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In this paper, we consider supervised learning problems such as logistic regression and study the stochastic gradient method with averaging, in the usual stochastic approximation setting where observations are used only once. We show that after N iterations, with a constant step-size proportional to 1/R 2 √ N where N is the number of observations and R is the maximum norm of the observations, the convergence rate is always of order O(1/ √ N ), and improves to O(R 2 /µN ) where µ is the lowest eigenvalue of the Hessian at the global optimum (when this eigenvalue is greater than R 2 / √ N ). Since µ does not need to be known in advance, this shows that averaged stochastic gradient is adaptive to unknown local strong convexity of the objective function. Our proof relies on the generalized selfconcordance properties of the logistic loss and thus extends to all generalized linear models with uniformly bounded features.

Introduction

The minimization of an objective function which is only available through unbiased estimates of the function values or its gradients is a key methodological problem in many disciplines. Its analysis has been attacked mainly in three scientific communities: stochastic approximation [START_REF] Fabian | On asymptotic normality in stochastic approximation[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent Robbins-Monro process[END_REF][START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF][START_REF] Broadie | General bounds and finite-time improvement for stochastic approximation algorithms[END_REF], optimization [START_REF] Nesterov | Confidence level solutions for stochastic programming[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF], and machine learning [START_REF] Bottou | On-line learning for very large data sets[END_REF][START_REF] Shalev-Shwartz | Pegasos: Primal estimated sub-gradient solver for svm[END_REF][START_REF] Bottou | The tradeoffs of large scale learning[END_REF][START_REF] Shalev-Shwartz | SVM optimization: inverse dependence on training set size[END_REF][START_REF] Shalev-Shwartz | Stochastic convex optimization[END_REF][START_REF] Duchi | Efficient online and batch learning using forward backward splitting[END_REF][START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF]. The main algorithms which have emerged are stochastic gradient descent (a.k.a. Robbins-Monro algorithm), as well as a simple modification where iterates are averaged (a.k.a. Polyak-Ruppert averaging).

For convex optimization problems, the convergence rates of these algorithms depends primarily on the potential strong convexity of the objective function [START_REF] Nemirovski | Problem complexity and method efficiency in optimization[END_REF]. For µ-strongly convex functions, after n iterations (i.e., n observations), the optimal rate of convergence of function values is O(1/µn) while for convex functions the optimal rate is O(1/ √ n), both of them achieved by averaged stochastic gradient with step size respectively proportional to 1/µn or 1/ √ n [START_REF] Nemirovski | Problem complexity and method efficiency in optimization[END_REF][START_REF] Agarwal | Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization[END_REF] c 2014 Francis Bach.

2012). For smooth functions, averaged stochastic gradient with step sizes proportional to 1/ √ n achieves them up to logarithmic terms [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF].

Convex optimization problems coming from supervised machine learning are typically of the form f (θ) = E ℓ(y, θ, x ) , where ℓ(y, θ, x ) is the loss between the response y ∈ R and the prediction θ, x ∈ R, where x is the input data in a Hilbert space H and linear predictions parameterized by θ ∈ H are considered. They may or may not have strongly convex objective functions. This most often depends on (a) the correlations between covariates x, and (b) the strong convexity of the loss function ℓ. The logistic loss ℓ : u → log(1 + e -u ) is not strongly convex unless restricted to a compact set (indeed, restricted to u ∈ [-U, U ], we have ℓ ′′ (u) = e -u (1 + e -u ) -2 1 4 e -U ). Moreover, in the sequential observation model, the correlations are not known at training time. Therefore, many theoretical results based on strong convexity do not apply (adding a squared norm µ 2 θ 2 is a possibility, however, in order to avoid adding too much bias, µ has to be small and typically much smaller than 1/ √ n, which then makes all strongly-convex bounds vacuous). The goal of this paper is to show that with proper assumptions, namely self-concordance, one can readily obtain favorable theoretical guarantees for logistic regression, namely a rate of the form O(R 2 /µn) where µ is the lowest eigenvalue of the Hessian at the global optimum, without any exponentially increasing constant factor (e.g., with the notations above, without terms of the form e U ). Another goal of this paper is to design an algorithm and provide an analysis that benefit from hidden local strong convexity without requiring to know the local strong convexity constant in advance. In smooth situations, the results of [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF] imply that the averaged stochastic gradient method with step sizes of the form O(1/ √ n) is adaptive to the strong convexity of the problem. However the dependence in µ in the strongly convex case is of the form O(1/µ 2 n), which is sub-optimal. Moreover, the final rate is rather complicated, notably because all possible step-sizes are considered. Finally, it does not apply here because even in low-correlation settings, the objective function of logistic regression cannot be globally strongly convex.

In this paper, we provide an analysis for stochastic gradient with averaging for generalized linear models such as logistic regression, with a step size proportional to 1/R 2 √ n where R is the radius of the data and n the number of observations, showing such adaptivity. In particular, we show that the algorithm can adapt to the local strong-convexity constant, that is, the lowest eigenvalue of the Hessian at the optimum. The analysis is done for a finite horizon N and a constant step size decreasing in N as 1/R 2 √ N, since the analysis is then slightly easier, though (a) a decaying stepsize could be considered as well, and (b) it could be classically extended to varying step-sizes by a doubling trick [START_REF] Hazan | Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization[END_REF].

Stochastic Approximation for Generalized Linear Models

In this section, we present the assumptions our work relies on, as well as related work.

Assumptions

Throughout this paper, we make the following assumptions. We consider a function f defined on a Hilbert space H, equipped with a norm • . Throughout the paper, we identify the Hilbert space and its dual; thus, the gradients of f also belongs to H and we use the same norm on these. Moreover, we consider an increasing family of σ-fields (F n ) n 1 and we assume that we are given a deterministic θ 0 ∈ H, and a sequence of functions f n : H → R, for n 1. We make the following assumptions, for a certain R > 0:

(A1) Convexity and differentiability of f : f is convex and three-times differentiable.

(A2) Generalized self-concordance of f [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF]: for all θ 1 , θ 2 ∈ H, the function

ϕ : t → f θ 1 + t(θ 2 -θ 1 ) satisfies: ∀t ∈ R, |ϕ ′′′ (t)| R θ 1 -θ 2 ϕ ′′ (t).
(A3) Attained global minimum: f has a global minimum attained at θ * ∈ H.

(A4) Lipschitz-continuity of f n and f : all gradients of f and f n are bounded by R, that is, for all θ ∈ H,

f ′ (θ) R and ∀n 1, f ′ n (θ) R almost surely. (A5) Adapted measurability: ∀n 1, f n is F n -measurable. (A6) Unbiased gradients: ∀n 1, E(f ′ n (θ n-1 )|F n-1 ) = f ′ (θ n-1 ). (A7) Stochastic gradient recursion: ∀n 1, θ n = θ n-1 -γ n f ′ n (θ n-1 ), where (γ n ) n 1 is a deterministic sequence.
In this paper, we will also consider the averaged iterate θn = 1 n n-1 k=0 θ k , which may be trivially computed on-line through the recursion θn = 1 n θ n-1 + n-1 n θn-1 . Among the seven assumptions above, the non-standard one is (A2): the notion of selfconcordance is an important tool in convex optimization and in particular for the study of Newton's method [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF]. It corresponds to having the third derivative bounded by the 3 2 -th power of the second derivative. For machine learning, Bach (2010) has generalized the notion of self-concordance by removing the 3 2 -th power, so that it is applicable to cost functions arising from probabilistic modeling, as shown below. The key consequence of our notion of self-concordance is a relationship shown in Lemma 9 (Section 5) between the norm of a gradient f ′ (θ) and the excess cost function f (θ) -f (θ * ), which is the same than for strongly convex functions, but with the local strong convexity constant rather than the global one (which is equal to zero here).

