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. Our results also give a justification of diffusion-approximation for stochastic nonlinear Schrödinger equations.

Introduction

The following nonlinear Schrödinger equations perturbed by a potential, deterministic in space and white noise in time have been used as model equations in several applications in Physics.

i∂ t ψ = 1 2 (-∆ψ + V (x)ψ) -iγψ + λ|ψ| 2 ψ + 1 2 K(x)ψ ξ(t), t ≥ 0, x ∈ R d . (1.1)
For example, in [START_REF] Kh | Dynamics of a Bose-Einstein condensate in optical trap[END_REF] and [START_REF] Garnier | Collapse of a Bose-Einstein condensate induced by fluctuations of the laser intensity[END_REF], the authors propose the above equation with V (x) = K(x) = |x| 2 to describe Bose condensate wave function in all-optical far-off-resonance laser trap, arguing that fluctuations of the laser intensity are observed in this case. In this model, the term ξ(t) represents the relative deviations of the laser intensity E(t) around its mean value (see [START_REF] Kh | Dynamics of a Bose-Einstein condensate in optical trap[END_REF]), and is assumed to be a real-valued white noise in time with correlation function E( ξ(t) ξ(s)) = σ 2 0 δ 0 (t -s). Here, δ 0 denotes the Dirac measure at the origin, and σ 0 ∈ R. The damping term, with a coefficient γ ≥ 0, describes the interactions with the thermal cloud created by non-condensed atoms. Finally, the sign of λ is related to the sign of the atomic scattering length, which may be positive or negative, and it may be assumed without loss of generality that λ = ±1.

Related equations may also be found in the context of optic fibers. In [START_REF] Kh | Soliton perturbations and the random Kepler problem[END_REF] e.g., equation (1.1) without the potential in the drift but with a multiplicative noise, i.e., V (x) = 0, K(x) = |x| 2 , and ξ(t) as above, was considered as a model for optical soliton propagation in fibers with random inhomogeneities.

Our aim in this paper is, in order to justify these model equations (1.1) from the mathematical point of view, first to construct the fundamental solution of (1.1) with λ = γ = 0, and establish the corresponding dispersive estimates. This result will then enable us to prove the global existence of solutions of Eq. (1.1) (with a more general nonlinear term) in L 2 , in subcritical cases, since the L 2 norm of the evolution equation is bounded if γ ≥ 0. For this purpose, we need some "good" properties of the integral kernel of the linear evolution propagator (with γ = 0), which can be expressed in terms of classical orbits, as is often used in semiclassical analysis. Using these classical paths, we can write the propagator as an oscillatory integral operator associated to the action integral. Such oscillatory integral operators have been studied by many authors in the context of deterministic Schrödinger equations (see e.g. [START_REF] Fujiwara | A construction of the fundamental solution for the Schrödinger equation[END_REF][START_REF] Fujiwara | Remarks on convergence of the Feynman path integrals[END_REF][START_REF] Fujiwara | The stationary phase method with an estimate of the remainder term on a space of large dimension[END_REF][START_REF] Kitada | On a construction of the fundamental solution for Schrödinger equations[END_REF][START_REF] Kumano-Go | Feynman path integrals as analysis on path space by time slicing approximation[END_REF][START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF]). In the present paper we follow Yajima [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF] who derived dispersive estimates for Schrödinger equations with magnetic fields. We use the following gauge transformation. We define G(t, x) = 1 2 (V (x)t + K(x)ξ(t)) and consider the change of gauge: ψ(t, x) = e -iG(t,x) u(t, x)

where ψ(t, x) verifies Eq. (1.1) with γ = λ = 0. After this transformation, u satisfies the following Schrödinger equation with a random magnetic field:

i∂ t u = - 1 2 d j=1 (∂ xj -iA j (t, x)) 2 u, A = ∇G(t, x) = 1 2
(∇V (x)t + ∇K(x)ξ(t)).

(1.

3)

The theory of [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF] does not apply directly to equation (1.3), since it requires that the time derivative of the vector potential A(t, x) is uniformly bounded, while this time derivative only exists as a distribution in our case, since ξ(t) is a white noise. We will however prove, making use of the almost sure C α regularity of the Brownian motion, with 0 < α < 1/2, that the estimates in [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF] can be generalized to our case. Actually, in our study, ξ(t) could be replaced by any real valued C α function of the time variable, with α > 0. After having completed this work, we were told about the existence of the paper [START_REF] Nishiwada | Explicit formulae for solutions of Schrödinger equations with quadratic Hamiltonians[END_REF] where an explicit formula is given for solutions of linear equations of the form (1.3) with purely quadratic Hamiltonian and continuous coefficients in time. However, with our extra regularity assumptions in time (C α instead of C 0 ) we get a slightly more precise description for small times (see (3.21) below). We will see below that this regularity also allows us to prove the continuous dependence of the solution of (1.1) on the Brownian paths. Some linear stochastic equations similar to (1.1) with λ = 0 have been studied in the context of stochastic quantum mechanics. In [START_REF] Truman | Quantum mechanics of charged particles in random electromagnetic fields[END_REF], e.g. an equation of the form (1.1) (with λ = 0), but with in addition a stochastic magnetic field is considered in the semi-classical limit, and semi-classical expansions at any order are given. In [START_REF] Zastawniak | Fresnel type path integral for the stochastic Schrödinger equation[END_REF], a representation formula using Fresnel type path integral is given for the solution of (1.1) with λ = 0, when V (x) and K(x) are Fourier transforms of bounded complex Borel measures on R d (this is clearly not the case in our situation). This representation is similar to that given in [START_REF] Albeverio | Mathematical Theory of Feynman Path Integrals[END_REF] for deterministic linear Schrödinger equations. However, it is not clear whether this representation, which involves an integral on infinite dimensional space, would lead to Strichartz estimates as those we use here to study the nonlinear equation (see Proposition 7 below).

We are also interested in the convergence, as ε tends to zero, of the solution of the following equation to Eq. (1.1),

i∂ t ϕ = 1 2 (-∆ + V (x))ϕ -iγϕ + λ|ϕ| 2 ϕ + 1 2ε m t ε 2 K(x)ϕ, t ≥ 0, x ∈ R d (1.4)
where m(t) is a centered stationary random process, and σ 2 0 = 2E +∞ 0 m(0)m(t)dt. Garnier, Abdullaev and Baizakov in [START_REF] Garnier | Collapse of a Bose-Einstein condensate induced by fluctuations of the laser intensity[END_REF] studied this type of diffusion approximation limit in order to investigate the collapse time of the Bose-Einstein Condensate. They use this analysis for the differential equations of the actionangle variables in order to explicit the structure of the width of the BEC, which satisfy a closed form ODE in the variational ansatz. The same kind of study has been performed in [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF][START_REF] Marty | On a splitting scheme for the nonlinear Schrödinger equation in a random medium[END_REF] for some model equations in optical fibers with dispersion management. We will address this diffusion-approximation for Eq. (1.1), but only in the subcritical cases (see Remark 2.4).

In order to state precisely the problem and our results, we consider a probability space (Ω, F, P) endowed with a standard filtration (F t ) t≥0 such that F 0 is complete, and a standard real valued Brownian motion W (t) on R + starting at 0, associated with the filtration (F t ) t≥0 . We set ξ = σ 0 dW dt and then consider the stochastic nonlinear Schrödinger equation with a more general nonlinear term than Eq. (1.1)

idψ + 1 2 (∆ψ -V (x)ψ)dt -λ|ψ| 2σ ψdt = σ 0 2 K(x)ψ • dW, (1.5) 
where σ > 0, σ 0 ∈ R, λ = ±1, and • stands for the Stratonovich product in the right hand side of (1.5), which is natural since the noise here arises as the limit of processes with nonzero correlation length. Note that we set γ = 0 for the sake of simplicity, but the global existence and convergence results of Theorems 2 and 3 can be easily generalized to the case γ > 0 (see Remarks 4.1 and 5.1).

We define

Σ(k) = v ∈ L 2 (R d ), |α|+|β|≤k |x β ∂ α x v| 2 L 2 = |v| 2 Σ(k) < +∞
for k ∈ N, and write Σ(-k) for the dual space of Σ(k) in the L 2 sense. In particular we denote Σ(1) by Σ.

Note that for the deterministic case

V (x) = |x| 2 and K ≡ 0, it is known that Eq.(1.5) is locally well posed in Σ, for λ = ±1, σ < 2d d-2 if d ≥ 3 or σ < +∞ if d = 1
, 2 and globally well posed if either λ = 1 or λ = -1 and σ < 2/d (see Oh [START_REF] Oh | Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials[END_REF]). These results in the deterministic case may be proved with the help of the dispersive estimate for small time :

for p ∈ [2, ∞], |U 0 (t)f | L p (R d ) ≤ C|t| -d(1/2-1/p) |f | L p (R d ) , f ∈ L p (R d ), (1.6) 
where U 0 (t) is the propagator of Eq. (1.5) with V (x) = |x| 2 , K ≡ 0 and λ = 0. This estimate is obtained, for example, by using the transformation which connects Eq.(1.5) with V (x) = |x| 2 to Eq.(1.5) with V (x) = 0 for the case of K = λ ≡ 0 :

u(t, x) = 1 (cos t) d/2 e -i 2 x 2 tan t v tan t, x cos t ,
where v is the solution of Eq. (1.5) with V = K = λ ≡ 0 (see e.g. [START_REF] Carles | Linear v.s. nonlinear effects for nonlinear Schrödinger equations with potential[END_REF]). However, this transformation does not seem useful in the stochastic case, i.e., in the case where K ≡ 0. Using a compactness method, we generalized in [START_REF] De Bouard | Stochastic fluctuations in the Gross-Pitaevskii equation[END_REF] the deterministic existence and uniqueness results to Eq. (1.5), but only in space dimensions one and two (and with restrictions on σ) due to the lack of dispersive estimate of the form (1.6). In the present paper, we prove such a dispersive estimate for equation (1.5) with λ = 0. As a consequence, we will improve the results in [START_REF] De Bouard | Stochastic fluctuations in the Gross-Pitaevskii equation[END_REF], showing some existence results in d ≥ 3. We then prove the continuity of the solution on the Brownian path in the subcritical case σ < 2/d and deduce the convergence of the solution of (1.4) to the solution of (1.1) as ε goes to zero.

Let us give some notations. We denote by e k (1 ≤ k ≤ d) the unit vector pointing in the direction of the

x k axis in R d . The number p is the conjugate of p ∈ [1, ∞] given by 1 p + 1 p = 1. In all the paper, Θ M ∈ C ∞ 0 (R d ) is a cut-off function with suppΘ M ⊂ {x ∈ R d , |x| ≤ 2M } and Θ M ≡ 1 on {x ∈ R d , |x| ≤ M } for M > 0.
If I is an interval of R, E is a Banach space, and 1 ≤ r ≤ ∞, then L r (I, E) is the space of strongly Lebesgue measurable functions v from I into E such that the function t → |v(t)| E is in L r (I). We define similarly the space C(I, E). The inner product in the Hilbert space

L 2 (R d ) is denoted by •, • , i.e., u, v = R d u(x)v(x)dx for u, v ∈ L 2 (R d ).
The paper is organized as follows. In Section 2, we mention precisely our results. In Section 3, we study the linear problem. We first give some properties of the classical orbits associated with the Schrödinger operator with magnetic field 1 2 (∇-iA(t, x)) 2 . Using these properties, we define the action functional, and we construct the integral kernel of the oscillatory integral propagator. Note that we give only outlines in Section 3, the reader will find the proofs for this section in the appendix. In Section 4 we prove the existence of solutions of a modified equation (see Proposition 1 below), which will immediately give the proof of the existence of solutions for (1.5). Section 5 is devoted to the continuous dependence of solutions on the Brownian paths in L 2 (R d ). Using this latter result, we also show the convergence of the solution of (1.4) to the solution of (1.5) in distribution in C([0, T ]; L 2 (R d )), as ε goes to zero. To lighten notations, we denote sometimes in what follows by C θ,••• a constant which depends on θ and so on.

