, s, el, η̃(t, s, el, 0))

= −δjl +O(|t− s|1+α).

Estimates on ∂yl∂yj S̃ follow in the same way, using (3.14) and (6.4). It is clear that ∂αx ∂
β
y S(t, s, x, y) = 0

for |α+β| ≥ 3. In order to prove (3.16) and (3.17), we make use of Hamilton-Jacobi equation (3.10)-(3.11).
We only consider the derivative with respect to t, which, thanks to (3.15) and (6.8), may be written as

∂tS̃(t, s, x, y) = S(t, s, x, y) + (t− s)(∂tS)(t, s, x, y)

= S(t, s, x, y)− 1

2(t− s)

[
(∇xS̃)(t, s, x, y)− (t− s)(tN +W (t)Γ)x

]2
=

1

t− s

{
S̃(t, s, x, y)− 1

2

[
ξ̃(t, s, y, η̃(t, s, y, x))− (t− s)(tN +W (t)Γ)x

]2}
=

1

2
(x− y) · (sN +W (s)Γ)(x+ y) + (1 + |x|2 + |y|2)O(|t− s|α).

Estimate (3.17) is obtained in the same way with the use of (3.15) and (6.4), and the space derivatives
are estimated as above. �

Proof of Proposition 6. Note that the operator I(t, s, a) is bounded in L2(Rd) by Asada-Fujiwara’s
Theorem (see [4]). Indeed, by (3.14) and (6.4),

(∂yk∂yl S̃)(t, s, x, y) = −η̃l(t, s, ek, 0) = δkl +O(|t− s|), (6.10)

and therefore,

|det(∂yk∂yl S̃)| ≥ 1

2
for |t− s| ≤ Tω (6.11)

if Tω is sufficiently small. Then, (1) is a direct consequence of the fact that S(s, t, y, x) = −S(t, s, x, y),
which itself follows from (3.6).

(2) is a special case of Proposition 3.2 in [28], but we repeat the proof for the sake of completeness.
Let f ∈ C∞0 (Rd), then integrating by parts yields

[−i(t− s)∂xjI(t, s, a)f − (t− s)I(t, s, a)(−i∂xjf)](x) = I(t, s, (∂xj S̃ + ∂yj S̃)a)f(x). (6.12)

On the other hand, by (3.13) and (3.14), using the linearity of (y, η) 7→ ξ̃(t, s, y, η) and (y, η) 7→ η̃(t, s, y, x),
we may write

∂xj S̃(t, s, x, y) + ∂yj S̃(t, s, x, y) =

d∑
k=1

yk ξ̃jk,1(t, s) +

d∑
k=1

η̃k(t, s, y, x)ξ̃jk,2(t, s)

where we have set

ξ̃jk,1(t, s) = ξ̃j(t, s, ek, 0), and ξ̃jk,2(t, s) = ξ̃j(t, s, 0, ek)− δjk.
This proves

I(t, s, (∂xj S̃ + ∂yj S̃)a) =

d∑
k=1

I(t, s, ξ̃jk,1a)xk +

d∑
k=1

I(t, s, ξ̃jk,2η̃ka). (6.13)

Now, using again the expression η̃k(t, s, y, x) = −∂yk S̃(t, s, x, y) and integrating by parts yields

I(t, s, ξ̃jk,2η̃k a)f(x) = (t− s)I(t, s, ξ̃jk,2 a)(−i∂xkf)(x). (6.14)

Gathering (6.12), (6.13) and (6.14), and setting

ajk,21 = − ξ̃jk,1
t− s

a, and ajk,22 =
ξ̃jk,2
t− s

a

21



leads to (3.23). Note that ajk,21 and ajk,22 are bounded for t, s ∈ [0, T0] with |t− s| ≤ Tω, as follows from
the inequality

|ξ̃(t, s, y, η)− η| ≤ Cω,T0
|t− s|(1 + |y|+ |η|).

