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STABILITY OF ISOTROPIC STEADY STATES FOR THE
RELATIVISTIC VLASOV-POISSON SYSTEM

CYRIL RIGAULT

Abstract. In this work, we study the orbital stability of stationary solutions to
the relativistic Vlasov-Manev system. This system is a kinetic model describing
the evolution of a stellar system subject to its own gravity with some relativistic
corrections. For this system, the orbital stability was proved for isotropic models
constructed as minimizers of the Hamiltonian under a subcritical condition. We
obtain here this stability for all isotropic models by a non-variationnal approach.
We use here a new method developed in [23] for the classical Vlasov-Poisson
system. We derive the stability from the monotonicity of the Hamiltonian under
suitable generalized symmetric rearrangements and from a Antonov type coer-
civity property. We overcome here two new difficulties : the first one is the a
priori non-continuity of the potentials, from which a greater control of the re-
arrangements is necessary. The second difficulty is related to the homogeneity
breaking which does not give the boundedness of the kinetic energy. Indeed, in
this paper, we does not suppose any subcritical condition satisfied by the steady
states.

1. Introduction and main results

1.1. Introduction to the relativistic Vlasov-Poisson system. The relativistic
Vlasov-Poisson system in dimension three reads:

∂tf +
v√

1 + |v|2
· ∇xf −∇xφf · ∇vf = 0, R+ × R3 × R3,

f(t = 0, x, v) = f0(x, v) ≥ 0,

(1.1)

where the gravitational Poisson field φf is defined for all t ∈ R+ by ∆φf (t, x) = ρf (t, x) =

∫
R3

f(t, x, v)dv,

φf (t, x)→ 0 as |x| → +∞.
(1.2)

This expression is equivalent to:

φf (x) = − 1

4π|x|
∗ ρ. (1.3)

This nonlinear transport system describes the evolution of a stellar system subject
to its own gravity with some relativistic corrections.

The Cauchy problem of equations of Vlasov-Poisson type is not yet well under-
stood for weak solutions: although the existence of local weak solutions has been
proved , the question of its uniqueness remains unknown (see [7]). Moreover, for the
relativistic case (1.1), in the most recent works about the Cauchy problem of smooth
solutions, only radial smooth initial data have given results (see [12] and [26]). In
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particular, Glassey and Schaeffer [12] have proved for radial smooth solutions that
a blow-up in finite time T is characterized by the blow-up of the kinetic energy∫

R6

(√
|v|2 + 1− 1

)
f(t, x, v)dxdv → +∞ as t→ T.

There holds for smooth enough solutions of system (1.1) some important conser-
vation properties: first, the total Hamiltonian

H(f(t)) =

∫
R6

(√
|v|2 + 1− 1

)
f(t, x, v)dxdv − 1

2

∫
R3

|∇φf (t, x)|2 dx, (1.4)

is preserved in time and second we have the conservation of all Casimir functions:
for all β ∈ C1(R+,R+) such that β(0) = 0,∫

R6

β(f(t, x, v))dxdv =

∫
R6

β(f0(x, v))dxdv. (1.5)

The property (1.5) is equivalent to the equimeasurability:

∀t ≥ 0, µf(t) = µf0 , (1.6)

where the distribution function µf is defined by

∀s ≥ 0, µf (s) = meas{(x, v) ∈ R6, f(x, v) > s}. (1.7)

Remark that in particular, the Lp norms of f are conserved.
In this paper, we will consider weak solutions to (1.1) in the natural energy space

Ep =
{
f ≥ 0 with f ∈ L1(R6) ∩ Lp(R6) and

√
1 + |v|2f ∈ L1(R6)

}
. (1.8)

For all f0 ∈ Ep, from classical kinetic Cauchy theory, the system (1.1) admits
a local renormalized solution f(t) in the sens of Diperna-Lions [9, 10]. This solu-
tion satisfies (1.5) and (1.6) but the conservation of Hamiltonian does not occur in
general: it only remains

∀t ≥ 0, H(f(t)) ≤ H(f0). (1.9)

Note that, from this nonincreasing property and from (1.5), the kinetic energy will
be bounded if f0 satisfies a certain subcritical condition

Cp ‖f0‖
2p−3
3(p−1)

L1 ‖f0‖
p

3(p−1)

Lp < 1. (1.10)

Indeed, from Hardy-Littlewood-Sobolev inequality, the potential energy satisfies

for all f ∈ Ep,
1

2

∫
R3

|∇φf |2 dx ≤ Cp ‖f‖
2p−3
3(p−1)

L1 ‖f‖
p

3(p−1)

Lp

∥∥∥√1 + |v|2f
∥∥∥
L1

(1.11)

where Cp is defined as the best corresponding constant and thus the kinetic energy
can be controled thanks to

H(f) ≥
(

1− Cp ‖f‖
2p−3
3(p−1)

L1 ‖f‖
p

3(p−1)

Lp

)∥∥∥√1 + |v|2f
∥∥∥
L1
− ‖f‖L1 . (1.12)

Hence we have global existence for the system (1.1) as soon as f0 satisfies the
subcritical condition (1.10).
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1.2. Main results and strategy of the proof. Our main result gives the nonlin-
ear stability of a large class of stationary solutions for the relativistic Vlasov-Poisson
equation. We adapt here some techniques introduced for the classical Vlasov-Poisson
equation [23].

Note (see [4] for the Vlasov-Poisson system) that the isotropic steady states of
the system (1.1) are the functions of the form

Q(x, v) = F (e),

where e is the miscroscopic energy given by

e(x, v) =
√
|v|2 + 1− 1 + φQ(x).

An important question which has been the subject of several works is the question
of nonlinear stability of these steady states when F satisfies

∂F

∂e
< 0.

For some of these stationary solutions, built as minimizers of suitable functional,
the concentration-compactness Lemma ([27]- [28]) allows to prove their stability
under a subcritical condition of the type (1.10), see [21]. Here we get the nonlinear
stability of all these stationary solutions in the energy space Ep, defined by (1.8),
with respect to its natural norm:

‖f‖Ep = ‖f‖L1 + ‖f‖Lp + ‖
√

1 + |v|2f‖L1 .

Theorem 1.1 (Stability of spherical models). Let Q be a spherical, continuous,
nonnegative, non zero, compactly supported steady solution to (1.1). Assume that Q
is a nonincreasing function of its microscopic energy, i.e. there exists a continuous
function F : R→ R+ such that for all (x, v) ∈ R6

Q(x, v) = F
(√
|v|2 + 1− 1 + φQ(x)

)
, (1.13)

and there exists e0 < 0 such that F (e) = 0 for e ≥ eQ, F is decreasing and C1 on
(−∞, eQ). Let p > 3

2 . Then Q is orbitally stable in the Ep-norm by the flow (1.1):
for all ε > 0 there exists η > 0 such that the following holds true. Let f0 ∈ Ep be
such that

‖f0 −Q‖Ep ≤ η (1.14)

and let f(t) be a corresponding renormalized solution to (1.1) on [0, T ). Then for
all t ∈ [0, T ) there exists a continuous translation shift z(t) such that

‖f(t, x, v)−Q(x− z(t), v)‖Ep ≤ ε. (1.15)

In the radial case, since a blow-up in finite time is equivalent to a blow-up of the
kinetic energy, Theorem 1.1 provides global existence when the initial data is near
the (non necessary subcritical) function Q. The existence of such Q away from all
subcritical class of functions is an open problem.

Strategy of the proof: This proof uses arguments developed in [23] for the classi-
cal gravitational Vlasov-Poisson system. But here two new main difficulties appear:
the first one is that the studied class of functions in the energy space Ep does not im-
ply the boundedness of the potentials and the second one is related to the breaking
homogeneity character of the relativistic problem. Let us give the global strategy
of the proof.
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For f ∈ Ep, we know that there exists a nonnegative function on R+, f∗, which
is the Schwarz symmetrization of f , such that

∀s ≥ 0, µf (s) = µf∗(s).

We can similarly build a rearrangement with respect to the microscopic energy

e(x, v) =
√
|v|2 + 1− 1 + φ(x),

for a non zero potential φ. This rearrangement f∗φ is defined by

f∗φ = f∗ ◦ aφ with aφ(λ) = meas{(x, v), e(x, v) < λ}

and satisfies
µf = µf∗φ , H(f∗φf ) ≤ H(f) and Q = Q∗φQ .

Note that, in the classical Vlasov-Poisson case, this monotonicity of the Hamiltonian
was observed in the physics literature [25, 11, 31, 1]. Now by defining the functionnal
J by

J(φ) = H(Q∗φ) +
1

2

∥∥∇φQ∗φ −∇φ∥∥2

L2 ,

we shall prove that

H(f)−H(Q) ≥ J(φf )− J(φQ) +

∫ +∞

0
a−1
φf

(s)(f∗(s)−Q∗(s))ds. (1.16)

Hence we can reduce our problem to the study of the functionnal J which only
depends on the potential φ. Moreover, from the Pólya-Szegö inequality, we get

J(φ∗) ≤ J(φ)

where φ∗ is the Schwarz symmetrization of φ, and therefore the study of J can be
restricted to radial modes. We then use the Burchard-Guo compactness result [8]
to get the compactness of φ from that of φ∗.

Our proof is performed in two steps:
(i) Proof of the local coercivity of J on radial potentials φ near φQ.
(ii) Proof of Theorem 1.1 via a local compactness proposition thanks to (1.16).
This second step will be deduced from (1.16) and equimeasurability arguments
derived from the rigidity of the flow. The local coercivity stated in the first step
will follow from the Taylor expansion near φQ for radial potentials

J(φ)− J(φQ) =
1

2
D2J(φQ)(φ− φQ, φ− φQ) + o

(
‖∇φ−∇φQ‖2L2

)
and from the strict coercivity of the quadratic form D2J(φQ). To prove this coerciv-
ity, we follow the same lines as [23] where a Poincaré-like inequality was proved for
the classical Vlasov-Poisson system. This inequality is a generalisation of Antonov
type coercivity estimate and is based on a Hörmander approach [18, 19]. The main
new difficulties here, lie in the control of the jacobian aφ which can’t be bounded
in general because of the non boundedness of the potential and the homogeneity
breaking.

This papers is organized as follows. Section 2 deals with the proof of the local co-
ercivity of the functional J near φQ stated in Proposition 2.2. By differentiating the
functional J at φQ in Subsection 2.1, we obtain the second order Taylor expansion
stated in Lemma 2.3. Then, in Subsection 2.2, from Hardy type control argument,
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we deduce the Proposition 2.2 for radially symmetric potential and we finally gener-
alize this proposition for all potential by using a compactness argument [8].Section
3 is devoted to the proof of Theorem 1.1 from the coercivity result stated in Section
2. First, in Subsection 3.1, we prove the local compactness of local minimizing se-
quences, Proposition 3.1. Then, in Subsection 3.2, by using this compactness result
combined with a contradiction argument, we finally deduce the orbital stability,
Theorem 1.1. The several property about the generalized rearrangement used in
these both sections can be found in the completed study of the rearrangement with
respect of the microscopic energy stated in Appendix A and B.

2. Coercivity of the functional J

The aim of this section is to prove the following proposition 2.2 below. Our study
is based on rearrangements with respect to the microscopic energy. To define these
rearrangements, we introduce, for q > 3,

Φq =

{
φ ∈ Lq(R3) s.t. φ ≤ 0, m(φ) > 0, ∇φ ∈ L2(R3), lim

|x|→+∞
φ(x) = 0

}
, (2.1)

with
m(φ) = inf

x∈R3
(1 + |x|) |φ(x)|, (2.2)

and the norm on Φq

‖φ‖Φq = ‖∇φ‖L2(R3) + ‖φ‖Lq(R3) . (2.3)

The space Φq is a natural space for the potential of distribution functions in Ep, as
given by the following lemma.

