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Abstract

In this paper, we consider supervised learning problems such as logistic regression and study the

stochastic gradient method with averaging, in the usual stochastic approximation setting where

observations are used only once. We show that after N iterations, with a constant step-size pro-

portional to 1/R2
√
N where N is the number of observations and R is the maximum norm of

the observations, the convergence rate is always of order O(1/
√
N), and improves to O(R2/µN)

where µ is the lowest eigenvalue of the Hessian at the global optimum (when this eigenvalue is

greater than R2/
√
N ). Since µ does not need to be known in advance, this shows that averaged

stochastic gradient is adaptive to unknown local strong convexity of the objective function. Our

proof relies on the generalized self-concordance properties of the logistic loss and thus extends to

all generalized linear models with uniformly bounded features.

Keywords: Stochastic approximation, logistic regression, self-concordance

1. Introduction

The minimization of an objective function which is only available through unbiased estimates of the

function values or its gradients is a key methodological problem in many disciplines. Its analysis

has been attacked mainly in three scientific communities: stochastic approximation (Fabian, 1968;

Ruppert, 1988; Polyak and Juditsky, 1992; Kushner and Yin, 2003; Broadie et al., 2009), optimiza-

tion (Nesterov and Vial, 2008; Nemirovski et al., 2009), and machine learning (Bottou and Le Cun,

2005; Shalev-Shwartz et al., 2007; Bottou and Bousquet, 2008; Shalev-Shwartz and Srebro, 2008;

Shalev-Shwartz et al., 2009; Duchi and Singer, 2009; Xiao, 2010). The main algorithms which have

emerged are stochastic gradient descent (a.k.a. Robbins-Monro algorithm), as well as a simple mod-

ification where iterates are averaged (a.k.a. Polyak-Ruppert averaging).

For convex optimization problems, the convergence rates of these algorithms depends primarily

on the potential strong convexity of the objective function (Nemirovsky and Yudin, 1983). For µ-

strongly convex functions, after n iterations (i.e., n observations), the optimal rate of convergence

of function values is O(1/µn) while for convex functions the optimal rate is O(1/
√
n), both of

them achieved by averaged stochastic gradient with step size respectively proportional to 1/µn
or 1/

√
n (Nemirovsky and Yudin, 1983; Agarwal et al., 2012). For smooth functions, averaged
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stochastic gradient with step sizes proportional to 1/
√
n achieves them up to logarithmic terms

(Bach and Moulines, 2011).

Convex optimization problems coming from supervised machine learning are typically of the form

f(θ) = E
[

ℓ(y, 〈θ, x〉)
]

, where ℓ(y, 〈θ, x〉) is the loss between the response y ∈ R and the prediction

〈θ, x〉 ∈ R, where x is the input data in a Hilbert space H and linear predictions parameterized by

θ ∈ H are considered. They may or may not have strongly convex objective functions. This most

often depends on (a) the correlations between covariates x, and (b) the strong convexity of the loss

function ℓ. The logistic loss ℓ : u 7→ log(1 + e−u) is not strongly convex unless restricted to

a compact set; moreover, in the sequential observation model, the correlations are not known at

training time. Therefore, many theoretical results based on strong convexity do not apply (adding

a squared norm µ
2 ‖θ‖2 is a possibility, however, in order to avoid adding too much bias, µ has

to be small and typically much smaller than 1/
√
n, which then makes all strongly-convex bounds

vacuous). The goal of this paper is to show that with proper assumptions, namely self-concordance,

one can readily obtain favorable theoretical guarantees for logistic regression, namely a rate of the

form O(R2/µn) where µ is the lowest eigenvalue of the Hessian at the global optimum, without

any exponentially increasing constant factor.

Another goal of this paper is to design an algorithm and provide an analysis that benefit from hidden

local strong convexity without requiring to know the local strong convexity constant in advance.

In smooth situations, the results of Bach and Moulines (2011) imply that the averaged stochastic

gradient method with step sizes of the form O(1/
√
n) is adaptive to the strong convexity of the

problem. However the dependence in µ in the strongly convex case is of the form O(1/µ2n), which

is sub-optimal. Moreover, the final rate is rather complicated, notably because all possible step-sizes

are considered. Finally, it does not apply here because even in low-correlation settings, the objective

function of logistic regression cannot be globally strongly convex.

