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In this paper, we are interested in the global persistence regularity for the 2D incompressible Euler equations in some function spaces allowing unbounded vorticities. More precisely, we prove the global propagation of the vorticity in some weighted Morrey-Campanato spaces and in this framework the velocity field is not necessarily Lipschitz but belongs to the log-Lipschitz class L α L, for some α ∈ (0, 1).

Introduction

The motion of incompressible perfect flows evolving in the whole space is governed by the Euler system described by the equations (1)

   ∂ t u + u • ∇u + ∇P = 0, x ∈ R d , t > 0, div u = 0, u |t=0 = u 0 .
Here, the vector field u : R + × R d → R d denotes the velocity of the fluid particles and the scalar function P stands for the pressure. It is a classical fact that the incompressibility condition leads to a closed system and the pressure can be recovered from the velocity through some singular operator. The literature on the well-posedness theory for Euler system is very abundant and a lot of results were obtained in various function spaces. For instance, it is wellknown according to the work of Kato and Ponce [START_REF] Kato | Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue spaces L p s (R 2 )[END_REF] that the system (1) admits a maximal unique solution in the framework of Sobolev spaces, namely u 0 ∈ W s,p , with s > d p + 1.

This result was extended to Hölder spaces C s , s > 1 by Chemin [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF] and later by Chae [START_REF] Chae | Local existence and blow-up criterion for the Euler equations in the Besov spaces[END_REF] in the critical and sub-critical Besov spaces, see also [START_REF] Pak | Existence of solution for the Euler equations in a critical Besov space B 1 ∞,1 (R n )[END_REF]. We point out that the common technical ingredient of these contributions is the use of the commutator theory but with slightly different difficulties. Even though, the local theory for classical solutions is wellachieved, the global existence of such solutions is still now an outstanding open problem due to the poor knowledge of the conservation laws. However this problem is affirmatively solved for some special cases like the dimension two and the axisymmetric flows without swirl. It is worthy pointing out that for these known cases the geometry of the initial data plays a central role through the special structure of their vorticities. Historically, we can fairly say that Helmholtz was the first to point out in the seminal paper [START_REF] Helmholtz | Über Integrale der hydrodynamischen Gleichungen, welche der Wirbelbewegung entsprechen[END_REF] the importance of the vorticity ω curl u in the study of the incompressible inviscid flows. In that paper he provided the foundations of the vortex motion theory by the establishment of some basic laws governing the vorticity. Some decades later in the thirties of the last century, Wolibner proved in [START_REF] Wolibner | Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène, incompressible, pendant un temps infiniment long[END_REF] the global existence of sufficiently smooth solutions in space dimension two. Very later in the mid of the eighties, a rigorous connection between the vorticity and the global existence was performed by Beale, Kato and Majda in [START_REF] Beale | Remarks on the Breakdown of Smooth Solutions for the 3D Euler Equations[END_REF]. They proved the following blow up criterion: let u 0 ∈ H s , with s > d 2 + 1 and denote by T ⋆ the lifespan of the solution, then

T ⋆ < +∞ =⇒ ˆT⋆ 0 ω(τ ) L ∞ dτ = +∞.
An immediate consequence of this criterion is the global existence of Kato's solutions in space dimension two. This follows from the conservation of the vorticity along the particle trajectories, namely the vorticity satisfies the Helmholtz equation ( 2)

∂ t ω + u • ∇ω = 0.
Recall that in this case the vorticity can be assimilated to the scalar ω = ∂ 1 u 2 -∂ 2 u 1 and we derive from the equation (2) an infinite family of conservation laws. For instance, for every p ∈ [1, ∞] ∀t ≥ 0, ω(t) L p = ω 0 L p .

It seems that the standard methods used for the local theory cease to work in the limiting space H d 2 +1 due to the lack of embedding in the Lipschitz class. Nevertheless the wellposedness theory can be successfully implemented in a slight modification of this space in order to guarantee this embedding, take for example Besov spaces of type B d p +1 p,1 , for more details see for instance [START_REF] Chae | Local existence and blow-up criterion for the Euler equations in the Besov spaces[END_REF]. In this critical framework the BKM criterion cited before is not known to work and should be replaced by the following one,

T ⋆ < +∞ =⇒ ˆT⋆ 0 ω(τ ) B 0
∞,1 dτ = +∞. In this class of initial data the global well-posedness in dimension two is not a trivial task and was proved by Vishik in [START_REF] Vishik | Hydrodynamics in Besov Spaces[END_REF] through the use in an elegant way of the conservation of the Lebesgue measure by the flow. We mention that a simple proof of Vishik's result, which has the advantage to work in the viscous case, was given in [START_REF] Hmidi | Incompressible viscous flows in borderline Besov spaces[END_REF]. By using the formal L p conservation laws it seems that we can go beyond the limitation fixed by the general theory of hyperbolic systems and construct global weak solution for p > 1 but for the uniqueness we require in general the vorticity to be bounded. This was carefully done by Yudovich in his paper [START_REF] Yudovich | Nonstationary flow of an ideal incompressible liquid[END_REF] following the tricky remark that the gradient of the velocity belongs to all L p with slow growth with respect to p:

sup p≥2 ∇v(t) L p p < ∞.
The uniqueness part is obtained by performing energy estimate and choosing suitably the parameter p. In this new pattern the velocity belongs to the class of log-Lipschitz functions and this is sufficient to establish the existence and uniqueness of the flow map, see for instance [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF]. The real matter at this level of regularity concerns only the uniqueness part which requires minimal regularity for the velocity and the assumption of bounded vorticity is almost necessary in the scale of Lebesgue spaces. However slight improvements have been carried out during the last decades by allowing the vorticity to be unbounded. For example, in [START_REF] Yudovich | Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid[END_REF] Yudovich proved the uniqueness when the L p -norms of the initial vorticity do not grow much faster than ln p :

sup p≥2 ω 0 L p ln p < ∞.
We refer also to [START_REF] Delort | Existence de nappes de tourbillon en dimension deux[END_REF][START_REF] Diperna | Concentrations in regularization for 2D incompressible flow[END_REF] for other extensions on the construction of global weak solutions.

In [START_REF] Vishik | Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type[END_REF], Vishik accomplished significant studies for the existence and uniqueness problem with unbounded vorticities. He gave various results when the vorticity lies in the space B Γ ∩ L p 0 ∩ L p 1 , where p 0 < 2 < p 1 and B Γ is the borderline Besov spaces defined by

(3) sup n≥1 1 Γ(n) n q=-1 ∆ q ω 0 L ∞ < ∞.
As an example, it was shown that for Γ(n) = O(ln n) there exits a unique local existence but the global existence is only proved when Γ(n) = O(ln 1 2 n). Nevertheless the propagation of the initial regularity is not well understood and Vishik were only able to prove that for the positive times the vorticity belongs to the big class B Γ 1 with Γ 1 (n) = nΓ(n). We point out that the persistence regularity for spaces which are not embedded either in the Lipschitz class or in the spaces of conservation laws is in general a difficult subject. Recently, in [START_REF] Bernicot | On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data[END_REF] the first author and Keraani were able to find a suitable space of initial data called log-BMO space for which there is global existence and uniqueness without any loss of regularity. This space is strictly larger than the L ∞ space and much smaller than the usual BMO space.

The main goal of this paper is to continue this investigation and try to generalize the result of [START_REF] Bernicot | On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data[END_REF] to a new collection of spaces which are not comparable to the bounded class. To state our main result we need to introduce the following spaces. Definition 1. Let α ≥ 0 and f : R 2 → R be a locally integrable function.