Our set of assumptions corresponds to the following examples (with i.i.d. data, and F n equal to the σ-field generated by x 1 , y 1 , . . . , x n , y n ):

-Logistic regression: f n (θ) = log(1 + exp(-y n x n , θ )), with data x n uniformly almost surely bounded by R and y n ∈ {-1, 1}. The norm considered here is also the norm of the Hilbert space. Note that this includes other binary classification losses, such as

f n (θ) = -y n x n , θ + 1 + x n , θ 2 .
-Generalized linear models with uniformly bounded features: f n (θ) = -θ, Φ(x n , y n ) + log h(y) exp θ, Φ(x n , y) dy, with Φ(x n , y) ∈ H almost surely bounded in norm by R, for all observations x n and all potential responses y in a measurable space. This includes multinomial regression and conditional random fields [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF].

-Robust regression: we may use f n (θ) = ϕ(y n -x n , θ ), with ϕ(t) = log cosh t = log e t +e -t

Running-time Complexity

The stochastic gradient descent recursion

θ n = θ n-1 -γ n f ′ n (θ n-1
) operates in full generality in the potentially infinite-dimensional Hilbert space H. There are two practical set-ups where this recursion can be implemented. When H is finite-dimensional with dimension d, then the complexity of a single iteration is O(d), and thus O(dn) after n iterations. When H is infinite-dimensional, the recursion can be readily implemented when (a) all functions f n depend on one-dimensional projections x n , θ , that is, are of the form f n (θ) = ϕ n x n , θ for certain random functions ϕ n (e.g., ϕ n (u) = ℓ(y n , u) in machine learning), and (b) all scalar products K ij = x i , x j between x i and x j , for i, j 1, can be computed. This may be done through the classical application of the "kernel trick" [START_REF] Schölkopf | Learning with Kernels[END_REF][START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF]: if θ 0 = 0, we may represent θ n as a linear combination of vectors x 1 , . . . , x n , that is, θ n = n i=1 α i x i , and the recursion may be written in terms of the weights α n , through

α n = -γ n x n ϕ ′ n n-1 i=1 α i K ni .
A key element to notice here is that without regularization, the weights α i corresponding to previous observations remain constant. The overall complexity of the algorithm is O(n 2 ) times the cost of evaluating a single kernel function. See [START_REF] Bordes | Fast kernel classifiers with online and active learning[END_REF] and [START_REF] Wang | Breaking the curse of kernelization: Budgeted stochastic gradient descent for large-scale SVM training[END_REF] for approaches aiming at reducing the computational load in this setting. Finally, note that in the kernel setting, the function f (θ) cannot be strongly convex because the covariance operator of x is typically a compact operator, with a sequence of eigenvalues tending to zero (some regularization is then needed).

Related Work

In this section, we review related work, first for non-strongly convex problems then for strongly convex problems.

Non-strongly-convex Functions

When only convexity of the objective function is assumed, several authors [START_REF] Nesterov | Confidence level solutions for stochastic programming[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF][START_REF] Shalev-Shwartz | Stochastic convex optimization[END_REF][START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF] have shown that using a step-size proportional to 1/ √ n, together with some form of averaging, leads to the minimax optimal rate of O(1/ √ n) [START_REF] Nemirovski | Problem complexity and method efficiency in optimization[END_REF][START_REF] Agarwal | Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization[END_REF].

Without averaging, the known convergences rates are suboptimal, that is, averaging is key to obtaining the optimal rate [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]. Note that the smoothness of the loss does not change the rate, but may help to obtain better constants, with the potential use of acceleration [START_REF] Lan | An optimal method for stochastic composite optimization[END_REF]. Recent work [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF] has considered algorithms which improve on the rate O(1/ √ n) for smooth self-concordant losses, such as the square and logistic losses. Their analysis relies on some of the results proved in this paper (in particular the high-order bounds in Section 4). The compactness of the domain is often used within the algorithm (by using orthogonal projections) and within the analysis (in particular to optimize the step size and obtain highprobability bounds). In this paper, we do not make such compactness assumptions, since in a machine learning context, the available bound would be loose and hurt practical performance. Note that the analysis of the related dual averaging methods [START_REF] Nesterov | Primal-dual subgradient methods for convex problems[END_REF][START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF] has also been carried without compactness assumptions, and previous analyses would also go through in the same set-up for stochastic mirror descent [START_REF] Nemirovski | Problem complexity and method efficiency in optimization[END_REF], at least for bounds in expectation. In the present paper, we derive higher-order bounds and bounds in high-probability where the lack of compactness is harder to deal with.

Another difference between several analyses is the use of decaying step sizes of the form γ n ∝ 1/ √ n vs. the use of a constant step size of the form γ ∝ 1/ √ N for a finite known horizon N of iterations. The use of a "doubling trick" as done by [START_REF] Hazan | Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization[END_REF] for strongly convex optimization, where a constant step size is used for iterations between 2 p and 2 p+1 , with a constant that is proportional to 1/ √ 2 p , would allow to obtain an anytime algorithm from a finite horizon one. In order to simplify our analysis, we only consider a finite horizon N and a constant step-size that will be proportional to 1/ √ N .

Strongly-convex Functions

When the function is µ-strongly convex, that is, θ → f (θ)-µ 2 θ 2 is convex, there are essentially two approaches to obtaining the minimax-optimal rate of O(1/µn) [START_REF] Nemirovski | Problem complexity and method efficiency in optimization[END_REF][START_REF] Agarwal | Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization[END_REF]: (a) using a step size proportional to 1/µn with averaging for non-smooth problems [START_REF] Nesterov | Confidence level solutions for stochastic programming[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF][START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF][START_REF] Shalev-Shwartz | Stochastic convex optimization[END_REF][START_REF] Duchi | Efficient online and batch learning using forward backward splitting[END_REF][START_REF] Lacoste-Julien | A simpler approach to obtaining an O(1/t) convergence rate for projected stochastic subgradient descent[END_REF] or a step size proportional to 1/(R 2 + nµ) also with averaging, for smooth problems, where R 2 is the smoothness constant of the loss of a single observation [START_REF] Le Roux | A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets[END_REF]; (b) for smooth problems, using longer step-sizes proportional to 1/n α for α ∈ (1/2, 1) with averaging [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent Robbins-Monro process[END_REF][START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF].

Note that the often advocated step size, that is, of the form C/n where C is larger than 1/µ, leads, without averaging to a convergence rate of O(1/µ 2 n) [START_REF] Fabian | On asymptotic normality in stochastic approximation[END_REF][START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], hence with a worse dependence on µ.

The solution (a) requires to have a good estimate of the strong-convexity constant µ, while the second solution (b) does not require to know such estimate and leads to a convergence rate achieving asymptotically the Cramer-Rao lower bound [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF]. Thus, this last solution is adaptive to unknown (but positive) amount of strong convexity. However, unless we take the limiting setting α = 1/2, it is not adaptive to lack of strong convexity. While the non-asymptotic analysis of [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF] already gives a convergence rate in that situation, the bound is rather complicated and also has a suboptimal dependence on µ. Another goal of this paper is to consider a less general result, but more compact and, as already mentioned, a better dependence on the strong convexity constant µ (moreover, as reviewed below, we consider the local strong convexity constant, which is much larger).

Finally, note that unless we restrict the support, the objective function for logistic regression cannot be globally strongly convex (since the Hessian tends to zero when θ tends to infinity). In this paper we show that stochastic gradient descent with averaging is adaptive to the local strong convexity constant, that is, the lowest eigenvalue of the Hessian of f at the global optimum, without any exponential terms in RD (which would be present if a compact domain of diameter D was imposed and traditional analyses were performed).

Adaptivity to Unknown Constants

The desirable property of adaptivity to the difficulty of an optimization problem has also been studied in several settings. Gradient descent with constant step size is for example naturally adaptive to the strong convexity of the problem (see, e.g., [START_REF] Nesterov | Introductory lectures on convex optimization: a basic course[END_REF]). In the stochastic context, [START_REF] Juditsky | Primal-dual subgradient methods for minimizing uniformly convex functions[END_REF] provide another strategy than averaging with longer step sizes, but for uniform convexity constants.