In this paper, we provide an analysis for stochastic gradient with averaging for generalized linear

models such as logistic regression, with a step size proportional to 1/R2√nwhereR is the radius of

the data and n the number of observations, showing such adaptivity. In particular, we show that the

algorithm can adapt to the local strong-convexity constant, i.e., the lowest eigenvalue of the Hessian

at the optimum. The analysis is done for a finite horizon N and a constant step size decreasing

in N as 1/R2
√
N , since the analysis is then slightly easier, though (a) a decaying stepsize could

be considered as well, and (b) it could be classically extended to varying step-sizes by a doubling

trick (Hazan and Kale, 2001).

2. Stochastic approximation for generalized linear models

In this section, we present the assumptions our work relies on, as well as related work.

2.1 Assumptions

Throughout this paper, we make the following assumptions. We consider a function f defined on

a Hilbert space H, and an increasing family of σ-fields (Fn)n>1; we assume that we are given a
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deterministic θ0 ∈ H, and a sequence of functions fn : H → R, for n > 1. We make the following

assumptions, for a certain R > 0:

(A1) Convexity and differentiability of f : f is convex and three-times differentiable.

(A2) Generalized self-concordance of f (Bach, 2010): for all θ1, θ2 ∈ H, the function ϕ : t 7→
f
[

θ1 + t(θ2 − θ1)
]

satisfies: ∀t ∈ R, |ϕ′′′(t)| 6 R‖θ1 − θ2‖ϕ′′(t).

(A3) Attained global minimum: f has a global minimum attained at θ∗ ∈ H.

(A4) Lipschitz-continuity of fn and f : all gradients of f and fn are bounded by R, that is, for all

θ ∈ H,

‖f ′(θ)‖ 6 R and ∀n > 1, ‖f ′n(θ)‖ 6 R almost surely.

(A5) Adapted measurability: ∀n > 1, fn is Fn-measurable.

(A6) Unbiased gradients: ∀n > 1, E(f ′n(θn−1)|Fn−1) = f ′(θn−1).

(A7) Stochastic gradient recursion: ∀n > 1, θn = θn−1 − γnf
′
n(θn−1), where (γn)n>1 is a deter-

ministic sequence.

In this paper, we will also consider the averaged iterate θ̄n = 1
n

∑n−1
k=0 θk, which may be trivially

computed on-line through the recursion θ̄n = 1
nθn−1 +

n−1
n θ̄n−1.

Among the seven assumptions above, the non-standard one is (A2): the notion of self-concordance

is an important tool for convex optimization and in particular for the study of Newton’s method

(Nesterov and Nemirovskii, 1994). It corresponds to having the third derivative bounded by the 3
2 -

th power of the second derivative. For machine learning, Bach (2010) has generalized the notion of

self-concordance by removing the 3
2 -th power, so that it is applicable to cost functions arising from

probabilistic modeling, as shown below.

Our set of assumptions corresponds to the following examples (with i.i.d. data, and Fn equal to the

σ-field generated by x1, y1, . . . , xn, yn):

– Logistic regression: fn(θ) = log(1+exp(−yn〈xn, θ〉)), with data xn uniformly almost surely

bounded byR and yn ∈ {−1, 1}. Note that this includes other binary classification losses, such

as fn(θ) = −yn〈xn, θ〉+
√

1 + 〈xn, θ〉2.

– Generalized linear models with uniformly bounded features: fn(θ) = −〈θ,Φ(xn, yn)〉 +
log

∫

h(y) exp
(

〈θ,Φ(xn, y)〉
)

dy, with Φ(xn, y) ∈ H almost surely bounded in norm by R,

for all observations xn and all potential responses y in a measurable space. This includes

multinomial regression and conditional random fields (Lafferty et al., 2001).

– Robust regression: we may use fn(θ) = ϕ(yn−〈xn, θ〉), withϕ(t) = log cosh t = log et+e−t

2 ,

with a similar boundedness assumption on xn.