Lemma 2.1. Let f ∈ Ep non zero with p > 3
2 . Then the potential φf belongs to Φq

for all 3 < q ≤ 3(4p−3)
p (< 12).

Proof. From classical interpolation methods and from the Hardy-Littlewood-Sobolev
inequality, we have for f ∈ Ep with p > 1

ρf ∈ Lr(R3), 1 ≤ r ≤ 4p− 3

3p− 2
and φf ∈ Lq(R3),

3

2
< q ≤ 3(4p− 3)

p
.

Moreover, for p > 3
2 the Hardy-Littlewood-Sobolev inequality implies that ∇φf

belongs to L2(R3). We prove now that m(φf ) defined by (2.2) is positive. Since f
is non zero, the density ρf is non zero, too. Hence there exists R > 0 such that

M :=

∫
|x|<R

ρf (x)dx > 0.

We have then

|φf (x)| =
∫
R3

ρf (y)

4π|x− y|
dy ≥

∫
|y|<R

ρf (y)

4π|x− y|
dy ≥

∫
|y|<R

ρf (y)

4π(|x|+R)
dy.

Finally,
(|x|+R) |φf (x)| ≥M,

which concludes the proof of lemma 2.1. �
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Now for φ ∈ Φq and f ∈ Ep with p > 3
2 , we define the jacobian aφ by

∀e < 0, aφ(e) = meas
{

(x, v) ∈ R6 :
√
|v|2 + 1− 1 + φ(x) < e

}
, (2.4)

and the rearrangement with respect to the microscopic energy by

f∗φ =


f∗
(
aφ

(√
|v|2 + 1− 1 + φ(x)

))
if
√
|v|2 + 1− 1 + φ(x) < 0

0 if
√
|v|2 + 1− 1 + φ(x) ≥ 0,

(2.5)

where f∗ is the Schwarz-symmetrization of f in R6. In Appendix A we recall some
properties about the Schwarz symmetrization and we give all the properties we need
about the Jacobian and the rearrangement with respect to the microscopic energy.
In particular, f∗φ is well defined in Ep and the function Q defined in Theorem 1.1
satisfies Q = Q∗φQ .

Using these definitions, we introduce the functional J on Φq defined by

J(φ) =

∫
R6

(√
|v|2 + 1− 1 + φ(x)

)
Q∗φdxdv +

1

2
‖∇φ‖2L2 , (2.6)

which is equivalent to

J(φ) = H(Q∗φ) +
1

2

∥∥∇φQ∗φ −∇φ∥∥2

L2 . (2.7)

We claim now the following Proposition which we prove in the next subsections.

Proposition 2.2 (Local coercivity of the functional J). There exists a constant
δ0 > 0 such that, for all q > 3, the following holds true. Let a sequence φn of Φq

such that

∀n ∈ N, ‖∇φn −∇φQ‖L2 ≤ δ0 and lim
n→+∞

J(φn) ≤ J(φQ). (2.8)

Then there exists a sequence of translation shifts in space xn such that

‖∇φn −∇φQ(· − xn)‖L2 → 0 as n→ +∞. (2.9)

This coercivity of the functional J near φQ is the first step to prove the stability
of Q stated in Theorem 1.1. To obtain it, on the one hand, we will look for a second
order Taylor expansion of J around φQ and, on the second hand, we will control
the second derivative of J at φQ thanks to a Poincaré-type inequality.

2.1. Second order Taylor expansion of J at φQ. In order to prove Proposition
2.2 we give first a Taylor expansion of the functional J near the potential φQ.

Lemma 2.3 (Taylor expansion of J). Let 6 < q < 12 and φ, φ̃ ∈ Φq. Then the
function

λ 7→ J(φ+ λ(φ̃− φ))

is twice differentiable on [0, 1].
Moreover, for φ in Φq radially symmetric, there holds the Taylor expansion near
φQ:

J(φ)− J(φQ) =
1

2
D2J(φQ)(φ− φQ, φ− φQ) + ε(‖∇φ−∇φQ‖L2), (2.10)
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where ε(δ) = ◦(δ2) as δ → 0.
Finally the second derivative of J at φQ in the direction h is given by:

D2J(φQ)(h, h) =

∫
R3

|∇h|2 dx−
∫
R6

∣∣F ′(eφQ(x, v))
∣∣ (h(x)−Πh(x))2 dxdv, (2.11)

where eφQ(x, v) =
√

1 + |v|2 − 1− φQ(x) and Πh is the projector defined by

Πh(x) =

∫
R3

((
1 + eφQ(x, v)− φQ(y)

)2
+
− 1
) 1

2

+

(
1 + eφQ(x, v)− φQ(y)

)
h(y)dy∫

R3

((
1 + eφQ(x, v)− φQ(y)

)2
+
− 1
) 1

2

+

(
1 + eφQ(x, v)− φQ(y)

)
dy

.

(2.12)

Remark that the function Πh can be seen as the projection of h on the functions
of the microscopic energy eφQ(x, v). To prove the lemma 2.3 we will first prove that
J is two times differentiable on Φq, then we will evaluate its derivatives on φQ and
finally we will control the rest of the expansion for radially symmetric potentials.

Proof. Let J0 be a functionnal on Φq, defined by

J0(φ) =

∫
R6

(√
|v|2 + 1− 1 + φ(x)

)
Q∗φdxdv =

∫
R6

eφ(x, v)Q∗φdxdv. (2.13)

Then J is given by

J(φ) = J0(φ) +
1

2
‖∇φ‖2L2 . (2.14)

To differentiate J , we just have to differentiate J0. Let φ, φ̃ ∈ Φq and h = φ̃ − φ.
We study then the function λ 7→ J0(φ+ λh) on [0, 1].
First derivative of J0. From the change of variable (A.11), we get

J0(φ) =

∫ 0

inf φ
eQ∗(aφ(e))a′φ(e)de =

∫ 0

inf φ
e (G ◦ aφ)′ (e)de,

where G is the C1 bounded function, with bounded derivative, defined by

G(s) =

∫ s

0
Q∗(σ)dσ. (2.15)

Moreover, from the property (A.8) in lemma A.2, the jacobian aφ(e) converges to 0

as e→ inf φ. Thus we have [eG ◦ aφ(e)]0inf φ = 0 and an integration by parts gives

J0(φ) = −
∫ 0

−∞
G ◦ aφ(e)de. (2.16)

Step 1 : first derivative of J0.
To differentiate J0 given by (2.16), we shall use the Lebesgue’s derivation theorem.

From formula (A.9) in the Appendix, we have for all e < 0

∂

∂λ
G(aφ+λh(e)) = Q∗(aφ+λh(e))

∂

∂λ
aφ+λh(e) (2.17)

with
∂

∂λ
aφ+λh(e) = −4π

∫
R3

K (e− φ(x)− λh(x))h(x)dx,



8 CYRIL RIGAULT

and

K(η) =
(

(1 + η)2
+ − 1

) 1
2

+
(1 + η). (2.18)

Note that the uniform inequality

aφ+λh(e) ≥ 4π

3

∫
R3

(1 + e+
min{m(φ),m(φ̃)}

1 + |x|

)2

+

− 1

 3
2

+

dx

and the compact support of Q∗ imply that there exists e0 < 0 such that

∀e ≥ e0, ∀λ ∈ [0, 1], Q∗(aφ+λh(e)) = 0. (2.19)

Moreover, we have for all e < e0, for all λ ∈ [0, 1],∣∣∣∣ ∂∂λaφ+λh(e)

∣∣∣∣ ≤ 4π

∫
R3

K
(
e0 − φ(x)− φ̃(x)

)
|h(x)| dx,

and Q∗(aφ+λh(e)) ≤ ‖Q‖∞. Finally we obtain, by noting φλ = φ+ λh

∂

∂λ
J0(φλ) = 4π

∫ 0

−∞

∫
R3

Q∗(aφλ(e))K (e− φ(x)− λh(x))h(x)dxde. (2.20)

Step 2 : second derivative of J0.
We keep the previous notations. An integration by parts with respect to e yields

∂

∂λ
J0(φλ) = −4π

3

∫ 0

−∞

∫
R3

Q∗′(aφλ(e))a′φλ(e)
(

(1 + e− φλ(x))2
+ − 1

) 3
2

+
h(x)dxde.

We perform now the change of variable s = aφλ(e), which gives

∂

∂λ
J0(φλ) = −4π

3

∫ L0

0

∫
R3

Q∗′(s)

((
1 + a−1

φλ
(s)− φλ(x)

)2

+
− 1

) 3
2

+

h(x)dxds,

(2.21)
where L0 is the measure of the support of Q and thus satisfies Supp(Q∗) = [0, L0).
Define

g(λ, x, s) :=

((
1 + a−1

φλ
(s)− φλ(x)

)2

+
− 1

) 3
2

+

.

From the first step, for all λ ∈ [0, 1] and for all s ∈ [0, L0], we have a−1
φλ

(s) ≤ e0 and
thus the set

{x ∈ R3, g(λ, x, s) 6= 0} ⊂ {x ∈ R3, φλ(x) ≤ e0} ⊂ {x ∈ R3, φ(x) + φ̃(x) ≤ e0}

is uniformaly contained in the bounded set Ω = {x ∈ R3, φ(x) + φ̃(x) ≤ e0}.
Moreover, by recalling the notations h = φ− φ̃ and

K(η) =
(

(1 + η)2
+ − 1

) 1
2

+
(1 + η), (2.22)

we have for (λ, x, s) ∈ [0, 1]× Ω× [0, L0]

∂g

∂λ
(λ, x, s) = 3K

(
a−1
φλ

(s)− φ(x)− λh(x)
)(
−h(x) +

∂

∂λ
a−1
φλ

(s)

)
, (2.23)
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where, from lemma (A.2) in Appendix,

∂

∂λ
a−1
φλ

(s) =

∫
Ω
K
(
a−1
φλ

(s)− φ(x)− λh(x)
)
h(x)dx∫

Ω
K
(
a−1
φλ

(s)− φ(x)− λh(x)
)
dx

.

To differentiate (2.21) with respect to λ, we first prove at fixed s ∈ (0, L0)

∂

∂λ

∫
Ω
g(λ, x, s)h(x)dx =

∫
Ω

∂g

∂λ
(λ, x, s)h(x)dx. (2.24)

Let fixed s ∈ (0, L0). We begin by bounding ∂
∂λa
−1
φλ

(s). For all x ∈ R3

φ(x) + λh(x) ≥ φ(x) + φ̃(x) and a−1
φλ

(s) ≤ e0, (2.25)

which provides

0 ≤
∫

Ω
K
(
a−1
φλ

(s)− φ(x)− λh(x)
)
h(x)dx ≤

∫
Ω
K
(
e0 − φ(x)− φ̃(x)

)
h(x)dx.

(2.26)
Now denote

Ωλ =
{
x ∈ R3, φλ(x) < a−1

φλ

(s
2

)}
.

Then the set Ωλ is included in Ω and

meas (Ωλ) = aφλ ◦ a
−1
φλ

(s
2

)
=
s

2
.