This inequality is easily verified by substituting (3.3) into (6.1). In order to prove (3.22), we use the fact
that

x̃j(t, s, y, η̃(t, s, y, x)) = xj =

d∑
k=1

ykx̃jk,1(t, s) +

d∑
k=1

η̃k(t, s, y, x)x̃jk,2(t, s)

where we have set

x̃jk,1(t, s) = x̃j(t, s, ek, 0), and x̃jk,2(t, s) = x̃j(t, s, 0, ek),

which gives

xjI(t, s, a) =

d∑
k=1

I(t, s, x̃jk,1a)xk +

d∑
k=1

I(t, s, x̃jk,2η̃k a);

the same computations as above then show that

I(t, s, x̃jk,2η̃ka) = (t− s)I(t, s, x̃jk,2a)(−i∂xk)

and (3.22) follows after setting

ajk,11 =
1

t− s
(x̃jk,1 − δjk)a, and ajk,12 = −(x̃jk,2 − δjk)a.

Again, those functions are bounded since (6.3) implies

|x̃(t, s, y, η)− y − η| ≤ Cω,T0
|t− s|(1 + |y|+ |η|). (6.15)

The combination of (2) and Asada-Fujiwara’s Theorem implies (3), that is, the boundedness of I(t, s, a)
in Σ(k) for any k ∈ N.

The proof of (4) is essentially due to Fujiwara [13] and Yajima [28]. However, we repeat the arguments
here for the sake of completeness. Let f ∈ C∞0 (Rd) and let M > 0 be such that suppf ⊂ {x ∈ Rd, |x| ≤
M}. We recall that W (·, ω) ∈ Cα([0, T0]), and that using estimate (3.12) we may prove that if

CM = CM,ω,T0
:= max{M, sup

s,t∈[0,T0]
|y|≤M

|∇yS̃(t, s, 0, y)|},

then

|∇yS̃(t, s, x, y)| ≥ |x|
8

for |x| ≥ 8CM , y ∈ suppf, (6.16)

provided that |t− s| ≤ Tω, for some sufficiently small Tω. Again, we use the fact that if ν = t− s,

ν

i

( ∇yS̃
|∇yS̃|2

· ∇y
)
eiS̃/ν = eiS̃/ν ,

and integrate L times by parts to get, for |x| ≥ 8CM ,

|Uω(t, s)f(x)| =
∣∣∣(2πiν)−d/2(ν/i)L

∫
Rd

[( ∇yS̃
(∇yS̃)2

· ∇y
)L
eiS̃/ν

]
a(t, s)f(y)dy

∣∣∣
=

∣∣∣(2πiν)−d/2(ν/i)L
∫
Rd
eiS̃/νa(t, s)

{( ∇yS̃
(∇yS̃)2

· ∇y
)∗}L

f(y)dy
∣∣∣

≤ Cω,T0,M,L ν
L−d/2(1 + |x|)−L

∫
Rd

∑
|α|≤L

|∂αy f(y)|dy,
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where we have used the bound (3.20) and the fact that∣∣∣[( ∇yS̃
(∇yS̃)2

· ∇y
)∗]L

f(y)
∣∣∣ ≤ CL(1 + |x|)−L

∑
|α|≤L

|∂αy f(y)|

by the estimate (6.16). Thus, choosing L > d/2

|Uω(t, s)f |L2(|x|>8CM ) ≤ Cω,T0,M,L ν
L−d/2

∑
|α|≤L

|∂αy f(y)|L1(Rd)

(∫
Rd

(1 + |x|)−2Ldx
)1/2

,

and it follows that |Uω(t, s)f |L2(|x|>8CM ) tends to zero as t goes to s.
For the case |x| ≤ 8CM , we use the stationary phase method (see, e.g. Lemma A.8 of [14], or [15]).