(1) We say that f belongs to the space L α mo if

f L α mo sup B ball 0<r≤ 1 2 | ln r| α - ˆB f -- ˆB f < ∞. (2) Let F : [1, +∞[→ [0, +∞[. We say that f belongs to L α mo F if f L α mo F f L α mo + sup B 1 ,B 2 2r 2 ≤r 1 ≤ 1 2 |-´B2 f -- ´B1 f | F | ln(r 2 )| | ln(r 1 )| < ∞,
where r i denotes the radius of the ball B i , |B| denotes the Lebesgue measure of the ball B and the average -ˆB f is defined by

- ˆB f 1 |B| ˆB f (x)dx.
For the sake of a clear presentation we will first state a partial result and the general one will be given in Section 3, Theorem 3.

Theorem 1. Take F (x) = ln x and assume that ω 0 ∈ L p ∩ L α mo F with p ∈]1, 2[ and α ∈]0, 1[. Then the 2d Euler equations admit a unique global solution

ω ∈ L ∞ loc ([0, +∞[, L p ∩ L α mo 1+F
). Some remarks are in order.

Remark 1. The regularity of the initial vorticity measured in the space L α mo is preserved globally in time. However we bring up a slight loss of regularity in the second part of the L α mo F norm. Instead of F we need 1+F. This appears as a technical artefact and we believe that we can remove it.

Remark 2. The case α = 0 is not included in our statement since it corresponds to the result of [START_REF] Bernicot | On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data[END_REF]. However for α > 1 the vorticity must be bounded and the velocity is Lipschitz and in this case the propagation in the space L α mo can be done without the use of the second part of the space L α mo F . The limiting case α = 1 is omitted in our main result for the sake of simplicity but our computations can be performed as well with slight modifications especially when we deal with the regularity of the flow in Proposition 6.

The proof of Theorem 1 will be done in the spirit of the work of [START_REF] Bernicot | On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data[END_REF]. We establish a crucial logarithmic estimate for the composition in the space L α mo F with a flow which preserves Lebesgue measure. We prove in particular the key estimate

ω(t) L α mo ≤ C ω 0 L α mo F (1 + V (t)) ln(2 + V (t)),
where V (t) = ˆt 0 u(τ ) L 1-α L dτ and the space L 1-α L is defined in Section 2.4. We observe from the preceding estimate that we can propagate globally in time the regularity in the space L α mo and the second part of the space L α mo F is not involved for the positive times.

The remainder of this paper is organized as follows. In the next section we introduce some functional spaces and prove some of their basic properties. We shall also examine the regularity of the flow map associated to a vector field belonging to the class L α L. In Section 3 we shall establish a logarithmic estimate for a transport model and we will see how to derive some of their consequences in the study of the inviscid flows. The proof of the main results will be given at the end of this section. We close this paper with an appendix covering the proof of some technical lemmata.

Functional tools

This section is devoted to some useful tools. We will firstly recall some classical spaces like Besov spaces and BMO spaces and give a short presentation of Littlewood-Paley operators. Secondly, we introduce the spaces L α mo and L α mo F and discuss some of their important properties. We end this section with the study of log-Lipschitz spaces.

In the sequel we denote by C any positive constant that may change from line to line and C 0 a real positive constant depending on the size of the initial data. We will use the following notations: for any non-negative real numbers A and B, the notation A B means that there exists a positive constant C independent of A and B and such that A CB.

2.1. Littlewood-Paley operators. To define Besov spaces we first introduce the dyadic partition of the unity, for more details see for instance [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF]. There are two non-negative radial functions χ ∈ D(R 2 ) and ϕ ∈ D(R 2 \{0}) such that

χ(ξ) + q≥0 ϕ(2 -q ξ) = 1, ∀ξ ∈ R 2 , q∈Z ϕ(2 -q ξ) = 1, ∀ξ ∈ R 2 \{0}, |p -q| ≥ 2 ⇒ supp ϕ(2 -p •) ∩ supp ϕ(2 -q •) = ∅, q ≥ 1 ⇒ supp χ ∩ supp ϕ(2 -q •) = ∅.
Let u ∈ S ′ (R 2 ), the Littlewood-Paley operators are defined by

∆ -1 u = χ(D)u, ∀q ≥ 0, ∆ q u = ϕ(2 -q D)u and S q u = -1≤p≤q-1 ∆ p u.
We can easily check that in the distribution sense we have the identity

u = q∈Z ∆ q u, ∀u ∈ S ′ (R 2 ).
Moreover, the Littlewood-Paley decomposition satisfies the property of almost orthogonality:

for any u, v ∈ S ′ (R 2 ), ∆ p ∆ q u = 0 if |p -q| 2 ∆ p (S q-1 u∆ q v) = 0 if |p -q| 5.
Let us note that the above operators ∆ q and S q map continuously L p into itself uniformly with respect to q and p. We also notice that these operators are of convolution type. For example for q ∈ Z, we have

∆ -1 u = h * u, ∆ q u = 2 2q g(2 q •) * u, with g, h ∈ S, h(ξ) = χ(ξ), g(ξ) = ϕ(ξ).
Now we recall Bernstein inequalities, see for example [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF].

Lemma 1. There exists a constant C > 0 such that for all q ∈ N , k ∈ N and for any tempered distribution u we have

sup |α|=k ∂ α S q u L b C k 2 q k+2 1 a -1 b S q u L a for b a 1 C -k 2 qk ∆ q u L a sup |α|=k ∂ α ∆ q u L a C k 2 qk ∆ q u L a .
Using Littlewood-Paley operators, we can define Besov spaces as follows. For (p, r) ∈ [1, +∞] 2 and s ∈ R, the Besov space B s p,r is the set of tempered distributions u such that u B s p,r := 2 qs ∆ q u L p ℓ r < +∞.

We remark that the usual Sobolev space H s coincides with B s 2,2 for s ∈ R and the Hölder space C s coincides with B s ∞,∞ when s is not an integer. The following embeddings are an easy consequence of Bernstein inequalities,

B s p 1 ,r 1 ֒→ B s+2( 1 p 2 -1 p 1 ) p 2 ,r 2 , p 1 ≤ p 2 and r 1 ≤ r 2 .
Our next task is to introduce some new function spaces and to study some of their useful properties that will be frequently used along this paper.

2.2. The L α mo space. Here the abbreviation Lmo stands for logarithmic bounded mean oscillation.

Definition 2. Let α ∈ [0, 1] and f : R 2 → R be a locally integrable function. We say that f belongs to L α mo if

f L α mo := sup 0<r≤ 1 2 | ln r| α - ˆB f -- ˆB f + sup |B|=1 ˆB |f (x)|dx < ∞,
where the supremum is taken over all the balls B of radius r ≤ 1 2 . We observe that for α = 0 the space L α mo reduces to the usual Bmo space (the local version of BMO). It is also plain that the space L α mo contains the class of continuous functions f such that sup

0<|x-y|≤ 1 2 | ln |x -y|| α |f (x) -f (y)| < +∞,
that is the functions of modulus of continuity µ(r) = | ln r| -α . There are two elementary properties that we wish to mention:

• For α ∈]0, 1[, consider a ball B of radius r and take k ≥ 0 with 2 k r ≤ 1 2 , then - ˆB f -- ˆ2k B f f L α mo k ℓ=0 (| ln r| -ℓ) -α f L α mo | ln r| 1-α . (4) 
• For a ball B of radius 1 and k ≥ 1, 2 k B can be covered by 2 2k balls of radius 1, so

(5) - ˆ2k B |f | f L α mo .
Next, we discuss some relations between the L α mo spaces and the frequency cut-offs.

Proposition 1. The following assertions hold true.

(

) Let f ∈ L α mo, α ∈ [0, 1] and n ∈ N * , then ∆ n f L ∞ n -α f L α mo , 1 
and if α ∈ (0, 1)

S n f L ∞ n 1-α f L α mo .
(2) We denote by R ij := ∂ x i ∂ x j ∆ -1 the "iterated" Riesz transform. Then for every function f ∈ L α mo ∩ L p , with p ∈ (1, ∞) and α ∈ (0, 1),

S n R ij f L ∞ n 1-α f L α mo∩L p .
This proposition yields easily to the following corollary.