Moreover, for all x ∈ Ωλ, we have

a−1
φλ

(s)− φλ(x) ≥ a−1
φλ

(s)− a−1
φλ

(s
2

)
,

which, combined with

∀η > 0, K(η) = (η (2 + η))
1
2
+ (1 + η) ≥

√
2η,

implies ∫
Ω
K
(
a−1
φλ

(s)− φλ(x)
)
dx ≥ s√

2

(
a−1
φλ

(s)− a−1
φλ

(s
2

)) 1
2
. (2.27)

We claim that, at fixed s > 0, there exists a constant C > 0 such that for all
λ ∈ [0, 1]

a−1
φλ

(s)− a−1
φλ

(s
2

)
≥ C. (2.28)

Indeed, assume that the property (2.28) does not hold, then there exist λ ∈ [0, 1]
and a sequence (λn) such that, as n→ +∞,

λn → λ and a−1
φλn

(s)− a−1
φλn

(s
2

)
→ 0.

From lemma A.2 in Appendix, we conclude that

a−1
φλ

(s)− a−1
φλ

(s
2

)
= 0,

which is not possible since s > 0 and a−1
φλ

is strictly increasing on R∗+. Finally from
the inequalities (2.26) and (2.27), for s ∈ (0, L0) there exists a constant Cs > 0 such
that for all λ ∈ [0, 1],

∂

∂λ
a−1
φλ

(s) ≤ Cs.
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We can thus uniformly bound∣∣∣∣ ∂∂λg
∣∣∣∣ ≤ 3

(
1 + e0 − φ(x)− φ̃(x)

)2

+

(
−φ(x)− φ̃(x) + Cs

)
,

where we used (2.25) and the fact that K(η) ≤ (1 + η)2
+. By noticing that the

function φ+φ̃ belongs to L3
loc(R3) (since q>3), Lebesgue derivation theorem provides

(2.24).

Now aim to integrate with respect to s ∈ (0, L0). We define for all s ∈ (0, L0)
and for all λ ∈ [0, 1]

I(λ, s) :=
∂

∂λ

∫
Ω
g(λ, x, s)h(x)dx =

∫
Ω

∂

∂λ
g(λ, x, s)h(x)dx,

which is continuous function of the variable λ. Remark that

I(λ, s) = 3

∫
Ω
K
(
a−1
φλ

(s)− φλ(x)
)(
−h(x) +

∂

∂λ
a−1
φλ

(s)

)
h(x)dx,

where, from Cauchy-Schwarz inequality,

∫
Ω
K
(
a−1
φλ

(s)− φλ(x)
) ∂a−1

φλ

∂λ
h(x)dx =

(∫
R3

K
(
a−1
φλ

(s)− φλ(x)
)
h(x)dx

)2

∫
R3

K
(
a−1
φλ

(s)− φλ(x)
)
dx

≤
∫
R3

K
(
a−1
φλ

(s)− φλ(x)
)

(h(x))2 dx.

(2.29)
Thus, we have

|I(λ, s)| ≤ 3

∫
R3

K
(
a−1
φλ

(s)− φλ(x)
)

(h(x))2 dx.

Moreover, since Q∗ is decreasing from ‖Q‖L∞ to 0, the function Q∗′ belongs to
L1(0, L0) and finally, from Lebesgue’s derivation theorem, we get

∂2

∂λ2
J0(φλ) = 4π

∫ L0

0

∫
R3

Q∗′(s)K
(
a−1
φλ

(s)− φλ(x)
)

(h(x))2dxds

−4π

∫ L0

0
Q∗′(s)

(∫
R3

K
(
a−1
φλ

(s)− φλ(x)
)
h(x)dx

)2

∫
R3

K
(
a−1
φλ

(s)− φλ(x)
)
dx

ds.

(2.30)

Using the change of variable e = a−1
φλ

(s), we get

∂2

∂λ2
J0(φλ) = 4π

∫ 0

−∞

∫
R3

Q∗′(aφλ(e))a′φλ(e)K (e− φλ(x)) (h(x))2dxde

−4π

∫ 0

−∞
Q∗′(aφλ(e))a′φλ(e)

(∫
R3

K (e− φλ(x))h(x)dx

)2

∫
R3

K (e− φλ(x)) dx

de.

(2.31)

Step 3: derivatives of J at φQ:
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Let φ ∈ Φq and h = φ− φQ. Then, by (2.20),

DJ0(φQ)(h) = 4π

∫ 0

−∞

∫
R3

Q∗(aφQ(e))K (e− φλ(x))h(x)dxde

Note that, from lemma B.2, the function F defined by theorem 1.1 satisfies

Q∗(aφQ(e)) = F (e).

Now perform the change of variable u =
(

(1 + e− φQ(x))2
+ − 1

) 1
2

+
with respect to

e. Then

DJ0(φQ)(h) = 4π

∫ +∞

0

∫
R3

F
(√

1 + |v|2 − 1 + φQ(x)
)
u2h(x)dxdu

=

∫
R6

Q(x, v)h(x)dxdv.

Hence, from (2.14),

DJ(φQ)(h) = DJ0(φQ)(h) +

∫
R3

∇φQ · ∇hdx = 0,

where we used the Poisson equation satisfied by φQ.
We now give the explicit expression of the second derivative of J0 at φQ. Remark

first that F ′(e) = Q∗′(aφQ(e))a′φQ(e) and thus from (2.31),

D2J0(φQ)(h, h) = 4π

∫ 0

−∞

∫
R3

F ′(e)K (e− φλ(x)) (h(x))2dxde

−4π

∫ 0

−∞
F ′(e)

(∫
R3

K (e− φλ(x))h(x)dx

)2

∫
R3

K (e− φλ(x)) dx

de.

We apply the change of variable u =
(

(1 + e− φQ(x))2
+ − 1

) 1
2

+
with respect to e to

get

D2J0(φQ)(h, h) =

∫
R6

F ′ (e) (h(x))2 dxdv −
∫
R6

F ′ (e) Πh (e)h(x)dxdv,

where e = e(x, v) =
√

1 + |v|2 − 1 + φQ(x) and Πh is the projector on the space of
functions depending only on e(x, v), defined by (2.12). Hence we have

D2J0(φQ)(h, h) =

∫
R6

F ′ (e(x, v)) (h(x)−Πh (e(x, v)))2 dxdv,

and the decomposition (2.14) provides

D2J(φQ)(h, h) = D2J0(φQ)(h, h) +

∫
R3

|∇h|2 dx, (2.32)

which concludes the proof of (2.11).

Step 4: proof of the Taylor expansion (2.10):
Let φ ∈ Φq radially symmetric and h = φ − φQ. We note for λ ∈ [0, 1], φλ :=

φQ + λh. Then, using DJ(φQ)(h) = 0, we have
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J(φQ + h)− J(φQ) =
1

2
D2J(φQ)(h, h)

+‖∇h‖2L2

∫ 1

0
(1− λ)

(
D2J0(φλ)−D2J0(φQ)

)( h

‖∇h‖L2

,
h

‖∇h‖L2

)
dλ. (2.33)

It is sufficient to prove that

sup
λ∈[0,1]

sup
‖∇ĥ‖L2=1

∣∣∣(D2J0(φλ)−D2J0(φQ)
) (
ĥ, ĥ

)∣∣∣→ 0 (2.34)

as ‖∇φ−∇φQ‖L2 → 0 to obtain the Taylor expansion (2.10). Note that the functions
ĥ in (2.34) are taken to be radially symmetric. In order to prove (2.34) we argue by
contradiction. Let ε > 0, ψn ∈ Φq, ĥn ∈ Φq and λn ∈ [0, 1] such that

‖∇ψn −∇φQ‖L2(R3) ≤
1

n
, ‖∇ĥn‖L2(R3) = 1, (2.35)

and ∣∣∣(D2J0(φn)−D2J0(φQ)
) (
ĥn, ĥn

)∣∣∣ > ε, (2.36)

where φn = (1− λn)φQ + λnψn. The sequence φn satisfies

‖∇φn −∇φQ‖L2(R3) ≤
1

n
. (2.37)

We recall from (2.30) that

D2J0(φn)
(
ĥn, ĥn

)
= 4π

∫ L0

0
Q∗′(s)γn(s)ds, (2.38)

where

γn(s) =

∫
R3

gn(x, s)(ĥn(x))2dx−

(∫
R3

gn(x, s)ĥn(x)dx

)2

∫
R3

gn(x, s)dx

, (2.39)

and

gn(x, s) =

((
1 + a−1

φn
(s)− φn(x)

)2

+
− 1

) 1
2

+

(1 + a−1
φn

(s)− φn(x)).

Notice first that the convergence (2.37) implies the convergence of φn to φQ in
L6(R3). Thus, from (A.8), we have

a−1
φn

(s)→ a−1
φQ

(s). (2.40)

Moreover, we have

|φn(r)| ≤
∫ +∞

r

∣∣φ′n(r)
∣∣ dr ≤ ‖rφ′n(r)‖L2(R+)

(∫ +∞

r

1

r2
dr

) 1
2

,

where we used the convergence φn(r) to 0 as r → +∞ from the definition of Φq. It
gives

∀r ∈ R∗+, |φn(r)| ≤
‖∇φn‖L2(R3)√

4πr
≤ C

r
1
2

. (2.41)
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Thus the set of integration in x in the integral (2.39) can be restricted to a bounded
domain Ω uniformly with respect to s ∈ [0, L0]. Indeed, from the increase of a−1

φn
,

for all s ∈ [0, L0],

Dn(s) := {x ∈ R3 : φn(x) < a−1
φn

(s)} ⊂ {x ∈ R3 : φn(x) < a−1
φn

(L0)}, (2.42)

and, since φn ∈ Φq is nonpositive,

Dn(s) ⊂
{
x ∈ R3 : |x| ≤ C2

e2
0

}
=: Ω (2.43)

where e0 = supn∈N a
−1
φn

(L0) < 0.
Now, from the local compactness of the Sobolev embedding Ḣ1 ↪→ Lploc for 1 ≤ p <
6, there exists ĥ ∈ Ḣ1

rad such that, up to a subsequence,

φn → φQ and ĥn → ĥ in Lp(Ω) as n→ +∞.
At fixed s ∈ [0, L0], these convergences combined with the convergence (2.40) pro-
vide, on the one hand, the convergence for all i ∈ {0, 1, 2},

ĥin → ĥi in L2(Ωs),

and, on the other hand, the convergence of

x 7→ gn(x, s)2 = 2η + 5η2 + 4η3 + η4 with η =
(
a−1
φn

(s)− φn(x)
)

+

in L1
x(Ω) to g(·, s)2 where

g(x, s) =

((
1 + a−1

φQ
(s)− φQ(x)

)2

+
− 1

) 1
2

+

(1 + a−1
φQ

(s)− φQ(x)).

Thus, for all i ∈ {0, 1, 2}, as n→ +∞

gn(x, s)ĥin → g(x, s)ĥi in L1
x(R3).

The convergence of γn(s), at fixed s, follows. Now, by Cauchy-Schwarz, we have∣∣∣∣∣∣∣∣∣
(∫

R3

gn(x, s)ĥn(x)dx

)2

∫
R3

gn(x, s)dx

∣∣∣∣∣∣∣∣∣ ≤
∫
R3

gn(x, s)(ĥn(x))2dx,

which provides

0 ≤ γn(s) ≤
∫
R3

gn(x, s)(ĥn(x))2dx

≤
∫
R3

gn(x, L0)(ĥn(x))2dx.