Running-time complexity. The stochastic gradient descent recursion θn = θn−1 − γnf
′
n(θn−1)

operates in full generality in the potentially infinite-dimensional Hilbert space H. There are two

practical set-ups where this recursion can be implemented. When H is finite-dimensional with

dimension d, then the complexity of a single iteration is O(d), and thus O(dn) after n iterations.

When H is infinite-dimensional, the recursion can be readily implemented when (a) all functions fn
depend on one-dimensional projections 〈xn, θ〉, i.e., are of the form fn(θ) = ϕn

(

〈xn, θ〉
)

for certain
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random functions ϕn (e.g., ϕn(u) = ℓ(yn, u) in machine learning), and (b) all scalar products Kij =
〈xi, xj〉 between xi and xj , for i, j > 1, can be computed. This may be done through the classical

application of the “kernel trick” (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004):

if θ0 = 0, we may represent θn as a linear combination of vectors x1, . . . , xn, i.e., θn =
∑n

i=1 αixi,
and the recursion may be written in terms of the weights αn, through

αn = −γnxnϕ′
n

( n−1
∑

i=1

αiKni

)

.

A key element to notice here is that without regularization, the weights αi corresponding to previous

observations remain constant. The overall complexity of the algorithm is O(n2) times the cost of

evaluating a single kernel function. See Bordes et al. (2005); Wang et al. (2012) for approaches

aiming at reducing the computational load in this setting. Finally, note that in the kernel setting, the

function f(θ) cannot be strongly convex because the covariance operator of x is typically a compact

operator, with a sequence of eigenvalues tending to zero (some regularization is then needed).

2.2 Related work

Non-strongly-convex functions. When only convexity of the objective function is assumed, then

several authors (Nesterov and Vial, 2008; Nemirovski et al., 2009; Shalev-Shwartz et al., 2009; Xiao,

2010) have shown that using a step-size proportional to 1/
√
n, together with some form of averag-

ing, leads to the minimax optimal rate of O(1/
√
n) (Nemirovsky and Yudin, 1983; Agarwal et al.,

2012). Without averaging, the known convergences rates are suboptimal, that is, averaging is key to

obtaining the optimal rate (Bach and Moulines, 2011). Note that the smoothness of the loss does not

change the rate, but may help to obtain better constants, with the potential use of acceleration (Lan,

2012). Recent work (Bach and Moulines, 2013) has considered algorithms which improve on the

rate O(1/
√
n) for smooth self-concordant losses, such as the square and logistic losses. Their

analysis relies on some of the results proved in this paper (in particular the high-order bounds in

Section 3).

The compactness of the domain is often used within the algorithm (by using orthogonal projections)

and within the analysis (in particular to optimize the step size and obtain high-probability bounds).

In this paper, we do not make such compactness assumptions, since in a machine learning context,

the available bound would be loose and hurt practical performance.

Another difference between several analyses is the use of decaying step sizes of the form γn ∝
1/
√
n vs. the use of a constant step size of the form γ ∝ 1/

√
N for a finite known horizon N of

iterations. The use of a “doubling trick” as done by Hazan and Kale (2001) for strongly convex

optimization, where a constant step size is used for iterations between 2p and 2p+1, with a constant

that is proportional to 1/
√
2p, would allow to obtain an anytime algorithm from a finite horizon one.

In order to simplify our analysis, we only consider a finite horizon N and a constant step-size that

will be proportional to 1/
√
N .

Strongly-convex functions. When the function is µ-strongly convex, i.e., θ 7→ f(θ) − µ
2‖θ‖2

is convex, there are essentially two approaches to obtaining the minimax-optimal rate of O(1/µn)
(Nemirovsky and Yudin, 1983; Agarwal et al., 2012): (a) using a step size proportional to 1/µnwith
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averaging for non-smooth problems (Nesterov and Vial, 2008; Nemirovski et al., 2009; Xiao, 2010;

Shalev-Shwartz et al., 2009; Duchi and Singer, 2009; Lacoste-Julien et al., 2012) or a step size pro-

portional to 1/(R2 + nµ) also with averaging, for smooth problems, where R2 is the smoothness

constant of the loss of a single observation (Le Roux et al., 2012); (b) for smooth problems, using

longer step-sizes proportional to 1/nα for α ∈ (1/2, 1) with averaging (Polyak and Juditsky, 1992;

Ruppert, 1988; Bach and Moulines, 2011).