The equation ∇yS̃(t, s, x, y) = 0, as an equation in y, has a unique solution y = ỹ(t, s, x, 0). Here,
(ỹ(t, s, x, η), η) is the inverse map of (y, η) 7→ (x̃(t, s, y, η), η). We recall (6.11) and apply the stationary
phase method; we obtain, for some smooth function r(t, s, .),

Uω(t, s)f(x) =
∣∣∣det(∂yk∂yl S̃)

∣∣∣−1/2

y=ỹ
eiS̃(t,s,x,ỹ)/ν(a(t, s)f(ỹ) + νr(t, s, ν−1x)) (6.17)

where ỹ = ỹ(t, s, x, 0) and, for any k ∈ N, there exist K(k) ∈ N and C(k) > 0 such that for any |α| ≤ k
and t, s ∈ [0, T0] with |t− s| ≤ Tω,

|∂αx r(t, s, ν−1x)| ≤ Ck|a(t, s)| max
|β|≤K(k)

sup
y∈Rd

|∂βy f(y)|.

On the other hand, it follows from (6.15), using x = x̃(t, s, ỹ(t, s, x, η)), that

|ỹ(t, s, x, η)− x+ η| ≤ Cω,T0
|t− s|(1 + |x|+ |η|)

and in particular,

|ỹ(t, s, x, 0)− x| ≤ Cω,T0
|t− s|(1 + |x|), (6.18)

which implies that ỹ(t, s, x, 0) converges to x as t goes to s, uniformly for |x| ≤ 8CM . Thus,

lim
t→s

f(ỹ(t, s, x, 0)) = f(x),

uniformly for |x| ≤ 8CM . Also limt→s a(t, s) = a(s, s) = 1 and limt→s |det(∂yk∂yl S̃)|y=ỹ = 1 by (6.10).
Finally, it follows from (3.15) and (6.18) that∣∣∣∣∣ S̃(t, s, x, ỹ)

ν

∣∣∣∣∣ ≤ Cω,T0 |t− s|α(1 + |x|2),

hence S̃/ν tends to zero uniformly on |x| ≤ 8CM . Accordingly, we get that limt→s U
ω(t, s)f(x) = f(x),

uniformly for |x| ≤ 8CM , which completes the proof of (4) of Proposition 6. �

Proof of Proposition 8. Let W1,W2 ∈ BR and f ∈ C∞0 (Rd). We write the difference as follows.

UW1(t, s)f(x)− UW2(t, s)f(x)

= (2πi(t− s))−d/2
∫
Rd
eiS

W1 (t,s,x,y)(aW1(t, s)− aW2(t, s))f(y)dy

+(2πi(t− s))−d/2
∫
Rd
eiS

W1 (t,s,x,y)(1− eiS
W2 (t,s,x,y)−iSW1 (t,s,x,y))(aW2(t, s))f(y)dy (6.19)

= I + II

where aWj is defined as in (3.19), replacing W by Wj in all Section 3. We use the following lemma to
estimate (6.19).
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Lemma 6.1. The difference SW1 − SW2 satisfies the estimate :∑
|α+β|≤2

∣∣∣∂αx ∂βy (SW1(t, s, x, y)− SW2(t, s, x, y)
)∣∣∣ ≤ CR,T0 |W1 −W2|C([0,T0])(1 + |x|+ |y|)2−|α+β|. (6.20)

We postpone the proof of Lemma 6.1 to the end of the section and continue the proof of Proposition
8.

Part I of (6.19) is estimated using Asada-Fujiwara’s Theorem in [4]; we refer to the beginning of the
proof of Proposition 6 in this section for a justification of the fact that the assumptions of [4] are satisfied
by the phase function SW1(t, s, x, y) provided that |t− s| ≤ TR, where TR is sufficiently small. Then,

|I|L2 = |IW1(t, s, aW1 − aW2)|L2 ≤ CR,T0
|aW1(t, s)− aW2(t, s)||f |L2 ,

where the constant CR,T0
depends only on R and T0, and provided |t − s| ≤ TR. Using the definition

(3.19) of a(t, s), we may write the difference as follows.

aW1(t, s)− aW2(t, s) = exp
(1

2

∫ t

s

RW1(τ, s)dτ
)[

1− exp
(1

2

∫ t

s

(RW2(τ, s)−RW1(τ, s))dτ
)]
.