Main results

First, we mention our results for linear Schrödinger equations. We will deal with the specific case where V (x) = d j=1 ν j x 2 j , and K(x) = d j=1 κ j x 2 j , with ν j and κ j ∈ R. Then, using transformation (1.2) with

G(t, x) = 1 2 (V (x)t + σ 0 K(x)W (t)), (2.1) 
we are led to consider the equation (1.3), with, for 1

≤ j ≤ d, A j (t, x) = 1 2 (∂ xj V (x)t + σ 0 ∂ xj K(x)W (t)) = x j (ν j t + σ 0 κ j W (t)).
Remark 2.1. For each t ≥ 0, and each ω such that W (•, ω) is continuous at t, the linear operator

H ω (t) = ∇ -iA(t, x) 2 is essentially self-adjoint on C ∞ 0 (R d )
, and its closure is identical with its maximal extension which is denoted by the same symbol (see, e.g. [START_REF] Reed | Methods of modern mathematical physics II: Fourier analysis, self-adjointness[END_REF], Theorem X.34). The domain of H ω (t) is given, for each t ≥ 0, by

D(H ω (t)) = {v ∈ L 2 (R d ), H ω (t)v ∈ L 2 (R d )},
and contains the space Σ(2).

We now state our result on the propagator of the linear evolution equation (1.3).

Theorem 1. Let T 0 > 0 and 0 < α < 1/2 be fixed, and let ω ∈ Ω be such that W (•, ω) ∈ C α ([0, T 0 ]) . There exists a positive number T ω and a unique propagator {U ω (t, s), t, s ∈ [0, T 0 ], |t -s| ≤ T ω } with the following properties.

(i) U ω (t, s) can be written in the form of an oscillatory integral operator as follows :

U ω (t, s)f (x) = (2πi(t -s)) -d/2 a(t, s) R d e iS(t,s,x,y) f (y)dy, f ∈ C ∞ 0 (R d ),
where

a(t, s) is a C 1 function, depending on ω, of t, s ∈ [0, T 0 ] with |t -s| ≤ T ω satisfying |a(t, s) -1| ≤ C ω,T0
|t -s| for some constant C ω,T0 . The real valued phase function S(t, s, x, y) depending on ω satisfies the Hamilton-Jacobi equations:

(∂ t S)(t, s, x, y) + (1/2) (∇ x S)(t, s, x, y) -A(t, x) 2 = 0, (∂ s S)(t, s, x, y) -(1/2) (∇ y S)(t, s, x, y) + A(s, y) 2 = 0,
and the following property : for any multi-index γ, β, ∂ γ x ∂ β y S ≡ 0 if |γ + β| ≥ 3 and

∂ γ x ∂ β y S(t, s, x, y) - |x -y| 2 2(t -s) ≤ C γ,β,ω,T0 , if |γ + β| = 2.
(ii) The operator U ω (t, s) is a linear, unitary operator in L 2 (R d ), and satisfies

U ω (t, s) = U ω (t, h)U ω (h, s), for 0 ≤ s < h < t ≤ T 0 , |t -s| ≤ T ω . Moreover, if f ∈ L 2 (R d ), then U ω (•, s)f is continuous in t with values in L 2 (R d ), and ∂ t U ω (•, s)f
is continuous with values in Σ(-2) and satisfies

i∂ t U ω (t, s)f = - 1 2 ∇ -iA(t, x) 2 U ω (t, s)f, in Σ(-2).
Remark 2.2. We could construct the propagator of (1.3) for more general potentials V (x) and K(x), for example for smooth real-valued V (x), K(x) satisfying

sup x∈R d |∂ α x V (x)|, sup x∈R d |∂ α x K(x)| ≤ C α
for any multi-index α with |α| ≥ 2. For the construction, one could follow the same arguments as in [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF], which uses the approximation of the propagator U ω (t, s) by the semi-classical propagator whose amplitude function is defined as the series of solutions to the associated transport equation. The iteration procedure would be justified similarly to [START_REF] Fujiwara | A construction of the fundamental solution for the Schrödinger equation[END_REF][START_REF] Fujiwara | Remarks on convergence of the Feynman path integrals[END_REF][START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF], making use of Kumanogo-Taniguchi techniques in [START_REF] Kumano-Go | Fourier integral operators of multi-phase and the fundamental solution for a hyperbolic system[END_REF] for multiproduct of pseudo-differential operators. In the case where V (x) = d j=1 ν j x 2 j , and K(x) = d j=1 κ j x 2 j , the system satisfied by the classical paths is linear (see (3.1) below), thus only the first term in the series is nonvanishing.

In order to apply the above results to the nonlinear equation (1.5), we first solve the following equation for u, which is related to ψ by (1.2) :

i∂ t u = - 1 2 ∇ -iA(t, x) 2 u + λ|u| 2σ u. (2.2) 
More precisely, we consider the mild form of Eq. (2.2) which, as is well known, is equivalent to equation (2.2) as long as we consider solutions which are, at least, continuous in time with values in L 2 (R d ); the initial data u(0 

) = u 0 is in L 2 (R d ). u(t) = U ω (t, 0)u 0 -iλ t 0 U ω (t,
(t, s) = U ω (s n , s n-1 ) • • • • • U ω (s 1 , s 0 ) where [s, t] has been decomposed into [s 0 , s 1 ] ∪ [s 1 , s 2 ] ∪ • • • ∪ [s n-1 , s n ] with s = s 0 and t = s n so that |s j+1 -s j | ≤ T ω , 0 ≤ j ≤ n -1.
Equations of the form (2.2), but with magnetic vector potentials A independent of time or with bounded time derivatives have been studied e.g. in [START_REF] De Bouard | Nonlinear Schrödinger equations with magnetic fields[END_REF][START_REF] Michel | Remarks on nonlinear Schrödinger equation with magnetic fields[END_REF] using the results of [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF] on the propagator of the linear equation. Here, we generalize those results to our case, by using standard arguments in the deterministic theory (see e.g. [START_REF] Kato | On nonlinear Schrödinger equations[END_REF][START_REF] Tsutsumi | L 2 -solutions for nonlinear Schrödinger equations and nonlinear groups[END_REF]).

Proposition 1. Assume σ > 0 and λ = ±1. Let 2/r = d(1/2 -1/(2σ + 2)). (i) Let u 0 ∈ L 2 (R d ) and σ < 2/d.
Then there exists a unique global solution u of (2.3), adapted to

(F t ) t≥0 , almost surely in C([0, T 0 ]; L 2 (R d )) ∩ L r (0, T 0 ; L 2σ+2 (R d ))
for any T 0 > 0. Moreover, the L 2 norm is conserved:

|u(t)| L 2 = |u(0)| L 2 , a.s. in ω, for all t ≥ 0,
and u depends continuously on the initial data u 0 in the following sense: if u 0,n → u 0 in L 2 (R d ), and if u n denotes the solution of (2.3) with u 0 replaced by u 0,n , then u n → u in L ∞ (0, T 0 ; L 2 ).

(ii) Let u 0 ∈ Σ and σ < 2/d. Then there exists a unique global adapted solution u of (2.3) almost surely in

C(R + ; Σ). (iii) Let u 0 ∈ Σ, σ < 2/(d -2) if d ≥ 3 and σ < +∞ if d = 1, 2.
Then there exists a maximal time T * = T * u0,ω > 0 such that there exists a unique adapted solution u(t) of (2.3) almost surely in C([0, T * ); Σ), and the following alternative holds: T * = +∞ or T * < +∞ and lim t↑T * |u(t)| Σ = +∞.

Transformation (1.2) changes only the phase of the solution, so it preserves the form of the nonlinear term. Also since the solution u(t) of (2.2) given by Proposition 1 is adapted, so is ψ(t) (see (1.2)). We then obtain the following results concerning equation (1.5).

Theorem 2. Assume σ > 0 and λ = ±1. Let 2/r = d(1/2 -1/(2σ + 2)). (i) Let ψ 0 ∈ L 2 (R d ) and σ < 2/d.
Then there exists a unique global solution ψ(t) of (1.5), adapted to (F t ) t≥0 with ψ(0) = ψ 0 , which is almost surely

C(R + ; L 2 (R d )) ∩ L r loc (R + ; L 2σ+2 ).
Moreover, the L 2 norm is conserved by the time evolution, that is,

|ψ 0 | L 2 = |ψ(t)| L 2 , a.s. in ω, for all t ≥ 0.
(ii) Let ψ 0 ∈ Σ and σ < 2/d. Then there exists a unique global solution ψ(t) of (1.5), adapted to

(F t ) t≥0 with ψ(0) = ψ 0 , almost surely in C(R + ; Σ). (iii) Let ψ 0 ∈ Σ and σ < 2/(d -2) if d ≥ 3, σ < +∞ if d = 1, 2.
Then there exist a stopping time τ * = τ * ψ0,ω > 0 and a unique solution ψ(t) of (1.5), adapted to (F t ) t≥0 with ψ(0) = ψ 0 , almost surely in C([0, τ * ); Σ). In fact, τ * = T * , defined in Proposition 1 (iii).

(iv) Let λ = 1, ψ 0 ∈ Σ and σ < 2/(d -2) if d ≥ 3, σ < +∞ if d = 1, 2.
Then there exists a unique global solution ψ(t) of (1.5) adapted to (F t ) t≥0 , with ψ(0) = ψ 0 , almost surely in C(R + ; Σ).

In (iv) above, we use the Hamiltonian

H(ψ) = 1 4 |∇ψ| 2 L 2 + 1 4 d j=1 ν j |x j ψ| 2 L 2 + λ 2σ + 2 |ψ| 2σ+2 L 2σ+2 , (2.4) 
which is a conserved quantity of the deterministic equation, that is (1.5) with K ≡ 0. H(ψ) is well defined for ψ in Σ, thanks to the embedding Σ ⊂ H

1 (R d ) ⊂ L 2σ+2 (R d ), for σ < 2d d-2 if d ≥ 3 or σ < +∞ if d = 1, 2.
At last, we prove that equation (1.5) is the diffusion-approximation limit of the equation driven by a stationary process m(t) . We will assume the following.

Assumption (A). The real valued centered stationary random process m(t) has trajectories a.s. in L ∞ (0, T ) for any T > 0, and is such that for any T > 0, the process t → ε σ0 t/ε 2 0 m(s)ds converges in distribution in C([0, T ]) to a standard real valued Brownian motion as ε tends to zero.

Remark 2.4. It is classical that such an assumption holds if e.g. m is a homogeneous, centered, stationary and ergodic Markov process such that

σ 2 0 = 2 +∞ 0 E(m(0)m(t))dt < +∞. Two classical examples are given by (i) m(t) = m n for t ∈ [n, n + 1)
, where (m n ) is an iid family of random variables with finite second moment (ii) m is a Ornstein-Uhlenbeck process, i.e. a stationary solution of dX = -λXdt + dW with λ > 0 fixed, and W a real valued Brownian motion. Theorem 3. Let 0 < σ < 2/d and λ = ±1. Suppose that m(t) satisfies Assumption (A) above. Then, for any ε > 0 and ψ 0 ∈ L 2 (R d ) there exists a unique solution ϕ ε , with continuous paths on R + with values in L 2 (R d ), of the following equation:

i∂ t ϕ = 1 2 (-∆ + V (x))ϕ + λ|ϕ| 2σ ϕ + 1 2ε m t ε 2 K(x)ϕ, ϕ(0) = ψ 0 . (2.5)
Moreover for any fixed T > 0, the process ϕ ε converges in distribution in C([0, T ]; L 2 (R d )) as ε tends to zero, to the solution ψ of (1.5).

Theorem 3 is proved as in [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF][START_REF] Marty | On a splitting scheme for the nonlinear Schrödinger equation in a random medium[END_REF] , by making use of the following proposition concerning the continuous dependence of the solution of (2.2) on the Brownian paths W (•, ω).

Proposition 2. Assume 0 < σ < d/2. Let T 0 > 0 and 0 < α < 1/2 be fixed, and for R > 0, let B R be the closed ball of radius R in C α ([0, T 0 ]). Then, for any u 0 ∈ L 2 (R d ), the mapping W → u W B R → C([0, T 0 ]; L 2 (R d ))
is continuous, where u W is the unique solution of (2.2) given in (i) of Proposition 1, and where B R is endowed with the topology of C([0, T 0 ]).

Remark 2.5. In the proof of Proposition 2, a uniform estimate on u W , for W ∈ B R is required on a fixed (possibly small) time interval. This is the reason why Theorem 3 does not cover the supercritical cases σ ≥ 2/d, as e.g. d = 3 and σ = 1, although the latter is an interesting physical case (see [START_REF] Garnier | Collapse of a Bose-Einstein condensate induced by fluctuations of the laser intensity[END_REF]). The reader may refer to Remark 5.2 for details.