Note that the often advocated step size, i.e., of the form C/n where C is larger than 1/µ, leads,

without averaging to a convergence rate of O(1/µ2n) (Fabian, 1968; Bach and Moulines, 2011),

hence with a worse dependence on µ.

The solution (a) requires to have a good estimate of the strong-convexity constant µ, while the

second solution (b) does not require to know such estimate and leads to a convergence rate achieving

asymptotically the Cramer-Rao lower bound (Polyak and Juditsky, 1992). Thus, this last solution

is adaptive to unknown (but positive) amount of strong convexity. However, unless we take the

limiting setting α = 1/2, it is not adaptive to lack of strong convexity. While the non-asymptotic

analysis of Bach and Moulines (2011) already gives a convergence rate in that situation, the bound

is rather complicated and also has a suboptimal dependence on µ. Another goal of this paper is to

consider a less general result, but more compact and, as already mentioned, a better dependence

on the strong convexity constant µ (moreover, as reviewed below, we consider the local strong

convexity constant, which is much larger).

Finally, note that unless we restrict the support, the objective function for logistic regression cannot

be globally strongly convex (since the Hessian tends to zero when ‖θ‖ tends to infinity). In this

paper we show that stochastic gradient descent with averaging is adaptive to the local strong con-

vexity constant, i.e., the lowest eigenvalue of the Hessian of f at the global optimum, without any

exponential terms in RD (which would be present if a compact domain of diameter D was imposed

and traditional analyses were performed).

Adaptivity to unknown constants. The desirable property of adaptivity to the difficulty of an

optimization problem has also been studied in several settings. Gradient descent with constant step

size is for example naturally adaptive to the strong convexity of the problem (see, e.g., Nesterov,

2004). In the stochastic context, Juditsky and Nesterov (2010) provide another strategy than aver-

aging with longer step sizes, but for uniform convexity constants.

3. Non-strongly convex analysis

In this section, we study the averaged stochastic gradient method in the non-strongly convex case,

i.e., without any (global or local) strong convexity assumptions. We first recall existing results in

Section 3.1, that bound the expectation of the excess risk leading to a bound in O(1/
√
n). We

then show using martingale moment inequalities how all higher-order moments may be bounded in

Section 3.2, still with a rate of O(1/
√
n). However, in Section 3.3, we consider the convergence of

the squared gradient, with now a rate of O(1/n). This last result is key to obtaining the adaptivity

to local strong convexity in Section 4.
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3.1 Existing results

In this section, we review existing results for Lipschitz-continuous non-strongly convex problems

(Nesterov and Vial, 2008; Nemirovski et al., 2009; Shalev-Shwartz et al., 2009; Duchi and Singer,

2009; Xiao, 2010). Note that smoothness is not needed here. We consider a constant step size

γn = γ > 0, for all n > 1, and we denote by θ̄n = 1
n

∑n−1
k=0 θk the averaged iterate.

We prove the following proposition, which provides a bound on the expectation of f(θ̄n) − f(θ∗)
that decays at rate O(γ + 1/γn), hence the usual choice γ ∝ 1/

√
n:

Proposition 1 Assume (A1) and (A3-7). With constant step size equal to γ, for any n > 0, we have:

Ef

(

1

n

n
∑

k=1

θk−1

)

− f(θ∗) +
1

2γn
E‖θn − θ∗‖2 6

1

2γn
‖θ0 − θ∗‖2 +

γ

2
R2. (1)

Proof We have the following recursion, obtained from the Lipschitz-continuity of fn:

‖θn − θ∗‖2 = ‖θn−1 − θ∗‖2 − 2γ〈θn−1 − θ∗, f
′
n(θn−1)〉+ γ2‖f ′n(θn−1)‖2

6 ‖θn−1 − θ∗‖2 − 2γ〈θn−1 − θ∗, f
′(θn−1)〉+ γ2R2 +Mn,

with

Mn = −2γ〈θn−1 − θ∗, f
′
n(θn−1)− f ′(θn−1)〉.