By (3.20), we have ∣∣∣ exp
(1

2

∫ t

s

RW1(τ, s)dτ
)∣∣∣ = |aW1(t, s)| ≤ 1 + CR,T0 |t− s|

and, by (3.18) and (6.20),

|RW2(τ, s)−RW1(τ, s)| ≤ |∆xS
W1(τ, s)−∆xS

W2(τ, s)|+ |Tr(Γ)||W2(τ)−W1(τ)|
≤ CR,T0

|W1 −W2|C([0,T0]).

Therefore, we have

|aW1(t, s)− aW2(t, s)| ≤ CR,T0
|t− s||W1 −W2|C([0,T0]),

and we obtain, for |t− s| ≤ TR,
|I|L2 ≤ CR,T0

|t− s||W1 −W2|C([0,T0])|f |L2

for f ∈ L2(Rd).

Next, we estimate II. Recall that suppf ⊂ {y ∈ Rd, |y| ≤ M}. Let M ′ > 0 be a constant that will be
chosen later. We write II using the cut-off functions ΘM ,ΘM ′ ∈ C∞0 (Rd) as follows.

II = (2πiν)−d/2
∫
Rd
eiS

W1 (t,s,x,y)
(

1− ei(S
W2 (t,s,x,y)−SW1 (t,s,x,y))

)
×aW2(t, s)Θ′M (x)ΘM (y)f(y)dy

+(2πiν)−d/2
∫
Rd

(
eiS̃

W1 (t,s,x,y)/ν − eiS̃
W2 (t,s,x,y)/ν

)
×aW2(t, s)(1−Θ′M (x))ΘM (y)f(y)dy,

= III + IV,

where we put ν = t− s. Since all the space derivatives of the amplitude function

(1− ei(S
W2 (t,s,x,y)−SW1 (t,s,x,y)))aW2(t, s)Θ′M (x)ΘM (y)

in III are bounded, taking SW1(t, s, x, y) for the phase function, and applying Asada-Fujiwara’s Theorem
[4], combined with Lemma 6.1, we get

|III|L2 ≤ CR,T0,M,M ′ |aW2(t, s)||W1 −W2|C([0,T0])|f |L2 . (6.21)
24



Concerning IV, we set

Lj =
( ∇yS̃Wj

|∇yS̃Wj |2
· ∇y

)
, j = 1, 2,

and observe that ν
iLje

iS̃W
j
/ν = eiS̃

Wj
/ν . We then integrate L times by parts to get

IV = (2πiν)−d/2(ν/i)L
∫
Rd

(
[LL1 e

iS̃W1 (t,s,x,y)/ν ]− [LL2 e
iS̃W2 (t,s,x,y)/ν)]

)
×aW2(t, s)(1−Θ′M (x))ΘM (y)f(y)dy

= (2πiν)−d/2(ν/i)L
∫
Rd
eiS̃

W1 (t,s,x,y)/νaW2(t, s)(1−Θ′M (x))

×[(L∗1)L − (L∗2)L]ΘM (y)f(y)dy

+(2πiν)−d/2(ν/i)L
∫
Rd

(eiS̃
W1 (t,s,x,y)/ν − eiS̃

W2 (t,s,x,y)/ν)aW2(t, s)(1−Θ′M (x))

×(L∗2)LΘM (y)f(y)dy.