Corollary 1. We have the embedding L α mo ֒→ B Γ , see the definition (3), with

• Γ(N) = ln(N) if α = 1 • Γ(N) = N 1-α if α ∈ (0, 1).
Proof of Proposition 1.

(1) The Littlewood-Paley operator ∆ n corresponds to a convolution by 2 2n g(2 n •) with g a smooth function such that its Fourier transform is compactly supported away from zero. Therefore using the cancellation property of g, namely, ´R2 g(x)dx = 0, we obtain

∆ n f (x) = ˆR2 2 2n g(2 n (x -y))f (y)dy = ˆR2 2 2n g(2 n (x -y)) f (y) -- ˆB(x,2 -n ) f dy,
Denote by B B(x, 2 -n ) the ball of center x and radius 2 -n . Hence, due to the fast decay of g, it comes for every integer M

|∆ n f (x)| |B| -1 n-1 k=0 2 -kM ˆ2k B f (y) -- ˆB f dy + |B| -1 ∞ k=-1 2 -(n+k)M ˆ2n+k B f (y) -- ˆB f dy I+II.
To estimate the first sum I we use the first inequality of (4),

I ≤ n-1 k=0 2 -k(M -2) - ˆ2k B f -- ˆB f n-1 k=0 2 -k(M -2) - ˆ2k B f -- ˆ2k B f + n-1 k=0 2 -k(M -2) - ˆB f -- ˆ2k B f n-1 k=0 2 -k(M -2) (| ln(2 k-n )|) -α f L α mo + n k=0 2 -k(M -2) k ℓ=0 1 |n -ℓ| α f L α mo n-1 k=0 2 -k(M -2) 1 |k -n| α f L α mo + n-1 k=0 2 -k(M -2) k ℓ=0 1 |n -ℓ| α f L α mo (1 + n) -α f L α mo .
As to the second sum we combine ( 4) and ( 5)

- ˆ2n+k B f -- ˆB f ≤ - ˆ2n+k B f -- ˆ2n B f + - ˆ2n B f -- ˆB f f L α mo + n 1-α f L α mo f L α mo n 1-α .
Consequently,

II ≤ f L α mo k≥-1 2 -(n+k)(M -2) n 1-α n -α f L α mo .
The proof is now achieved by combining these two estimates. Now let us focus on the estimate of S n f . We write according to the first estimate (1) of the proposition

S n f L ∞ ≤ ∆ -1 f L ∞ + n-1 q=0 ∆ q f L ∞ ∆ -1 f L ∞ + n-1 q=0 1 (1 + q) α f L α mo ∆ -1 f L ∞ + n 1-α f L α mo .
So it remains to estimate the low frequency part. For this purpose we imitate the proof of ∆ n f L ∞ with the following slight modification

∆ -1 (f )(x) = ˆR2 h(x -y)f (y)dy = ˆR2 h(x -y) f (y) -- ˆB(x,1) f dy + - ˆB(x,1) f.
Therefore we get

∆ -1 f L ∞ f L α mo + sup x∈R 2 - ˆB(x,1) |f | f L α mo .
(2) This can be easily obtained by combining the first part of Proposition 1 with the continuity on the L p space of the localized Riesz transforms ∆ n ∂ i ∂ j ∆ -1 together with the help of Bernstein inequality, for n ≥ 1:

S n R ij f L ∞ ∆ -1 R ij f L ∞ + n-1 q=0 ∆ q f L ∞ R ij f L p + n-1 q=0 1 (1 + q) α f L α mo f L p + n 1-α f L α mo .
The proof of the desired result is now completed. Now we will introduce closed subspaces of the space L α mo which play a crucial role in the study of Euler equations as we will see later in the concerned section.

2.3.

The L α mo F space. It seems that the establishment of the local well-posedness for Euler equations in the framework of L α mo spaces is quite difficult and cannot be easily reached by the usual methods. What we are able to do here is to construct the solutions in some weighted L α mo spaces whose study will be the subject of this section. Before stating the definition of these spaces we need the following concepts. • We say that F belongs to the class A if there exists C > 0 such that:

(1) Divergence at infinity:

lim x→+∞ F (x) = +∞.
(2) Slow growth: ∀x, y ≥ 1

F (x y) ≤ C (1 + F (x)) (1 + F (y)).
(3) Lipschitz condition: F is differentiable and

sup x>1 |F ′ (x)| ≤ C. (4) Cancellation at 1: ∀x ∈ [0, 1], F (1 + x) ≤ Cx. • We say that F belongs to the class A ′ if it belongs to A and satisfies ˆ+∞ 2 1 x F (x) dx = +∞.
Remark 3.

(1) From the slow growth assumption we see that necessarily the function F should have at most a polynomial growth.

(2) The assumption (3) is only used through Lemma 4 and could be in fact relaxed for example to F (k) L ∞ < ∞ for some k ∈ N. But for the sake of simple presentation we limited our discussion to the case k = 1.

Example.

(1) For any β ∈]0, 1], the function x → x β -1 belongs to the class A \ A ′ . (2) For any β ≥ 1, the function x → ln β (x) belongs to the class A and this function belongs to the class A ′ only for β = 1. (3) The function x → ln x ln ln(e + x) belongs to the class A ′ .

We can now introduce the weighted L α mo spaces. Definition 4. Let α ∈ [0, 1] and F be in the class A. We define the space L α mo F as the set of locally integrable functions f : R 2 → R such that

f L α mo F f L α mo + sup B 1 ,B 2 |-´B2 f -- ´B1 f | F | ln(r 2 )| | ln(r 1 )| < +∞,
where the supremum is taken over all the pairs of balls B 2 (x 2 , r 2 ) and

B 1 (x 1 , r 1 ) in R 2 with 0 < r 1 ≤ 1 2 and 2B 2 ⊂ B 1 .
Here, for a ball B and λ > 0, λB denotes the ball that is concentric with B and whose radius is λ times the radius of B. Now we list some useful properties of these spaces that will be used later.

Remark 4.

(1) The space LBMO introduced in [START_REF] Bernicot | On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data[END_REF] corresponds to α = 0 and F = ln.

(

) Let F 1 , F 2 ∈ A such that F 1 F 2 . 2 
Then we have the embedding

L α mo F 1 ֒→ L α mo F 2 . (3) For every g ∈ C ∞ 0 (R 2 ) and f ∈ L α mo F one has g * f L α mo F ≤ g L 1 f L α mo F .
Indeed, this property is just the consequence of Minkowski inequality and that the L α mo F -norm is invariant by translation.

The main goal of the following proposition is to discuss the link between the space of bounded functions and the space L α mo F . We will see in particular that under suitable assumptions on F these spaces are not comparable. More precisely we get the following.

Proposition 2. Let α ∈ [0, 1] and f : R 2 → R be the radial function defined by

f (x) = ln(1 -ln |x|) if |x| ≤ 1 0, if |x| ≥ 1.
The following properties hold true.

(1) The function f belongs to L α mo.

(

) For F (x) = ln x, x ≥ 1, then f ∈ L α mo F . 2 
(3) For α ∈]0, 1] and F ∈ A with ln F , the spaces L ∞ and L α mo F are not comparable.

Proof.

(1) There are at least two ways to get this result. The first one uses Spanne's criterion, see Theorem 2 of [START_REF] Spanne | Some function spaces defined using the mean oscillations over cubes[END_REF] and we omit here the details. However the second one is related to Poincaré inequality which states that for any ball for B we have

- ˆB f -- ˆB f r - ˆB |∇f |.
For the example, it is obvious that |∇f (x)| 

r - ˆB |∇f | r -1 ˆr 0 1 1 -ln η dη 1 1 -ln r ,
which concludes the proof of f ∈ L α mo.

(2) We reproduce the arguments developed in [5, Proposition 3], where it is proven that

(6) - ˆB2 f -- ˆB1 f ln 1 + | ln(r 2 )| 1 + | ln(r 1 )| + O(| ln(r 1 )| -1 ) + O(| ln(r 2 )| -1 ). If A 1+| ln(r 2 )| 1+| ln(r 1 )| ≥ 2 then O(| ln(r 1 )| -1 ) + O(| ln(r 2 )| -1
) is bounded by ln(A) and so

- ˆB2 f -- ˆB1 f ln(A). If A ≤ 2, then ln(A) is equivalent to A-1 = ln(r 1 /r 2 )
1+| ln(r 1 )| (1+| ln(r 1 )|) -1 . The latter inequality follows from the fact r 2 ≤ r 1 /2. Therefore we get

O(| ln(r 1 )| -1 ) + O(| ln(r 2 )| -1 ) A -1 ≈ ln(A), which also gives - ˆB2 f -- ˆB1 f ln(A).
Finally this ensures that f ∈ L α mo F , for every α ∈ [0, 1].

(3) According to Remark 4 we get the embedding L α mo ln ֒→ L α mo F . Now by virtue of the second claim of Proposition 2 the function f which is clearly not bounded belongs to the space L α mo F . It remains to construct a function which is bounded but does not belong to the space L α mo F . Let D + be the upper half unit disc defined by

D + (x, y); x 2 + y 2 ≤ 1, y ≥ 0 .
By the same way we define the lower half unit disc D -. Let r ≤ 1, denote by B r the disc of center zero and radius r and let g = 1 D + be the characteristic function of D + . Easy computations yield g(x) --

ˆBr g = 1 2 , x ∈ B r ∩ D + -1 2 ,
x ∈ B r ∩ D - Thus we find for every r ∈ (0, 1)

- ˆBr |g -- ˆBr g| = 1 2 •
This shows that the function g does not belong to L α mo for every α > 0.

Our next aim is to go over some refined properties of the weighted lmo spaces. One result that we will proved and which seems to be surprising says that all the spaces L α mo F are contained in the space L α mo ln . This rigidity follows from the cancellation property of F at the point 1. More precisely, we shall show the following. Proof. Fix a function f ∈ L α mo F and a point x and set φ(r) = - ´B(x,r) f . From the definition of the space L α mo F combined with the cancellation property of F and its polynomial growth we get that for every r ∈ (0, 1 2 ) and k ≥ 1

φ(r) -φ(2 -k r) ≤ k-1 ℓ=0 φ(2 -ℓ r) -φ(2 -ℓ-1 r) k-1 ℓ=0 F 1 + ℓ + | ln r| ℓ + | ln r| k-1 ℓ=0 1 ℓ + | ln r| ln k + | ln r| | ln r| . Then for s < r 2 choose k ≥ 1 such that 2 -k-1 r ≤ s < 2 -k r and so |φ(r) -φ(s)| ≤ φ(r) -φ(2 -k r) + φ(s) -φ(2 -k r) .
As we have just seen, the first term is bounded by

ln k + | ln r| | ln r| ≈ ln 1 + | ln s| | ln r| .
The second term is bounded as follows :

φ(s) -φ(2 -k r) ≤ φ(s) -φ(2 -k+1 r) + φ(2 -k-1 r) -φ(2 -k r) F ln s ln(2 -k+1 r) + F 1 + k + | ln(r)| k + | ln(r)| 1 | ln s| ln | ln s| | ln r| ,
where we used the cancellation property of F and the fact that both B(x, 2s) and B(x, 2.2 -k r) are included into B(x, 2 -k+1 r). So combining these two previous estimates, it comes for every x, r < 1 2 and s ≤ r

2 (7) - ˆB(x,r) f -- ˆB(x,s) f ln | ln s| | ln r| .
Now let B 2 = B(x 2 , r 2 ) and B 1 = B(x 1 , r 1 ) two balls with 0 < r 1 ≤ 1 2 and 2B 2 ⊂ B 1 . We wish to estimate - ´B2 f -- ´B1 f . First, it is clear that the interesting case is when at least the radius r 2 is small, otherwise r 1 and r 2 are equivalent to 1 and there is nothing to prove. So assume that r 2 ≤ 1 100 , then it is only sufficient to study the case where r 1 ≤ 1 10 . So let us only consider this situation : r 2 ≤ 1 100 and r 1 ≤ 1 10 . Then we have

- ˆB2 f -- ˆB1 f - ˆB2 f -- ˆr1 r 2 B 2 f + - ˆr1 r 2 B 2 f -- ˆB1 f .
Applying [START_REF] Chae | Local existence and blow-up criterion for the Euler equations in the Besov spaces[END_REF], the first term is bounded by ln ln r 2 ln r 1 . The second term can be easily bounded by | ln(r 1 )| -1 . Indeed, the two balls r 1 r 2 B 2 and B 1 are comparable and of radius r 1 ≤ 1 10 . So there exists a ball B of radius r = 5r 1 , such that

2r 1 r 2 B 2 ∪ 2B 1 ⊂ B. Then we have - ˆr1 r 2 B 2 f -- ˆB1 f ≤ - ˆr1 r 2 B 2 f -- ˆB f + - ˆB f -- ˆB1 f F ln r 1 ln r 1 | ln r 1 | . Now, since r 2 ≤ 1 2 r 1 then ln ln r 2 ln r 1 = ln 1 + ln(r 2 /r 1 ) ln r 1 ≥ ln 1 + ln 2 | ln r 1 | ≥ C 1 | ln r 1 | • This concludes the proof of - ˆB2 f -- ˆB1 f ln 1 -ln(r 2 ) 1 -ln(r 1
) .

Hence we get the inclusion L α mo F ⊂ L α mo ln .

Then consider the specific function

F (•) = ln(1 + ln(| • |)).
It is easy to check that F ∈ A and the function f defined in Proposition 2 belongs to L α mo ln \ L α mo F . Indeed, ( 6) becomes an equality for this specific function f with balls B 1 , B 2 centered at 0.

The next proposition shows that for α = 1, the cancellation property of F at 1 (in L α mo F space) can be "forgotten", since it is already encoded in the Lmo space: Proof. Since F ≤ 1 + F , it follows that L α mo F ⊂ Lmo 1+F . Reciprocally, since for t ≥ 1, F (t) ≃ 1+F (t) (due to F ∈ A), following the proof of Proposition 3 to prove that Lmo 1+F ⊂ L α mo F it is sufficient to check that for every function f ∈ Lmo, every ball B of radius r < 1 4 then ( 8)

- ˆB f -- ˆ2B 1 | ln(r)| .
Indeed, the only difference between Lmo 1+F and L α mo F (where F is replaced by 1 + F ) is the loss of the cancellation property of F at the point 1 and this property was used in the previous proposition to check [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF]. However, here since α = 1 (8) automatically holds since the function belongs to Lmo. Then producing the same reasoning as for Proposition 3, we deduce that Lmo ⊂ Lmo ln , which yields Lmo = Lmo ln , since the other embedding is obvious.

2.4. Regularity of the flow map. We shall continue in this section our excursion into function spaces by introducing the log-Lipschitz class with exponent β ∈ (0, 1], denoted by L β L and showing some links with the foregoing L α mo spaces. We next examine the regularity of the flow map associated to a vector field belonging to this class L β L. We start with the following definition. We say that a function f belongs to the class

L β L if f L β L sup 0<|x-y|< 1 2 |f (x) -f (y)| |x -y| ln |x -y| β < ∞.
Take now a smooth divergence-free vector field u = (u 1 , u 2 ) on R 2 and ω = ∂ 1 u 2 -∂ 2 u 1 its vorticity. It is apparent from straightforward computations that (9) ∆u = ∇ ⊥ ω.

This identity leads through the use of the fundamental solution of the Laplacian to the socalled Biot-Savart law. Now we shall solve the equation ( 9) when the source term belongs to the space L α mo ∩ L p . Without going further into the details we restrict ourselves to the a priori estimates required for the resolution of this equation.

Proposition 5. Let α ∈ (0, 1), p ∈ (1, ∞) and ω ∈ L α mo ∩ L p be the vorticity of the velocity u given by the equation [START_REF] Delort | Existence de nappes de tourbillon en dimension deux[END_REF]. Then u ∈ L 1-α L and there exists an absolute constant C > 0 such that

u L 1-α L ≤ C ω L α mo∩L p .
Proof. Let N ∈ N ⋆ be a given number that will be fixed later and 0 < |x -y| < 1 2 . Using the mean value theorem combined with Bernstein inequality give

|u(x) -u(y)| ≤ |S N u(x) -S N u(y)| + 2 q≥N ∆ q u L ∞ |x -y| ∇S N u L ∞ + q≥N 2 -q ∆ q ω L ∞ .
From Proposition 1, it follows

|u(x) -u(y)| N 1-α ω L α mo∩L p |x -y| + ω L α mo q≥N 2 -q q -α ω L α mo∩L p N 1-α |x -y| + 2 -N .
By choosing 2 -N ≈ |x -y| we find

|u(x) -u(y)| |x -y| ln |x -y| 1-α ω L α mo∩L p .
This completes the proof of the proposition.

We recall Osgood Lemma whose proof can be found for instance in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], page 128.

Lemma 2 (Osgood Lemma). Let a, A > 0, Γ : [a, +∞[→ R + be a non-decreasing function and γ : [t 0 , T ] → R + be a locally integrable function. Let ρ : [t 0 , T ] → [a, +∞[ be a measurable function such that

ρ(t) ≤ A + ˆt t 0 γ(τ )Γ(ρ(τ )) ρ(τ ) dτ. Let M(y) = ˆy a 1 xΓ(x)
dx and assume that lim

y→+∞ M(y) = +∞. Then ∀t ∈ [t 0 , T ], ρ(t) ≤ M -1 M(A) + ˆt 0 γ(τ )dτ .
In what follows we discuss the regularity of the flow map associated to a vector field belonging to the log-Lipschitz class. This precise description will be of great interest in the proof of the main result.

Proposition 6. Let u be a smooth divergence-free vector field belonging to L 1-α L, with α ∈ (0, 1) and ψ be its flow, that is the solution of the differential equation,

∂ t ψ(t, x) = u(t, ψ(t, x)), ψ(0, x) = x.
Then, there exists C C(α) > 1 such that for every t ≥ 0

|x -y| < ℓ(t) =⇒ |ψ ±1 (t, x) -ψ ±1 (y)| ≤ |x -y|e CV (t)| ln |x-y|| 1-α ,
where ℓ(t) ∈ (0, 1 2 ) is given by

ℓ(t)e CV (t)| ln(ℓ(t))| 1-α = 1 2 and V (t) ˆt 0 u(τ ) L 1-α L dτ.
Here we denote by ψ 1 the flow ψ and ψ -1 its inverse.

Proof. It is well-known that for every t ≥ 0 the mapping x → ψ(t, x) is a Lebesgue measure preserving homeomorphism (see [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF] for instance). We fix x = y such that |x -y| < 1 2 and we define for t ≥ 0, z(t) |ψ(t, x)ψ(t, y)|. Clearly the function z is strictly positive and satisfies

z(t) ≤ z(0) + C ˆt 0 u(τ ) L 1-α L | ln z(τ )| 1-α z(τ )dτ, as soon as z(τ ) ≤ 1 2 , for all τ ∈ [0, t). Let T > 0 and I t ∈ [0, ℓ(T )]\ ∀τ ∈ [0, t], z(τ ) ≤ 1 2
, where the value of ℓ(T ) has been defined in Proposition 6. We aim to show that the set I is the full interval [0, ℓ(T )]. First I is a non-empty set since 0 ∈ I and it is an interval according to its definition. The continuity in time of the flow guarantees that I is closed. It remains to show that I is an open set of [0, ℓ(T )]. From the differential equation,

∀t ∈ I, z(t) ≤ z(0) + C ˆt 0 u(τ ) L 1-α L (-ln z(τ )) 1-α z(τ )dτ.
Accordingly, we infer

-| ln z(t)| α + | ln z(0)| α ≤ CαV (t), and this yields | ln z(t)| ≥ | ln z(0)| α -CαV (t) 1 α . despite that (10) CαV (t) ≤ | ln z(0)| α .
Consequently

z(t) ≤ e -| ln z(0)| α -CαV (t) 1 α
. By virtue of Taylor formula and since 1 α -1 > 0 we get

-| ln z(0)| α -CαV (t) 1 α = -| ln z(0)| + 1 α ˆCαV (t) 0 | ln z(0)| α -x 1 α -1 dx ≤ ln z(0) + CV (t)| ln z(0)| 1-α .
It follows that z(t) ≤ z(0)e CV (t)| ln z(0)| 1-α . Therefore to show that I is open it suffices to make the assumption

z(0)e CV (t)| ln z(0)| 1-α < 1 2 ,
which is satisfied when z(0) < ℓ(T ). This last claim follows from the increasing property of the function x → xe CV (t)| ln x| 1-α on the interval [0, x c ] where x c < 1 is the unique real number satisfying | ln

x c | α = C(1 -α)V (t).
From the definition of ℓ(t) we can easily check that ℓ(T ) < x c and ( 10) is satisfied.

The proof of the assertion for ψ -1 can be derived by performing similar computations for the generalized flow defined by ∂ t ψ(t, s, x) = u(t, ψ(t, s, x)), ψ(s, s, x) = x and the flow ψ -1 is nothing but x → ψ(0, t, x).

Regularity persistence

The main object of this section is to examine the propagation of the initial regularity measured in the spaces L α mo F for the following transport model governed by a divergence-free vector field, ( 11)

   ∂ t w + u • ∇w = 0, x ∈ R 2 , t > 0, div u = 0, w |t=0 = f.
Along the first part of this study we shall not prescribe any relationship between the solution w and the vector field u. Once this study is achieved, we will apply this result for the inviscid vorticity where the vector field is induced by the vorticity. This will enable us not only to prove Theorem 1 but also to state more general results on the local and global theory extending the special case of F (x) = ln x.

3.1.

Composition in the space L α mo F . We begin with the following observation concerning the structure of the solutions to [START_REF] Gérard | Résultats récents sur les fluides parfaits incompressibles bidimensionnels[END_REF]. Under reasonable assumptions on the regularity of the velocity, the solution can be recovered from its initial data and the flow ψ according to the formula w(t) = f • ψ -1 (t). Thus the study of the propagation in the space L α mo reduces to the composition by a measure preserving map in this space. We should note that this latter problem can be easily solved as soon as the map is bi-Lipschitz (see [START_REF] Bernicot | Sharp constants for composition with a measure-preserving map[END_REF] for composition in some BMO-type spaces by a bi-Lispchitz measure preserving map). In our context the flow is not necessarily Lipschitz but in some sense very close to this class. It is apparent according to Proposition 6 that ψ belongs to the class C s for every s < 1. It turns out that working with a flow under the Lipschitz class has a profound effect and makes the composition in the space L α mo very hard to get. This is the principal reason why we need to use the weighted subspace L α mo F in order to compensate this weak regularity and consequently to well-define the composition. Our result reads as follows.

Theorem 2. Let α ∈ (0, 1), F ∈ A and consider a smooth solution w of the equation (11) defined on [0, T ]. Then there exists a constant C C(α) > 0 such that the following holds true:

(1) For every t ∈ [0, T ]

w(t) L α mo ≤ C f L α mo F 1 + V (t) F (2 + V 1 α (t)), with V (t) ˆt 0 u(τ ) L 1-α L dτ .
(2) For every t ∈ [0, T ]

w(t) L α mo 1+F ≤ C f L α mo F F (2 + V 1 α (t)).
Before giving the proof, some remarks are in order.

Remark 5.

(1) According to the first result of the foregoing theorem, the estimate of the solution in the space L α mo does not involve the weighted part of the space L α mo F , which is only required for the initial data.

(2) The estimate of the second part of Theorem 2 is subjected to a slight loss. Indeed, instead of F we put 1 + F . This is due to the fact that we need some cancellations for the difference of two averages and to avoid this loss more sophisticated analysis should be carried out and we believe that this loss is a technical artifact.

Proof of Theorem 2. (1) The proof will be done in the spirit of the recent work [START_REF] Bernicot | On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data[END_REF]. First we observe that the solution is given by w(t) = f • ψ -1 (t), where ψ is the flow associated to the vector field u. Therefore the estimate in the space L α mo reduces to the stability by the right composition with a homeomorphism preserving Lebesgue measure with the prescribed regularity given in Proposition 6. Since the flow ψ and its inverse share the same properties and the estimates that will be involved along the proof, we prefer for the sake of simple notation to use in the composition with ψ instead of ψ -1 . Let B = B(x 0 , r) be the ball of center x 0 and radius r ∈ (0, 1 2 ). We intend to give a suitable estimate for the quantity

I r | ln r| α B |f • ψ - B (f • ψ)|dx.
To reach this goal we use in a crucial way the local regularity of the flow stated before in Proposition 6. The estimate of I r will require some discussions depending on a threshold value for r denoted by r t . The identification of r t is related to hidden arguments that will be clarified during the proof. To begin with, fix a sufficiently large constant δ > max( √ 2, 2C) (where C is given by Proposition 6) and define r t as the unique solution in the interval (0, 1 2 ) of the following equation [START_REF] Giga | 2D Navier-Stokes flow with measures as initial vorticity[END_REF] δr t e δV (t)| ln(rt)| 1-α = r

1 2
t . The existence and uniqueness can be easily proven by studying the variations of the function [START_REF] Helmholtz | Über Integrale der hydrodynamischen Gleichungen, welche der Wirbelbewegung entsprechen[END_REF] h(r) δr

1 2 e δV (t)| ln(r)| 1-α , r ∈ (0, 1/2)
and using the fact that h( 1 2 ) > 1 since δ > √ 2. We point out that h is non-decreasing in the interval [0, r t ] and h(r) ≤ 1 in this range. We have also the bound ( 14)

C ′ + C ′ V 1 α (t) ≤ | ln r t | ≤ C + CV 1 α (t), for some C, C ′ > 0.
Indeed, set X =ln r t then from [START_REF] Giga | 2D Navier-Stokes flow with measures as initial vorticity[END_REF] and Young inequality

X = 2 ln δ + 2δV (t)X 1-α ≤ C 1 + C 1 V 1 α (t) + 1 2 X.
This gives the estimate of the right-hand side of [START_REF] Hmidi | Incompressible viscous flows in borderline Besov spaces[END_REF]. For the left one it is apparent from the equation on X and its positivity that

X ≥ 2 ln δ and X ≥ 2δV (t)X 1-α . Thus X ≥ ln δ + 1 2 (2δ) 1 α V 1 α (t),
which concludes the proof of [START_REF] Hmidi | Incompressible viscous flows in borderline Besov spaces[END_REF]. Before starting the computations for I r we need to introduce the radius (15) r ψ δ r e δV (t)| ln(r)| 1-α . Now we will check that for r ∈ (0, r t ]

(16) 1 ≤ | ln r| | ln r ψ | ≤ 2.
The inequality of the left-hand side can be deduced as follows. First it is obvious that 0 < r < r ψ and it remains to show that r ψ < 1 2 whenever r ∈]0, r t ]. For this purpose we show by using simple arguments that the function k : r → r ψ is non-decreasing in the interval (0, r t ]. From this latter fact and ( 12) we find r ψ ≤ k(r t ) = r

1 2 t ≤ 1 2 .
Let us now move to the second inequality of ( 16) and for this aim we start with studying the function

g(x) = -x -x + a + bx 1-α , x ≥ -ln r t ; a ln δ, b δV (t).
We observe that the quotient | ln r| | ln r ψ | coincides with g(-ln r). By easy computations we get

g ′ (x) = - a + bα x 1-α -x + a + bx 1-α 2 < 0.
This yields in view of ( 12) and ( 14)

g(x) ≤ g(-ln r t ) ≤ ln r t ln rt 2 ≤ 2.
The estimate of I r depends whether the radius r is smaller or larger than the critical value r t . -The collection of double balls is a bounded covering:

ψ(B) ⊂ j 2O j .
-The collection is disjoint and for all j, O j ⊂ ψ(B).

-The Whitney property is verified: the radius r j of O j satisfies

r j ≈ d(O j , ψ(B) c ).
We set B B(ψ(x 0 ), r ψ ) then according to Proposition 6 (and δ > 2ρ(α)) we have ψ(B) ⊂ B.

It is easy to see from the invariance of the Lebesgue measure by the flow that

B f • ψ - B (f • ψ) dx = ψ(B) f - ψ(B) f dx ≤ 2 ψ(B) f - B f dx.
Using the preceding notations

| ln r| α ψ(B) f - B f | ln r| α |B| j |O j | 2O j f - B f I 1 + I 2 , with I 1 | ln r| α |B| j |O j | 2O j f - 2O j f I 2 | ln r| α |B| j |O j | 2O j f - B f .
On one hand, since

|O j | ≤ |B| and r j ≤ r < 1 2 (due to |O j | ≤ |ψ(B)| = |B|) then I 1 ≤ 1 |B| j |O j | | ln r| α | ln(r j )| α f L α mo ≤ f L α mo .
On the other hand, since d(O j , B) ≤ r ψ and r B = r ψ , it ensures that

O j ⊂ r ψ r j O j
and hence the two balls Q 1 r ψ r j O j and B are comparable1 . This entails

Q 1 f -- ˆB f 1 | ln(r ψ )| α f L α mo .
We point out that we have used the fact that for 0 < r < r t the radius r ψ of B is smaller than 1 2 . Moreover according to the definition of the space L α mo F , it comes since r

Q 1 ≤ 1 2 - ˆ2O j f -- ˆQ1 f f L α mo F F ln r j ln r Q 1 f L α mo F F ln r j ln r ψ .
It follows that

- ˆ2O j f -- ˆB f f L α mo F | ln r ψ | -α + F ln r j ln r ψ .
Together with [START_REF] Lieb | Analysis[END_REF] this estimate yields

- ˆ2O j f -- ˆB f f L α mo F | ln r| -α + F ln r j ln r ψ .
Consequently,

I 2 f L α mo F + f L α mo F | ln r| α |B| j |O j |F ln r j ln r ψ .
For every k ∈ N we set

u k e -(k+1) r<r j ≤e -k r |O j |, so that I 2 f L α mo F 1 + | ln r| α |B| k≥0 u k F -1 -k + ln r ln(r) + a + b| ln r| 1-α (17) f L α mo F + I 3 .
with [START_REF] Lopes Filho | Existence of vortex sheets with reflection symmetry in two space dimensions[END_REF] a ln δ, b δV (t).

The numbers a and b appeared before in the definition of r ψ given in [START_REF] Kato | Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue spaces L p s (R 2 )[END_REF]. Let N be a real number that will be judiciously fixed later. We split the sum in the right-hand side of ( 17) into two parts

I 3 = k≤N (...) + k>N (.....) II 1 + II 2 .
Since u k ≤ |B| and F is non-decreasing then

II 1 | ln r| α F 1 + N + | ln r| | ln(r)| -A -B| ln r| 1-α . ( 19 
)
To estimate the term II 2 we need a refined bound for u k given below and whose proof will be postponed to the end of this paper in Lemma 3 of the Appendix. [START_REF] Pak | Existence of solution for the Euler equations in a critical Besov space B 1 ∞,1 (R n )[END_REF] u k δr 2 e -k e δ(V (t)+1)(k-ln(r)) 1-α .

By virtue of [START_REF] Pak | Existence of solution for the Euler equations in a critical Besov space B 1 ∞,1 (R n )[END_REF] and Lemma 4 we get

II 2 | ln r| α e -N e b(N -ln r) 1-α F 1 + N + | ln r| | ln r| -a -b| ln r| 1-α + e -N e b(N -ln r) 1-α | ln r| α | ln r| -a -b| ln r| 1-α • (21)
So we choose N = N(r) such that e -N e b(N -ln r) 1-α = 1. Under this assumption we get

II 1 + II 2 | ln r| α F 1 + N + | ln r| | ln r| -a -b| ln r| 1-α + | ln r| α | ln r| -a -b| ln r| 1-α •
The condition on N is also equivalent to

N = 1 + b(N + | ln r|) 1-α .
Then from Young inequality

N 1 + b 1 α + b| ln r| 1-α (22)
and therefore

1 + N + | ln r| | ln r| -a -b| ln r| 1-α -1 = 1 + N + a + b| ln r| 1-α | ln r ψ | 1 + b 1 α + b| ln r| 1-α | ln r ψ | •
Using the cancellation property of F at the point 1, that is sup x∈(0,1)

F (1 + x) x < ∞, together
with [START_REF] Lieb | Analysis[END_REF], it comes

| ln r| α F 1 + N + | ln r| | ln r| -a -b| ln r| 1-α | ln r| α 1 + b 1 α + b| ln r| 1-α | ln r ψ | | ln r| α + | ln r| α b 1 α + b| ln r| | ln r| 1 + b + b 1 α | ln r| α-1 .
Since r ∈ (0, r t ] and according to ( 14) we find

1 + b + b 1 α | ln r| α-1 1 + V (t)
and so

| ln r| α F 1 + N + | ln r| | ln r| -a -b| ln r| 1-α (1 + V (t)) .
It follows that

II 1 + II 2 1 + V (t) + | ln r| α | ln r| -a -b| ln r| 1-α .
To estimate the last term we use ( 16)

| ln r| α | ln r| -a -b| ln r| 1-α = | ln r| α | ln r ψ | ≤ | ln r| α-1
1.

Finally, we get

(23) sup 0<r≤rt | ln r| α ψ(B) f - B f + I r f L α mo F (1 + V (t)) .
Let us now move to the second case. Case 2: r t ≤ r ≤ 1 2 . According to ( 14)

| ln r| ≤ | ln r t | 1 + V 1 α (t) (24)
which yields in turn [START_REF] Vishik | Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type[END_REF] | ln r|

α B f • ψ - B f • ψ 1 + V (t) ψ(B) |f |.
Let Õj denote the ball which is concentric to O j and whose radius is equal to 1/2. We can write by the definitions,

ψ(B) |f | ≤ 1 |B| j |O j | 2O j f - Õj f + 1 |B| j∈N |O j | Õj |f | ≤ 1 |B| j |O j | 2O j f - Õj f + sup |B|=1 B |f | ≤ f L α mo F 1 |B| j |O j |F (-ln r j ) + f L α mo .
Now reproducing the same computations as for the first case leads to 1

|B| j |O j |F (-ln r j ) ≤ 1 |B| k∈N u k F (k -ln r) F (N -ln r) 1 + e -N e b(N -ln(r)) 1-α .
This computation still holds as soon as e -N r ≤ ℓ(t), since we use Proposition 6 for the scales e -k r with k ≥ N. We choose N such that e -N e b(N -ln(r)) 1-α = 1 and we check that this choice legitimates the previous estimate since e -N r ≤ ℓ(t). Consequently, we get from ( 22) and ( 24)

N + | ln r| 1 + V 1 α ( 
t). We then obtain [START_REF] Vishik | Hydrodynamics in Besov Spaces[END_REF] 

ψ(B) |f | F 2 + V 1 α (t) f L α mo F and I r | ln r| α ψ(B) f • ψ - B f 1 + V (t) F 2 + V 1 α (t) f L α mo F . (27) 
Finally, we have obtained for r ∈ [r t , 1/2]

I r 1 + V (t) F 2 + V 1 α (t) f L α mo F .
Putting together the estimates of the case 1 and the case 2 yields

(28) f • ψ L α mo 1 + V (t) F 2 + V 1 α (t) f L α mo F .
(2) To deal with the second term in the L α mo F -norm we will make use of the arguments developed above for L α mo part. Take B 2 = B(x 2 , r 2 ) and B 1 = B(x 1 , r 1 ) two balls with r 1 ≤ 1 and 2B 2 ⊂ B 1 and let us see how to estimate the quantity

J |-´B2 f • ψ -- ´B1 f • ψ| 1 + F ( ln r 2 ln r 1 ) • 
There are different cases to consider.

Case 1:

r t ≤ r 1 ≤ 1 2 .
Using ( 26)

|-´B1 f • ψ| 1 + F ( ln r 2 ln r 1 ) ≤ - ˆψ(B 1 ) |f | F 2 + V 1 α (t) f L α mo F .
If r 2 > r t then by repeating the same arguments for the quantity involving B 2 , it comes

J F 2 + V 1 α (t) f L α mo F .
If r 2 ≤ r t then we estimate the average on ψ(B 2 ) by using ( 23) and ( 14)

- ˆψ(B 2 ) |f | ≤ - ˆψ(B 2 ) f -- ˆB 2 f + - ˆB 2 f | ln r 2 | -α (1 + V (t)) f L α mo F + - ˆB 2 f f L α mo F + - ˆB 2 f ,
where Bi B(ψ(x i ), r i,ψ ), i = 1, 2 and r i,ψ is the radius associated to r i , which was introduced in [START_REF] Kato | Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue spaces L p s (R 2 )[END_REF]. It remains to treat the last term of the above inequality. For this goal we write

- ˆB 2 f - ˆB 2 f -- ˆB(ψ(x 2 ),1/2) f + sup B,r= 1 2 - ˆB f F (| ln r 2,ψ |) f L α mo F + f L α mo .
This yields in view of ( 16) and the Definition 3

|-´B2 f • ψ| 1 + F ( ln r 2 ln r 1 ) 1 + F (| ln r 2,ψ |) 1 + F ( ln r 2 ln r 1 ) f L α mo F 1 + F (| ln r 2 |) 1 + F ( ln r 2 ln r 1 ) f L α mo F 1 + F (ln r 1 ) f L α mo F . Since r 1 ∈ (r t , 1 
2 ) then using ( 14) we find

|-´B2 f • ψ| 1 + F ( ln r 2 ln r 1 ) F (2 + V 1 α (t)) f L α mo F . Finally we get for r 2 ≤ r t J F 2 + V 1 α (t) f L α mo F .
To achieve the proof of the second part of Theorem 2, it remains to analyze the last case:

Case 2: 0 < r 1 ≤ r t .
We decompose J as follows:

J = J 1 + J 2 + J 3 1 + F ( ln r 2 ln r 1 ) , with J 1 |- ˆψ(B 2 ) f -- ˆB 2 f | + |- ˆψ(B 1 ) f -- ˆB 1 f | J 2 |- ˆB 2 f -- ˆ2 B1 f | J 3 |- ˆB 1 f -- ˆ2 B1 f |.
The first term J 1 can be handled as for [START_REF] Spanne | Some function spaces defined using the mean oscillations over cubes[END_REF] and we get by ( 14)

- ˆψ(B 2 ) f -- ˆB 2 f + - ˆψ(B 1 ) f -- ˆB 1 f f L α mo F 1 + V (t) | ln r 2 | -α + | ln r 1 | -α f L α mo F 1 + V (t) | ln r t | -α f L α mo F which gives in turn J 1 1 + F ( ln r 2 ln r 1 ) f L α mo F . Since B2 ⊂ 2 B1 and r 2 B1 ≤ 1 2 , then J 2 F ln r 2,ψ ln r 1,ψ f L α mo F .
Hence we get from the property (2) of the Definition 3 combined with ( 16)

J 2 1 + F ( ln r 2 ln r 1 ) ≤ F ln r 2,ψ ln r 1,ψ 1 + F ( ln r 2 ln r 1 ) f L α mo F 1 + F ln r 2,ψ ln r 2 ln r 1 ln r 1,ψ f L α mo F f L α mo F .
Since B1 and 2 B1 are comparable and r 2 B1 ≤ 1 2 we easily have J 3 1 + F ( ln r 2 ln r 1 )

J 3 f L α mo F .
The proof of Theorem 2 is now achieved.

3.2. Application to Euler equations. In this section we shall deal with the local and global well-posedness theory for the two dimensional Euler equations in the space L α mo F . This project will be performed through the use of the logarithmic estimate developed in Theorem 2. We shall now state a more general result than Theorem 1.

Theorem 3. Let ω 0 ∈ L α mo F ∩ L p with α ∈ (0, 1) and p ∈ (1, 2). Then, (1) If F belongs to the class A, there exists T > 0 such that the system (1) admits a unique local solution ω ∈ L ∞ ([0, T ]; L α mo 1+F ).

(2) If F belongs to the class A ′ , the system (1) admits a unique global solution ω ∈ L ∞ loc (R + ; L α mo 1+F ). Proof. The proof is based on the establishment of the a priori estimates which are the cornerstone for the existence and the uniqueness parts. Here we omit the details about the existence and the uniqueness which are classical and some of their elements can be found for example in the paper [START_REF] Bernicot | On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data[END_REF].

(1) Using Theorem 2 one has ( 29)

ω(t) L α mo∩L p ω 0 L α mo F ∩L p 1 + V (t)F 2 + V 1 α (t)
with V (t) = ˆt 0 u(τ ) L 1-α L dτ. Combining this estimate with Proposition 5 implies after integration in time (30)

V (t) ω 0 L α mo F ∩L p t + ˆt 0 V (τ )F (2 + V 1 α (τ ))dτ .
According to the Remark 3 the function F has at most a polynomial growth: F (2 + x) 1 + x β . Therefore V (t) ω 0 L α mo F ∩L p t + t V (t) + t V 1+ β α (t)

and consequently we can find T T ( ω 0 L α mo F ∩L p ) > 0 such that ∀t ∈ [0, T ], V (t) ≤ 1.

Plugging this estimate into [START_REF] Wolibner | Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène, incompressible, pendant un temps infiniment long[END_REF] gives ω(t) L α mo∩L p ω 0 L α mo F ∩L p . Now from Theorem 2 we get also ω(t) L α mo 1+F ∩L p ω 0 L α mo F ∩L p .

(2) Fix T > 0 an arbitrary number, then from (30) we deduce This gives the global a priori estimates ∀t ≥ 0, V (t) ≤ M -1 M(A t ) + C f L α mo F t . Proof. Let R n := k≥n e -k and v n := e A(n+B) 1-α F ( n+C D ). According to Abel's formula

∀ t ∈ [0, T ], V (t) ≤ C ω 0 L α mo F ∩L p T + C ω 0 L α mo F ∩L p ˆt 0 V (τ )F (2 + V 1 α ( 
w n = R n v n + k≥n+1 R k (v k -v k-1 ).
It is clear that 0 < R n ≤ e -n 1-e -1 and Reproducing the same computations with F (x) = 1, M = 0, we get k≥n e -k+A(k+B) 1-α ≤ 1 1e -1 e -n+A(n+B) 1-α + A(1α) (1e -1 )(n + B) α k≥n e -k+A(k+B) 1-α .

w n ≤ 1 1 -e -1 e -n+A(n+B) 1-α F ( n + C D ) + 1 1 -e -1

Assuming that

A(1α) (1e -1 )(n + B) α ≤ 1 2 ,

we get k≥n e -k+A(k+B) 1-α ≤ 2 1e -1 e -n+A(n+B) 1-α and w n ≤ 2 1e -1 e -n+A(n+B) 1-α F ( n + C D ) + 4M (1e -1 ) 2 D e -n+A(n+B) 1-α .

Since 1 1-e -1 ≤ 2 we deduce w n ≤ 4e -n+A(n+B) 1-α F ( n + C D ) + 16M D e -n+A(n+B) 1-α .

Definition 3 .

 3 Let F : [1, +∞[→ [0, +∞[ be a non-decreasing continuous function.

1 |x|( 1 -

 11 ln |x|) • So the quantity of the right-hand side in the Poincaré inequality is maximal for a ball B centered at 0 and consequently it comes

Proposition 3 .

 3 Let α ∈ (0, 1] and F ∈ A. Then L α mo F ֒→ L α mo ln . Let F : [1, +∞) → R + defined by F (x) = ln(1 + ln x) then F ∈ A and L α mo F L α mo ln .

Proposition 4 .

 4 Let α = 1 and F ∈ A. Then L α mo F = Lmo 1+F . Moreover, we have Lmo = Lmo ln .

Case 1 :

 1 0 < r ≤ r t . As ψ is a homeomorphism which preserves Lebesgue measure then ψ(B) is an open connected set with |ψ(B)| = |B|. Let us consider a Whitney covering of this open set ψ(B), that consists in a collection of balls (O j ) j such that:

1 x F (2 + x 1 α

 11 τ ))dτ and introduce the function M : [a, +∞[→ [0, +∞[ defined byM(y) = ˆy a ) dx, a = inf(A T , 1) A T = C ω 0 L α mo F ∩L p T.Since F belongs to the class A ′ we can easily check thatˆ+∞ 0, T ], V (t) ≤ M -1 M(A T ) + C f L α mo F t .

Lemma 4 .

 4 Let α ∈]0, 1[, A, B, C, D > 0 and F : [1, +∞[→ R + be a differentiable nondecreasing function such that C > D and F ′ 4e -n+A(n+B) 1-α F ( n + C D ) + 16M D e -n+A(n+B) 1-α .

k≥n+1eR

  -k |v kv k-1 |.It remains to estimate the last sum. For this purpose we use the mean value theorem combined with the nondecreasing property of F|v kv k-1 | ≤ A(1α) (k -1 + B) α e A(k+B) 1-α F ( k |v kv k-1 | ≤ A(1α) (1e -1 )(n + B) α w n+1 + M (1e -1 )D k≥n+1 e -k+A(k+B) 1-α ≤ A(1α) (1e -1 )(n + B) α w n + M (1e -1 )D k≥n e -k+A(k+B) 1-α .This leads tow n ≤ 1 1e -1 e -n+A(n+B) 1-α F ( n + C D )+ A(1α) (1e -1 )(n + B) α w n + M (1e -1)D k≥n e -k+A(k+B) 1-α .

Here we say that two balls Q 1 and Q

are comparable if Q 1 ⊂ 4Q 2 and Q 2 ⊂ 4Q 1 .
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Inserting this estimate into [START_REF] Wolibner | Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène, incompressible, pendant un temps infiniment long[END_REF] allows to get a global estimate for vorticity. Hence, there exists a continuous function G : R + → R + related to M such that (31)

According to Theorem 2 and the preceding estimate

This concludes the a priori estimates.

Appendix A. Technical lemmata

We will prove the following lemma used before in the inequality (20).

Lemma 3. There exists a universal implicit constant such that for r ∈ (0, r t ] and for k ∈ N,

Proof. If we denote by c 0 ≥ 1 the implicit constant appearing in Whitney Lemma, then

The preservation of Lebesgue measure by ψ yields

Since ψ(B) c = ψ(B c ) then

We set

Since ψ(∂B) is the frontier of ψ(B) and d(ψ(x), ψ(B c )) = d(ψ(x), ∂ψ(B)) then

The regularity of ψ -1 (Proposition 6) implies since c 0 e -k r ≤ c 0 r t ℓ(t)

Here we choose δ large enough such that δ > ln(c 0 ) and δ > c 0 . Thus, D k is contained in the annulus

and so (since we are in dimension 2)

-k e δ(V (t)+1)(k-ln(r)) 1-α , as claimed.

We conclude this paper by the following result which has been used in several places.