Thus γn is uniformly bounded on [0, L0] and from standard dominated convergence
theorem,

D2J0(φn)
(
ĥn, ĥn

)
→ D2J0(φQ)

(
ĥ, ĥ

)
as n→ +∞, (2.44)

and similarly

D2J0(φQ)
(
ĥn, ĥn

)
→ D2J0(φQ)

(
ĥ, ĥ

)
as n→ +∞. (2.45)

These convergences contradict (2.36), which proves the Taylor expansion (2.10) and
concludes the proof of Lemma 2.3. �
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2.2. Proof of Proposition 2.2. We use now the Taylor expansion stated in lemma
2.3 to obtain the proposition 2.2. In a first step we prove the local coercivity of
the functionnal J0 near φQ for radially symmetric potentials by using a Hardy type
control, obtained in a second step. In a third step, we finally pass from radially
symmetric modes to general modes by using a compactness argument [8] which
concludes the proof of the proposition 2.2.

Step 1: coercivity of the quadratic form D2J(φQ)
In this step, our aim is to prove that there exists an universal constant C0 > 0

such that
∀h ∈ Ḣ1

rad D2J(φQ)(h, h) ≥ C0‖∇h‖2L2 . (2.46)
where the space

Ḣ1
rad =

{
h ∈ L2

loc(R3), radially symmetric, s.t. ∇φ ∈ L2(R3) and lim
|x|→+∞

φ(x) = 0

}
.

is a Banch space. We consider the linear operator generated by the Hessian D2(φQ):

Lh = −∆h−
∫
R3

|F ′(e)|(h−Πh)dv.

Remark that the compactness of the quadratic form D2J(φQ) on Ḣ1
rad is given by

the previous proof of the Taylor expansion. From the Fredholm alternative, we have
only to prove the strict posivity

∀h ∈ Ḣ1
rad, h 6= 0, (Lh, h) > 0. (2.47)

to obtain the coercivity (2.46). From the Taylor expansion (2.11), this inequality
can be seen as a Poincaré inequality with an explicit constant, and we shall adapt
the Hörmander’s proof [18, 19] to obtain it.

Let us introduce the following operator T defined by

Tf(e, r) =
∂rf

r2 ((1 + e− φQ(r))2 − 1)
1
2 (1 + e− φQ(r))

=
∂rf

r2u
√

1 + u2
,

where
u(r, e) =

(
(1 + e− φQ(r))2

+ − 1
) 1

2

+
. (2.48)

Recalling that φQ(r) is strictly increasing and that Supp(F ) = [0, eQ), we shall
denote the space

U = {(r, e), u > 0} = {(r, e), e ∈ (φQ(0), 0), r ∈ (0, r(e))} with r(e) = φ−1
Q (e),

Then we define on Ũ = U ∩ (0, r(eQ)) × (φQ(0), eQ), for a given h ∈ Ḣ1
rad, the

function

f(r, e) =

∫ r

0
(h(τ)−Πh(e))

(
(1 + e− φQ(τ))2 − 1

) 1
2

+
(1 + e− φQ(τ))τ2dτ. (2.49)

We can differentiate f and get, in particular,

Tf = h−Πh. (2.50)

Now let ε > 0 and study the behavior of f(e, r) for r → 0 and r → r(e) when e
belongs to (φQ(0) + ε,−ε). Notice first that, from (2.41), for all τ > 0

τ
1
2 |h(τ)| ≤ ‖∇h‖L2 , (2.51)
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and
∀e ∈ (φQ(0) + ε,−ε), |Πh(e)| ≤ Cε. (2.52)

These inequalities combined with the continuity of φQ imply the existence of Cε > 0
such that, for all e ∈ (φQ(0) + ε,−ε) and for all r ∈ (0, r(e)),

|f(e, r)| ≤ Cer
5
2 . (2.53)

Moreover the function f satisfies

f(e, r(e)) =

∫ +∞

0
(h(τ)−Πh(e))u(r, e)(1 + e− φQ(τ))τ2dτ = 0, (2.54)

where we used

Πh(e) =

∫ +∞

0
u(τ, e)(1 + e− φQ(τ))h(τ)τ2dτ∫ +∞

0
u(τ, e)(1 + e− φQ(τ))τ2dτ

.

Hence, using (2.51),(2.52) and the increase of φQ, we get for e ∈ (φQ(0) + ε,−ε)
and r ∈ (0, r(e))

|f(r, e)| =

∣∣∣∣∣
∫ r(e)

r
(h(τ)−Πh(e))

(
(1 + e− φQ(τ))2 − 1

) 1
2

+
(1 + e− φQ(τ))τ2dτ

∣∣∣∣∣
≤ Cε

(
(1 + e− φQ(r))2 − 1

) 1
2

+
(1 + e− φQ(r))

∫ r(e)

r
τ

3
2dτ,

in which(
(1 + e− φQ(r))2 − 1

) 1
2

+
(1 + e− φQ(r)) ≤ (e− φQ(r))

1
2
+(2− φQ(0))

1
2 (1− φQ(0)),

and ∫ r(e)

r
τ

3
2dτ ≤ C(r(e)− r) . (e− φQ(r)).

since φ′Q(r) ≥ inf{φ′Q(τ), τ ∈ [r(−ε), r(φQ(0)+ε)]} > 0. Finally there exists Cε > 0

such that for all e ∈ (φQ(0) + ε,−ε) and for all r ∈ (0, r(e))

|f(e, r)| ≤ Cε(e− φQ(r))
3
2 . (2.55)

Now denote
I(h) =

∫
R6

|F ′(e)|(h−Πh)2dxdv.

First, passing to the spherical coordinates and performing the change of variable
e =

√
1 + |v|2 − 1 + φQ(r), we get from (2.50)

I(h) = 16π2

∫
|F ′(e)|(h−Πh)2r2u(e, r)

√
1 + u(e, r)2drde

= 16π2

∫ 0

φQ(0)
|F ′(e)|de

∫ r(e)

0
(h(r)−Πh(e))∂rfdr,

where u(r, e) is defined by (2.48). Now, from (2.55) and (2.53), we have

(h(r(e))−Πh(e))f(r(e), e) = 0 and lim
r→0

(h(r)−Πh(e))f(r, e) = 0,

from which an integration by parts gives

I(h) ≤ −16π2

∫
Ũ

|F ′(e)|f∂rhdedr.
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This inequality, combined with the identity

ρQ(r) =
4π

3

∫
|F ′(e)|u(e, r)3de,

leads to:

I(h) ≤ (4π)
3
2 ‖∇h‖L2(R3)

∫ r(eQ)

0

dr

r2

(∫ eQ

φQ(r)
|F ′(e)|fde

)2
 1

2

≤ (4π)
3
2 ‖∇h‖L2(R3)

(
3

4π

∫ r(eQ)

0

ρQ(r)

r2
dr

∫ eQ

φQ(r)
|F ′(e)| f2

u(e, r)3
de

) 1
2

,

where we used Cauchy-Schwarz inequalities. Performing the change of variable
u = u(e, r) with respect to e, we finally obtain

I(h) ≤ ‖∇h‖L2(R3)

(
3

∫
ρQ(r)|F ′(e)| f2

r4u4
√

1 + u2
dxdv

) 1
2

. (2.56)

Now we claim the following Hardy type control:

I(h) ≥ 3

∫ (
ρQ(r) +

φ′Q(r)

r(1 + u2)

)
|F ′(e)| f2

r4u4
√

1 + u2
dxdv. (2.57)

Assume (2.57), then (2.56) yields

I(h) + 3

∫
φ′Q(r)

r(1 + u2)
|F ′(e)| f2

r4u4
√

1 + u2
dxdv ≤ ‖∇h‖2L2(R3).

Thus, letting ε→ 0 yields (Lh, h) ≥ 0. Moreover, if (Lh, h) = 0, then f = 0 on Ũ,
which implies h(r) = Πh(e) on Ũ, also 0 = (Lh, h) = ‖∇h‖2L2(R3) and finally h = 0.
This concludes the proof of (2.47).

Step 2: Hardy type control.
Let us prove now the Hardy type control (2.57). Let g be a given smooth function

in Ũ and q such that f = qg. After easy computations, we get

(Tf)2 = g2(Tq)2 + T (q2gTg)− T 2g

g
f2 ≥ T (q2gTg)− T 2g

g
f2. (2.58)

We take g(e, r) = r3u(e, r)3. Then, remarking that

∂u

∂r
= −φ′Q(r)

√
1 + u2

u
,

we have

Tg =
∂rg

r2u
√

1 + u2
= 3

u2

√
1 + u2

− 3rφ′Q(r),

and therefore

T 2g =
−3

ru
√

1 + u2

(
φ′′Q(r) +

φ′Q(r)

r

(
2 +

1

1 + u2

))
.

Since ∆φQ = ρQ, it implies

T 2g

g
= − 3

r4u4
√

1 + u2

(
ρQ(r) + φ′Q(r)

1

r(1 + u2)

)
. (2.59)
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Injecting this into (2.58) and integrating on Ũ yield:

I(h) ≥ 3

∫ (
ρQ(r) +

φ′Q(r)

r(1 + u2)

)
|F ′(e)| f2

r4u4
√

1 + u2
dxdv

+

∫
|F ′(e)|T

(
f2Tg

g

)
dxdv.

, (2.60)

where we used q2gTg = f2 Tg
g . Now∫

|F ′(e)|T
(
f2Tg

g

)
dxdv = 16π2

∫ eQ

φQ(0)
|F ′(e)|de

∫ r(e)

0
∂r

(
f2Tg

g

)
dr.

From (2.55) and (2.53), we can perform an integration by parts and we get∫
|F ′(e)|T

(
f2Tg

g

)
dxdv = 0.

We obtain thus the Hardy type control (2.57) which concludes the proof of the strict
positivity of the Hessian D2(φQ) on radial modes (2.47) and therefore the coercivity
(2.46).

Step 3: end of the proof: Let us first prove the proposition 2.2 for radially symmetric
potential. Let φn a sequence of Φq, radially symmetric, such that

∀n ∈ N, ‖∇φn −∇φQ‖L2 ≤ δ1, lim sup
n→+∞

J(φn) ≤ J(φQ), (2.61)

where δ1 will be defined later. Then we use the Taylor expansion (2.10) and the
coercivity (2.46), which holds only for radially symmetric potential:

J(φn)− J(φQ) ≥ C0

2
‖∇φn −∇φQ‖2L2 + ε(‖∇φn −∇φQ‖L2).

Now, since ε(δ) = ◦(δ2) as δ → 0, we can choose δ1 such that

∀δ ∈ [0, δ1], ε(δ) ≤ C0

4
δ2.

Thus
J(φn)− J(φQ) ≥ C0

4
‖∇φn −∇φQ‖2L2 ,

which finally provides, from (2.61),

lim J(φn) = J(φQ) and ‖∇φn −∇φQ‖L2 → 0 as n→ +∞. (2.62)

Let pass now at the general case. We consider a sequence φn of Φq. We define then
φ∗n = −(−φn)∗, the opposite of the Schwarz rearrangement of (−φn). We introduce,
for all n ∈ N, the potential φ#

n given by

∀x ∈ R3, φ#
n (x) = φ∗n

(
4π

3
|x|3
)
.