On the other hand, using estimate (3.12), we obtain as in [28],

|∂yS̃Wj (t, s, x, y)| =
∣∣∣∂yS̃Wj (t, s, 0, y)−

∫ 1

0

∂2S̃Wj

∂x∂y
(t, s, θx, y) · xdθ

∣∣∣
≥ 1

4
|x| − |∂yS̃Wj (t, s, 0, y)| ≥ 1

4
|x| − CM,R,T0 ,

where CM,R,T0
= max{M, sups,t∈[0,T0],|y|≤M (∂yS̃

Wj )(t, s, 0, y)|}, provided that |t − s| ≤ TR, for some
sufficiently small TR. Thus,

|∂yS̃Wj (t, s, x, y)| ≥ |x|
8
, for |x| ≥ 8CM,R,T0 , y ∈ suppf. (6.22)

We then choose M ′ = 8CM,R,T0
and get

|(1−Θ′M (x))(L∗j )
LΘM (y)f(y)| ≤ CR,T0,M (1 + |x|)−L

∑
|α|≤L

|∂αy f(y)|, j = 1, 2. (6.23)

Moreover, it may be checked that whenever |x| ≥M ′,∑
|α|≤K

|∂αy (L∗1 − L∗2)ΘM (y)f(y)| ≤ CR,T0,M (1 + |x|)−1|W1 −W2|C([0,T0])

∑
|β|≤K+1

|∂βy f(y)|,

and ∑
|β|≤K

|∂βy (L∗2)kΘM (y)f(y)| ≤ CR,T0,M (1 + |x|)−k
∑

|γ|≤k+K

|∂βy f(y)|.

Accordingly, for any L ∈ N,

|(1−Θ′M (x))[(L∗1)L − (L∗2)L]ΘM (y)f(y)|

=
∣∣∣(1−Θ′M (x))

L−1∑
k=0

(L∗1)L−k−1(L∗1 − L∗2)(L∗2)kΘM (y)f(y)
∣∣∣

≤ CR,T0,M (1 + |x|)−L|W1 −W2|C([0,T0])

∑
|α|≤L

|∂αy f(y)|. (6.24)
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We apply (6.24) to the first term of IV, and apply (6.23) and Lemma 6.1 for the second term of IV. Then
we obtain

IV ≤ CR,T0,M νL−d/2(1 + |x|)−L|W1 −W2|C([0,T0])|aW2(t, s)|
∑
|α|≤L

∣∣∣∂αy f(y)
∣∣∣
L1

+CR,T0,M νL−d/2(1 + |x|)−L+2|W1 −W2|C([0,T0])|aW2(t, s)|
∑
|α|≤L

∣∣∣∂αy f(y)
∣∣∣
L1
.

Hence, choosing L = d
2 + 3,

|IV|L2 ≤ CR,T0,Mν
L−d/2|aW2(t, s)||W1 −W2|C([0,T0])

∑
|α|≤d/2+3

∣∣∣∂αy f(y))
∣∣∣
L1

×
{(∫

Rd
(1 + |x|)−d−2dx

)1/2

+
(∫

Rd
(1 + |x|)−d−6dx

)1/2}
,

which ends the proof of Proposition 8. �

We finally show Lemma 6.1 to complete Proposition 8.
Proof of Lemma 6.1. We denote by (xj(t, s, yj , ηj), ξj(t, s, yj , ηj)) the solution of the system (3.1) with
W (t) replaced by Wj(t) for j = 1, 2. Then, we have for yj , ηj ∈ Rd :

|ξ1(t, s, y1, η1)− η1 − (ξ2(t, s, y2, η2)− η2)| ≤ CR,T0
|t− s||W1 −W2|C([0,T0])

+CR,T0

∫ t

s

(|ξ1(τ)− ξ2(τ)|+ |x1(τ)− x2(τ)|)dτ

|x1(t, s, y1, η1)− y1 − (x2(t, s, y2, η2)− y2)| ≤ CR,T0
|t− s||W1 −W2|C([0,T0])

+CR,T0

∫ t

s

(|ξ1(τ)− ξ2(τ)|+ |x1(τ)− x2(τ)|)dτ,

where xj(t) = xj(t, s, yj , ηj) and ξj(t) = ξj(t, s, yj , ηj) for j = 1, 2. Therefore, Gronwall lemma implies,

|ξ1(t)− ξ2(t)|+ |x1(t)− x2(t)| ≤ CR,T0

[
|t− s||W1 −W2|C([0,T0]) + |η1 − η2|+ |y1 − y2|

]
. (6.25)

Using again the equation of (xj ,ξj), we estimate (x̃j , ξ̃j) defined by x̃j(t, s, yj , ηj) = xj(t, s, yj , ηj/(t−s))
and ξ̃j(t, s, yj , ηj) = (t − s)ξj(t, s, yj , ηj/(t − s)). We recall that σ0

2 ∇K(x) = Γx and 1
2∇V (x) = Nx.