Remark 2.6. The occurrence of blow-up with positive probability for a certain initial data was proved for the equation (1.5) with V = K = |x| 2 , λ = 1 and σ ≥ 2/d (see [START_REF] De Bouard | Stochastic fluctuations in the Gross-Pitaevskii equation[END_REF]) establishing the associated virial identity. This identity does not give any information about the exact time of blow-up even in the deterministic case. Seeing the influence by the noise on the blow-up time would be an interesting question, but this problem is under investigation by numerical simulations.

Linear problem, phase flow, construction of the propagator

In this section, we consider the linear equation (1.3) and follow closely Section 2 of [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF]. Our aim is the construction of the propagator of (1.3), and the investigation of some properties of its integral kernel. We only give the outline of the arguments in this section since most of them follow those of Yajima [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF]. Some brief proofs corresponding to the statements in this section will be found in the appendix. In all the section, T 0 > 0 is fixed. We first study the small time behaviour of the phase flow generated by the Hamiltonian

H 0 (t, x, ξ) = 1 2 ξ -A(t, x) 2 ,
where we recall that

A(t, x) = 1 2 (∇V (x)t + σ 0 ∇K(x)W (t)), i.e. A j (t, x) = x j (ν j t + σ 0 κ j W (t)).
In all what follows, we denote by N (resp. Γ) the diagonal d × d matrix such that 1 2 ∇V (x) = N x (resp. σ0 2 ∇K(x) = Γx) for any x ∈ R d . Then, the Hamilton's equations read as follows:

   ẋ(t) = ∂ ξ H 0 (t, x, ξ) = ξ(t) -tN x(t) -W (t)Γx(t) ξ(t) = -∂ x H 0 (t, x, ξ) = (tN + W (t)Γ)(ξ(t) -tN x(t) -W (t)Γx(t)) (3.1) with (x(s), ξ(s)) = (y, η) ∈ R 2d . We assume that ω ∈ Ω is such that W (•, ω) ∈ C α ([0, T 0 ]), where 0 < α < 1/2 is fixed. It follows from a fixed point argument in C([s, s+T ]; R 2d
), with T sufficiently small, and the fact that the system (3.1) is linear in (x, ξ), that for any s ∈ [0, T 0 ], there exists a unique solution of the above system, in C([0, T 0 ]; R 2d ), with (x(s), ξ(s)) = (y, η), denoted by (x(., s, y, η), ξ(., s, y, η)), and verifying sup

t∈[0,T0] (|x(t)| + |ξ(t)|) ≤ C ω,T0 (1 + |y| + |η|). (3.2) 
Remark 3.1. It will be useful to remark here that (x, ξ) is linear with respect to y and η because the system (3.1) is linear. Moreover, it is immediate that

(x, ξ) ∈ C 1 ([0, T 0 ]; R 2d ).
We also set for t = s,

x(t, s, y, η) = x t, s, y, η t -s , ξ(t, s, y, η) = (t -s)ξ t, s, y, η t -s (3.3) and x(s, s, y, η) = y + η, ξ(s, s, y, η) = η.
We then have the following properties concerning x and ξ. We omit the proofs, except the C 1 regularity in time for |t -s| small (Proposition 5 below), which is given in the appendix. Proposition 3. For t, s ∈ [0, T 0 ], t = s, let (x(., s, y, η), ξ(., s, y, η)) be defined by (3.3).

(1) For any multi-indices α and β, ∂ α y ∂ β η x(t, s, y, η) and

∂ α y ∂ β η ξ(t, s, y, η) are C 1 in (t, s, y, η) for t, s ∈ [0, T 0 ], t = s, and (y, η) ∈ R 2d . Moreover, for 1 ≤ j, l ≤ d, ∂ α y ∂ β η ∂ xj ∂y l -δ jl + ∂ α y ∂ β η ∂ xj ∂η l -δ jl + ∂ α y ∂ β η ∂ ξj ∂y l + ∂ α y ∂ β η ∂ ξj ∂η l -δ jl ≤ C α,β,ω,T0 |t -s|.
(2) There exists a positive number T ω > 0 such that, for t, s ∈ [0, T 0 ] with |t -s| ≤ T ω , the mappings (y, η) → (x, η) = (x(t, s, y, η), η), (y, η) → (y, ξ) = (y, ξ(t, s, y, η)) and

(y, η) → (y, x) = (y, x(t, s, y, η))

(3.4) are global diffeomorphisms on R d × R d . ( 3 
) Let (y, η(t, s, y, x)) be the inverse of (3.4) and η(t, s, y, x) = η(t, s, y, x)/(t -s). Then

τ → (q(τ ), ξ(τ )) = (x(τ, s, y, η(t, s, y, x)), ξ(τ, s, y, η(t, s, y, x))) (3.5)
is the unique solution of (3.1) such that q(s) = y and q(t) = x.

We define, for |t -s| ≤ T ω and for (x, y) ∈ R d × R d , the action integral of the path (q(τ ), v(τ )) given by (3.5) and v(τ ) = dq dτ = ξ(τ ) -A(τ, q(τ )) as follows:

S(t, s, x, y) = t s L(τ, q(τ ), v(τ ))dτ, (3.6) 
where L(t, q, v) is the Lagrangian associated to H 0 (t, q, ξ), that is, 

L(t, q, v) = v • ξ -H 0 (t, q, ξ) = 1 2 (ξ 2 -A 2 (t, q)) = v 2 2 + v • (tN + W (t)Γ)q. ( 3 
(∇ y S)(t, s, x(t, s, y, η), y) = -η, (3.9)

(∂ t S)(t, s, x, y) + (1/2) (∇ x S)(t, s, x, y) -A(t, x) 2 = 0, (3.10) (∂ s S)(t, s, x, y) -(1/2) (∇ y S)(t, s, x, y) + A(s, y) 2 = 0, (3.11) ∂ α x ∂ β y S(t, s, x, y) - |x -y| 2 2(t -s) ≤ C α,β,ω,T0 , |α + β| = 2; (3.12) finally, S(t, s, x, y) is quadratic in (x, y), that is, ∂ α x ∂ β y S(t, s, x, y) = 0 for |α + β| ≥ 3.
The proof of (3.12) may be performed as in Yajima [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF], introducing S(t, s, x, y) = (t -s)S(t, s, x, y), using the fact that S(t, s, x, y) is a generating function of the mapping (y, η) → (x, ξ), that is,

(∂ x S)(t, s, x, y) = ξ(t, s, y, η(t, s, y, x)), (3.13) 
(∂ y S)(t, s, x, y) = -η(t, s, y, x), (3.14) 
and Proposition 3.

We will prove that the definition of S(t, s, x, y) eliminates the singularity at t = s in S(t, s, x, y), and that the following smoothness properties hold. Proposition 5. For any multi-indices γ and β, with |γ

+ β| ≤ 2, ∂ γ x ∂ β y S(t, s, x, y) is C 1 in (t, s, x, y) for |t -s| ≤ T ω and (x, y) ∈ R 2d . Moreover, ∂ γ x ∂ β y S(t, s, x, y) - 1 2 (x -y) 2 - 1 2 (t -s)(x -y) • (sN + W (s)Γ)(x + y) (3.15) ≤ C ω,T0 |t -s| 1+α (1 + |x| + |y|) 2-|γ+β| , ∂ γ x ∂ β y (∂ t S)(t, s, x, y) - 1 2 (x -y) • (sN + W (s)Γ)(x + y) (3.16) ≤ C ω,T0 |t -s| α (1 + |x| + |y|) 2-|γ+β| , ∂ γ x ∂ β y (∂ s S)(t, s, x, y) + 1 2 (x -y) • (sN + W (s)Γ)(x + y) (3.17) ≤ C ω,T0 |t -s| α (1 + |x| + |y|) 2-|γ+β| ,
where we recall that

0 < α < 1/2 is such that W (•, ω) ∈ C α ([0, T 0 ]).
Proof. see Appendix.

Still following the idea in [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF], we set, for |t -s| ≤ T ω ,

R(t, s) = -(∆ x S)(t, s) + d t -s + sTr(N ) + W (s)Tr(Γ), (3.18) 
and

a(t, s) = exp 1 2 t s R(τ, s)dτ . (3.19)
Note that in our case, R(t, s) and a(t, s) do not depend on (x, y) because S(t, s, x, y) is quadratic in (x, y). We easily deduce from Propositions 4 and 5 that R(t, s) is a continuous function of (t, s) ∈ [0, T 0 ] 2 with |t -s| ≤ T ω , and a(t, s) is a real valued

C 1 function of (t, s) ∈ [0, T 0 ] 2 with |t -s| ≤ T ω verifying |a(t, s) -1| ≤ C ω,T0 |t -s|. (3.20)
Next, we define, for t, s ∈ [0, T 0 ] and 0 < |t -s| ≤ T ω , the oscillatory integral operator:

I(t, s, a)f (x) = (2πi(t -s)) -d/2 a(t, s) R d e iS(t,s,x,y) f (y)dy, f ∈ C ∞ 0 (R d ). (3.21)
We now list the properties of the oscillatory integral operator I that will allow us to define the propagator U ω and to conclude the proof of Theorem 1.

Proposition 6. Let (t, s) ∈ [0, T 0 ] 2 with 0 < |t -s| ≤ T ω .
Let I(t, s, a) be the oscillatory integral operator defined in (3.21), and a(t, s) be the function defined in (3.19). Then the following properties hold.

(1) The adjoint operator I(t, s, a) * of I(t, s, a) satisfies I(t, s, a) * = I(s, t, ã), with ã(t, s) = a(s, t).

(2) There exist bounded real valued functions a jk,lm (t, s), with l, m = 1, 2 and 1 ≤ j, k ≤ d, such that

x j I(t, s, a) = I(t, s, a)x j -(t -s)I(t, s, a)(i∂ xj ) (3.22) +(t -s) d k=1 {I(t, s, a jk,11 )x k + I(t, s, a jk,12 )(i∂ x k )}, i∂ xj I(t, s, a) = I(t, s, a)i∂ xj + d k=1 {I(t, s, a jk,21 )x k + (t -s)I(t, s, a jk,22 )(i∂ x k )}. (3.23) 
(3) For any k ∈ N, I(t, s, a) is a continuous operator in Σ(k), and

|I(t, s, a)f | Σ(k) ≤ C ω,T0,k |f | Σ(k) . (4) For any s ∈ [0, T 0 ] and f ∈ L 2 (R d ), we have lim t→s |I(t, s, a)f -f | L 2 = 0.
Proof. see Appendix.

It is not difficult, using (3.10), to prove that the operator I(t, s, a) satisfies, for any f ∈ C ∞ 0 (R d ),

i∂ t + 1 2 ∇ -iA(t, x) 2 I(t, s, a)f (x) = 0. (3.24)
Thus, setting U ω (t, s) = I(t, s, a), Proposition 6 implies that U ω is a unitary propagator for equation Remark 3.3. It may easily be seen that all the constants C ω,T0 appearing in this section are uniform in the C α ([0, T 0 ])-norm of W (., ω), that is, these constants depend only on R when W (., ω) belongs to the ball of radius R in C α ([0, T 0 ]). This remark will be useful in the proof of Theorem 3.

(1.3) (see the proof of Theorem 3 in [28]), that U ω (t, s)f satisfies (1.3) in L 2 (R d ) if f ∈ Σ(2), and that U ω (t, s)f ∈ C([s, s + T ω ]; L 2 ) if f ∈ L 2 (R d ). These arguments prove Theorem 1. Remark 3.2. Once U ω (t, s) is defined for all (t, s) ∈ [0, T 0 ] 2 (see Remark 2.3) one obtains that (u(t)) t≥s = U . (t, s)u s is adapted to (F t ) t≥s , provided u s ∈ L 2 (Ω, F s , L 2 (R d )). Indeed,

Strichartz estimates and nonlinear evolution

We prove Proposition 1 and Theorem 2 in this section. For this purpose we first establish the Strichartz estimates. We remark that the expression (3.21) gives L 1 → L ∞ estimate of the propagator and the Riesz-Thorin interpolation theorem implies the following lemma 4.1. T ω > 0 will always be assumed sufficiently small so that the previous arguments in Section 3 are satisfied. Lemma 4.1. Let 2 ≤ p ≤ ∞ and t, s ∈ [0, T 0 ], with |t -s| ≤ T ω . Let U ω (t, s) be the unique propagator of (1.3) established in Section 3. For any f ∈ L p (R d ), the following estimate holds.

|U ω (t, s)f | L p (R d ) ≤ C ω,T0 |t -s| d(1/2-1/p) |f | L p (R d ) ,
where p is the conjugate number of p given by 1 p + 1 p = 1.