Non-Strongly Convex Analysis

In this section, we study the averaged stochastic gradient method in the non-strongly convex case, that is, without any (global or local) strong convexity assumptions. We first recall existing results in Section 4.1, that bound the expectation of the excess risk leading to a bound in O(1/ √ N ). We then show using martingale moment inequalities how all higherorder moments may be bounded in Section 4.2, still with a rate of O(1/ √ N ). However, in Section 4.3, we consider the convergence of the squared gradient, with now a rate of O(1/N ). This last result is key to obtaining the adaptivity to local strong convexity in Section 5.

Existing Results

In this section, we review existing results for Lipschitz-continuous non-strongly convex problems [START_REF] Nesterov | Confidence level solutions for stochastic programming[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF][START_REF] Shalev-Shwartz | Stochastic convex optimization[END_REF][START_REF] Duchi | Efficient online and batch learning using forward backward splitting[END_REF][START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF]. Note that smoothness is not needed here. We consider a constant step size γ n = γ > 0, for all n 1, and we denote by θn = 1 n n-1 k=0 θ k the averaged iterate.

We prove the following proposition, which provides a bound on the expectation of f ( θn )f (θ * ) that decays at rate O(γ + 1/γn), hence the usual choice γ ∝ 1/ √ n:

Lemma 1 Assume (A1) and (A3-7). With constant step size equal to γ, for any n 0, we have:

Ef 1 n n k=1 θ k-1 -f (θ * ) + 1 2γn E θ n -θ * 2 1 2γn θ 0 -θ * 2 + γ 2 R 2 .
Proof We have the following recursion, obtained from the Lipschitz-continuity of f n :

θ n -θ * 2 = θ n-1 -θ * 2 -2γ θ n-1 -θ * , f ′ n (θ n-1 ) + γ 2 f ′ n (θ n-1 ) 2 θ n-1 -θ * 2 -2γ θ n-1 -θ * , f ′ (θ n-1 ) + γ 2 R 2 + M n , with M n = -2γ θ n-1 -θ * , f ′ n (θ n-1 ) -f ′ (θ n-1
) . We thus get, using the classical result from convexity f

(θ n-1 ) -f (θ * ) θ n-1 - θ * , f ′ (θ n-1 ) : 2γ f (θ n-1 ) -f (θ * ) θ n-1 -θ * 2 -θ n -θ * 2 + γ 2 R 2 + M n . (1) 
Summing over integers less than n, this implies:

1 n n-1 k=0 f (θ k ) -f (θ * ) + 1 2γn θ n -θ * 2 1 2γn θ 0 -θ * 2 + γ 2 R 2 + 1 2γn n k=1 M k .
We get the desired result by taking expectation in the last inequality, and using the expectation

EM k = E(E(M k |F k-1 )) = 0 and f 1 n n-1 k=0 θ k 1 n n-1 k=0 f (θ k ).
The following corollary considers a specific choice of the step size (note that the bound is only true for the last iterate):

Corollary 2 Assume (A1) and (A3-7). With constant step size equal to γ = 1 2R 2 √ N , we have: ∀n ∈ {1, . . . , N }, E θ n -θ * 2 θ 0 -θ * 2 + 1 4R 2 , Ef 1 N N k=1 θ k-1 -f (θ * ) R 2 √ N θ 0 -θ * 2 + 1 4 √ N .
Note that if θ 0 -θ * 2 was known, then a better step-size would be γ

= θ 0 -θ * R √ N , leading to a convergence rate proportional to R θ 0 -θ * √ N
. However, this requires an estimate (or simply an upper-bound) of θ 0 -θ * 2 , which is typically not available. We are going to improve this result in several ways:

-All moments of θ n -θ * 2 and f ( θn ) -f (θ * ) will be bounded, leading to a subexponential behavior. Note that we do not assume that the iterates are restricted to a predefined bounded set, which is the usual assumption made to derive tail bounds for stochastic approximation [START_REF] Nesterov | Confidence level solutions for stochastic programming[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF][START_REF] Kakade | On the generalization ability of online strongly convex programming algorithms[END_REF].

-We are going to show that the squared norm of the gradient at θn = 1 n n k=1 θ k-1 converges at rate O(1/n), even in the non-strongly convex case. This will allow us to derive finer convergence rates in presence of local strong convexity in Section 5.

-The bounds above do not explicitly depend on the dimension of the problem, however, in practice, the quantity R 2 θ 0 -θ * 2 typically implicitly scales linearly in the problem dimension.

Higher-Order and Tail Bound

In this section, we prove novel higher-order bounds (see the proof in Appendix C), both for any constant step-sizes and then for the specific choice γ = 1 2R 2 √ N . This will immediately lead to tail bounds.

Proposition 3 Assume (A1) and (A3-7). With constant step size equal to γ, for any n 0 and integer p 1, we have:

E 2γn f ( θn ) -f (θ * ) + θ n -θ * 2 p 3 θ 0 -θ * 2 + 20npγ 2 R 2 p .
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Corollary 4 Assume (A1) and (A3-7). With constant step size equal to γ = 1 2R 2 √ N , for any integer p 1, we have:

∀n ∈ {1, . . . , N }, E θ n -θ * 2p 1 R 2 3R 2 θ 0 -θ * 2 + 5p p , E f ( θN ) -f (θ * ) p 1 √ N 3R 2 θ 0 -θ * 2 + 5p p .
In Appendix C, we first provide two alternative proofs of the same result: (a) our original somewhat tedious proof based on taking powers of the inequality in Equation ( 1) and using martingale moment inequalities, (b) a shorter proof later derived by [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF], that uses Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem 4.1). We also provide in Appendix C a direct proof of the large deviation bound that we now present.

Having a bound on all moments allows immediately to derive large deviation bounds in the same two cases (by applying Lemma 11 from Appendix A):

Proposition 5 Assume (A1) and (A3-7). With constant step size equal to γ, for any n 0 and t 0, we have:

P f ( θn ) -f (θ * ) 30γR 2 t + 3 θ 0 -θ * 2 γn 2 exp(-t), P θ n -θ * 2 60nγ 2 R 2 t + 6 θ 0 -θ * 2 2 exp(-t).
Corollary 6 Assume (A1) and (A3-7). With constant step size equal to γ = 1 2R 2 √ N , for any t 0 we have:

P f ( θN ) -f (θ * ) 15t √ N + 6R 2 θ 0 -θ * 2 √ N 2 exp(-t), P θ N -θ * 2 15R -2 t + 6 θ 0 -θ * 2 2 exp(-t).
We can make the following observations:

-The results above are obtained by direct application of Proposition 3. In Appendix C, we also provide an alternative direct proof of a slightly weaker result, which was suggested and outlined by Alekh Agarwal (personal communication), and that uses Freedman's inequality for martingales (Freedman, 1975, Theorem 1.6).

-The results above bounding the norm between the last iterate and a global optimum extend to the averaged iterate.

-The iterates θ n and θn do not necessarily converge to θ * (note that θ * may not be unique in general anyway).

-Given that (E[f ( θn ) -f (θ * )] p ) 1/p is affine in p, we obtain a subexponential behavior, that is, tail bounds similar to an exponential distribution. The same decay was obtained by [START_REF] Nesterov | Confidence level solutions for stochastic programming[END_REF] and [START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF], but with an extra orthogonal projection step that is equivalent in our setting to know a bound on θ * , which is in practice not available.

-The constants in the bounds of of Proposition 3 (and thus other results as well) could clearly be improved. In particular, we have, for p = 1, 2, 3 (see proof in Appendix E):

E 2γn f ( θn ) -f (θ * ) + θ n -θ * 2 θ 0 -θ * 2 + nγ 2 R 2 , E 2γn f ( θn ) -f (θ * ) + θ n -θ * 2 2 θ 0 -θ * 2 + 9nγ 2 R 2 2 , E 2γn f ( θn ) -f (θ * ) + θ n -θ * 2 3 θ 0 -θ * 2 + 20nγ 2 R 2 3 .

