
HAL Id: hal-00804483
https://hal.science/hal-00804483v1

Submitted on 25 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Template Matching with Noisy Patches: A
Contrast-Invariant GLR Test

Charles-Alban Deledalle, Loïc Denis, Florence Tupin

To cite this version:
Charles-Alban Deledalle, Loïc Denis, Florence Tupin. Template Matching with Noisy Patches: A
Contrast-Invariant GLR Test. European Signal Processing Conference 2013, Sep 2013, Marrakech,
Morocco. �hal-00804483�

https://hal.science/hal-00804483v1
https://hal.archives-ouvertes.fr


TEMPLATE MATCHING WITH NOISY PATCHES: A CONTRAST-INVARIANT GLR TEST

Charles-Alban Deledalle

IMB

CNRS-Univ. Bordeaux 1

France

Loı̈c Denis

Laboratoire Hubert Curien

CNRS-Univ. Saint-Etienne

France

Florence Tupin
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ABSTRACT

Matching patches from a noisy image to atoms in a dictio-

nary of patches is a key ingredient to many techniques in im-

age processing and computer vision. By representing with a

single atom all patches that are identical up to a radiometric

transformation, dictionary size can be kept small, thereby re-

taining good computational efficiency. Identification of the

atom in best match with a given noisy patch then requires a

contrast-invariant criterion. In the light of detection theory,

we propose a new criterion that ensures contrast invariance

and robustness to noise. We discuss its theoretical ground-

ing and assess its performance under Gaussian, gamma and

Poisson noises.

Index Terms— Template matching, Likelihood ratio test,

Detection theory, Image restoration

1. INTRODUCTION

In this paper, we address the problem of template matching of

patches under various noise conditions. More precisely, when

provided a collection of noise-free templates (the dictionary),

we focus on finding for a given noisy patch the best matching

element in the dictionary. Template matching is at the heart

of many recent image processing and computer vision tech-

niques, for instance, for denoising [1] or classification with a

labeled dictionary [2]. We focus in the following on how to

perform template matching when the noise departs from the

Gaussian distribution. Inspired by our previous work about

the comparison of noisy patches [3], we extend here the pro-

posed methodology to the problem of template matching.

By x, we denote a patch of an image, i.e., a collection

of N noisy pixel values. By a ∈ D, we denote a template

taken from a dictionary D (a also has N pixels). We do not

specify here a shape but consider that the values are ordered

so that when a patch x is compared to a template a, values

with identical index are in spatial correspondence. For best

efficiency, dictionaries should be as small as possible while

being representative of images. To limit the size of dictionar-

ies, a common idea is to let atoms represent a class of patches

that are identical up to a radiometric transformation. Hence, a

template should essentially encode the geometrical patterns of

a patch rather than its radiometry. Of course, to exploit such a

dictionary, the template matching criterion must be invariant

to the radiometric changes considered while being robust to

the noise statistic.

We assume that the noise can be modeled by a (known)

distribution so that a noisy patch x is a realization of an N -

dimensional random variable X modeled by a probability

density or mass function p(·|θ). The vector of parameters

θ is referred in the following as the noise-free patch. For ex-

ample, a patch x damaged by additive white Gaussian noise

with standard deviation σ can be modeled by:

x = θ + σn (1)

where θ is the noise-free patch and n is the realization of a

zero-mean normalized Gaussian random vector with indepen-

dent elements. It is straightforward to see that X|θ follows

a Gaussian distribution with mean θ and standard deviation

σ. While such decompositions exist for some specific dis-

tributions (e.g., gamma distribution involves a multiplicative

decomposition), in most cases no decomposition of x in terms

of θ and an independent noise component may be found (e.g.,

under Poisson noise). In general, when noise departs from ad-

ditive Gaussian noise, the link between X and θ is described

by the probability density or mass function p(x|θ).

2. PROBLEM DEFINITION

A template matching criterion c defines a mapping from a pair

formed by a noisy patch and a template (x,a) to a real value.