It is the Schwarz rearrangement of φn, defined as a function of R3. Then we claim
that we have

J(φ#
n )− J(φn) =

1

2
‖∇φ#

n ‖2L2 −
1

2
‖∇φn‖2L2 ≤ 0, (2.63)

and that there exists a constant δ0 > 0 such that

‖∇φn −∇φQ‖L2 ≤ δ0 implies
∥∥∥∇φ#

n −∇φQ
∥∥∥
L2
≤ δ1. (2.64)
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Assume first that these claims are true and take the sequence φn such that

∀n ∈ N, ‖∇φn −∇φQ‖L2 ≤ δ0, lim
n→+∞

J(φn) ≤ J(φQ). (2.65)

Then, from (2.63) and (2.64), the sequence φ#
n satisfies (2.61) and therefore satisfies

(2.62). Moreover we obtain the equality

lim
n→+∞

J(φ#
n ) = lim

n→+∞
J(φn) = J(φQ),

which implies from (2.63)

lim
n→+∞

‖∇φ#
n ‖L2 = lim

n→+∞
‖∇φn‖L2 . (2.66)

From (2.62) and (2.66), we are in the equality case of the Polya-Szego inequality.
Thanks to Theorem 2 in [8], we obtain the following compactness result : there
exists a sequence of translation shifts in space, xn ∈ R, such that

‖∇φn −∇φQ(· − xn)‖L2 → 0 as n→ +∞.
Let us now prove the claims (2.63) and (2.64). Remark that, from Schwarz re-
arrangement classical properties, for all n ∈ N, φ#

n belongs to Φq and satisfies the
Polya-Szego inequality

‖∇φ#
n ‖L2 ≤ ‖∇φn‖L2 . (2.67)

Moreover, for all C1 function β such that β(0) = 0, one has∫
R3

β(φn(x))dx =

∫
R3

β(φ#
n (x))dx,

which for e < 0 and for β(t) =
(
(1 + e− t)2

+ − 1
) 3

2
+
implies aφn = aφ∗n given by the

expression (A.2). Thus, from (2.16),

J(φn) =
1

2
‖∇φn‖2L2 −

∫ 0

−∞
G(aφn(e))de

=
1

2
‖∇φn‖2L2 −

∫ 0

−∞
G(a

φ#n
(e))de,

which provides directly the claim (2.63). Let us prove the claim (2.64) by a contra-
diction argument. We assume that there exists a sequence ψn in Ḣ1 such that

‖∇ψn −∇φQ‖L2 ≤
1

n
and

∥∥∥∇ψ#
n −∇φQ

∥∥∥
L2
> δ1. (2.68)

The contractivity property of the rearrangement in Lp-norms and a Sobolev embed-
ding give

‖ψ#
n − φQ‖L6 ≤ ‖ψn − φQ‖L6 ≤ C‖∇ψn −∇φQ‖L2 ≤

C

n
.

Moreover by (2.67) and (2.68), we have

‖∇ψ#
n ‖L2 ≤ ‖∇ψn‖L2 ≤ ‖∇φQ‖L2 +

1

n
. (2.69)

Hence ψ#
n is bounded in Ḣ1

r and the sequence ∇ψ#
n converges to ∇φQ in the L2

weak topology. In fact, from Fatou lemma, the inequality (2.69) implies

lim
n→+∞

‖∇ψ#
n ‖L2 = ‖∇φQ‖L2 .
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Thus the sequence ∇ψ#
n converges to ∇φQ in L2(R3) which contradicts (2.68).

Notice that, for all q ∈ (6, 12), the space Φq is included in Ḣ1 and thus δ0 does not
depend on q. The proof of Proposition 2.2 is now complete.

3. Nonlinear stability of Q

We are now ready to prove Theorem 1.1 in this section. The proof is based on the
two following arguments : i) The local coercivity property of J stated in Proposition
2.2 which ensures the compactness of the potential field, and ii) The compactness
of the whole distribution function in the energy space.

3.1. Local compactness of the distribution function. We will prove in this
subsection that the Proposition 2.2 implies the following compactness result:

Proposition 3.1 (Local compactness of local minimizing sequences). Let p > 3
2 .

Let δ0 > 0 the constant defined in Proposition 2.2 and let fn be a sequence of Ep
such that

‖f∗n −Q∗‖L1(R) → 0, ‖f∗n −Q∗‖Lp(R) → 0, lim sup
n→+∞

H(fn) ≤ H(Q), (3.1)

and
‖∇φfn −∇φQ‖L2 < δ0. (3.2)

Then there exists a translation shift xn such that

‖fn −Q(· − xn)‖Ep → 0 as n→ +∞. (3.3)

Proof of Proposition 3.1. Let (fn) a sequence of Ep satisfying (3.1) and (3.2).

Step 1: Compactness of the potential. We first remark that, from inequality (B.4),
we have

H(fn) ≥
∫
R6

(√
|v|2 + 1− 1 + φfn(x)

)
f
∗φfn
n dxdv +

1

2
‖∇φfn‖

2
L2 ,

which implies, from the change of variable (A.11),

H(fn)− J(φfn) ≥
∫
R6

(√
|v|2 + 1− 1 + φfn(x)

)(
f
∗φfn
n −Q∗φfn

)
dxdv

≥
∫ +∞

0
a−1
φfn

(s)(f∗n(s)−Q∗(s))ds.

Finally

H(fn)−H(Q) ≥ J(φfn)− J(φQ) +

∫ +∞

0
a−1
φfn

(s)(f∗n(s)−Q∗(s))ds. (3.4)

Now, since (fn) satisfies (3.1) and (3.2), the sequence (fn) is bounded in the energy
space Ep. From classical interpolation inequalities, for

q =
3(4p− 3)

p
∈ (6, 12),

the sequence φfn belongs to Φq and is bounded in Lq(R3). Thus, from (A.3) we
have ∣∣∣a−1

φfn
(s)
∣∣∣ ≤ C ( 1

s
1
q−3

+
1

s
1
q

)
. (3.5)
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Hence we obtain from Hölder inequalities∣∣∣∣∫ +∞

1
a−1
φfn

(s)(f∗n(s)−Q∗(s))ds
∣∣∣∣ ≤ 2C‖f∗n −Q∗‖L1(R),

and ∣∣∣∣∫ 1

0
a−1
φfn

(s)(f∗n(s)−Q∗(s))ds
∣∣∣∣ ≤ ‖a−1

φfn
‖Lp′ (0,1)‖f

∗
n −Q∗‖Lp(R),

where p′ = p
p−1 < 3. Notice that p′

q−3 < 1 which gives, from (3.5), the boundedness
:

‖a−1
φfn
‖p
′

Lp′ (0,1)
≤ 2C

∫ 1

0

1

s
p′
q−1

ds = 2C

(
1− p′

q − 1

)
.

We have then the convergence∫ +∞

0
a−1
φfn

(s)(f∗n(s)−Q∗(s))ds→ 0

as n→ +∞ and, injecting this in (3.4), we conclude from (3.1) that

lim
n→+∞

J(φfn) ≤ J(φQ). (3.6)

Together with the condition (3.2), this allows us to apply Proposition (2.2) and we
conclude that there exists a sequence of translation shifts in space xn such that

‖∇φfn −∇φQ(· − xn)‖L2 → 0 as n→ +∞. (3.7)

Step 2: Convergence of fn (·+ xn, ·) in Ep. To obtain the convergence in the
energy space Ep, the method that we chose is very similar with the method developed
in [23]. We renote fn := fn (·+ xn, ·). We remark first that since Q = Q∗φQ∣∣∣∣∫

R6

(√
|v|2 + 1− 1 + φQ

)(
f
∗φQ
n −Q

)
dxdv

∣∣∣∣ =

∣∣∣∣∫ ∞
0

a−1
φQ

(s) (f∗n(s)−Q∗(s)) ds
∣∣∣∣

≤ ‖φQ‖L∞ ‖f∗n −Q∗‖L1 ,

and thus ∫
R6

(√
|v|2 + 1− 1 + φQ(x)

)(
f
∗φQ
n −Q

)
dxdv → 0 (3.8)

Now, from the inequality (B.4), it implies that

lim inf
n→+∞

∫
R6

(√
|v|2 + 1− 1 + φQ(x)

)
(fn −Q) dxdv ≥ 0.

Hence, since

H(fn) = H(Q)+
1

2
‖∇φfn −∇φQ‖

2
L2 +

∫
R6

(√
|v|2 + 1− 1 + φQ(x)

)
(fn −Q) dxdv,

in which
lim sup
n→+∞

H(fn) ≤ H(Q) and lim
n→+∞

‖∇φfn −∇φQ‖L2 = 0,

we obtain, as n→ +∞,∫
R6

(√
|v|2 + 1− 1 + φQ(x)

)
(fn −Q) dxdv → 0. (3.9)
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The two convergences (3.8) and (3.9) yield

Tn :=

∫
R6

eQ(x, v)
(
fn − f

∗φQ
n

)
dxdv → 0 as n→ +∞, (3.10)

where eQ(x, v) :=
√
|v|2 + 1− 1 + φQ(x). As in the proof of (B.4), we write Tn in

the following equivalent form

Tn =

∫ +∞

t=0
dt

(∫
Sn1 (t)

eQ(x, v)dxdv −
∫
Sn2 (t)

eQ(x, v)dxdv

)
,

where
Sn1 (t) = {(x, v) ∈ R6, f

∗φQ
n (x, v) ≤ t < fn(x, v)},

Sn2 (t) = {(x, v) ∈ R6, fn(x, v) ≤ t < f
∗φQ
n (x, v)}.

From (B.14), we have

∀(x, v) ∈ Sn1 (t), eQ(x, v) ≥ (f∗n ◦ aφQ)−1(t).

Thus

Tn ≥
∫ +∞

t=0
dt

(∫
Sn1 (t)

(f∗n ◦ aφQ)−1(t)dxdv −
∫
Sn2 (t)

eQ(x, v)dxdv

)
,

and since meas(Sn1 (t)) = meas(Sn2 (t)) for all t ∈ R+,

Tn ≥
∫ +∞

t=0
dt

∫
Sn2 (t)

[
(f∗n ◦ aφQ)−1(t)− eQ(x, v)

]
dxdv.

Remark from (B.13), that the right term is nonnegative and thus, from (3.10), we
get as n→ +∞

An :=

∫ +∞

t=0
dt

∫
Sn2 (t)

[
(f∗n ◦ aφQ)−1(t)− eQ(x, v)

]
dxdv → 0 (3.11)

We now claim that this implies

Bn :=

∫ +∞

t=0
dt

∫
Ωn2 (t)

[
(Q∗ ◦ aφQ)−1(t)− eQ(x, v)

]
dxdv → 0 (3.12)

as n→ +∞ where

Ωn
2 (t) = {(x, v) ∈ R6, fn(x, v) ≤ t < Q(x, v)}.

To prove it, we decompose

Sn2 = (Sn2 \Ωn
2 ) ∪ (Sn2 ∩ Ωn

2 ) and Ωn
2 = (Ωn

2\Sn2 ) ∪ (Sn2 ∩ Ωn
2 ).