Hence,

x1(t, s, y1, η1)− x2(t, s, y2, η2)

= y1 − y2 +

∫ t

s

{
ξ1(σ)− ξ2(σ)− (σN +W 1(σ)Γ)(x1(σ)− x2(σ))

−(W 1(σ)−W 2(σ))Γx2(σ)
}
dσ. (6.26)

This implies

|x1(t, s, y1, η1)− y1 − (t− s)η1 − (x2(t, s, y2, η2)− y2 − (t− s)η2)|

≤
∫ t

s

∣∣∣ξ1(σ)− η1 − (ξ2(σ)− η2)
∣∣∣dσ + CR,T0

|t− s||W1 −W2|C([0,T0])

+

∫ t

s

∣∣∣(σN +W 1(σ)Γ)(x1(σ)− x2(σ))
∣∣∣dσ.
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Using again equation (6.26), together with the fact that

ξ1(σ, s, y1, η1)− η1 − (ξ2(σ, s, y2, η2)− η2)

=

∫ σ

s

(τN +W 1(τ)Γ)
[
ξ1(τ)− ξ2(τ)− (τN +W 1(τ)Γ)(x1(τ)− x2(τ))

]
dτ

+

∫ σ

s

(W 1(τ)−W 2(τ))Γ
[
ξ2(τ) + (2τN − (W 1(τ) +W 2(τ))Γ)x2(τ)

]
dτ

and (6.25), we get for sufficiently small |t− s|, depending only on R,

|x1(t, s, y1, η1)− y1 − (t− s)η1 − (x2(t, s, y2, η2)− y2 − (t− s)η2)|
≤ CR,T0

|t− s||W1 −W2|C([0,T0]) + CR,T0
|t− s|2|η1 − η2|+ CR,T0

|t− s||y1 − y2|.

Thus, for |t− s| < TR sufficiently small,

|x̃1(t, s, y1, η1)− y1 − η1 − (x̃2(t, s, y2, η2)− y2 − η2)|
≤ CR,T0

|t− s||W1 −W2|C([0,T0]) + CR,T0
|t− s|(|η1 − η2|+ |y1 − y2|).

Applying the above inequality with ηj = η̃j(t, s, yj , xj) for j = 1, 2, and recalling that x̃j(t, s, yj , η̃j(t, s, yj , xj)) =
xj , we get

|x1 − y1 − η̃1(t, s, y1, x1)− (x2 − y2 − η̃2(t, s, y2, x2))|
≤ CR,T0 |t− s||W1 −W2|C([0,T0]) + CR,T0 |t− s|(|η̃1 − η̃2|+ |y1 − y2|). (6.27)

Setting y1 = y2 = 0, x1 = x2 = ek in (6.27), we obtain for |t− s| ≤ T ≤ 1/2CR,T0

|η̃1(t, s, 0, ek)− η̃2(t, s, 0, ek)| ≤ CR,T0 |t− s||W1 −W2|C([0,T0]). (6.28)

We use this latter inequality in (6.25) and we get, again for |t− s| ≤ T sufficiently small,

|ξ̃1(t, s, 0, η̃1(t, s, 0, ek))− ξ̃2(t, s, 0, η̃2(t, s, 0, ek))|
≤ CR,T0

|t− s||W1 −W2|C([0,T0]) + CR,T0
|η̃1(t, s, 0, ek)− η̃2(t, s, 0, ek)|

≤ CR,T0
|t− s||W1 −W2|C([0,T0]). (6.29)