Convergence of Gradients

In this section, we prove higher-order bounds on the convergence of the gradient, with an improved rate O(1/n) for f ′ ( θn ) 2 . In this section, we will need the self-concordance property in Assumption (A2).

Proposition 7 Assume (A1-7). With constant step size equal to γ, for any n 0 and integer p, we have:

E f ′ 1 n n k=1 θ k-1 2p 1/2p R √ n 8 √ p + 4p √ n + 40R 2 γp √ n + 3 γ √ n θ 0 -θ * 2 + 3 γR √ n θ 0 -θ * .
Corollary 8 Assume (A1-7). With constant step size equal to γ = 1 2R 2 √ N , for any integer p, we have:

E f ′ 1 N N k=1 θ k-1 2p 1/2p R √ N 8 √ p + 4p √ n + 20p + 6R 2 θ 0 -θ * 2 + 6R θ 0 -θ * .
We can make the following observations:

-The squared norm of the gradient f ′ ( θN ) 2 converges at rate O(1/N ).

-Given that (E f ′ ( θN ) 2p ) 1/2p is affine in p, we obtain a subexponential behavior for f ′ ( θN ) , that is, tail bounds similar to an exponential distribution.

-The proof of Proposition 7 makes use of the self-concordance assumption (that allows to upperbound deviations of gradients by deviations of function values) together with the proof technique of [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF].

Self-Concordance Analysis for Strongly-Convex Problems

In the previous section, we have shown that f ′ ( θN ) 2 is of order O(1/N ). If the function f was strongly convex with constant µ > 0, this would immediately lead to the bound

f ( θN ) -f (θ * ) 1 2µ f ′ ( θN ) 2 , of order O(1/µN ).
However, because of the Lipschitzcontinuity of f on the full Hilbert space H, it cannot be strongly convex. In this section, we show how the self-concordance assumption may be used to obtain the exact same behavior, but with µ replaced by the local strong convexity constant, which is more likely to be strictly positive.

The required property is summarized in the following proposition about (generalized) self-concordant function (see proof in Appendix B.1):

Lemma 9 Let f be a convex three-times differentiable function from H to R, such that for all θ 1 , θ 2 ∈ H, the function ϕ :

t → f θ 1 + t(θ 2 -θ 1 ) satisfies: ∀t ∈ R, |ϕ ′′′ (t)| R θ 1 -θ 2 ϕ ′′ (t)
. Let θ * be a global minimizer of f and µ the lowest eigenvalue of f ′′ (θ * ), which is assumed strictly positive.

If f ′ (θ) R µ 3 4 , then θ -θ * 2 4 f ′ (θ) 2 µ 2 and f (θ) -f (θ * ) 2 f ′ (θ) 2 µ .
We may now use this proposition for the averaged stochastic gradient. For simplicity, we only consider the step-size γ = 1 2R 2 √ N , and the last iterate (see proof in Appendix F):

Proposition 10 Assume (A1-7). Assume γ = 1 2R 2 √ N .
Let µ > 0 be the lowest eigenvalue of the Hessian of f at the unique global optimum θ * . Then:

Ef ( θN ) -f (θ * ) R 2 N µ 5R θ 0 -θ * + 15 4 , E θN -θ * 2 R 2 N µ 2 6R θ 0 -θ * + 21 4 .
We can make the following observations:

-The proof relies on Lemma 9 and requires a control of the probability that f ′ ( θN ) R µ 3 4 , which is obtained from Proposition 7.

-We conjecture a bound of the form R 2 N µ ( R θ 0 -θ * + △ √ p) 4 p for the p-th order moment of f ( θN ) -f (θ * ), for some scalar constants and △.

-The new bound now has the term R θ 0 -θ * with a fourth power (compared to the bound in Lemma 1, which has a second power), which typically grows with the dimension of the underlying space (or the slowness of the decay of eigenvalues of the covariance operator when H is infinite-dimensional). It would be interesting to study whether this dependence can be reduced.

-The key elements in the previous proposition are that (a) the constant µ is the local convexity constant, and (b) the step-size does not depend on that constant µ, hence the claimed adaptivity.

-The bounds are only better than the non-strongly-convex bounds from Lemma 1, when the Hessian lowest eigenvalue is large enough, that is, µR 2 √ N larger than a fixed constant.

-In the context of logistic regression, even when the covariance matrix of the inputs is invertible, then the only available lower bound on µ is equal to the lowest eigenvalue of the covariance matrix times exp(-R θ * ), which is exponentially small. However, the previous bound is overly pessimistic since it is based on an upper bound on the largest possible value of x, θ * . In practice, the actual value of µ is much larger and only a small constant smaller than the lowest eigenvalue of the covariance matrix. In order to assess if this result can be improved, it is interesting to look at the asymptotic result from [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] for logistic regression, which leads to a limit rate of 1/n times tr f ′′ (θ * ) -1 Ef ′ n (θ * )f ′ n (θ * ) ⊤ ; note that this rate holds both for the stochastic approximation algorithm and for the global optimum of the training cost, using standard asymptotic statistics results ( [START_REF] Van Der | Asymptotic Statistics[END_REF]. When the model is well-specified, that is, the log-odds ratio of the conditional distribution of the label given the input is linear, then

Ef ′ n (θ * )f ′ n (θ * ) ⊤ = Ef ′′ n (θ * ) = f ′′ (θ * )
, and the asymptotic rate is exactly d/n, where d is the dimension of H (which has to be finite-dimensional for the covariance matrix to be invertible). It would be interesting to see if making the extra assumption of well-specification, we can also get an improved non-asymptotic result. When the model is mis-specified however, the quantity Ef ′ n (θ * )f ′ n (θ * ) ⊤ may be large even when f ′′ (θ * ) is small, and the asymptotic regime does not readily lead to an improved bound.

Conclusion

In this paper, we have provided a novel analysis of averaged stochastic gradient for logistic regression and related problems. The key aspects of our result are (a) the adaptivity to local strong convexity provided by averaging and (b) the use of self-concordance to obtain a simple bound that does not involve a term which is explicitly exponential in R θ 0 -θ * , which could be obtained by constraining the domain of the iterates.

Our results could be extended in several ways: (a) with a finite and known horizon N , we considered a constant step-size proportional to 1/R 2 √ N ; it thus seems natural to study the decaying step size γ n = O(1/R 2 √ n), which should, up to logarithmic terms, lead to similar results-and thus likely provide a solution to a a recently posed open problem for online logistic regression [START_REF] Mcmahan | Open problem: Better bounds for online logistic regression[END_REF]; (b) an alternative would be to consider a doubling trick where the step-sizes are piecewise constant; also, (c) it may be possible to consider other assumptions, such as exp-concavity [START_REF] Hazan | Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization[END_REF] or uniform convexity [START_REF] Juditsky | Primal-dual subgradient methods for minimizing uniformly convex functions[END_REF], to derive similar or improved results. Finally, by departing from a plain averaged stochastic gradient recursion, [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF] have considered an online Newton algorithm with the same running-time complexity, which leads to a rate of O(1/n) without strong convexity assumptions for logistic regression (though with additional assumptions regarding the distributions of the inputs). It would be interesting to understand if simple assumptions such as the ones made in the present paper are possible while preserving the improved convergence rate.

Lemma 11 Let X be a non-negative random variable such that for some positive constants A and B, and all p ∈ {1, . . . , n},

EX p (A + Bp) p .
Then, if t n 2 , P(X 3Bt + 2A) 2 exp(-t).

Proof We have, by Markov's inequality, for any p ∈ {1, . . . , n}:

P(X 2Bp + 2A) EX p (2Bp + 2A) p (A + Bp) p (2A + 2Bp) p = exp(-log(2)p).
For u ∈ [1, n], we consider p = ⌊u⌋, so that P(X 2Bu + 2A) P(X 2Bp + 2A) exp(-log(2)p) 2 exp(-log(2)u).