Thus

An −Bn =

∫ +∞

t=0
dt

∫
Ωn2 (t)\Sn2 (t)

[
eQ(x, v)− (Q∗ ◦ aφQ)−1(t)

]
dxdv

+

∫ +∞

t=0
dt

∫
Sn2 (t)\Ωn2 (t)

[
(f∗n ◦ aφQ)−1(t)− eQ(x, v)

]
dxdv

+

∫ +∞

t=0
dt

∫
Sn2 (t)∩Ωn2 (t)

[
(f∗n ◦ aφQ)−1(t)− (Q∗ ◦ aφQ)−1(t)

]
dxdv

(3.13)
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Now let us examine each term as n→ +∞. We first observe that for g, h ∈ L6(R6)
we have ∫ +∞

0
meas({g < t ≤ h})dt =

∫
R6

(h− g)+dxdv, . (3.14)

Thus we obtain∫ +∞

0
meas(Sn2 (t)\Ωn

2 (t))dt ≤
∫ +∞

0
meas({Q < t ≤ f∗φQn })dt =

∫
R6

(f
∗φQ
n −Q)+dxdv,

which gives, from (3.1),∫ +∞

0
meas(Sn2 (t)\Ωn

2 (t))dt ≤ ‖f∗φQn −Q‖L1 = |f∗n −Q∗|L1 → 0,

and similarly for meas(Ωn
2 (t)\Sn2 (t)). Using in addition the estimate

|eQ(x, v)| ≤ |φQ(0)|,
∣∣(f∗n ◦ aφQ)−1(t)

∣∣ ≤ |φQ(0)|,
∣∣(Q∗ ◦ aφQ)−1(t)

∣∣ ≤ |φQ(0)|,
we deduce that the first two terms of (3.13) converge to 0 as n→ +∞. We now deal
with the third term. Combining the strong L1 convergence in (3.1), the monotonicity
of f∗n and the continuity of Q∗, we get

∀e ∈ (φQ(0), 0), f∗n ◦ aφQ(e)→ Q∗ ◦ aφQ(e) as n→ +∞.
Thus for e ∈ (φQ(0), 0) such that Q∗ ◦ aφQ(e) > t we have for n large enough

f∗n ◦ aφQ(e) > t,

which from the definition of the pseudoinverse (f∗n ◦ aφQ)−1 provides

e ≤ lim inf
n→+∞

(f∗n ◦ aφQ)−1(t).

From the definition of (Q∗ ◦ aφQ)−1, we conlude that

lim inf
n→+∞

(f∗n ◦ aφQ)−1(t) ≥ (Q∗ ◦ aφQ)−1(t).

We just inject it into the third term of (3.13) to obtain

lim inf
n→+∞

(An −Bn) ≥ 0.

Moreover, from (3.11), from the definition of Ωn
2 and from (B.13), we have

An → 0 and Bn ≥ 0.

We conclude that the convergence (3.12) holds true:∫ +∞

t=0
dt

∫
{fn≤t<Q}

[
(Q∗ ◦ aφQ)−1(t)− eQ(x, v)

]
dxdv → 0. (3.15)

Since e 7→ F (e) is continuous and strictly decreasing with respect to e =
√
|v|2 + 1−

1 + φQ(x) for (x, v) ∈ {Q(x, v) > 0}, we have

t < Q(x, v) implies Q∗ ◦ aφQ)−1(t)− eQ(x, v) > 0.

Thus, up to a subsequence,

for a.e. (t, x, v) ∈ R∗+ × R6, 1{fn≤t<Q} → 0, as n→ +∞.
Since 1{fn≤t<Q} ≤ 1{t<Q} and∫ +∞

t=0
dt

∫
R6

1{t<Q}dxdvdt = ‖Q‖L1 < +∞,
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we may apply the dominated convergence theorem to get:∫ +∞

t=0
dt

∫
R6

1{fn≤t<Q}dxdvdt→ 0 as n→ +∞,

which, from (3.14) is equivalent to∫
R6

(Q− fn)+dxdv → 0 as n→ +∞. (3.16)

Now we write∫
R6

(fn −Q)+dxdv ≤
∫
R6

(fn − f
∗φQ
n )+dxdv +

∫
R6

(f
∗φQ
n −Q)+dxdv

≤
∫ +∞

0
meas({f∗φQn ≤ t < fn})dt+ ‖f∗φQn −Q‖L1 ,

where, from the equimeasurability of fn and f∗φQn , we have∫ +∞

0
meas({f∗φQn ≤ t < fn})dt =

∫ +∞

0
meas({fn ≤ t < f

∗φQ
n })dt

=

∫
R6

(f
∗φQ
n − fn)+dxdv

≤
∫
R6

(Q− fn)+dxdv +

∫
R6

(f
∗φQ
n −Q)+dxdv.

We finally get∫
R6

(fn −Q)+dxdv ≤
∫
R6

(Q− fn)+dxdv + 2‖f∗φQn −Q‖L1 .

Now, since ‖f∗φQn − Q‖L1 = ‖f∗n − Q∗‖L1 → 0, we obtain from (3.16) the L1

convergence

‖fn −Q‖L1(R6) → 0 as n→ +∞. (3.17)

Now, from the convergence of ∇φfn to ∇φQ in L2(R3) and from (3.1) we have

lim inf
n→+∞

∫
R6

(√
|v|2 + 1− 1

)
(fn −Q) dxdv ≤ 0. (3.18)

But fn converges almost everywhere in R6 to Q, thus we have an equality in (3.18)
and thus the convergence is strong:∫

R6

(√
|v|2 + 1

)
|fn −Q| dxdv → 0 as n→ +∞. (3.19)

Similarly, we remark that

‖fn‖Lp(R6) = ‖f∗n‖Lp(R+) → ‖Q∗‖Lp(R+) = ‖Q‖Lp(R6),

when n→ +∞ and we obtain the strong Lp convergence and the proof of Proposi-
tion 3.1 is completed.

�
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3.2. Stability from the local compactness. Let p > 3
2 . From the Hardy-

Littlewood-Sobolev inequality and Hölder inequalities, we have from the classical
interpolation’s inequality:

‖∇φf −∇φg‖L2 ≤ K ‖ρf − ρg‖
L

6
5
≤ K ‖f − g‖

2p−3
6(p−1)

L1 ‖f − g‖
p

6(p−1)

Lp ‖|v|(f − g)‖
1
2

L1 .

(3.20)
Thus for all f ∈ Ep

‖f −Q‖Ep < ε implies ‖∇φf −∇φQ‖L2 < Kε. (3.21)

Let fixed ε0 > 0 such that

Kε0 <
δ0

2
,

whereK is the constant in (3.21) and δ0 is defined by Proposition 3.1. Let ε ∈ (0, ε0).
Then an equivalent reformulation of Proposition 3.1 is the following: there exists

0 < η < ε0

such that the following sentence holds true: if f ∈ Ep is such that

‖f∗ −Q∗‖L1(R) ≤ η, ‖f∗ −Q∗‖Lp(R) ≤ η, H(f) ≤ H(Q) + η, (3.22)

and
‖∇φf −∇φQ‖L2 < δ0, (3.23)

then there exists a translation shift y ∈ R3 such that

‖f −Q(· − y)‖Ep < ε. (3.24)

Remark that the assumption (3.23) can be replaced by

inf
z∈R3
‖∇φf (·+ z)−∇φQ‖L2 < δ0. (3.25)

Indeed, on the first hand, if the condition (3.23) is satisfied, the condition (3.25)
is satisfied too. In the other hand, if a function f satisfies (3.22) and (3.25), then
there exists z ∈ R3 such that f̃ = f(· + z, ·) satisfies (3.23). But f̃ satisfies (3.22)
too. Thus we have (3.24) for f̃ and also for f .

Now we prove theorem 1.1. Let f0 ∈ Ep such that

‖f0 −Q‖Ep < η. (3.26)

Let f(t) ∈ F([0, T ),Ep) a corresponding renormalized solution to (1.1) as stated in
[9, 10]. We want to show that f(t) satisfies (3.24) for all t ∈ [0, T ).

Let us first prove that f(t) satisfies (3.22) for all t. From (3.26), we have

‖f0 −Q‖L1(R6) ≤ η, ‖f0 −Q‖Lp(R6) ≤ η, H(f0) ≤ H(Q) + η,

and from the property of contraction of symmetric rearrangement:

‖f∗ −Q∗‖Lp(R+) ≤ ‖f −Q‖Lp(R6),

we deduce that f0 satisfies (3.22). By conservation of the flow, we have

∀t ∈ (0, T ), f(t)∗ = f∗0 and H(f(t)) ≤ H(f0).

We conclude that (3.22) is satisfied for all t ∈ (0, T ).
Let us now prove that (3.25) is satisfied for all t ∈ (0, T ). At t = 0, since η < ε0,

from (3.21), we have

‖∇φf0 −∇φQ‖L2 <
δ0

2
.
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Moreover, from the regularity of the flow, the potential satisfies

t 7→ ∇φf(t) ∈ C([0, T ), L2(R3)),

which provides the continuity on [0, T ) of the function

β : t 7→ inf
z∈R3

∥∥∇φf(t)(·+ z)−∇φQ
∥∥
L2 ,

Indeed for all z ∈ R3, we have the uniform boundedness∣∣∣∥∥∇φf(t)(·+ z)−∇φQ
∥∥
L2 −

∥∥∇φf(t0)(·+ z)−∇φQ
∥∥
L2

∣∣∣
≤
∥∥∇φf(t)(·+ z)−∇φf(t0)(·+ z)

∥∥
L2 =

∥∥∇φf(t) −∇φf(t0)

∥∥
L2 ,

which provides the continuity of β. Now, by a contradiction argument, assume that
there exists t1 > 0 such that β(t1) > δ0. Since β(0) < δ0/2 there exists t2 > 0 such
that β(t2) = 3δq/4. In particular, f(t2) satisfies (3.22) and (3.25) and thus there
exists z(t2) ∈ R3 such that

‖f(t2)−Q(· − x(t2))‖Ep < ε < ε0.

Injecting it into (3.21), we conclude that β(t2) < δ0/2, which contradicts our as-
sumption. The proof of Theorem (1.1) is complete.

Appendix A. Jacobian of the microscopic energy

We give some useful properties of the jacobian aφ given by (2.4) and the re-
arrangement with respect to the microscopic energy defined in (2.5). We recall that
the space Φq is defined for q > 3 by (2.1).

We first gather in the following two lemmas some important properties of the
jacobian aφ.

Lemma A.1 (Properties of the Jacobian aφ). Let φ ∈ Φq with q > 3. We recall
that the Jacobian aφ is defined as

∀e < 0, aφ(e) = meas
{

(x, v) ∈ R6 :
√
|v|2 + 1− 1 + φ(x) < e

}
. (A.1)

Then:
(i) We have the explicit formula:

∀e < 0, aφ(e) =
4π

3

∫
R3

(
(1 + e− φ(x))2

+ − 1
) 3

2

+
dx. (A.2)

Notice that
(
(1 + e− φ(x))2

+ − 1
)

+
=
(
(1 + e− φ(x))2 − 1

)
1e−φ(x)>0(x).

(ii) aφ is C1 on (−∞, 0) and is a strictly increasing C1 diffeomorphism from
(inf φ, 0) onto R∗+, which defines a−1

φ . Moreover there exist two positive constants
C and C̃ such that for all e < 0 and for all s > 0

aφ(e) ≤ C

|e|q−3

(
1 +

1

|e|3

)
‖φ‖qLq and a−1

φ (s) ≥ −C̃

‖φ‖ q
q−3

Lq

s
1
q−3

+
‖φ‖Lq

s
1
q

 . (A.3)

The quantity inf φ is the essential infimum of the measurable function φ.

Let prove these properties.
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Proof of Lemma A.1. To prove (i), remark that for e < 0√
|v|2 + 1− 1 + φ(x) < e⇔

{
φ(x) < e and |v| <

(
(1 + e− φ(x))2

+ − 1
) 1

2

+

}
.

Since lim
|x|→+∞

φ = 0, the set
{
x ∈ R3 : φ(x) < e

}
is bounded and since φ belongs

to Lq(R3) with q > 3, we have φ ∈ L3
loc(R3) which implies

x 7→
(
(1 + e− φ(x))2

+ − 1
) 1

2

+
belongs to L3(R3).

Thus for all e < 0, aφ(e) is finite and after passing to the spherical coordinates in
velocity we obtain the formula (A.2).