Recall that a pair (q, r) is said to be admissible if

2 q = d 1 2 -1 r and 2 ≤ r < 2d d-2 (2 ≤ r ≤ ∞ if d = 1, 2 ≤ r < ∞ if d = 2).
Proposition 7. (Strichartz estimates) Let (q, r) be an admissible pair. There is a constant C ω,T0 such that for any s ∈ [0, T 0 ] and any

u s ∈ L 2 (R d ), |U ω (•, s)u s | L q (s,s+Tω∧T0;L r ) ≤ C ω,T0 |u s | L 2 .
(4.1)

If (γ, ρ) is an admissible pair and f ∈ L γ (s, s + T ω ; L ρ (R d )), then Λ ω (t, s)f defined as Λ ω (t, s)f = t s U ω (t, τ )f (τ )dτ, t ∈ [s, s + T ω ∧ T 0 ] belongs to L q (s, s + T ω ∧ T 0 ; L r (R d )) ∩ C([s, s + T ω ∧ T 0 ]; L 2 (R d ))
. Furthermore, there exists a constant C ω,T0 such that, for every f ∈ L γ (s, s

+ T ω ; L ρ (R d )), |Λ ω (•, s)f | L q (s,s+Tω∧T0;L r ) ≤ C ω,T0 |f | L γ (s,s+Tω;L ρ ) . (4.2)
Proof of Proposition 7. Here we give only the ideas of the proof since we can prove this proposition similarly to Theorem 2.3.3 in [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]. First we obtain the estimate, for any admissible pair (q, r) and f ∈ L q (s, s

+ T ω ; L r (R d )), |Λ ω (•, s)f | L q (s,s+Tω∧T0;L r ) ≤ C ω,T0 |f | L q (s,s+Tω;L r ) (4.3)
using the Riesz potential inequalities and Lemma 4.1. All the other inequalities are obtained using duality and interpolation estimates (see [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]), e.g., for any admissible pair (q, r) and f ∈ L q (s, s

+ T ω ; L r (R d )), knowing (4.3), |Λ ω (t, s)f | 2 L 2 = t s t s U ω (t, σ)f (σ), U ω (t, θ)f (θ) dσdθ = t s t s f (σ), U ω (t, σ) * U ω (t, θ)f (θ) dσdθ = t s f (σ), t s I(σ, θ, c)f (θ)dθ dσ ≤ |f | 2 L q (s,t;L r )
by duality for any t ∈ [s, s+T ω ∧T 0 ] and for some function c = c(t, s, x, y, ω). Note that c(t, s, •, •, ω) in the third equality is a continuous and bounded function on

R d × R d for (t, s) ∈ [0, T 0 ] 2 with 0 < |t -s| ≤ T ω ,
whose existence is ensured by Proposition 6 and Lemma 3.1 of [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF].

Once established the Strichartz estimate, we are in position to prove the local existence of solutions.

Proof of Proposition 1. Let 0 < T ≤ T 0 ∧ T ω where T 0 is fixed, and put I = [0, T ]. As in [START_REF] Kato | On nonlinear Schrödinger equations[END_REF][START_REF] Tsutsumi | L 2 -solutions for nonlinear Schrödinger equations and nonlinear groups[END_REF], the local existence in L 2 is proved by a fixed point method in

B X R0 = {v ∈ X T , |v| X T ≤ R 0 }, R 0 > 0, where X T = L ∞ (I; L 2 ) ∩ L r (I; L 2σ+2 ), with the metric |v| X T = |v| L ∞ (I;L 2 ) + |v| L r (I;L 2σ+2
) and r is such that (r, 2σ + 2) is an admissible pair. Let u 0 ∈ L 2 (R d ). We define the mapping T ω by

(T ω u)(t) = U ω (t, 0)u 0 -iλ t 0 U ω (t, τ )(|u| 2σ u(τ ))dτ = U ω (t, 0)u 0 -iλΛ ω (t, 0)(|u| 2σ u). (4.4) For u, v ∈ B X R0 , the estimates |T ω u| X T ≤ C ω,T0 |u 0 | L 2 + C ω,T0 T γ |u| 2σ+1 X T and (4.5) |T ω u -T ω v| X T ≤ C ω,T0 T γ (|u| 2σ L r I L 2σ+2 x + |v| 2σ L r I L 2σ+2 x )|u -v| L r I L 2σ+2 x ≤ C ω,T0 T γ R 0 2σ |u -v| X T (4.6) hold with γ = 1-2σ+2 r which is positive if σ < 2/d. Taking R ω 0 = 2C ω,T0 |u 0 | L 2
, and choosing T sufficiently small, T ω maps B X R ω 0 into itself, and is a contraction mapping. T depends only on |u 0 | L 2 , ω and T 0 . Before proving the conservation of the L 2 norm, let us prove the local existence of continuous solutions with values in Σ. We define the space,

Y T = {v ∈ X T , xv, ∇v ∈ L ∞ (I; L 2 ) ∩ L r (I; L 2σ+2 )}. Note that the ball B Y R = {v ∈ Y T , |v| Y T ≤ R} is closed for the norm | • | X T . Let u 0 ∈ Σ.
We prove that T ω defined above is a contraction mapping in the ball B Y R , for a well chosen R. We remark here that ∂ xj and the multiplication by x j do not commute with U ω (t, 0), but by virtue of (2) of Proposition 6, we have the following estimates.

Lemma 4.2. For any f ∈ Σ, U ω (t, 0)f ∈ C(I, Σ) ∩ Y T . Moreover, |U ω (•, 0)f | Y T ≤ C 1 |f | Σ , |Λ ω (•, 0)f | Y T ≤ C 2 |f | Y T
with constants C 1 and C 2 independent of T (but depending on ω and T 0 ), where

Y T = {v such that v, xv, ∇v ∈ L 1 (I; L 2 ) + L r (I; L 2σ+2 2σ+1 )}. Proof. see Lemma 3.3 of [9]. Let u ∈ B Y R .
With the help of the above lemma, we can show, in addition to (4.6), that

|T ω u| Y T ≤ C 1 |u 0 | Σ + C 3 T γ |u| 2σ L r I L 2σ+2 x |u| Y T .
Since, from the proof of (i), we have |u| L r

I L 2σ+2 x ≤ 2C ω,T0 |u 0 | L 2 ,
we may choose R = 2C 1 |u 0 | Σ and T > 0 sufficiently small so that T ω is a contraction mapping from B Y R into itself (for the X T -norm). It may be seen that T depends only on |u 0 | L 2 , ω and T 0 , and thus the solution is in Y T as long as it exists in X T .

Let us now prove the conservation of the L 2 norm with the use of a regularization procedure. We first assume that the initial data u 0 is in Σ. Consider a function ρ ∈ C ∞ 0 (R d ) satisfying ρ ≥ 0 and

R d ρ(x)dx = 1. Let ρ ε (x) = ε -d ρ( x ε
). We regularize the equation (2.2) by this molifier ρ ε . Since A(x, t) is linear in x, the regularized equation is written as follows.

i∂ t (ρ ε * u) = - 1 2 ∇ -iA(t, x) 2 (ρ * u) + λρ ε * (|u| 2σ u) - 1 2 (A 2 ρ ε ) * u -i(Aρ ε ) * ((∇ -iA)u).
Thus, the evolution of L 2 norm for this equation is, for any t ∈ [0, T ]

|ρ ε * u(t)| 2 L 2 = |ρ ε * u 0 | 2 L 2 + 2λ t 0 ρ ε * (|u| 2σ u), ρ ε * u ds - t 0 (A 2 ρ ε ) * u, ρ ε * u ds -2 t 0 (Aρ ε ) * ((∇ -iA)u), ρ ε * u ds.
The last two terms in the right hand side tend to zero as ε goes to 0, since (A k ρ ε ) * v with k = 1, 2 tends to zero in L 2 (0, t; L 2 ) for any v ∈ L 2 (0, t, L 2 ), and ρ ε * u converges to u in L 2 (0, t; L 2 ). We apply the convergences ρ ε * u → u in L r (0, t; L 2σ+2 ) and ρ ε * (|u| 2σ u) → |u| 2σ u in L r (0, t; L (2σ+2)/(2σ+1) ) to the second term in the right hand side which also vanishes as ε goes to zero. On the other hand, by the fact ρ ε * u(t) converges to u(t) and ρ ε * u 0 converges to u 0 in L 2 as ε tends to zero, we obtain the L 2 conservation for the solution of (2.2) for any t ∈ [0, T ], if the initial data u 0 is in Σ. THis is obviously still true for any initial data in L 2 by regularization. Thanks to the conservation of the L 2 norm, we get the global existence of solutions in L 2 , and thus also in Y T when the initial data is in Σ. Continuous dependence on the initial data in L 2 is shown similarly to Theorem 4.1 in [START_REF] De Bouard | Nonlinear Schrödinger equations with magnetic fields[END_REF]. This completes part (i) and (ii) of the proof of Proposition 1.

Lastly, we give the arguments for proving (iii) of Proposition 1. In that case, we estimate the nonlinearity as

||u| 2σ u| Y T ≤ CT 1-θ |u| 2σ+1 Y T for any u ∈ Y T and θ = dσ 2(σ+1) < 1. Then, if u 0 ∈ Σ, for any u, v ∈ B Y R , we have |T ω u| Y T ≤ C 1 |u 0 | Σ + C 2 T 1-θ |u| 2σ+1 Y T , and 
|T ω u -T ω v| X T ≤ CT 1-θ (|u| 2σ Y T + |v| 2σ Y T )|u -v| X T , which implies that T ω is a contraction in B Y R with R = 2C 1 |u 0 | Σ ,
for sufficiently small T > 0. This allows us to show the local existence and the blow-up alternative in Σ (see [START_REF] De Bouard | Nonlinear Schrödinger equations with magnetic fields[END_REF]). Note that by virtue of Proposition 7 and (4) of Proposition 6, in each case, T ω u belongs to C(I; L 2 ) or C(I; Σ). The adaptivity of u results from the adaptivity of U ω (see Remark 3.2), the fact that u is obtained by a fixed point procedure, and the use of a cut-off argument (see e.g. [START_REF] De Bouard | The stochastic nonlinear Schrödinger equation in H 1[END_REF] or [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF]). In the supercritical case (iii), the cut-off argument has to be performed for a fixed t, in L 2σ+2 norm. Note that the adaptivity of u implies that T * is a stopping time.