We take t = log(2)u and use 2/ log 2 3. This is thus valid if t n 2 .

Lemma 12 Let X be a non-negative random variable such that for some positive constants A, B and C, and for all p ∈ {1, . . . , n},

EX p (A √ p + Bp + C) 2p .
Then, if t n,

P(X (2A √ t + 2Bt + 2C) 2 ) 4 exp(-t).
Proof We have, by Markov's inequality, for any p ∈ {1, . . . , n}:

P(X (2A √ p + 2Bp + 2C) 2 ) EX p (2A √ p + 2Bp + 2C) 2p (A √ p + Bp + C) 2p (2A √ p + 2Bp + 2C) 2p exp(-log(4)p).
For u ∈ [1, n], we consider p = ⌊u⌋, so that

P(X (2A √ u + 2Bu + 2C) 2 ) P(X (2A √ u + 2Bu + 2C) 2 )
exp(-log(2)p) 4 exp(-log(4)u).

We take t = log(4)u and use log 4 1. This is thus valid if t n.

Lemma 13 Let ϕ : [0, 1] → R a strictly convex three-times differentiable function such that for some S > 0, ∀t ∈ [0, 1], |ϕ ′′′ (t)| Sϕ ′′ (t). Assume ϕ ′ (0) = 0, ϕ ′′ (0) > 0. Then:

ϕ ′ (1) ϕ ′′ (0) S 1 -e -S and ϕ(1) ϕ(0) + ϕ ′ (1) 2 ϕ ′′ (0) (1 + S). Moreover, if α = ϕ ′ (1)S ϕ ′′ (0) < 1, then ϕ(1) ϕ(0) + ϕ ′ (1) 2 ϕ ′′ (0) 1 α log 1 1 -α . If in addition α 3 4 , then ϕ(1) ϕ(0) + 2 ϕ ′ (1) 2 ϕ ′′ (0) and ϕ ′′ (0) 2ϕ ′ (1).
Proof By self-concordance, we obtain that the derivative of u → log ϕ ′′ (u) is lower-bounded by -S. By integrating between 0 and t ∈ [0, 1], we get

log ϕ ′′ (t) -log ϕ ′′ (0) -St , that is, ϕ ′′ (t) ϕ ′′ (0)e -St , (2) 
and by integrating between 0 and 1, we obtain (note that we have assumed ϕ ′ (0) = 0):

ϕ ′ (1) ϕ ′′ (0) 1 -e -S S . (3) 
We then get (with a first inequality from convexity of ϕ, and the last inequality from e S 1 + S):

ϕ(1) -ϕ(0) ϕ ′ (1) ϕ ′ (1) ϕ ′ (1) ϕ ′′ (0) S 1 -e -S = ϕ ′ (1) 2 ϕ ′′ (0) S + S e S -1 ϕ ′ (1) 2 ϕ ′′ (0) (1 + S).
Equation (3) implies that α 1 -e -S , which implies, if α < 1, S log 1 1-α . This implies that

ϕ(1) -ϕ(0) ϕ ′ (1) ϕ ′ (1) ϕ ′′ (0) S 1 -e -S ϕ ′ (1) 2 ϕ ′′ (0) 1 α log 1 1 -α ,
using the monotonicity of S → S 1-e -S . Finally the last bounds are a consequence of S α 1 α log 1 1-α 2, which is valid for α 3 4 . Note that in Equation (2), we do consider a lower-bound on the Hessian with an exponential factor e -St . The key feature of using self-concordance properties is to get around this exponential factor in the final bound.

The following lemma upper-bounds the remainder in the first-order Taylor expansion of the gradient by the remainder in the first-order Taylor expansion of the function. This is important when function values behave well (i.e., converge to the minimal value) while the iterates may not. and using martingale moment inequalities, (b) a shorter proof in Appendix C.5, later derived by [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF], that uses Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem 4.1). Another proof technique was suggested and outlined by Alekh Agarwal (personal communication), that uses Freedman's inequality for martingales (Freedman, 1975, Theorem 1.6); it allows to directly get a tail bound like in Proposition 5. This proof will be presented in Appendix C.6.

Note that the two shorter proofs currently lead to slightly worse constants (or to extra logarithmic factors), that may be improved with more refined derivations.

All proofs start from a similar martingale set-up that we describe in Appendix C.1 and use an almost-sure bound when p gets large (Appendix C.2).

C.1 Bounding Martingales

From the proof of Lemma 1, we have the recursion:

2γ f (θ n-1 ) -f (θ * ) + θ n -θ * 2 θ n-1 -θ * 2 + γ 2 R 2 + M n , with M n = -2γ θ n-1 -θ * , f ′ n (θ n-1 ) -f ′ (θ n-1 ) .
This leads to, by summing from 1 to n, and using the convexity of f :

2γnf 1 n n k=1 θ k-1 -2γnf (θ * ) + θ n -θ * 2 A n , with A n = θ 0 -θ * 2 + nγ 2 R 2 + n k=1 M k 0.
Note that A n may also be defined recursively as A 0 = θ 0 -θ * 2 and

A n = A n-1 + γ 2 R 2 + M n . (4) 
The random variables (M n ) and (A n ) satisfy the following properties that will proved useful throughout the proof:

(a) Martingale increment: for all k 1, E(M k |F k-1 ) = 0. This implies that S n = n k=1 M k is a martingale. (b) Boundedness: |M k | 4γR θ k-1 -θ * 4γRA 1/2 k-1 almost surely.

C.2 Almost Sure Bound

In this section, we derive an almost sure bound that will be valid for small n. From the stochastic gradient recursion θ n = θ n-1 -γf ′ n (θ n-1 ), we get, using Assumption (A4) and the triangle inequality:

θ n -θ * θ n-1 -θ * + γ f ′ n (θ n-1 ) θ n-1 -θ * + γR almost surely.
This leads to θ n -θ * θ 0 -θ * + nγR for all n 0. This in turn implies that

A n θ 0 -θ * 2 + nγ 2 R 2 + 4γR n k=1 θ k-1 -θ * using |M k | 4γR θ k-1 -θ * , θ 0 -θ * 2 + nγ 2 R 2 + 4γR n k=1
θ 0 -θ * + (k -1)γR using the inequality above,

θ 0 -θ * 2 + nγ 2 R 2 + 4γnR θ 0 -θ * + 2γ 2 R 2 n 2
by summing over the first n -1 integers,

θ 0 -θ * 2 + nγ 2 R 2 + 2γ 2 n 2 R 2 + 2 θ 0 -θ * 2 + 2γ 2 R 2 n 2 using ab a 2 2 + b 2 2 , 3 θ 0 -θ * 2 + 5n 2 γ 2 R 2 almost surely. ( 5 
)
This implies that the bound is shown for all p n 4 .