Proof of (ii). We define g(e, x) :=
(
(1 + e− φ(x))2

+ − 1
) 3

2
+
. Then, for e < e0 < 0,

0 ≤ ∂g

∂e
(e, x) ≤ 3

(
(1 + e0 − φ(x))2

+ − 1
) 1

2

+
(1 + e0 − φ(x)),

which, as function of the variable x, belongs to L1(R3). Indeed its support is
included in the bounded set

{
x ∈ R3 : φ(x) < e0

}
and φ ∈ L2

loc(R3). Hence we
may apply the dominated convergence theorem and get that aφ is a C1 function on
R∗−, nul on (−∞, inf φ] (if inf φ is finite) and strictly increasing on (inf φ, 0).
We now look for the limit of aφ(e) when e→ 0. Since φ ∈ Φq,

aφ(e) ≥ 4π

3

∫
R3

((
1 + e+

m(φ)

1 + |x|

)2

+

− 1

) 3
2

+

dx→ +∞ as e→ 0.

To conclude the proof of (ii), let us study the behavior of aφ(e) as e→ −∞ in the
case inf φ = −∞. We observe, from Hölder inequality, that

aφ(e) ≤
(
meas{x ∈ R3 : φ(x) < e}

) q−3
q

(∫
φ(x)<e

(
(1 + e− φ(x))2 − 1

) q
2
dx

) 3
q

,

(A.4)
where both terms can be controled. The first term satisfies

meas{x ∈ R3 : φ(x) < e} ≤
∫
φ(x)<e

(
φ(x)

e

)q
dx ≤

‖φ‖qLq
|e|q

, (A.5)

and the second term∫
φ(x)<e

(
(1 + e− φ(x))2 − 1

) q
2
dx ≤

∫
φ(x)<e

C (1 + |φ(x)|q) dx ≤ C
(
‖φ‖qLq
|e|q

+ ‖φ‖qLq
)
,

where we use the inequality (A.5). Now, injecting these both inequalities in (A.4),
we conclude that there exists a constant C > 0 such that for all e < 0

aφ(e) ≤ C

|e|q−3

(
1 +

1

|e|3

)
‖φ‖qLq . (A.6)

Finally the inverse a−1
φ satisfies for all s > 0

a−1
φ (s) ≥ −C̃

‖φ‖ q
q−3

Lq

s
1
q−3

+
‖φ‖Lq

s
1
q

 , (A.7)

and the properties (ii) are proved. �
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The first lemma A.1 gives first properties about the jacobian aφ at fixed φ ∈ Φq.
The regularity of the jacobian with respect to the potential φ is studied in the
following lemma.

Lemma A.2 (Regularity of the Jacobian aφ with respect to φ). Let q > 3. Then
(iii) Let (φn), (en) and (sn) sequences of respectively Φq, R∗− and R∗+. Assume

that there exist φ ∈ Φq, e ∈ R− ∪ {−∞} and s ∈ R∗+ ∪ {+∞} such that

φn → φ in Lq(R3), en → e and sn → s.

Then by denoting aφ(−∞) = 0, aφ(0) = +∞ and a−1
φ (+∞) = 0, we have

aφn(en)→ aφ(e) and a−1
φn

(sn)→ a−1
φ (s). (A.8)

(iv) Let φ, φ̃ ∈ Φq and let h = φ − φ̃. Then the function (λ, e) 7→ aφ+λh(e) is a
C1 function on [0, 1]× R∗− and we have

∂

∂λ
aφ+λh(e) = −4π

∫
R3

K (e− φ(x)− λh(x))h(x)dx. (A.9)

where the function K, defined by

K(η) =
(

(1 + η)2
+ − 1

) 1
2

+
(1 + η),

is non decreasing and has its support in R∗+.
(v) With the same notation as (iv). Let s ∈ R∗+. Then the function λ 7→ a−1

φ+λh(s)

is a C1 function on [0, 1] and we have

∂

∂λ
a−1
φ+λh(s) =

∫
R3

K
(
a−1
φ+λh(s)− φ(x)− λh(x)

)
h(x)dx∫

R3

K
(
a−1
φ+λh(s)− φ(x)− λh(x)

)
dx

. (A.10)

Proof. Proof of (iii): From the control of the jacobian (A.3), we have directly for
e = −∞,

aφn(en)→ 0 = aφ(−∞) as n→ +∞.
Let us now treat the case e < 0 such that e 6= −∞. Up to a subsequence, we have
the convergence(

(1 + en + φn(x))2
+ − 1

) 3
2

+
→
(

(1 + e+ φ(x))2
+ − 1

) 3
2

+

almost everywhere in R3. To obtain the convergence in L1(R3), from a generalized
dominated convergence theorem, we have just to prove the following L1-convergence,

gn :=
(

(1 + e0 + φn)2
+ − 1

) 3
2

+
→
(

(1 + e0 + φ)2
+ − 1

) 3
2

+
=: g

where e0 = inf
n∈N

en < 0. In order to do it, we define the set

Ω =
{
x ∈ R3, φ(x) <

e0

2

}
.

Since Ω is included in a compact set, the convergence of gn to g in L1(Ω) comes
from the convergence of φn to φ in L3

loc(R3). Out of Ω we have g(x) = 0 and, from
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a similar Hölder inequality as (A.4), we get∫
R3\Ω

gn(x)dx ≤ C

(
‖φn‖qLq
|e|q

+ ‖φn‖qLq
) 3
q (

meas{x ∈ R3 : φn(x) < e0, φ(x) ≥ e0

2
}
) q−3

q

≤ C
(
meas{x ∈ R3 : |φn(x)− φ(x)| ≥ e0

2
}
) q−3

q

≤ C

(
2‖φn − φ‖Lq

e0

)q−3

.

Thus the sequence gn converges to g in L1(R3\Ω) and finally in L1(R3). By conse-
quence, we have the convergence aφn(en)→ aφ(e) for e ∈]−∞, 0[.

Let us now treat the case e = 0. Let M > 0 be an arbitrary constant. Denote
for all n ∈ N the space Ωn =

{
x ∈ R3, |φn(x)| < m(φ)

2(1+|x|)

}
and let e0 < 0 such that

4π

3

∫
R3

((
1 + e0 +

m(φ)

2(1 + |x|)

)2

+

− 1

) 3
2

+

dx > 2M.

Remark that this integral is well defined since the inner function is zero out of
B(0, R) for

R = max

{
0,
m(φ)

2|e0|
− 1

}
.

For n large enough, we have en > e0 and thus

aφn(en) ≥ 4π

3

∫
R3\Ωn

((
1 + e0 +

m(φ)

2(1 + |x|)

)2

+

− 1

) 3
2

+

dx

≥ 2M − 4π

3

∫
Ωn

((
1 + e0 +

m(φ)

2(1 + |x|)

)2

+

− 1

) 3
2

+

dx

To prove that the second term converges to 0 as n→ +∞, we remark that the set
of integration of this term is Ωn ∩ B(0, R). Now, from the definitions of m(φ) and
Ωn, we have for all x ∈ Ωn

φn(x)− φ(x) ≥ − m(φ)

2(1 + |x|)
+

m(φ)

1 + |x|
≥ m(φ)

2(1 + |x|)
,

and thus

‖φn − φ‖qLq(R3)
≥
∫

Ωn

(
m(φ)

2(1 + |x|)

)q
dx ≥

∫
Ωn∩B(0,R)

(
m(φ)

2(1 + |x|)

)q
dx.

Since φn converges to φ in Lq(R3), we deduce that the measure of the set Ωn∩B(0, R)
converges to 0, which implies that the integral∫

Ωn

((
1 + e0 +

m(φ)

2(1 + |x|)

)2

+

− 1

) 3
2

+

dx

converges to 0 as n→ +∞. Hence for n large enough aφn(en) ≥M , which concludes
the proof of the convergence of aφn(en).
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To prove that a−1
φn

(sn) → a−1
φ (s), we denote en := a−1

φn
(sn). We know from the

above result that, if en converges to e ∈ [0,+∞], then

sn = aφn(en)→ aφ(e).

Hence, any subsequence of (en)n∈N converges to e = a−1
φ (s), which gives the conver-

gence of the whole sequence (en)n∈N to e = a−1
φ (s). The proof of (iii) is complete.

Proof of (iv): We recall that h = φ̃−φ with φ, φ̃ ∈ Φq and that λ ∈ [0, 1]. From the
convexity of Φq, the function φ + λh belongs to Φq and aφ+λh is well-defined. For
e < 0 fixed, we aim to differentiate on (0, 1) the function

λ 7→ aφ+λh(e) =
4π

3

∫
R3

(
(1 + e− φ(x)− λh(x))2

+ − 1
) 3

2

+
dx.

First, the set of integration satisfies{
x ∈ R3 : (φ+ λh)(x) < e

}
⊂
{
x ∈ R3 : φ(x) < e

}
∪
{
x ∈ R3 : φ̃(x) < e

}
,

which is included in a compact set of R3. Now, we have for all x in this set
∂

∂λ

[(
(1 + e− φ(x)− λh(x))2

+ − 1
) 3

2

+

]
= 3K (e− φ(x)− λh(x))h(x),

where K(η) =
(

(1 + η)2
+ − 1

) 1
2

+
(1 + η). This derivative can be bound uniformly

with respect to λ by

K (e− φ(x)− λh(x)) |h(x)| ≤ K
(
e− φ(x)− φ̃(x)

)
|φ(x) + φ̃(x)|

≤ C

(
1 +

∣∣∣φ(x)− φ̃(x)
∣∣∣3) ,

which, combined with the fact that φ+ φ̃ ∈ L3
loc(R3) allows the Lebesgue dominated

convergence theorem and thus implies (iv).

Proof of (v): Let s ∈ R∗+. The continuity of λ 7→ a−1
φ+λh(s) comes directly from

(iii). Let us differentiate this function on λ0 ∈ (0, 1). Denote φ0 = φ + λ0h and
φλ = φ+ λh with λ 6= λ0. Then we rewrite

a−1
φλ

(s)− a−1
φ0

(s)

λ− λ0
=

a−1
φλ

(s)− a−1
φ0

(s)

aφ0(a−1
φλ

(s))− aφ0(a−1
φ0

(s))

aφ0(a−1
φλ

(s))− aφλ(a−1
φλ

(s))

λ− λ0
.

Since a−1
φλ

(s) converges to a−1
φ0

(s) as λ→ λ0, the first term satisfies

a−1
φλ

(s)− a−1
φ0

(s)

aφ0(a−1
φλ

(s))− aφ0(a−1
φ0

(s))
→ 1

a′φ0(a−1
φ0

(s))
as λ→ λ0,

and the second term satisfies
aφ0(a−1

φλ
(s))− aφλ(a−1

φλ
(s))

λ− λ0
→ ∂

∂λ
aφ+λh

(
a−1
φ0

(s)
)∣∣∣∣
λ=λ0

.

Using (A.9), we finally get the expression (A.10).
�
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Lemma A.3 (Changes of variables). Let α ∈ C0(R)∩L∞(R), G ∈ L1(R+) and for
all (x, v) ∈ R6

e(x, v) =
√
|v|2 + 1− 1 + φ(x).

Then∫
e(x,v)<0

α (e(x, v))G (aφ (e(x, v))) dxdv =

∫ 0

inf φ
α(e)G(aφ(e))a′φ(e)de

=

∫ +∞

0
α(a−1

φ (s))G(s)ds,

(A.11)

where inf φ is the essential infimum of φ.