The larger the value of c(x,a), the more relevant the match

between x and the template a. We consider that a matching

criterion c is invariant with respect to the family of transfor-

mations Tρ parametrized by vector ρ, if

∀X,a,ρ, c(X, Tρ(a)) = c(X,a) .

A typical example is to consider invariance up to an affine

change of contrast: Tρ(a) = Tα,β(a) = αa + β1, where

1k = 1 for all 1 ≤ k ≤ N . In the light of detection the-

ory, we consider that a noisy patch x and a template a are in

match (up to a transformation Tρ) when x is a realization of a

random variable X following a distribution p(.|θ) for which



there exists a vector of parameters ρ such that θ = Tρ(a).
The template matching problem can then be rephrased as the

following hypothesis test (a parameter test):

H0 : ∃ρ θ = Tρ(a) (null hypothesis),
H1 : ∀ρ θ 6= Tρ(a) (alternative hypothesis).

For a given template matching criterion c, the probability

of false alarm (to decide H1 under H0) and the probability of

detection (to decide H1 under H1) are defined as:

PFA = P(c(X,a) < τ |ρ,H0), (2)

PD = P(c(X,a) < τ |θ,H1). (3)

Note that the inequality symbols are reversed compared to

usual definitions since we consider detection of mismatch

based on the matching measure c.
According to Neyman-Pearson theorem, the optimal cri-

terion, i.e., the criterion which maximizes PD for any given

PFA, is the likelihood ratio (LR) test:

L(x,a) = p(x|θ = Tρ(a),H0)

p(x|θ,H1)
. (4)

The application of the likelihood ratio test requires the knowl-

edge of ρ and θ (the parameters of the transformation and

the noise-free patch) which, of course, are unavailable. Our

problem is thus a composite hypothesis problem. A criterion

maximizingPD for all PFA and all values of the unknown pa-

rameters is said uniformly most powerful (UMP). Kendall and

Stuart (1979) showed that no UMP detector exists in general

for our composite hypothesis problem [4], so that any crite-

ria can be defeated by another one at a specific PFA. The

research of a universal template matching criterion is then fu-

tile. We address here the question of how different criteria

behave on patches extracted from natural images.

3. CONTRAST-INVARIANT TEMPLATE MATCHING

In this section we consider radiometric changes Tα,β defined

by two parameters: α and β. We present different candidate

criteria for contrast-invariant template matching and discuss

their robustness to the noise statistics.

Normalized correlation: The most usual way to mea-

sure similarity up to an affine change of contrast of the form

Tα,β(x) = αx + β1 between two (non-constant) vectors x

and a is to consider their normalized correlation:

C(x,a) =

∣
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√

∑N

k=1
(xk − x̄)2

∑N

k=1
(ak − ā)2
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where x̄ = 1

N

∑

k xk and ā = 1

N

∑

k ak. Indeed, it is

straightforward to show that the correlation provides the de-

sired contrast invariance property. Regarding noise corrup-

tions, it is not straightforward whether the correlation is a ro-

bust template matching criterion. We will show that, under

the assumption of Gaussian noise, for a fixed observation x,

the vector a ∈ D that maximizes the correlation also maxi-

mizes the likelihood up to an affine change of contrast.

Generalized Likelihood Ratio: Motivated by optimality

guarantees of the LR test (4) and our previous work in [3],

a template matching criterion can be defined from statistical

detectors designed for composite hypothesis problems. The

generalized LR (GLR) replaces the unknowns α, β and θ in

eq. (4) by their maximum likelihood estimates (MLE) under

each hypothesis:

G(x,a) =
supα,β p(x|θ = Tα,β(a),H0)

supt p(x|θ = t,H1)

=
p(x|θ = T

α̂,β̂
(a))

p(x|θ = t̂)
(6)

where α̂, β̂ and t̂ are the MLE of the unknownα, β and θ. By

construction, the GLR satisfies the contrast invariance prop-

erty. Asymptotically to the SNR, GLR is optimal due to the

efficiency of MLE. Its asymptotic distribution is known and

so are the PFA values associated to any given threshold τ :

GLR is asymptotically a constant false alarm rate (CFAR) de-

tector. The GLR test is also invariant upon changes of vari-

able [5]: it does not depend on the representation of the noisy

patch. While we noted that there are no UMP detectors for our

composite hypothesis problem, GLR is asymptotically UMP

among invariant tests [6]. Due to its dependency on MLE, the

performance of GLR may fall in low SNR conditions, where

the MLE is known to behave poorly.