C.3 Derivation of p-th Order Recursion

The first proof works as follows: (a) derive a recursion between the p-th moments and the lower-order moments (this section) and (c) prove the result by induction on p (Appendix C.4). Note that we have to treat separately small values on n in the recursion, for which we use the almost sure bound from Appendix C.2. Starting from Equation (4), using the binomial expansion formula, we get:

A p n A n-1 + γ 2 R 2 + M n p = p k=0 p k A n-1 + γ 2 R 2 p-k M k n A n-1 + γ 2 R 2 p + p A n-1 + γ 2 R 2 p-1 M n + p k=2 p k A n-1 + γ 2 R 2 p-k 4γRA 1/2 n-1 k .
This leads to, using E(M n |F n-1 ) = 0, upper bounding γ 2 R 2 by 4γ 2 R 2 , and using the binomial expansion formula several times:

E A p n F n-1 A n-1 + 4γ 2 R 2 p + p k=2 p k A n-1 + 4γ 2 R 2 p-k 4γRA 1/2 n-1 k = A n-1 + 4γ 2 R 2 + 4γRA 1/2 n-1 p -4γRp A n-1 + 4γ 2 R 2 p-1 A 1/2 n-1
by isolating the term k = 1 in the binomial formula,

= A 1/2 n-1 + 2γR 2p -4γRp A n-1 + 4γ 2 R 2 p-1 A 1/2 n-1 = 2p k=0 2p k A k/2 n-1 (2γR) 2p-k -4γRpA 1/2 n-1 p-1 k=0 p -1 k A k n-1 (2γR) 2(p-1-k) = 2p k=0 A k/2 n-1 (2γR) 2p-k C k ,
with the constants C k defined as:

C 2q = 2p 2q for q ∈ {0, . . . , p}, C 2q+1 = 2p 2q + 1 -2p p -1 q for q ∈ {0, . . . , p -1}.
In particular,

C 0 = 1, C 2p = 1, C 1 = 0 and C 2p-1 = 2p 2p-1 -2p p-1 p-1 = 0.
Our goal is now to bounding the values of C k to obtain Equation ( 8) below. This will be done by bounding the odd-indexed element by the even-indexed elements.

We have, for q ∈ {1, . . . , p -2},

C 2q+1 2q + 1 2p -2q -1 2p 2q + 1 2q + 1 2p -2q -1 = (2p)! (2q + 1)!(2p -2q -1)! 2q + 1 2p -2q -1 = (2p)! (2q)!(2p -2q)! 2p -2q 2p -2q -1 = 2p 2q 2p -2q 2p -2q -1 . (6) 
For the end of the interval above in q, that is, q = p -2, we obtain

C 2q+1 2q+1 2p-2q-1 C 2q 4 3 , while for q p -3, we obtain C 2q+1 2q+1 2p-2q-1 C 2q 6 5 .
Moreover, for q ∈ {1, . . . , p -2},

C 2q+1 2p -2q -1 2q + 1 2p 2q + 1 2p -2q -1 2q + 1 = (2p)! (2q + 1)!(2p -2q -1)! 2p -2q -1 2q + 1 = (2p)! (2q + 2)!(2p -2q -2)! 2q + 2 2q + 1 = 2p 2q + 2 2q + 2 2q + 1 . (7) 
For the end of the interval above in q, that is, q = 1, we obtain C 2q+1 2p-2q-1 2q+1

C 2q+2 4 3 , while for q 2, we obtain C 2q+1 2p-2q-1 2q+1

C 2q+2 6 5 . We have moreover, by using the bound 2γRA

1/2 n-1 α 2 (2γR) 2 + 1 2α A n-1 for α = 2q+1 2p-2q-1 : C 2q+1 A q+1/2 n-1 (2γR) 2p-2q-1 = C 2q+1 A q n-1 (2γR) 2p-2q-2 A 1/2 n-1 (2γR) C 2q+1 A q n-1 (2γR) 2p-2q-2 1 2 2q + 1 2p -2q -1 (2γR) 2 + 2p -2q -1 2q + 1 A n-1 = 1 2 C 2q+1 2p -2q -1 2q + 1 A q+1 n-1 (2γR) 2p-2q-2 + 1 2 C 2q+1 2q + 1 2p -2q -1 A q n-1 (2γR) 2p-2q .
By combining the previous inequality with Equation ( 6) and Equation ( 7), we get that the terms indexed by 2q + 1 are bounded by the terms indexed by 2q + 2 and 2q. All terms with q ∈ {2, . . . , p -3} are expanded with constants 3 5 , while for q = 1 and q = p -2, this is 

C 2q+1 A q+1/2 n-1 (2γR) 2p-2q-1 19 15 p-1 q=0 C 2q A q n-1 (2γR) 2p-2q ,
leading to the recursion that will allow us to derive our result:

E A p n F n-1 A p n-1 + 34 15 p-1 q=0 2p 2q A q n-1 (2γR) 2p-2q . (8) 

C.4 Proof by Induction

We now proceed by induction on p. If we assume that

EA q k 3 θ 0 -θ * 2 + kqγ 2 R 2 B
q for all q < p, and a certain B (which we will choose to be equal to 20). We first note that if n 4p, then from Equation ( 5), we have

EA p n 3 θ 0 -θ * 2 + 5n 2 γ 2 R 2 p 3 θ 0 -θ * 2 + 20npγ 2 R 2 p .
Thus, we only need to consider n 4p. We then get from Equation ( 8):

E θ n -θ * 2p θ 0 -θ * 2p + 34 15 n-1 k=0 p-1 q=0 2p 2q EA q k (2γR) 2p-2q θ 0 -θ * 2p + 34 15 n-1 k=0 p-1 q=0 2p 2q 3 θ 0 -θ * 2 + kqγ 2 R 2 B q (2γR) 2p-2q ,
using the induction hypothesis. We may now sum with respect to k:

E θ n -θ * 2p θ 0 -θ * 2p + 34 15 p-1 q=0 2p 2q (2γR) 2p-2q n-1 k=0 3 θ 0 -θ * 2 + kqγ 2 R 2 B q θ 0 -θ * 2p + 34 15 p-1 q=0 2p 2q (2γR) 2p-2q q j=0 3 j θ 0 -θ * 2j q j qγ 2 R 2 B q-j n q-j+1 q -j + 1 using n-1 k=0 k α n α+1 α + 1 for any α > 0, = θ 0 -θ * 2p + 34 15 p-1 j=0 3 j θ 0 -θ * 2j (4γ 2 R 2 n) p-j p-1 q=j 2p 2q
q j qB 4

q-j n q-p+1 q -j + 1 , by changing the order of summations. We now aim to show that it is less than

3 θ 0 -θ * 2 + kpγ 2 R 2 B p = 3 p θ 0 -θ * 2p + p-1 j=0 3 j θ 0 -θ * 2j (γ 2 R 2 n) p-j (Bp) p-j p j .
By comparing all terms in θ 0 -θ * 2j , this is true as soon as for all j ∈ {0, . . . , p -1}, 34 15

p-1 q=j 2p 2q q j qB/4 q-j 1 q -j + 1 1 n p-q-1 (Bp/4) p-j p j

⇔ 34 15 p-1-j k=0 2p 2k + 2 p-1-k j (p -1 -k)B/4 p-1-k-j 1 p-k-j 1 n k (Bp/4) p-j p j ,
obtained by using the change of variable k = p -1 -q. This is implied by, using n 4p:

136 15 p-1-j k=0 B -1-k p -k-p+j 2p 2k + 2 p-1-k j p j p -1 -k p-1-k-j 1 p -k -j 1.
By expanding the binomial coefficients and simplifying by p -k -j, this is equivalent to 136 15

p-1-j k=0 B -1-k p -k-p+j 2p 2k + 2 (p -1 -k) • • • (p -k -j + 1) p • • • (p -j + 1) p -1 -k p-1-k-j
1.

We may now write

(p -1 -k) • • • (p -k -j + 1) p • • • (p -j + 1) = (p -1 -k)! (p -k -j)! (p -j)! p! = (p -1 -k)! p! (p -j)! (p -k -j)! = (p -j) • • • (p -k -j + 1) p • • • (p -k) ,
so that we only need to show that 136 15

p-1-j k=0 B -1-k p -k-p+j 2p 2k + 2 (p -j) • • • (p -k -j + 1) p • • • (p -k) p -1 -k p-1-k-j 1.
We have, by bounding all terms then than p by p:

136 15 p-1-j k=0 A -1-k p -k-p+j 2p 2k + 2 (p -j) • • • (p -k -j + 1) p • • • (p -k) p -1 -k p-1-k-j 136 15 p-1-j k=0 A -1-k p -k-p+j 2p 2k + 2 p k p • • • (p -k) p p-1-k-j = 136 15 p-1-j k=0 A -1-k p -k-1 2p 2k + 2 1 p • • • (p -k) = 136 15 p-1-j k=0 A -1-k p -k-1 (2k + 2)! 2p(2p -1) • • • (2p -2k -1) p • • • (p -k) = 136 15 p-1-j k=0 A -1-k p -2-1 2 2k+2 (2k + 2)! p(p -1/2) • • • (p -k -1/2) p • • • (p -k) 136 15 p-1-j k=0 A -1-k 2 2k+2 (2k + 2)!
by associating all 2k + 2 terms in ratios which are all less than 1, 136 15

+∞ k=0 (2/ √ A) 2k+2 (2k + 2)! = 136 15 cosh(2/ √ A) -1 < 1 if A 20.
We thus get the desired result EA p n 3 θ 0 -θ * 2 + 20npγ 2 R 2 p , and the proposition is proved by induction.