Proof. We perform the change of variable e =
√
|v|2 + 1− 1 +φ(x), with respect to

the velocity variable v to get∫
e(x,v)<0

α (e(x, v))G (aφ (e(x, v))) dxdv

= 4π

∫
R3

dx

∫ 0

φ(x)
α(e)G(aφ(e))

(
(1 + e− φ(x))2

+ − 1
) 1

2

+
(1 + e− φ(x))de

=

∫ 0

inf φ
α(e)G(aφ(e))a′φ(e)de.

We have then directly (A.11) since aφ is a C1-diffeomorphism from (inf φ, 0) onto
R∗+. �

Appendix B. Rearrangement with respect to the microscopic
energy

We use now this jacobian to define a new rearrangement of any f ∈ Ep with
respect to the microsopic energy

√
|v|2 + 1−1+φ(x), where φ belongs to Φq given by

(2.1). We first recall some basic properties of the classical Schwarz symmetrization.

Lemma B.1 (Schwarz symmetrization). Let f ∈ Ep, nonzero, with p > 3
2 . We

define the Schwarz symmetrization f∗ of f on R∗+ by

∀t > 0, f∗(t) = inf{s ≥ 0, µf (s) ≥ t},

where µf is the distribution function of f defined by (1.7). Then f∗ is the unique
nonincreasing function on R∗+ such that f and f∗ have the same distribution function

∀s ≥ 0, µf (s) = µf∗(s).

Moreover, if f is continuous then f∗ is continuous. In particular, Q∗ is continuous.

Now, from this Schwarz symmetrisation, we define a new rearrangement with
respect to the microscopic energy.

Lemma B.2 (Symmetric rearrangement of f with respect to the microscopic en-
ergy). Let f ∈ Ep, nonzero, with p > 3

2 and φ ∈ Φq. Let f∗ be the Schwarz
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rearrangement of f in R6. We recall that the function f∗φ is defined by

f∗φ(x, v) =


f∗
(
aφ

(√
|v|2 + 1− 1 + φ(x)

))
if
√
|v|2 + 1− 1 + φ(x) < 0,

0 if
√
|v|2 + 1− 1 + φ(x) ≥ 0.

(B.1)
Then,

(i) f∗φ is equimeasurable with f , which means

f∗φ ∈ Eq(f) = {g ∈ L1
+ ∩ Lp with µg = µf}. (B.2)

(ii) f∗φ belongs to Ep with∥∥∥|v|f∗φ∥∥∥
L1
≤ C

(
‖∇φ‖2L2 ‖f‖

2(2p−3)
6(p−1)

L1 ‖f‖
2p

6(p−1)

Lp + ‖f‖L1

)
. (B.3)

(iii) A function Q as defined in Theorem 1.1 satisfies

F = Q∗ ◦ aφQ on R∗− and Q = Q∗φQ on R6.

(iv) Let f, g ∈ Ep satisfying µg ≤ µf and φ ∈ Φ, then∫
R6

(√
|v|2 + 1− 1 + φ(x)

)(
g − f∗φ

)
dxdv ≥ 0. (B.4)

with equality if and only if g = f∗φ. In particular

H(g) ≥ H(f∗φg) +
1

2

∥∥∥∇φg −∇φf∗φg∥∥∥2

L2
≥ H(f∗φg), (B.5)

with equality if and only if g = f∗φg .

Proof of Lemma B.2. (i) Equimeasurability: Let β ∈ C1(R+,R+) satisfying β(0) =
0. Using the change of variable given by (A.11) we have∫

R6

β
(
f∗φ(x, v)

)
dxdv =

∫ +∞

0
β (f∗(s)) ds =

∫
R6

β (f(x, v)) dxdv,

which gives the equimeasurability of f and f∗φ.

(ii) Control of the kinetic energy: From the definition of f∗φ, see (2.5), we have∫
R6

(√
|v|2 + 1− 1 + φ(x)

)
f∗φ ≤ 0,

and
−
∫
R6

φ(x)f∗φ(x, v)dxdv =

∫
R3

∇φ(x) · ∇φf∗φ(x)dx.

Thus, from the Cauchy-Schwartz inequality∫
R6

|v|f∗φ ≤
∫
R6

(√
|v|2 + 1− 1

)
f∗φ +

∥∥∥f∗φ∥∥∥
L1

≤ ‖∇φ‖L2

∥∥∇φf∗φ∥∥L2 + ‖f‖L1 .

(B.6)

Moreover, the interpolation inequality (1.11) and the equimesurability of f and f∗φ
yield ∥∥∇φf∗φ∥∥L2 ≤ C ‖f‖

2p−3
6(p−1)

L1 ‖f‖
p

6(p−1)

Lp

∥∥∥|v|f∗φ∥∥∥ 1
2

L1
. (B.7)
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Hence the inequalities (B.6) and (B.7) imply∫
R6

|v|f∗φ −K(φ, f)

(∫
R6

|v|f∗φ
) 1

2

− ‖f‖L1 ≤ 0,

with
K(φ, f) = C ‖∇φ‖L2 ‖f‖

2p−3
6(p−1)

L1 ‖f‖
p

6(p−1)

Lp .

The control of the kinetic energy (B.3) follows.

(iii) The profil Q, fixed point for the rearrangement f∗φf : From the assumptions on
Q in theorem 1.1, the measure of the support of Q is aφQ(eQ) and the function F
is a strictly decreasing C1-diffeomorphism from [minφQ, eQ] onto [0, ‖Q‖∞]. Thus
we have for all e ∈ [minφQ, e0],

aφQ(e) = meas
{

(x, v) ∈ R6 : F
(√
|v|2 + 1− 1 + φQ(x)

)
> F (e)

}
= meas

{
(x, v) ∈ R6 : Q(x, v) > F (e)

}
= meas

{
s ∈ R∗+ : Q∗(s) > F (e)

}
,

from the definition of the Schwarz symmetrization Q∗. We rewrite this equality: for
all a ∈ [0, ‖Q‖∞]

aφQ ◦ F
−1(a) = meas

{
s ∈ R∗+ : Q∗(s) > a

}
. (B.8)

We know that Q∗ is a decreasing function on [0,meas(Supp(Q))] = [0, aφQ(eQ)].
The equality (B.8) and the continuity of aφQ ◦ F−1 imply the strict decrease of
Q∗. Moreover, since the Schwarz symmetrisation conserves the continuity, Q∗ is
continuous on [0, aφQ(eQ)]. We conclude that, for all a ∈ [0, ‖Q‖∞],

Q∗
(
meas

{
s ∈ R∗+ : Q∗(s) > a

})
= a.

We deduce that for all e ∈ [minφQ, eQ], F (e) = Q∗ ◦ aφQ(e), which implies in
particular 0 = F (eQ) = Q∗ ◦ aφQ(eQ). But Q∗ ◦ aφQ is discreasing on R∗− and we
also have

F = Q∗ ◦ aφQ on [minφQ, 0). (B.9)
Let now for all (x, v) ∈ R6

e(x, v) :=
√
|v|2 + 1− 1 + φQ(x) ∈ [minφQ,+∞).

If e(x, v) ≤ 0, from (B.9), we have Q(x, v) = F (e(x, v)) = Q∗φQ(x, v). If e(x, v) > 0,
from the definition of Q∗φQ , we have Q∗φQ(x, v) = 0 = F (e(x, v)) = Q(x, v).

(iv) The Hamiltonian of the rearrangement: Let f, g ∈ Ep. Then

‖∇φg −∇φf‖2L2 = −
∫
R6

(φg − φf )(g − f)dxdv

= −
∫
R6

φggdxdv −
∫
R6

φffdxdv + 2

∫
R6

φgfdxdv,

where we use
∫
φfg = −

∫
∇φf∇φg =

∫
φgf . Finally we have

‖∇φg −∇φf‖2L2 = −2

∫
R6

φg(g − f)dxdv + ‖∇φf‖2L2 − ‖∇φg‖2L2 .
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Thus we obtain

H(g)−H(f) =

∫
R6

(√
|v|2 + 1− 1

)
(g − f) dxdv +

1

2

(
‖∇φf‖2L2 − ‖∇φg‖2L2

)
=

∫
R6

(√
|v|2 + 1− 1 + φg

)
(g − f) dxdv +

1

2
‖∇φg −∇φf‖2L2 ,

where the Hamiltonian is defined by (1.4). We apply this equality to g, f∗φg ∈ Ep
with g nonzero and f ∈ Ep to get

H(g) = H(f∗φg)+
1

2

∥∥∥∇φg −∇φf∗φg∥∥∥2

L2
+

∫
R6

(√
|v|2 + 1− 1 + φg

)(
g − f∗φg

)
dxdv.

Hence, to prove the inequality (B.5), it is sufficient to prove (B.4).
Let f ∈ Ep, g ∈ Ep, φ ∈ Φq and let T defined by

T =

∫
R6

(√
|v|2 + 1− 1 + φ(x)

)(
g − f∗φ

)
dxdv. (B.10)

The claim T ≥ 0 is a classical inequality for the rearrangements (see [24] for the
Schwarz rearrangement for example and [23] for the new rearrangement). To sim-
plify the notation we define

e(x, v) =
√
|v|2 + 1− 1 + φ(x),

and we use the layer cake representation

f(x, v) =

∫
R+

1t<f(x,y)dt

to find

T =

∫ +∞

0
dt

(∫
S1(t)

e(x, v)dxdv −
∫
S2(t)

e(x, v)dxdv

)
, (B.11)

where
S1(t) =

{
(x, v) ∈ R6, f∗φ(x, v) ≤ t < g(x, v)

}
,

S2(t) =
{

(x, v) ∈ R6, g(x, v) ≤ t < f∗φ(x, v)
}
.

Now, from the properties about the pseudo-inverse of f∗ ◦ aφ, we deduce that

e(x, v) ≥ (f∗ ◦ aφ)−1 (t), for all (x, v) ∈ S1(t),

and, from µg ≤ µf , we have for all t ∈ R+, meas(S1(t)) ≤ meas(S2(t)). Thus, since
(f∗ ◦ aφ)−1 ≤ 0,

T ≥
∫ +∞

0
dt

∫
S2(t)

(
(f∗ ◦ aφ)−1 (t)− e(x, v)

)
dxdv.

But,
e(x, v) < (f∗ ◦ aφ)−1 (t), for all (x, v) ∈ S2(t),

which implies on the one hand that T ≥ 0 and in the other hand that, if T = 0,
we have, for almost all t ∈ R+, meas(S2(t)) = 0. Thus we have, almost everywhere
meas(S1(t)) = meas(S2(t)) = 0 which gives g = f∗φ.

�
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Now we give a lemma in which states a method to inverse clearly the function
f∗ ◦ aφ.

Lemma B.3 (Pseudo inverse of f∗ ◦ aφ). Let f ∈ Ep, nonzero, with p > 3
2 and

φ ∈ Φq. Let f∗ the Schwartz rearrangement of f in R6. We define the pseudo
inverse of f∗ ◦ aφ for s ∈ (0, ‖f‖L∞) as

(f∗ ◦ aφ)−1(s) = sup{e ∈ (inf φ, 0) : f∗ ◦ aφ(e) > s}. (B.12)

Then (f∗ ◦ aφ)−1 is a nonincreasing function from (0, ‖f‖L∞) to (inf φ, 0) and for
all (x, v) ∈ R6 and s ∈ (0, ‖f‖L∞),

f∗φ(x, v) > s⇒
√
|v|2 + 1− 1 + φ(x) ≤ (f∗ ◦ aφ)−1(s), (B.13)

and
f∗φ(x, v) ≤ s⇒

√
|v|2 + 1− 1 + φ(x) ≥ (f∗ ◦ aφ)−1(s). (B.14)

For the proof of this lemma, we refer to [23].
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