Stabilization: A classical approach to extend the appli-

cability of a matching criterion to non-Gaussian noises is to

apply a transformation to the noisy patches. The transforma-

tion is chosen so that the transformed patches follow a (close

to) Gaussian distribution with constant variance (hence their

name: variance-stabilization transforms). This leads for in-

stance to the homomorphic approach which maps multiplica-

tive noise to additive noise with stationary variance. This is

also the principle of Anscombe transform and its variants used

for Poisson noise. Given an application s which stabilizes the

variance for a specific noise distribution, stabilization-based

criteria can be obtained using (5) or (6) on the output of s:

SC(x,a) = C(s(x), s(a)) , (7)

SG(x,a) = G(s(x), s(a)) (8)

where the likelihood function p(s(x)|s(θ)) is assumed to be

a Gaussian distribution centered on s(θ) with a covariance

matrix σ2
I. As we will see, an advantage of this approach

compared to the GLR criterion is that it is usually simpler to

evaluate in closed-form, and then, leads to faster algorithms.

An important limitation of this approach lies nevertheless in

the existence of a stabilization function s. Beyond existence,

the performance of this approach may fall if the transformed

data distribution is far from the Gaussian distribution.



4. GLR IN DIFFERENT NOISE CONDITIONS

In this section, we provide closed-form expressions or iter-

ative schemes to evaluate the GLR in the case of Gaussian

noise, gamma noise and Poisson noise.

Proposition 1 (Gaussian noise). Consider that X follows a

Gaussian distribution such that

p(xk|θk) =
1√
2πσ

exp

(

− (xk − θk)
2

2σ2

)

,

and consider the class of affine transformations Tα,β(x) =
αx+ β1. In this case, we have

− logG(x,a) = (1− C(x,a)2)‖x− x̄1‖22
2σ2

.

Proof. For the Gaussian law, the MLE of θ is given by t̂ = x

so that

− logG(x,a) = ‖x− α̂a− β̂1‖22
2σ2

and α̂ and β̂ are the coefficients of the linear least squared

regression, i.e.,

α̂ =

∑N

k=1
(xk − x̄)(ak − ā)

∑N

k=1
(ak − ā)2

and β̂ = x̄− αā ,

with x̄ and ā the empirical mean of x and a. Injecting the

expression of α̂ and β̂ in the previous equation gives the pro-

posed formula.

Remark that for a fixed observation x and any a1,a2 ∈
D, if C(x,a1) < C(x,a2) then G(x,a1) < G(x,a2). In

particular, we have

argmax
a∈D

G(x,a) = argmax
a∈D

C(x,a)

= argmax
a∈D

sup
α,β

p(x|θ = Tα,β(a),H0)

which is the MLE under the hypothesisH0. However, beyond

equivalence of their maxima, the GLR is not equivalent to the

correlation even in the case of Gaussian noise. They have

different detection performance when the purpose is to take a

decision by thresholding their answer. Compared to the corre-

lation, GLR adapts its answer with respect to
‖x−x̄1‖2

2σ2 which,

in some sense, measures the signal-to-noise-ratio (SNR) in x.

For a fixed threshold τ anda, if the SNR of x is small enough,

GLR will put the pair (x,a) in correspondence whatever their

content. In fact, when the SNR is small enough, any template

up to a radiometric transform can explain the observed real-

ization. The correlation, which does not take into account

the noise in its definition, does not adapt to the SNR of x.

Worse, the correlation tends to increase when the SNR of x

decreases. We will see in Section 4 that such a behavior of

GLR is of main importance for a template matching task.

Proposition 2 (Gamma noise). Consider that X follows a

gamma distribution such that

p(xk|θk) =
LLxL−1

k

Γ(L)θLk
exp

(

−Lxk
θk

)

and consider the class of log-affine transformations

Tα,β(x) = βxα where (.)α is the element-wise power func-

tion. In this case, we have

− logG(x,a) = L

N
∑

k=1

log

(

β̂aα̂k
xk

)

where α̂ and β̂ can be obtained iteratively as

α̂i+1= α̂i −
∑

k(1− rk,i) log ak
∑

k rk,i(log ak)
2

and β̂i+1=
1

N

∑

k

xk

aα̂i

k

with rk,i = xk/(β̂ia
α̂i

k ), whatever the initialization.

Proof. For the gamma law, the MLE of θ is given by t̂ = x

so that

− logG(x,a) = L

N
∑

k=1

(

log
β̂aα̂k
xk

+
xk

β̂aα̂k
− 1

)

.

The function β 7→ ∑

k − log p(xk|βaαk ) has a unique

minimum at 1

N

∑

k
xk

aα

k

. Moreover, the function α 7→
∑

k − log p(xk|θk = βaαk ) is convex and twice differen-

tiable, therefore the Newton method can be used to esti-

mate α̂ whatever the initialization. Differentiating twice

α 7→ ∑

k − log p(xk|θk = βaαk ) gives the proposed itera-

tive scheme. Injecting the value of α̂ and β̂ in the previous

equation gives the proposed formula.

Unlike in the case of the Gaussian law, there is no closed-

form formula of GLR in the case of the gamma law and one

should rather compute it iteratively. Note that in practice only

a few iterations are required if one initializes using the log-

moment estimation, as suggested in [7], leading to the fol-

lowing initialization:

α̂0 =

√

max(
∑

k(log xk − log x)2 − ψ(1, L), 0)
∑

k(log ak − log a)2

β̂0 = exp
(

log x− ψ(L) + log(L)− αlog a
)

where log x = 1

N

∑

k log xk and log a = 1

N

∑

k log ak.

Proposition 3 (Poisson noise). Consider that X follows a

Poisson distribution so that

p(xk|θk) =
θxk

k e−θk

xk!

and consider the class of log-affine transformations

Tα,β(x) = βxα. In this case, we have
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Fig. 1. (a) Patch dictionary. (b) ROC curve obtained under Gaussian noise, (c) ROC curve obtained under gamma noise and (d)

ROC curve obtained under Poisson noise. In all experiments, the SNR over the whole dictionary is about −3dB.

− logG(x,a) =
N
∑

k=1

xk log

(

xk

β̂aα̂k

)

where α̂ and β̂ can be obtained iteratively as

α̂i+1= α̂i −
∑

k

(

β̂ia
α̂i

k − xk

)

log ak
∑

k β̂ia
α̂i

k (log ak)2
and β̂i+1=

∑

k xk
∑

k a
α̂i

k

whatever the initialization.

Proof. For the Poisson law, the MLE of θ is given by t̂ = x

such that

− logG(x,a) =
N
∑

k=1

(

xk log

(

xk

β̂aα̂k

)

+ β̂aα̂k − xk

)

.

The function β 7→ ∑

k − log p(xk|βaαk ) has a unique

minimum at
∑

k
xk∑

k
aα

k

. Moreover, the function α 7→
∑

k − log p(xk|θk = βaαk ) is convex and twice differen-

tiable, such that the Newton method can be used to es-

timate α̂ whatever the initialization. Differentiating twice

α 7→ ∑

k − log p(xk|θk = βaαk ) gives the proposed itera-

tive scheme. Injecting the value of α̂ and β̂ in the previous

equation gives the proposed formula.

Again there is no closed-form formula of GLR, but in

practice only a few iterations are required if one uses the

α̂ and β̂ that minimize the linear least square error between

logx and loga.

5. EVALUATION OF PERFORMANCE

5.1. Detection performance

We evaluate the relative performance of the correlation, GLR

and the variance stabilization based matching criteria on a dic-

tionary composed of 196 noise-free patches of size N=8×8.

The noise-free patches have been obtained using the k-means

on patches extracted from the classical 512× 512 Barbara

image. Each noisy patch x is a noisy realization of the noise-

free patches under Gaussian, gamma or Poisson noise with an

overall SNR of about −3dB. Each template a is a randomly

transformed atom of the dictionary up to an affine change of

contrast for the experiments involving Gaussian noise, and up

to a log-affine change of contrast under gamma or Poisson

noises. All criteria are evaluated for all pairs (x,a). The pro-

cess is repeated 20 times with independent noise realizations

and radiometric transformations.

The performance of the matching criteria is given in term

of their receiver operating characteristic (ROC) curve, i.e.,

the curve of PD with respect to PFA, where we have relaxed

the hypothesis test as

H0 : ∃α, β θ ≈ Tα,β(a) (null hypothesis),
H1 : ∀α, β θ 6≈ Tα,β(a) (alternative hypothesis)

and where θ ≈ Tα,β(a) reads as: on average, the noise-free

patch Tα,β(a) explains almost as well the realizations of X

than the actual noise-free patch θ, and is measured by:

DKL(θ ‖ Tα,β(a)) ≤ ν ,

where DKL is the Kullback-Leibler divergence and ν is a

small value (chosen here equal to 0.02). Results are given

in Figure 1. Even with Gaussian noise or with variance sta-

bilization, the correlation behaves poorly in noisy condition.

The generalized likelihood ratio (GLR) is the most powerful

criterion followed by the GLR with variance stabilization.

5.2. Application to dictionary-based denoising

We exemplify here the performance of GLR in a dictionary-

based denoising task. The dictionary D is considered describ-

ing a generative model of the patches x of the noisy image

as realizations of X following a distribution of parameter

θ = Tα,β(a) with a ∈ D. Under this model, we suggest

estimating each patch of the image as:



(a) (b) (c) (d)

Fig. 2. (a) Noisy input image damaged by gamma noise (PSNR=21.14). (b) Denoised image using the GLR after variance

stabilization (PSNR=27.42). (c) Denoised image using the GLR adapted to gamma noise (PSNR=27.53). (d) Image composed

of the atoms of the dictionary.

θ̂(x) =
1

Z

∑

a∈D

G(x,a)a⋆ with Z =
∑

a∈D

G(x,a) , (9)

where a⋆ = T
α̂,β̂

(a) and α̂ and β̂ are the MLE of α and

β used in the calculation of G(x,a). Equation (9) has a

Bayesian interpretation as the posterior mean estimator:

θ̂(x) =

∑

a∈D p(a
⋆|x)a⋆

∑

a∈D p(a
⋆|x) , (10)

considering a priori that the frequencies of the atoms of D are

uniform in the image. The posterior mean is known to mini-

mize the Bayesian least square error E
[

‖θ̂(X)− θ‖22 | θ
]

.

Figure 2 shows the denoising results obtained on a 128×
128 image damaged by gamma noise (with L = 10) using

(9) with the GLR adapted to gamma noise and with the GLR

adapted to a Gaussian law after variance stabilization1. The

dictionary D is chosen as the set of all atoms extracted from

a 128 × 128 image (a.k.a., an epitome) built following the

transparent dead leaves model of [9]. This model ensures the

dictionary to be shift invariant [10, 11] while representing in-

formation of different scales. As in [10, 11], we manipulate

epitomes in Fourier domain in order to evaluate eq. (9) effi-

ciently. Eventually, Fig. 2 shows that using the GLR for the

gamma law or for the Gaussian law after stabilizing the vari-

ance are both satisfactory visually and in term of PSNR.

6. CONCLUSION

Normalized correlation is widely used as a contrast-invariant

criterion for template matching. We have shown that the GLR

test provides a criterion that is more robust to noise. In the

case of Gaussian noise, this criterion involves both a normal-

ized correlation term and a term that evaluates the signal-to-

noise ratio of the noisy data. Under non-Gaussian noise dis-

tributions, criteria derived from the GLR test are generally not

known in closed form but require a few iterations to be evalu-

ated. When variance stabilization technique can be employed,

1when using stabilization, a debiasing step is performed following [8].

our numerical experiments show that good performance is

reached using Gaussian GLR after variance stabilization.
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