C.5 Alternative Proof Using Burkholder-Rosenthal-Pinelis Inequality

In this section, we present (a slightly modified version of) the proof from [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF] which is based on Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem 4.1), which we now recall.

C.5.1 BRP Inequality

Throughout the proof, we use the notation for X ∈ H a random vector, and p any real number greater than 1, X p = E X p 1/p . We first recall the Burkholder-Rosenthal-Pinelis (BRP) inequality (Pinelis, 1994, Theorem 4.1). Let p ∈ R, p 2 and (F n ) n 0 be a sequence of increasing σ-fields, and (X n ) n 1 an adapted sequence of elements of H, such that E X n |F n-1 = 0, and X n p is finite. Then, sup k∈{1,...,n} k j=1 

X j p √ p n k=1 E X k 2 |F k-1 1/2 p/2 + p sup k∈{1,...,n} X k p (9) √ p n k=1 E X k 2 |F k-1 1/2 p/
A k p θ 0 -θ * 2 + nγ 2 R 2 + √ p 16γ 2 R 2 n k=1 θ k-1 -θ * 2 1/2 p/2 +p sup k∈{1,...,n} 4γR θ k-1 -θ * p θ 0 -θ * 2 + nγ 2 R 2 + √ p 4γR √ n sup k∈{0,...,n-1} A k 1/2 p/2 +p 4γR sup k∈{0,...,n-1} A 1/2 k p θ 0 -θ * 2 + nγ 2 R 2 + 4γR sup k∈{0,...,n-1} A k 1/2 p/2 √ pn + p .
Thus if B = sup k∈{0,...,n} A k p , we have (using p n/4, which implies

√ pn + p 3 2 √ pn): B θ 0 -θ * 2 + nγ 2 R 2 + 6γRB 1/2 √ pn.
By solving this quadratic inequality, we get:

B 1/2 -3γR √ pn 2 θ 0 -θ * 2 + nγ 2 R 2 + 9γ 2 R 2 pn, which implies B 1/2 3γR √ pn + θ 0 -θ * 2 + nγ 2 R 2 + 9γ 2 R 2 pn B 2 × 9γ 2 R 2 pn + 2 × θ 0 -θ * 2 + nγ 2 R 2 + 9γ 2 R 2 pn 40γ 2 R 2 pn + 2 θ 0 -θ * 2 .
The previous statement is valid for p 2 and trivial for p = 1. From Appendix C.2, we only need to have the result for p n 4 . Thus the bound is slightly worse (but could be clearly improved with more care, for example, by using induction on n).

C.6 Alternative Proof Using Freedman's Inequality

In the previous section, we have used p-th order moment martingale inequalities that relate the norm of a martingale to the norm of its predictable quadratic variation process. Similar results may be obtained for tail bounds through Freedman's inequality (Freedman, 1975, Theorem 1.6). This proof technique was suggested and outlined by Alekh Agarwal (personal communication).

C.6.1 Freedman's Inequality and Extensions

Let (X n ) be a real-valued martingale increment adapted to the increasing sequence of σ-

fields (F n ), that is, such that E(X n |F n ) = 0, that is almost surely bounded, that is, |X n | R Bach almost surely. Let Σ n = n k=1 E(X 2 k |F k-1
) the predictable quadratic variation process. Then for any constants t and σ 2 , P max k∈{1,...,n} k i=1

X i t, Σ n σ 2 2 exp -t 2 2(σ 2 + Rt/3) .
When (X n ) are independent random variables, this recovers Bernstein's inequality. From this bound, one may derive the following bound [START_REF] Kakade | On the generalization ability of online strongly convex programming algorithms[END_REF]; with probability 1 -4(log n)δ, we have:

max k∈{1,...,n} k i=1 X i max 2 Σ n , 3R log 1 δ log 1 δ 2 Σ n log 1 δ + 3R log 1 δ . (10) 
Note that the result of [START_REF] Kakade | On the generalization ability of online strongly convex programming algorithms[END_REF] We can now apply the inequality in Equation ( 10 We may now solve the quadratic inequality in max k∈{1,...,n} √ A k . This leads to max k∈{1,...,n}

A k -4γR √ n log 1 δ 2 θ 0 -θ * 2 + nγ 2 R 2 + 12γR θ 0 -θ * + nγR log 1 δ + 16γ 2 R 2 nlog 1 δ = θ 0 -θ * 2 + nγ 2 R 2 + 12γR θ 0 -θ * + 28nγ 2 R 2 log 1 δ .
Then max k∈{1,...,n}

A k 4γR √ n log 1 δ + θ 0 -θ * + √ nγR + 12γR θ 0 -θ * + 28nγ 2 R 2 log 1 δ
This leads to, using Proposition 3 and Minkowski's inequality: 

E 1 n n k=1 f ′ (θ k-1 ) 2p 1/2p E 1 n n k=1 f ′ (θ k-1 ) -f ′ k (θ k-1 ) 2p 

D.2 Using Self-Concordance

Using the self-concordance property of Lemma 14 several times, we obtain:

1 n n k=1 f ′ (θ k-1 ) -f ′ 1 n n k=1 θ k-1 = 1 n n k=1 f ′ (θ k-1 ) -f ′ (θ * ) -f ′′ (θ * )(θ k-1 -θ * ) -f ′ 1 n n k=1 θ k-1 + f ′ (θ * ) + f ′′ (θ * ) 1 n n k=1 θ k-1 -θ * R n n k=1 f (θ k-1 ) -f (θ * ) -f ′ (θ * ), θ k-1 -θ * +R f 1 n n k=1 θ k-1 -f (θ * ) + f ′ (θ * ), 1 n n k=1 θ k-1 -θ * 2R 1 n n k=1
f (θ k-1 ) -f (θ * ) using the convexity of f . This leads to, using Proposition 3:

E 1 n n k=1 f ′ (θ k-1 ) -f ′ 1 n n k=1 θ k-1 2p 1/2p 2R E 1 n n k=1 f (θ k-1 ) -f (θ * ) 2p 1/2p 2R 2γn 3 θ 0 -θ * 2 + 40npγ 2 R 2 . ( 12 
)
Summing Equation ( 11) and Equation ( 12) leads to the desired result.

We can now compute the bound explicitly to get

+∞ 8R 2 µn µ √ n 4R 2 +△ 2 P f ( θn ) -f (θ * ) u du 60γR 2 exp -1 30γR 2 8R 2 µn µ √ n 4R 2 + △ 2 - 3 γn θ 0 -θ * 2 60γR 2 exp -1 30γR 2 3µ 8R 2 60γR 2 exp - µ 80γR 4
60γR 2 80γR 4 2µ using e -α 1 2α for all α > 0 = 2400γ 2 R 6 µ .

We now consider the second term in Equation ( 16) for which we will use Equation ( 14).