We now set x1 = x2 = 0 and y1 = y2 = ek in (6.27), and we obtain similarly, for |t− s| sufficiently small,

|η̃1(t, s, ek, 0)− η̃2(t, s, ek, 0)| ≤ CR,T0
|t− s||W1 −W2|C([0,T0]). (6.30)

Therefore in the same way as above,

|ξ̃1(t, s, ek, η̃
1(t, s, ek, 0))− ξ̃2(t, s, ek, η̃

2(t, s, ek, 0))| ≤ CR,T0
|t− s||W1 −W2|C([0,T0]). (6.31)

It follows then from (3.13),(3.14), (6.28), (6.29) and (6.30), and the linearity of (ξ̃(t, s, y, η̃(t, s, y, x)), η̃(t, s, y, x))
with respect to (x, y) (see (6.9)) that∑

|α|+|β|=2

∣∣∣∂αx ∂βy (S̃W1(t, s, x, y)− S̃W2(t, s, x, y))
∣∣∣ ≤ CR,T0 |t− s||W1 −W2|C([0,T0]).

Hence, ∑
|α|+|β|=2

∣∣∣∂αx ∂βy (SW1(t, s, x, y)− SW2(t, s, x, y))
∣∣∣ ≤ CR,T0

|W1 −W2|C([0,T0]). (6.32)
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For the first order derivatives of SW1 − SW2 , we have for example, again with the relations (3.13) and
(6.9),∣∣∣∂xl(SW1 − SW2)(t, s, x, y)

∣∣∣ =
1

t− s

∣∣∣ξ̃1
l (t, s, y, η̃1(t, s, y, x))− ξ̃2

l (t, s, y, η̃2(t, s, y, x))
∣∣∣

≤ 1

t− s

∣∣∣∑
k

yk[ξ̃1
l (t, s, ek, η̃

1(t, s, ek, 0))− ξ̃2
l (t, s, ek, η̃

2(t, s, ek, 0))]
∣∣∣

+
1

t− s

∣∣∣∑
k

xk[ξ̃1
l (t, s, 0, η̃1(t, s, 0, ek))− ξ̃2

l (t, s, 0, η̃2(t, s, 0, ek))]
∣∣∣

≤ CR,T0
(1 + |x|+ |y|)|W1 −W2|C([0,T0])

where we have used (6.29) and (6.31) in the last inequality. Hence,∑
|α|+|β|=1

∣∣∣∂αx ∂βy (SW1(t, s, x, y)− SW2(t, s, x, y))
∣∣∣ ≤ CR,T0(1 + |x|+ |y|)|W1 −W2|C([0,T0]). (6.33)

In order to estimate SW1 − SW2 , we write

SWj (t, s, x, y) = SWj (t, s, 0, y) +

∫ 1

0

(∂xS
Wj )(t, s, θx, y) · xdθ, j = 1, 2,

and then we use (6.33) for∣∣∣ ∫ 1

0

(
(∂xS

W1)(t, s, θx, y)− (∂xS
W2)(t, s, θx, y)

)
· xdθ

∣∣∣,
which is majorized by

CR,T0
|W1 −W2|C([0,T0])

∫ 1

0

(1 + |θx|+ |y|)|x|dθ ≤ CR,T0
|W1 −W2|C([0,T0])(1 + |x|2 + |y|2).

Again we develop SWj (t, s, 0, y) around y = 0, then SWj (t, s, 0, y) =
∫ 1

0
(∂yS

Wj )(t, s, 0, θy) · ydθ, since

SWj (t, s, 0, 0) = 0. We estimate this term as above, and we obtain∣∣∣SW1(t, s, x, y)− SW2(t, s, x, y)
∣∣∣ ≤ CR,T0 |W1 −W2|C([0,T0])(1 + |x|2 + |y|2). (6.34)

which completes the proof of Lemma 6.1. �
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