Proof of Theorem 2. We note that if u ∈ C([0, T 0 ]; L 2 (R d )) then ψ given by (1.2) is also in C([0, T 0 ]; L 2 (R d )); moreover, if u is a solution of Eq. (2.2), then the Itô formula implies that ψ solves Eq. (1.5) in C([0, T 0 ]; Σ(-2)). Since in addition, u ∈ C([0, T 0 ]; Σ) implies ψ ∈ C([0, T 0 ]; Σ), it is easily seen that the results of (i) and (ii) in Proposition 1 imply (i) and (ii) of Theorem 2. Concerning the local existence in Σ, (iii), we define for R > 0, τ R = inf{t ≥ 0, |u(•)| L ∞ (0,t;Σ) ≥ R} where u is the solution obtained in (iii) of Proposition 1, with u 0 = ψ 0 . Since {u(t)} t≥0 is adapted to (F t ) t≥0 , τ R is an increasing stopping time. We then set τ * = lim R→+∞ τ R . On the other hand, by the deterministic theory, we know that there exists a maximal time T * = T * ω,u0 > 0 such that the following alternative holds; T * = +∞ or lim t↑T * |u(t)| Σ = +∞ if T * < +∞. If T * = +∞, u exists globally, so ψ is global, too. If T * < +∞, the definition of τ R implies τ * = T * . Part (iv) follows from the same argument as in (i) of Theorem 3 of [START_REF] De Bouard | Stochastic fluctuations in the Gross-Pitaevskii equation[END_REF], combined with some ideas in [START_REF] Carles | Nonlinear Schrödinger equation with time dependent potential[END_REF]. Using the Itô formula, the evolution of the Hamiltonian H given by (2.4) of the solution of (1.5) is found to be, for any stopping time τ ≤ τ R ∧ T :

H(ψ(τ )) = H(ψ 0 ) + 1 4 τ 0 R d |Γx| 2 |ψ(x)| 2 dxdt - 1 2 Im τ 0 R d Γx • ∇ψ(x) ψ(x)dxdW, a.s; (4.7)
on the other hand, again by the Itô formula,

|xψ(τ )| 2 L 2 = |xψ 0 | 2 L 2 + 2Im τ 0 R d x ψ • ∇ψdxdt, for any τ ≤ τ R ∧ T, a.s. (4.8)
Now, assume that λ = +1; one easily get form (4.7) that for any R > 0,

E sup t∈[0,τ R ∧T ] |∇ψ| 2 L 2 ≤ |H(ψ 0 )| + C |N |,d E sup t∈[0,τ R ∧T ] |xψ(t)| 2 L 2 +C |Γ|,d,σ0 E sup t∈[0,τ R ∧T ] t 0 |xψ(s)| 2 L 2 ds +C σ0 E sup t∈[0,τ R ∧T ] t 0 R d ∇K • ∇ψ ψdxdW (4.9)
The last term of the right hand side above is estimated thanks to Theorem 3.14 in [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF], and is then majorized by

3C σ0 E T ∧τ R 0 R d ∇K • ∇ψ ψdx 2 ds 1/2 ≤ 3C σ0 T E sup t∈[0,τ R ∧T ] |∇ψ(t)| L 2 |xψ(t)| L 2 ≤ 1 2 E sup t∈[0,τ R ∧T ] |∇ψ(t)| 2 L 2 + C σ0,T E sup t∈[0,τ R ∧T ] |xψ(t)| 2 L 2 .
Plugging this estimate into (4.9), one gets

E sup t∈[0,τ R ∧T ] |∇ψ| 2 L 2 ≤ 2|H(ψ 0 )| + C |N |,d,T,σ0 E sup t∈[0,τ R ∧T ] |xψ(t)| 2 L 2 +C |Γ|,d,σ0 E sup t∈[0,τ R ∧T ] t 0 |xψ(s)| 2 L 2 ds . (4.10)
On the other hand, by (4.8), one has

E sup t∈[0,τ R ∧T ] |xψ(t)| 2 L 2 ≤ |xψ 0 | 2 L 2 +E T 0 1l [0,τ R ∧T ] (|∇ψ(t)| 2 L 2 + |xψ(t)| 2 L 2 )dt . (4.11) 
Hence, combining (4.10) and (4.11),

E sup t∈[0,τ R ∧T ] |∇ψ(t)| 2 L 2 + |xψ(t)| 2 L 2 ≤ C |N |,d,T,σ0,|ψ0|Σ + C |N |,d,T,σ0,|Γ| E T 0 1l [0,τ R ∧T ] (|∇ψ(t)| 2 L 2 + |xψ(t)| 2 L 2 )dt ,
and one concludes using Gronwall's lemma that

E sup t∈[0,τ R ∧T ] |∇ψ(t)| 2 L 2 + |xψ(t)| 2 L 2 ≤ C |ψ0|Σ,|N |,d,T,σ0,|Γ| .
This latter estimate implies τ * = +∞, a.s.

Remark 4.1. Note that the estimates proving the local existence of solutions in X T or Y T in the proof of Proposition 1 are still available in the presence of a damping term -iγu, with γ > 0, on the right hand side of Eq.(2.2). In this case the L 2 norm is not preserved but is decreasing. Moreover, in the proof of (iv) of Theorem 2, (4.7) may be replaced by the equality (3.3) of [START_REF] De Bouard | Stochastic fluctuations in the Gross-Pitaevskii equation[END_REF] and (4.8) by

|xψ(τ )| 2 L 2 = |xψ 0 | 2 L 2 + 2Im τ 0 R d x ψ • ∇ψdxdt -2γ τ 0 |xψ(t)| 2 L 2 dt
if γ > 0 in Eq.(1.1), and this leads to the same conclusion.

Continuous dependence on the Brownian path and convergence

This section is devoted to the proof of Proposition 2, i.e. the continuous dependence of solutions on the Brownian paths, and of Theorem 3.

We begin with introducing the following proposition which is a consequence of the properties of the propagator U ω (t, s) that we studied in Section 3. We have already seen that for

f ∈ C ∞ 0 (R d ), U ω (•, s)f is a strong solution of (1.3), and is a function of W (•, ω), provided ω ∈ Ωα T0 = {ω ∈ Ω, W (•, ω) ∈ C α ([0, T 0 ])} with 0 < α < 1/2.
Note also that we could have replaced in Section 3 W (•, ω) by any function g(.) in C α ([0, T 0 ]) with α > 0 (all the constants appearing in the estimates would then depend on |g| C α ([0,T0]) , instead of ω and T 0 ). Hence, we may fix ω ∈ Ωα T0 and we regard U ω (t, s)f as a function of the Brownian path W (•, ω). We then denote U ω (t, s) by U W (t, s) to clarify the dependence. Proposition 8. Let T 0 > 0, R > 0 and M > 0 be fixed. There exist a T R > 0, and a constant

C R,T0,M > 0 such that if f ∈ C ∞ 0 (R d ), with supp(f ) ⊂ B(0, M ), and if W 1 , W 2 ∈ B R , then, for any t, s ∈ [0, T 0 ] with |t -s| < T R we have |(U W1 (t, s) -U W2 (t, s))f | L 2 ≤ C R,T0,M |W 1 -W 2 | C([0,T0]) |f | L 2 + |α|≤ d 2 +3 |∂ α y f | L 1 , (5.1) 
where B R is the centered ball in C α ([0, T 0 ]) with radius R, and U W (t, s) is the unique propagator of (1.3).

Proof. see Appendix.

Before giving the proof of Proposition 2, we state a corollary of Proposition 8.

Corollary 5.1. For T 0 , T R as in Proposition 8, f ∈ L 2 (R d ), and any s ∈ [0,

T 0 ], W → U W (•, s)f is continuous in the sense of Proposition 8, from C([0, T 0 ]) ∩ B R into C([s, s + T R ∧ T 0 ]; L 2 (R d )).
Proof. The proof of Corollary 5.1 follows easily from Proposition 8 and (3) of Proposition 6 (with

k = 0) which states that f → U W (•, s)f is continuous on L 2 (R d ), uniformly for W ∈ B R .
Proof of Proposition 2. We first consider a truncated version of equation (2.2). Let, for M > 0, χ M be a positive 

C ∞ 0 (R + ) function with suppχ M ⊂ [0, 2M ], χ M ≡ 1 on [0, M ], and 0 ≤ χ M ≤ 1. We set f M (u) = χ M (|u| 2 )|u| 2σ u,
W,M , in C(R + ; L 2 (R d )), since f M is globally Lipschitz in L 2 (R d ) : i∂ t u = - 1 2 ∇ -i(tN + W (t)Γ) 2 u + λf M (u), (5.2) with u(0, x) = u 0 ∈ L 2 (R d ). Equivalently, u W,M is the unique solution in C(R + ; L 2 (R d )) of the mild equation u(t) = U W (t, 0)u 0 -iλ t 0 U W (t, τ )f M (u(τ ))dτ. (5.3)
Let us prove that W → u W,M is continuous in the sense of Proposition 2 for any M > 0. It clearly follows from the estimates of Section 3 that u W,M is the limit in C([0, T 0 ]; L 2 ) of the sequence u W,M k defined by u W,M 0 (t) = U W (t, 0)u 0 and (5.4) and that this limit is uniform with respect to W ∈ B R . Hence, in order to get the continuity of W → u W,M , it is sufficient to prove that u W,M k is continuous with respect to W in the sense of Proposition 2, for any k. We use an induction argument. Thanks to Corollary 5.1 and (5.4), this continuity will hold true at level k + 1, assuming it at level k, if we prove that for any

u W,M k+1 = U W (t, 0)u 0 -iλ t 0 U W (t, τ )f M (u W,M k (τ ))dτ,
W 0 ∈ B R , lim sup t∈[0,T0] t 0 |U W (t, s)f M (u W,M k (s)) -U W0 (t, s)f M (u W0,M k (s))| L 2 ds = 0, ( 5.5) 
when W tends to W 0 in C([0, T 0 ]), with W ∈ B R . But the left hand side of (5.5) is bounded above, for

W ∈ B R , by T0 0 sup t∈[0,T0] |U W (t, s)(f M (u W,M k (s)) -f M (u W0,M k (s)))| L 2 ds + T0 0 sup t∈[0,T0] |U W (t, s)f M (u W0,M k (s)) -U W0 (t, s)f M (u W0,M k (s))| L 2 ds ≤ C R,T0,M T0 0 |u W,M k (s) -u W0,M k (s)| L 2 ds + T0 0 sup t∈[0,T0] |U W (t, s)f M (u W0,M k (s)) -U W0 (t, s)f M (u W0,M k (s))| L 2 ds.
The first term goes to zero by the induction assumption, and the second one by the dominated convergence Theorem, since Corollary 5.1 implies the convergence of the term inside the integral, while the boundedness of U W (t, s) in L 2 , which is uniform with respect to W ∈ B R , implies

|U W (t, s)f M (u W0,M k (s)) -U W0 (t, s)f M (u W0,M k (s))| L 2 ≤ 2C R,T0,M |u W0,M k | L 2 .
Hence, u W,M is continuous with respect to W ∈ B R in the sense of Proposition 2. It remains to get rid of the cut-off function χ M . Note that we may restrict ourselves to a sufficiently small time interval [0, T ], provided that it depends only on R, T 0 and |u 0 | L 2 . Let (ρ, 2σ + 2) and (r, p) be admissible pairs, with p > 2σ + 2 and r (2σ + 1) < ρ (this is possible, since σ < 2/d implies ρ (2σ + 1) < ρ). Note that by Strichartz estimates (Proposition 7) applied to (5.3), u W,M ∈ L ρ (0, T ; L 2σ+2 ), and for T sufficiently small, depending only on R, T 0 and

|u 0 | L 2 , |u W,M | L ρ (0,T ;L 2σ+2 ) ≤ C R,T0 |u 0 | L 2 and |u W | L ρ (0,T ;L 2σ+2 ) ≤ C R,T0 |u 0 | L 2 .
Then, using again Proposition 7 for the difference between (5.3) and (2.3), we get for T as above,

|u W,M -u W | L ρ (0,T ;L 2σ+2 )∩L ∞ (0,T ;L 2 ) ≤ C R,T0 χ M (|u W,M |) 2 -1 |u W,M | 2σ u W,M L r (0,T ;L p ) +C R,T0,|u0| L 2 ,σ T γ |u W,M -u W | L ρ (0,T ;L 2σ+2 )
with γ = 1 -2σ+2 ρ , from which it follows, taking again T small enough depending on R, T 0 ,

|u 0 | L 2 , σ, that |u W,M -u W | L ρ (0,T ;L 2σ+2 )∩L ∞ (0,T ;L 2 ) ≤ C R,T0 χ M (|u W,M |) 2 -1 |u W,M | 2σ u W,M L r (0,T ;L p ) .
(5.6)

On the other hand,

χ M (|u W,M |) 2 -1 |u W,M | 2σ u W,M L r (0,T ;L p ) ≤ T 0 |1l {|u W,M (s,•)| 2 ≥M } |u W,M (s)| 2σ+1 | r L p ds 1/r ≤ T 0 |1l {|u W,M (s,•)| 2 ≥M } | r L q |u W,M (s)| (2σ+1)r L 2σ+2 ds 1/r
(5.7)

with q > 1 such that 1 p = 2σ+1 2σ+2 + 1 q . Now, by Hölder inequality in time, this term is estimated by

T 0 |1l {|u W,M (s,•)| 2 ≥M } | β L q ds 1/β |u W,M | 2σ+1 L ρ (0,T ;L 2σ+2 ) ≤ (C R,T0 |u 0 | L 2 ) 2σ+1 T 0 (meas{|u W,M (s, •)| 2 ≥ M }) β/q ds 1/β (5.8)
where

1 r = 2σ+1 ρ + 1 β ; note that 1 β > 0, since (2σ + 1)r < ρ.
In turn, we have

T 0 (meas{|u W,M (s, •)| 2 ≥ M }) β/q ds 1/β ≤ T 0 1 M {|u W,M (s,x)| 2 ≥M } |u W,M (s, x)| 2 dx β/q ds 1/β
(5.9)

≤ 1 M 1/q T 0 |u W,M (s, •)| 2β/q L 2 ds 1/β = 1 M 1/q T 1/β |u 0 | 2/q L 2 .
We have used in the last equality the fact that |u W,M (s,

•)| L 2 = |u 0 | L 2 ,
for any s. This fact is easily seen, on a formal point of view, by multiplying equation (5.2) by ū, integrating on R d and taking the imaginary part, and may be justified, as is classical, using a regularization procedure. Finally, collecting (5.6), (5.7), (5.8) and (5.9) shows that u W,M converges to u W in L ∞ (0, T ; L 2 ) as M goes to infinity, uniformly for W ∈ B R , and Proposition 2 follows.