We consider the change of variable u = 8R 

  ) to (M n ). We have|M n | 4γR θ n-1θ * 4γR θ 0 -θ * +nγR almost surely. Moreover, E(M 2 n |F n-1 ) 16γ 2 R 2 θ n-1 -θ * 2 16γ 2 R 2 A n-1 .This leads to with probability greater than 1 -4(log n)δ, max k∈{1,...,n}A k θ 0 -θ * 2 + nγ 2 R 2 + 8γR n-1 k=1 A k log 1 δ + 12γR θ 0 -θ * + nγR log 1 δ θ 0 -θ * 2 + nγ 2 R 2 + 8γR √ n max k∈{1,...,n} A k log 1 δ +12γR θ 0 -θ * + nγR log 1 δ .

  considers only , but that the extension of their proof is straightforward.C.6.2 Proof of Proposition 5 (With Slightly Worse Constants andScalings)

			n
			X i rather than
			i=1
		k	
	max k∈{1,...,n}	i=1	X i

  We may now combine the three bounds to get, from Equation (16), N , with α = R θ 0 -θ * , = 1 and △ = 6α 2 + 6α, we obtain

	△ 2 8R 2 µn , 8R 2 µn		µ √ n 4R 2 + △	2 µn 10 2 implies t ∈ [0, +∞). This implies that √ t + 20 t + △	2	, for which u ∈
				8R 2 µn	µ √ 4R 2 +△ n	2
		△ 2 8R 2						
		0	∞	4e -t d	8R 2 µn	10 √	t + 20 t + △	2
	=	32R 2 µn	0	∞	e -t 100 + 400 2 2t + 400	3 2	t 1/2 + 20△	1 2	t -1/2 + 40△	dt
	=	32R 2 µn	100Γ(1) + 400 2 2Γ(2) + 400	3 2	Γ(3/2) + 20△	1 2	Γ(1/2) + 40△ Γ(1)
		with Γ denoting the Gamma function,
	=	32R 2 µn	100 + 400 2 2 + 400	3 2	1 2	√	π + 20△	1 2	√	π + 40△	.
	E f ( θn )-f (θ * )			△ 2 8R 2 nµ	+	2400γ 2 R 6 µ
									+	32R 2 µn	100 + 400 2 2 + 400	3 2	1 2	√	π + 20△	1 2	√	π + 40△
									32R 2 nµ	△ 2 4	+75γ 2 R 4 n+100+800 2 +300	√	π+10△	√	π+40△ .
	For γ =	1 2R 2 √						
	E f ( θN )-f (θ * )			32R 2 N µ	1 4	△ 2 + 1451 + 58∆
								32R 2 N µ	9α 4 + 18α 3 + 9α 2 + 1451 + 348α 2 + 348α
								R 2 N µ		625α 4 + 7500α 3 + 33750α 2 + 67500α + 50625 =	R 2 N µ	5α + 15

µn P f ( θn ) -f (θ * ) u du 4 .

, with a similar boundedness assumption on x n .
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Appendix A. Probability Lemmas

In this appendix, we prove simple lemmas relating bounds on moments to tail bounds, with the traditional use of Markov's inequality. See more general results by [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF].

Appendix B. Self-Concordance Properties

In this appendix, we show two lemmas regarding our generalized notion of self-concordance, as well as Lemma 9. For more details, see [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF] and references therein.

The following lemma provide an upper-bound on a one-dimensional self-concordant function at a given point which is based on the gradient at this point and the value and the Hessian at the global minimum. This is key to going in Section 5 from a convergence of gradients to a convergence of function values.

Bach

Lemma 14 Let f be a convex three-times differentiable function from H to R, such that for all θ 1 , θ 2 ∈ H, the function ϕ : t → f θ 1 + t(θ 2 -θ 1 ) satisfies: ∀t ∈ R, |ϕ ′′′ (t)| R θ 1 -θ 2 ϕ ′′ (t). For any θ 1 , θ 2 ∈ H, we have:

Proof For a given z ∈ H of unit norm, let

We have ϕ(0) = ψ(0) = 0. Moreover, we have the following derivatives:

where f ′′′ (θ) is the third order tensor of third derivatives. This leads to ϕ ′ (0) = ψ ′ (0) = 0 and ϕ ′′ (t) ψ ′′ (t). We thus have ϕ(1) ψ(1) by integrating twice, which leads to the desired result by maximizing with respect to z.

B.1 Proof of Lemma 9

We follow the standard proof techniques in self-concordant analysis and define an appropriate function of a single real variable and apply simple lemmas like the ones above.

Define

We thus have:

. Note that we also have (using the second inequality in Lemma 13), for all θ ∈ H (and without any assumption on θ):

Appendix C. Proof of Proposition 3

We provide two alternative proofs of the same result: (a) our original somewhat tedious proof in Appendices C.3 and C.4, based on taking powers of the inequality in Equation (1) and max k∈{1,...,n}

We thus recover a tail bound which is very similar to the one obtained in Proposition 5, with the following differences: the additional term 48γR θ 0 -θ * is unimportant because γ = O(N -1/2 ); however, because the extension of Freedman's inequality is satisfied with probability 1 -4(log n)δ, this proof technique loses a logarithmic factor.

Appendix D. Proof of Proposition 7

The proof is organized in two parts: we first show a bound on the averaged gradient

), then relate it to the gradient at the averaged iterate, that is,

We have, following [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] and [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]:

which implies, by summing over all integers between 1 and n:

We denote

√ n . We may thus apply the Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem 4.1), and get:

Appendix E. Results for Small p

In Proposition 3, we may replace the bound 3 θ 0 -θ * 2 + 20npγ 2 R 2 with a bound with smaller constants for p = 1, 2, 3 (to be used in proofs of results in Section 5). This is done using the same proof principle but finer derivations, as follows. We denote γ 2 R 2 = b and θ -θ * 2 = a, and consider the following inequalities which we have considered in the proof of Proposition 3:

We simply take expansions of the p-th power above, and sum for all first integers. We have:

We may now pursue for the third order moments:

. By expanding, we get

We then obtain:

Appendix F. Proof of Proposition 10

The proof follows from applying self-concordance properties (Lemma 9) to θn . We thus need to provide a control on the probability that f ′ ( θn ) 3µ 4R .

F.1 Tail Bound for f ′ ( θn )

We derive a large deviation bound, as a consequence of the bound on all moments of f ′ ( θn ) (Proposition 7) and Lemma 12, that allows to go from moments to tail bounds:

In order to derive the bound above, we need to assume that p n/4 (so that 4p/n 2 √ p/ √ n), and thus, when applying Lemma 12, the bound above is valid as long as t n/4.

It is however valid for all t, because the gradients are bounded by R, and for t > n, we have

, and the inequality is satisfied with zero probability.

F.2 Bounding the Function Values

From Lemma 9, if f ′ ( θn )

. This will allow us to derive a tail bound for f ( θn ) -f (θ * ), for sufficiently small deviations. For larger deviations, we will use the tail bound which does not use strong convexity (Proposition 5).

We consider the event

We make the following two assumptions regarding γ and t:

so that the upper-bound on f ′ ( θn ) in the definition of A t is less than 3µ 4R (so that we can apply Lemma 9). We thus have:

This implies that for all t 0, such that 10

4R 2 , that is, our assumption in Equation ( 13), we may apply the tail bound from Appendix F.1 to get:

Moreover, we have for all v 0 (from Proposition 5):

We may now use the last two inequalities to bound the expectation

We first express the expectation as an integral of the tail bound and split it into three parts:

We may now bound the three terms separately. For the first integral, we bound the probability by one to get

For the third term in Equation ( 16), we use the tail bound in Equation ( 15) to get

We may apply Equation (15) because

Note that the previous bound is only valid if

If the condition is not satisfied, then the bound is still valid because of Lemma 1. We thus obtain the desired result.

F.3 Bound on Iterates

Following the same principle as for function values in Appendix F.2, we consider the same event A t . With the same condition on γ and t, we have:

which leads to the tail bound:

We may now split the expectation in three integrals:

The first term in Equation ( 17) is simply bounded by bounding the tail bound by one (like in the previous section):

The last integral in Equation ( 17) may be bounded as follows:

using Cauchy-Schwarz inequality, √ q. This implies that

The second term in Equation ( 17) is bounded exactly like in Appendix F.2, leading to: