Template Matching with Noisy Patches: A Contrast-Invariant GLR Test
Abstract
Matching patches from a noisy image to atoms in a dictionary of patches is a key ingredient to many techniques in image processing and computer vision. By representing with a single atom all patches that are identical up to a radiometric transformation, dictionary size can be kept small, thereby retaining good computational efficiency. Identification of the atom in best match with a given noisy patch then requires a contrast-invariant criterion. In the light of detection theory, we propose a new criterion that ensures contrast invariance and robustness to noise. We discuss its theoretical grounding and assess its performance under Gaussian, gamma and Poisson noises.
Origin | Files produced by the author(s) |
---|
Loading...