Proof of Theorem 3. By Assumption (A), B R being a Borel set of C([0, T 0 ]), we have

lim ε→0 P(M ε ∈ B R ) = P(W ∈ B R ),
where we put M ε (t) = ε σ0 t/ε 2 0 m(s)ds. On the other hand, since

P W ∈ C α ([0, T 0 ]) = 1 if α < 1/2, for any η > 0 there exists R 0 > 0 such that P(W ∈ B R0 ) ≥ 1 -η/2.
Thus, there exists ε 0 > 0 such that for any ε ∈ (0, ε 0 )

P(M ε ∈ B R0 ) ≥ 1 -η,
and hence

P(W ∈ B R0 and M ε ∈ B R0 ) ≥ 1 -3η/2.
By Skohorod Theorem, there exist a probability space ( Ω, F, P), a subsequence of random variables { M ε } and a Brownian motion W such that L( M ε ) = L(M ε ), L( W ) = L(W ) and M ε converges to W , P-a.s., in C([0, T 0 ]). Then, for any ε ∈ (0, ε 0 ),

P M ε ∈ B R0 and W ∈ B R0 ≥ 1 -3η/2. Now, if M ε ∈ B R0 , then the solution u M ε of equation (2.3) with W replaced by M ε is well defined in C([0, T 0 ]; L 2 (R d )
) by the proof of (i) of Proposition 1, and by Proposition 2, for any δ > 0,

P M ε ∈ B R0 , W ∈ B R0 and |u M ε -u W | C([0,T0];L 2 ) > δ)
converges to 0 as ε goes to 0. Therefore, for any δ > 0, P(|u

M ε -u W | C([0,T ];L 2 ) > δ) ≤ 2η
provided that ε is sufficiently small. In particular, u M ε converges to u W in distribution in C([0, T 0 ]; L 2 ). One easily prove in the same way that (M ε , u

M ε ) converges in distribution in C([0, T 0 ])×C([0, T 0 ]; L 2 (R d )) to (W, u W
), and we deduce that 

ψ M ε (t, x) = e -i|x| 2 (tN +M ε (t)Γ) u M ε (t, x), which is clearly the unique solution in C([0, T 0 ]; L 2 (R d )) of equation (2.5), converges in distribution in C([0, T 0 ]; L 2 )
|u W,M -u W | L ρ T L 2σ+2 ∩L ∞ T L 2 ≤ C R,T0 |u 0 | Σ 2σ+1 1 M 1/q T 1/r |u 0 | 2/q L 2 .
for small time T > 0. For any fixed time T 1 < T * u0,ω , we obtain the same estimate for |u W,M -

u W | L ρ T 1 L 2σ+2 ∩L ∞ T 1 L 2 but with |u 0 | Σ replaced by sup t∈[0,T1] |u(t)| Σ . It is not clear that sup t∈[0,T1] |u(t)| Σ depends "only" on W ∈ B R , therefore the convergence u W,M → u W as M → +∞ may not be uniform in W ∈ B R .

Appendix

Proof of Proposition 5. Since we already know that S(t, s, x, y) is C 1 for 0 < |t -s| ≤ T ω , it suffices to prove (3.15)-(3.17) and similar asymptotics for the partial derivatives in the space variable, which will prove that ∂ α x ∂ β y S(t, s, x, y) is C 1 for |t -s| ≤ T ω . We recall that 0 < α < 1/2 is fixed, and that ω is such that W (•, ω) ∈ C α ([0, T 0 ]). Using the system (3.1), with initial conditions (x(s), ξ(s)) = (y, η), and the estimate (3.2), we get for any σ ∈ [s, t] with s, t ∈ [0, T 0 ] :

|ξ(σ, s, y, η) -η -(σ -s)(sN + W (s)Γ)η + (σ -s)(sN + W (s)Γ) 2 y| = σ s (uN + W (u)Γ)(ξ(u) -uN x(u) -W (u)Γx(u))du - σ s (sN + W (s)Γ)ηdu + σ s (sN + W (s)Γ) 2 ydu = σ s ((u -s)N + (W (u) -W (s))Γ)(ξ(u) -(uN + W (u)Γ)x(u))du + σ s (sN + W (s)Γ)(ξ(u) -η -(uN + W (u)Γ)(x(u) -y))du -(sN + W (s)Γ) σ s ((u -s)N + (W (u) -W (s))Γ)ydu ≤ C ω,T0 (1 + |y| + |η|)|σ -s| 1+α , (6.1) 
where ξ(u) = ξ(u, s, y, η) and x(u) = x(u, s, y, η). Similarly,

|x(σ, s, y, η) -y -(σ -s)η + (σ -s)(sN + W (s)Γ)y| ≤ C ω,T0 (1 + |y| + |η|)|σ -s| 1+α . (6.2) 
Thus, we get

x(t, s, y, η) -y -(t -s)η + t s (σN + W (σ)Γ)ydσ = t s [ξ(σ, s, y, η) -η -(σ -s)(sN + W (s)Γ)η + (σ -s)(sN + W (s)Γ) 2 y +((s -σ)N + (W (s) -W (σ))Γ)( x(σ, s, y, η) -y) 
-(sN + W (s)Γ)(x(σ, s, y, η) -y -(σ -s)η + (σ -s)(sN + W (s)Γ)y)]dσ ≤ C ω,T0 |t -s| 2+α (1 + |y| + |η|).
We deduce, using (3.3), that

|x(t, s, y, η) -y -η + t s (σN + W (σ)Γ)ydσ| ≤ C ω,T0 |t -s| 1+α (1 + |y| + |η|),
and also that

|x(t, s, y, η) -y -η + (t -s)(sN + W (s)Γ)y| ≤ C ω,T0 |t -s| 1+α (1 + |y| + |η|). (6.3) 
Hence, plugging η = η(t, s, y, x) into (6.3) and using the fact that

|η(t, s, y, x)| ≤ C ω,T0 (1 + |x| + |y|),
as follows from Proposition 3, we deduce

|η(t, s, y, x) -x + y -(t -s)(sN + W (s)Γ)y| = |η(t, s, y, x) -x(t, s, y, η(t, s, y, x)) + y -(t -s)(sN + W (s)Γ)y| (6.4) ≤ C ω,T0 |t -s| 1+α (1 + |x| + |y|) and η(t, s, y, x) - x -y t -s -(sN + W (s)Γ)y ≤ C ω,T0 |t -s| α (1 + |x| + |y|). (6.5) 
From (6.2) and (6.5), we get for s ≤ τ ≤ t:

|x(τ, s, y, η(t, s, y, x)) -y -(τ -s)η(t, s, y, x) + (τ -s)(sN + W (s)Γ)y| ≤ C ω,T0 (1 + |y| + |η(t, s, y, x)|)|τ -s| 1+α ≤ C ω,T0 (1 + |x| + |y|)|τ -s| α .
Hence, using again (6.5) :

x(τ, s, y, η(t, s, y, x) -y -

τ -s t -s (x -y) ≤ C ω,T0 |τ -s| α (1 + |x| + |y|). (6.6) 
On the other hand, (6.1) and (6.5) imply for s ≤ τ ≤ t :

ξ(τ, s, y, η(t, s, y, x)) - x -y t -s -(sN + W (s)Γ)y - τ -s t -s (sN + W (s)Γ)(x -y) ≤ C ω,T0 |τ -s| α (1 + |x| + |y|). (6.7) 
Now, from (3.7)

L(τ, q(τ ), v(τ )) = 1 2 ξ 2 (τ, s, y, η(t, s, y, x)) - 1 2 [(τ N + W (τ )Γ)x(τ, s, y, η(t, s, y, x))] 2 .
Hence,we get from (6.6) and (6.7)

L(τ, q(τ ), v(τ )) - 1 2 x -y t -s 2 - x -y t -s • (sN + W (s)Γ)y - τ -s (t -s) 2 (x -y) • (sN + W (s)Γ)(x -y) ≤ C ω,T0 |τ -s| α-1 (1 + |x| 2 + |y| 2 )
from which we deduce that S(t, s, x, y) = (t -s) t s L(τ, q(τ ), v(τ ))dτ satisfies | S(t, s, x, y) -

1 2 (x -y) 2 - 1 2 (t -s)(x -y) • (sN + W (s)Γ)(x + y)| ≤ C ω,T0 |t -s| 1+α (1 + |x| 2 + |y| 2 )
which is (3.15) except for the space derivatives. We now consider the space derivatives of S. Note that (6. Estimates on ∂ y l ∂ yj S follow in the same way, using (3.14) and (6.4). It is clear that ∂ α x ∂ β y S(t, s, x, y) = 0 for |α+β| ≥ 3. In order to prove (3.16) and (3.17), we make use of Hamilton-Jacobi equation (3.10)- (3.11). We only consider the derivative with respect to t, which, thanks to (3.15) and (6.8), may be written as

∂ t S(t, s, x, y) = S(t, s, x, y) + (t -s)(∂ t S)(t, s, x, y) = S(t, s, x, y) - 1 2(t -s) (∇ x S)(t, s, x, y) -(t -s)(tN + W (t)Γ)x 2 = 1 t -s S(t, s, x, y) - 1 2 ξ(t, s, y, η(t, s, y, x)) -(t -s)(tN + W (t)Γ)x 2 = 1 2 (x -y) • (sN + W (s)Γ)(x + y) + (1 + |x| 2 + |y| 2 )O(|t -s| α ).
Estimate (3.17) is obtained in the same way with the use of (3.15) and (6.4), and the space derivatives are estimated as above.

Proof of Proposition 6. Note that the operator I(t, s, a) is bounded in L 2 (R d ) by Asada-Fujiwara's Theorem (see [START_REF] Asada | On some oscillatory integral transformation in L 2 (R n )[END_REF]). Indeed, by (3.14) and (6.4),

(∂ y k ∂ y l S)(t, s, x, y) = -η l (t, s, e k , 0) = δ kl + O(|t -s|), (6.10) 
and therefore,

| det(∂ y k ∂ y l S)| ≥ 1 2 for |t -s| ≤ T ω (6.11)
if T ω is sufficiently small. Then, ( 1) is a direct consequence of the fact that S(s, t, y, x) = -S(t, s, x, y), which itself follows from (3.6).

(2) is a special case of Proposition 3.2 in [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF], but we repeat the proof for the sake of completeness. (6.12)

Let f ∈ C ∞ 0 (R d
On the other hand, by (3.13) and (3.14), using the linearity of (y, η) → ξ(t, s, y, η) and (y, η) → η(t, s, y, x), we may write 

∂ xj S(
The combination of (2) and Asada-Fujiwara's Theorem implies [START_REF] Albeverio | Mathematical Theory of Feynman Path Integrals[END_REF], that is, the boundedness of I(t, s, a) in Σ(k) for any k ∈ N.

The proof of ( 4) is essentially due to Fujiwara [START_REF] Fujiwara | A construction of the fundamental solution for the Schrödinger equation[END_REF] and Yajima [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF]. However, we repeat the arguments here for the sake of completeness. Let f ∈ C ∞ 0 (R d ) and let M > 0 be such that suppf ⊂ {x ∈ R d , |x| ≤ M }. We recall that W (•, ω) ∈ C α ([0, T 0 ]), and that using estimate (3.12) we may prove that if 

C M = C M,
|U ω (t, s)f (x)| = (2πiν) -d/2 (ν/i) L R d ∇ y S (∇ y S) 2 • ∇ y L e i S/ν a(t, s)f (y)dy = (2πiν) -d/2 (ν/i) L R d e i S/ν a(t, s) ∇ y S (∇ y S) 2 • ∇ y * L f (y)dy ≤ C ω,T0,M,L ν L-d/2 (1 + |x|) -L R d |α|≤L |∂ α y f (y)|dy,
where we have used the bound (3.20) and the fact that

∇ y S (∇ y S) 2 • ∇ y * L f (y) ≤ C L (1 + |x|) -L |α|≤L |∂ α y f (y)|
by the estimate (6.16). Thus, choosing L > d/2

|U ω (t, s)f | L 2 (|x|>8C M ) ≤ C ω,T0,M,L ν L-d/2 |α|≤L |∂ α y f (y)| L 1 (R d ) R d (1 + |x|) -2L dx 1/2
, and it follows that |U ω (t, s)f | L 2 (|x|>8C M ) tends to zero as t goes to s.

For the case |x| ≤ 8C M , we use the stationary phase method (see, e.g. Lemma A.8 of [START_REF] Fujiwara | Remarks on convergence of the Feynman path integrals[END_REF], or [START_REF] Fujiwara | The stationary phase method with an estimate of the remainder term on a space of large dimension[END_REF]). The equation ∇ y S(t, s, x, y) = 0, as an equation in y, has a unique solution y = ỹ(t, s, x, 0). Here, (ỹ(t, s, x, η), η) is the inverse map of (y, η) → (x(t, s, y, η), η). We recall (6.11) and apply the stationary phase method; we obtain, for some smooth function r(t, s, .),

U ω (t, s)f (x) = det(∂ y k ∂ y l S) -1/2 y=ỹ e i S(t,s,x,ỹ)/ν (a(t, s)f (ỹ) + νr(t, s, ν -1 x)) (6.17) 
where ỹ = ỹ(t, s, x, 0) and, for any k ∈ N, there exist K(k) ∈ N and C(k) > 0 such that for any |α| ≤ k and t, s

∈ [0, T 0 ] with |t -s| ≤ T ω , |∂ α x r(t, s, ν -1 x)| ≤ C k |a(t, s)| max |β|≤K(k) sup y∈R d |∂ β y f (y)|.
On the other hand, it follows from (6.15), using x = x(t, s, ỹ(t, s, x, η)), that 

|ỹ(t, s, x, η) -x + η| ≤ C ω,T0
ν ≤ C ω,T0 |t -s| α (1 + |x| 2 ),
hence S/ν tends to zero uniformly on |x| ≤ 8C M . Accordingly, we get that lim t→s U ω (t, s)f (x) = f (x), uniformly for |x| ≤ 8C M , which completes the proof of (4) of Proposition 6.

Proof of Proposition

8. Let W 1 , W 2 ∈ B R and f ∈ C ∞ 0 (R d ).
We write the difference as follows.

U W1 (t, s)f (x) -U W2 (t, s)f (x) = (2πi(t -s)) -d/2 R d e iS W 1 (t,s,x,y) (a W1 (t, s) -a W2 (t, s))f (y)dy +(2πi(t -s)) -d/2
R d e iS W 1 (t,s,x,y) (1 -e iS W 2 (t,s,x,y)-iS W 1 (t,s,x,y) )(a W2 (t, s))f (y)dy (6.19) = I + II where a Wj is defined as in (3.19), replacing W by W j in all Section 3. We use the following lemma to estimate (6.19). Lemma 6.1. The difference S W1 -S W2 satisfies the estimate :

|α+β|≤2 ∂ α x ∂ β y S W1 (t, s, x, y) -S W2 (t, s, x, y) ≤ C R,T0 |W 1 -W 2 | C([0,T0]) (1 + |x| + |y|) 2-|α+β| . (6.20)
We postpone the proof of Lemma 6.1 to the end of the section and continue the proof of Proposition 8.

Part I of (6.19) is estimated using Asada-Fujiwara's Theorem in [START_REF] Asada | On some oscillatory integral transformation in L 2 (R n )[END_REF]; we refer to the beginning of the proof of Proposition 6 in this section for a justification of the fact that the assumptions of [START_REF] Asada | On some oscillatory integral transformation in L 2 (R n )[END_REF] are satisfied by the phase function S W1 (t, s, x, y) provided that |t -s| ≤ T R , where T R is sufficiently small. Then,

|I| L 2 = |I W1 (t, s, a W1 -a W2 )| L 2 ≤ C R,T0 |a W1 (t, s) -a W2 (t, s)||f | L 2 ,
where the constant C R,T0 depends only on R and T 0 , and provided |t -s| ≤ T R . Using the definition (3.19) of a(t, s), we may write the difference as follows.

a W1 (t, s) -a W2 (t, s) = exp 1 2 t s R W1 (τ, s)dτ 1 -exp 1 2 t s (R W2 (τ, s) -R W1 (τ, s))dτ . By (3.20), we have exp 1 2 t s R W1 (τ, s)dτ = |a W1 (t, s)| ≤ 1 + C R,T0 |t -s|
and, by (3.18) and (6.20),

|R W2 (τ, s) -R W1 (τ, s)| ≤ |∆ x S W1 (τ, s) -∆ x S W2 (τ, s)| + |Tr(Γ)||W 2 (τ ) -W 1 (τ )| ≤ C R,T0 |W 1 -W 2 | C([0,T0]) .
Therefore, we have

|a W1 (t, s) -a W2 (t, s)| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]
) , and we obtain, for |t -s| ≤ T R ,

|I| L 2 ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) |f | L 2 for f ∈ L 2 (R d ).
Next, we estimate II. Recall that suppf ⊂ {y ∈ R d , |y| ≤ M }. Let M > 0 be a constant that will be chosen later. We write II using the cut-off functions Θ

M , Θ M ∈ C ∞ 0 (R d ) as follows. II = (2πiν) -d/2
R d e iS W 1 (t,s,x,y) 1 -e i(S W 2 (t,s,x,y)-S W 1 (t,s,x,y))

×a W2 (t, s)Θ M (x)Θ M (y)f (y)dy +(2πiν) -d/2 R d e i SW 1 (t,s,x,y)/ν -e i SW 2 (t,s,x,y)/ν ×a W2 (t, s)(1 -Θ M (x))Θ M (y)f (y)dy, = III + IV,
where we put ν = t -s. Since all the space derivatives of the amplitude function

(1 -e i(S W 2 (t,s,x,y)-S W 1 (t,s,x,y)) )a W2 (t, s)Θ M (x)Θ M (y) in III are bounded, taking S W1 (t, s, x, y) for the phase function, and applying Asada-Fujiwara's Theorem [START_REF] Asada | On some oscillatory integral transformation in L 2 (R n )[END_REF], combined with Lemma 6.1, we get

|III| L 2 ≤ C R,T0,M,M |a W2 (t, s)||W 1 -W 2 | C([0,T0]) |f | L 2 . (6.21)
Concerning IV, we set

L j = ∇ y SWj |∇ y SWj | 2 • ∇ y , j = 1, 2,
and observe that ν i L j e i SW j /ν = e i SW j /ν . We then integrate L times by parts to get

IV = (2πiν) -d/2 (ν/i) L R d [L L 1 e i SW 1 (t,s,x,y)/ν ] -[L L 2 e i SW 2 (t,s,x,y)/ν) ] ×a W2 (t, s)(1 -Θ M (x))Θ M (y)f (y)dy = (2πiν) -d/2 (ν/i) L R d e i SW 1 (t,s,x,y)/ν a W2 (t, s)(1 -Θ M (x)) ×[(L * 1 ) L -(L * 2 ) L ]Θ M (y)f (y)dy +(2πiν) -d/2 (ν/i) L R d (e i SW 1 (t,s,x,y)/ν -e i SW 2 (t,s,x,y)/ν )a W2 (t, s)(1 -Θ M (x)) ×(L * 2 ) L Θ M (y)f (y)dy.
On the other hand, using estimate (3.12), we obtain as in [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF],

|∂ y SWj (t, s, x, y)| = ∂ y SWj (t, s, 0, y) - 1 0 ∂ 2 SWj ∂ x ∂ y (t, s, θx, y) • xdθ ≥ 1 4 |x| -|∂ y SWj (t, s, 0, y)| ≥ 1 4 |x| -C M,R,T0 ,
where C M,R,T0 = max{M, sup We then choose M = 8C M,R,T0 and get

|(1 -Θ M (x))(L * j ) L Θ M (y)f (y)| ≤ C R,T0,M (1 + |x|) -L |α|≤L |∂ α y f (y)|, j = 1, 2. (6.23)
Moreover, it may be checked that whenever |x| ≥ M ,

|α|≤K |∂ α y (L * 1 -L * 2 )Θ M (y)f (y)| ≤ C R,T0,M (1 + |x|) -1 |W 1 -W 2 | C([0,T0]) |β|≤K+1 |∂ β y f (y)|, and |β|≤K |∂ β y (L * 2 ) k Θ M (y)f (y)| ≤ C R,T0,M (1 + |x|) -k |γ|≤k+K |∂ β y f (y)|.
Accordingly, for any L ∈ N, ∂ α y f (y))

|(1 -Θ M (x))[(L * 1 ) L -(L * 2 ) L ]Θ M (y)f (y)| = (1 -Θ M (x)) L-1 k=0 (L * 1 ) L-k-1 (L * 1 -L * 2 )(L * 2 ) k Θ M (y)f (y) ≤ C R
L 1 × R d (1 + |x|) -d-2 dx 1/2 + R d (1 + |x|) -d-6 dx 1/2
, which ends the proof of Proposition 8.

We finally show Lemma 6.1 to complete Proposition 8. Proof of Lemma 6.1. We denote by (x j (t, s, y j , η j ), ξ j (t, s, y j , η j )) the solution of the system (3.1) with W (t) replaced by W j (t) for j = 1, 2. Then, we have for y j , η j ∈ R where x j (t) = x j (t, s, y j , η j ) and ξ j (t) = ξ j (t, s, y j , η j ) for j = 1, 2. Therefore, Gronwall lemma implies, Using again the equation of (x j ,ξ j ), we estimate (x j , ξj ) defined by xj (t, s, y j , η j ) = x j (t, s, y j , η j /(t -s)) and ξj (t, s, y j , η j ) = (t -s)ξ j (t, s, y j , η j /(t -s)). We recall that σ0 2 ∇K(x) = Γx and 1 2 ∇V (x) = N x. Hence, x 1 (t, s, y 1 , η 1 ) -x 2 (t, s, y 2 , η 2 ) = y 1 -y 2 + Applying the above inequality with η j = ηj (t, s, y j , x j ) for j = 1, 2, and recalling that xj (t, s, y j , ηj (t, s, y j , x j )) =

x j , we get It follows then from (3.13),(3.14), (6.28), (6.29) and (6.30), and the linearity of ( ξ(t, s, y, η(t, s, y, x)), η(t, s, y, x)) with respect to (x, y) (see (6.9)) that For the first order derivatives of S W1 -S W2 , we have for example, again with the relations (3.13) and (6.9), Again we develop S Wj (t, s, 0, y) around y = 0, then S Wj (t, s, 0, y) = 1 0 (∂ y S Wj )(t, s, 0, θy) • ydθ, since S Wj (t, s, 0, 0) = 0. We estimate this term as above, and we obtain S W1 (t, s, x, y) -S W2 (t, s, x, y) ≤ C R,T0 |W 1 -W 2 | C([0,T0]) (1 + |x| 2 + |y| 2 ). (6.34) which completes the proof of Lemma 6.1.

∂

  and consider the following equation, which clearly possesses a unique solution, denoted by u

Remark 5 . 1 .Remark 5 . 2 .

 5152 to the solution ψ of equation(1.5) given by Theorem 2. The arguments of the proof of Proposition 2 and Theorem 3 are still valid in the presence of a damping term, simply setting f M (u) = χ M (|u| 2 )|u| 2σ u -iγu, γ > 0 and noting that L 2 norm is decreasing in the proof of Proposition 2. Thus the result of Theorem 3 is still true with a damping term. In the case where σ ≥ 2/d, using the estimates|u W,M | Y T , |u W | Y T ≤ C R,T0 |u 0 | Σ inthe proof of Proposition 2, as in the proof of local existence of solutions in Σ, it is possible to get

  ), then integrating by parts yields [-i(t -s)∂ xj I(t, s, a)f -(t -s)I(t, s, a)(-i∂ xj f )](x) = I(t, s, (∂ xj S + ∂ yj S)a)f (x).

1 +C 1 .

 11 ,T0,M (1 + |x|) -L |W 1 -W 2 | C([0,T0]) |α|≤L |∂ α y f (y)|. (6.24)We apply(6.24) to the first term of IV, and apply (6.23) and Lemma 6.1 for the second term of IV. Then we obtainIV ≤ C R,T0,M ν L-d/2 (1 + |x|) -L |W 1 -W 2 | C([0,T0]) |a W2 (t, s)| |α|≤L ∂ α y f (y) L R,T0,M ν L-d/2 (1 + |x|) -L+2 |W 1 -W 2 | C([0,T0]) |a W2 (t, s)| |α|≤L ∂ α y f (y) L Hence, choosing L = d 2 + 3, |IV| L 2 ≤ C R,T0,M ν L-d/2 |a W2 (t, s)||W 1 -W 2 | C([0,T0]) |α|≤d/2+3

  d:|ξ 1 (t, s, y 1 , η 1 ) -η 1 -(ξ 2 (t, s, y 2 , η 2 ) -η 2 )| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) +C R,T0 t s (|ξ 1 (τ ) -ξ 2 (τ )| + |x 1 (τ ) -x 2 (τ )|)dτ |x 1 (t, s, y 1 , η 1 ) -y 1 -(x 2 (t, s, y 2 , η 2 ) -y 2 )| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) +C R,T0 t s (|ξ 1 (τ ) -ξ 2 (τ )| + |x 1 (τ ) -x 2 (τ )|)dτ,

|ξ 1

 1 (t) -ξ 2 (t)| + |x 1 (t) -x 2 (t)| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) + |η 1 -η 2 | + |y 1 -y 2 | . (6.[START_REF] Reed | Methods of modern mathematical physics II: Fourier analysis, self-adjointness[END_REF] 

t s ξ 1 t s ξ 1 (W 1

 111 (σ) -ξ 2 (σ) -(σN + W 1 (σ)Γ)(x 1 (σ) -x 2 (σ)) -(W 1 (σ) -W 2 (σ))Γx 2 (σ) dσ.(6.26)This implies|x 1 (t, s, y 1 , η 1 ) -y 1 -(t -s)η 1 -(x 2 (t, s, y 2 , η 2 ) -y 2 -(t -s)η 2 )| ≤ (σ) -η 1 -(ξ 2 (σ) -η 2 ) dσ + C R,T0 |t -s||W 1 -W 2 | C([0,T0]) W 1 (σ)Γ)(x 1 (σ) -x 2 (σ)) dσ.Using again equation (6.26), together with the fact thatξ 1 (σ, s, y 1 , η 1 ) -η 1 -(ξ 2 (σ, s, y 2 , η 2 ) -η 2 ) = σ s (τ N + W 1 (τ )Γ) ξ 1 (τ ) -ξ 2 (τ ) -(τ N + W 1 (τ )Γ)(x 1 (τ ) -x 2 (τ )) dτ + σ s (τ ) -W 2 (τ ))Γ ξ 2 (τ ) + (2τ N -(W 1 (τ ) + W 2 (τ ))Γ)x 2 (τ ) dτand (6.25), we get for sufficiently small |t -s|, depending only on R,|x 1 (t, s, y 1 , η 1 ) -y 1 -(t -s)η 1 -(x 2 (t, s, y 2 , η 2 ) -y 2 -(t -s)η 2 )| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) + C R,T0 |t -s| 2 |η 1 -η 2 | + C R,T0 |t -s||y 1 -y 2 |.Thus, for |t -s| < T R sufficiently small,|x 1 (t, s, y 1 , η 1 ) -y 1 -η 1 -(x 2 (t, s, y 2 , η 2 ) -y 2 -η 2 )| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) + C R,T0 |t -s|(|η 1 -η 2 | + |y 1 -y 2 |).

|x 1 -y 1 -

 11 η1 (t, s, y 1 , x 1 ) -(x 2 -y 2 -η2 (t, s, y 2 , x 2 ))| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) + C R,T0 |t -s|(|η 1 -η2 | + |y 1 -y 2 |).(6.27)Settingy 1 = y 2 = 0, x 1 = x 2 = e k in (6.27), we obtain for |t -s| ≤ T ≤ 1/2C R,T0 |η 1 (t, s, 0, e k ) -η2 (t, s, 0, e k )| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) .(6.28)We use this latter inequality in (6.25) and we get, again for |t -s| ≤ T sufficiently small, | ξ1 (t, s, 0, η1 (t, s, 0, e k )) -ξ2 (t, s, 0, η2 (t, s, 0, e k ))|≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) + C R,T0 |η 1 (t, s, 0, e k ) -η2 (t, s, 0, e k )| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) . (6.29)We now set x 1 = x 2 = 0 and y 1 = y 2 = e k in (6.27), and we obtain similarly, for |t -s| sufficiently small,|η 1 (t, s, e k , 0) -η2 (t, s, e k , 0)| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) . (6.30) Therefore in the same way as above, | ξ1 (t, s, e k , η1 (t, s, e k , 0)) -ξ2 (t, s, e k , η2 (t, s, e k , 0))| ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) . (6.31)

  (t, s, x, y) -SW2 (t, s, x, y)) ≤ C R,T0 |t -s||W 1 -W 2 | C([0,T0]) . W1 (t, s, x, y) -S W2 (t, s, x, y)) ≤ C R,T0 |W 1 -W 2 | C([0,T0]) .(6.32) 

C R,T0 |W 1 - 1 0( 1 +

 111 W 2 | C([0,T0]) |θx| + |y|)|x|dθ ≤ C R,T0 |W 1 -W 2 | C([0,T0]) (1 + |x| 2 + |y| 2 ).

  Proposition 4. For t, s ∈ [0, T 0 ], There exists T ω > 0 such that for any multi-indices α and β, ∂ αx ∂ β y S(t, s, x, y) is C 1 in (t, s, x, y) for 0 < |t -s| ≤ T ω and (x, y) ∈ R 2d , moreover (∇

	.7)
	For t = s, it is easily seen that S(t, s, x, y) is C 1 in (t, s, x, y), and that S(t, s, x, y) is a generating function
	of the map (y, η) → (x(t, s, y, η), ξ(t, s, y, η)). More precisely,

x S)(t, s, x(t, s, y, η), y) = ξ(t, s, y, η),

  ∂ xj S(t, s, y, x) = ξj (t, s, e l , η(t, s, e l , 0)) = -δ jl + O(|t -s| 1+α ).

	and			
	∂ y l			
		7) implies	
	| ξ(t, s, y, η(t, s, y, x)) -(x -y) -(t -s)(sN + W (s)Γ)x| ≤ C ω,T0 |t -s| 1+α (1 + |x| + |y|)	(6.8)
	which, together with (3.13), gives (3.15) for ∂ x S. The estimate for ∂ y S follows from (3.14) and (6.4).
	Next, we note that (y, η) → (y, x(t, s, y, η)) and (y, η) → (y, ξ(t, s, y, η)) are linear, hence the same is true
	for (y, x) → (y, η(t, s, y, x)) and (y, x) → (y, ξ(t, s, y, η(t, s, y, x))). It follows that	
	∂ xj S(t, s, x, y) = ξj (t, s, y, η(t, s, y, x))		
	d	d		
	=	y k ξj (t, s, e k , η(t, s, e k , 0)) +	x k ξj (t, s, 0, η(t, s, 0, e k )).	(6.9)
	k=1	k=1		
	Hence by (6.8)			
	∂ x l ∂ xj S(t, s, y, x) = ξj (t, s, 0, η(t, s, 0, e l ))		
		= δ jl + (t -s)(sν j + W (s)κ j )δ jl + O(|t -s| 1+α )	

  t, s, x, y) + ∂ yj S(t, s, x, y) = = ξj (t, s, e k , 0), and ξjk,2 (t, s) = ξj (t, s, 0, e k ) -δ jk . leads to(3.23). Note that a jk,21 and a jk,22 are bounded for t, s ∈ [0, T 0 ] with |t -s| ≤ T ω , as follows from the inequality | ξ(t, s, y, η) -η| ≤ C ω,T0 |t -s|(1 + |y| + |η|). -δ jk )a, and a jk,12 = -(x jk,2 -δ jk )a. Again, those functions are bounded since (6.3) implies |x(t, s, y, η) -y -η| ≤ C ω,T0 |t -s|(1 + |y| + |η|).

	This inequality is easily verified by substituting (3.3) into (6.1). In order to prove (3.22), we use the fact
	that				
					d	d
	xj (t, s, y, η(t, s, y, x)) = x j =	y k xjk,1 (t, s) +	ηk (t, s, y, x)x jk,2 (t, s)
					k=1	k=1
	where we have set				
	xjk,1 (t, s) = xj (t, s, e k , 0), and xjk,2 (t, s) = xj (t, s, 0, e k ),
	which gives				
			d			d
	x j I(t, s, a) =	I(t, s, xjk,1 a)x k +	I(t, s, xjk,2 ηk a);
			k=1			k=1
	the same computations as above then show that
		I(t, s, xjk,2 ηk a) = (t -s)I(t, s, xjk,2 a)(-i∂ x k )
	and (3.22) follows after setting			
	a jk,11 =	1 t -s	(x jk,1		
						d	d
						y k ξjk,1 (t, s) +	ηk (t, s, y, x) ξjk,2 (t, s)
						k=1	k=1
	where we have set				
	ξjk,1 (t, s) This proves				
					d	d
	I(t, s, (∂ xj S + ∂ yj S)a) =	I(t, s, ξjk,1 a)x k +	I(t, s, ξjk,2 ηk a).	(6.13)
					k=1	k=1
	Now, using again the expression ηk (t, s, y, x) = -∂ y k S(t, s, x, y) and integrating by parts yields
	I(t, s, ξjk,2 ηk a)f (x) = (t -s)I(t, s, ξjk,2 a)(-i∂ x k f )(x).	(6.14)
	Gathering (6.12), (6.13) and (6.14), and setting
					ξjk,1	ξjk,2
		a jk,21 = -	t -s	a, and a jk,22 =	t -s	a

  s| ≤ T ω , for some sufficiently small T ω . Again, we use the fact that if ν = t -s,|∇ y S| 2• ∇ y e i S/ν = e i S/ν , and integrate L times by parts to get, for |x| ≥ 8C M ,

	ω,T0 := max{M,	sup	|∇ y S(t, s, 0, y)|},
					s,t∈[0,T0]
					|y|≤M
	then			
	|∇ y S(t, s, x, y)| ≥	|x| 8	for |x| ≥ 8C M , y ∈ suppf,	(6.16)
	provided that |t -ν	∇ y	S
	i			

  x l (S W1 -S W2 )(t, s, x, y) = 1 t -s ξ1 l (t, s, y, η1 (t, s, y, x)) -ξ2 l (t, s, y, η2 (t, s, y, x)) (t, s, e k , η1 (t, s, e k , 0)) -ξ2 l (t, s, e k , η2 (t, s, e k , 0))] (t, s, 0, η1 (t, s, 0, e k )) -ξ2 l (t, s, 0, η2 (t, s, 0, e k ))]≤ C R,T0 (1 + |x| + |y|)|W 1 -W 2 | C([0,T0])where we have used (6.29) and (6.31) in the last inequality. Hence, W1 (t, s, x, y) -S W2 (t, s, x, y))≤ C R,T0 (1 + |x| + |y|)|W 1 -W 2 | C([0,T0]) .(6.33)In order to estimate S W1 -S W2 , we write S Wj (t, s, x, y) = S Wj (t, s, 0, y) + Wj )(t, s, θx, y) • xdθ, j = 1, 2, and then we use (6.33) for

		≤	1 t -s
			+	1 t -s	k	x k [ ξ1
	|α|+|β|=1	∂ α x ∂ β y (S 1
		0 (∂ x S 1
		(∂		
		0		

k y k [ ξ1 l l x S W1 )(t, s, θx, y) -(∂ x S W2 )(t, s, θx, y) • xdθ ,

which is majorized by
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