We thus get, using the classical result from convexity f(θn−1)− f(θ∗) 6 〈θn−1 − θ∗, f ′(θn−1)〉:
2γ

[

f(θn−1)− f(θ∗)
]

6 ‖θn−1 − θ∗‖2 − ‖θn − θ∗‖2 + γ2R2 +Mn. (2)

Summing over integers less than n, this implies:

1

n

n−1
∑

k=0

f(θk)− f(θ∗) +
1

2γn
‖θn − θ∗‖2 6

1

2γn
‖θ0 − θ∗‖2 +

γ

2
R2 +

1

2γn

n
∑

k=1

Mk.

We get the desired result by taking expectation in the last inequality, and using the expectation

EMk = E(E(Mk|Fk−1)) = 0 and f
(

1
n

∑n−1
k=0 θk

)

6 1
n

∑n−1
k=0 f(θk).

The following corollary considers a specific choice of the step size (note that the bound is only true

for the last iteration):

Corollary 2 Assume (A1) and (A3-7). With constant step size equal to γ = 1
2R2

√
N

, we have:

∀n ∈ {1, . . . , N}, E‖θn − θ∗‖2 6 ‖θ0 − θ∗‖2 +
1

4R2
, (3)

Ef

(

1

N

N
∑

k=1

θk−1

)

− f(θ∗) 6
R2

√
N

‖θ0 − θ∗‖2 +
1

4
√
N
. (4)

Note that if ‖θ0 − θ∗‖2 was known, then a better step-size would be γ = ‖θ0−θ∗‖
R
√
N

, leading to a

convergence rate proportional to
R‖θ0−θ∗‖√

N
. However, this requires an estimate (simply an upper-

bound) of ‖θ0 − θ∗‖2, which is typically not available.

We are going to improve this result in several ways:
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– All moments of ‖θn − θ∗‖2 and f(θ̄n) − f(θ∗) will be bounded, leading to a sub-exponential

behavior. Note that we do not assume that the iterates are restricted to a predefined bounded

set, which is the usual assumption made to derive tail bounds for stochastic approximation

(Nesterov and Vial, 2008; Nemirovski et al., 2009; Kakade and Tewari, 2009).

– We are going to show that the squared norm of the gradient at θ̄n = 1
n

∑n
k=1 θk−1 converges

at rate O(1/n), even in the non-strongly convex case. This will allow us to derive finer conver-

gence rates in presence of local strong convexity in Section 4.

3.2 Higher-order bound

In this section, we prove novel higher-order bounds (see the proof in Appendix C, which is based

on taking powers of the inequality in Eq. (2) and using martingale moment inequalities), both for

any constant step-sizes and then for the specific choice γ = 1
2R2

√
N

.

Proposition 3 Assume (A1) and (A3-7). With constant step size equal to γ, for any n > 0 and

integer p > 1, we have:

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)p

6
(

3‖θ0 − θ∗‖2 + 20npγ2R2
)p
. (5)

Corollary 4 Assume (A1) and (A3-7). With constant step size equal to γ = 1
2R2

√
N

, for any integer

p > 1, we have:

∀n ∈ {1, . . . , N}, E‖θN − θ∗‖2p 6

[ 1

R2

(

3R2‖θ0 − θ∗‖2 + 5p
)

]p
, (6)

E
[

f(θ̄N )− f(θ∗)
]p

6

[ 1√
N

(

3R2‖θ0 − θ∗‖2 + 5p
)

]p
. (7)

Having a bound on all moments allows immediately to derive large deviation bounds in the same

two cases (by applying Lemma 11 from Appendix A):

Proposition 5 Assume (A1) and (A3-7). With constant step size equal to γ, for any n > 0 and

t > 0, we have:

P

(

f(θ̄n)− f(θ∗) > 30γR2t+
3‖θ0 − θ∗‖2

γn

)

6 2 exp(−t),

P

(

‖θn − θ∗‖2 > 60nγ2R2t+ 6‖θ0 − θ∗‖2
)

6 2 exp(−t).

Corollary 6 Assume (A1) and (A3-7). With constant step size equal to γ = 1
2R2

√
N

, for any t > 0

we have:

P

(

f(θ̄N)− f(θ∗) >
15t√
N

+
6R2‖θ0 − θ∗‖2√

N

)

6 2 exp(−t),

P

(

‖θN − θ∗‖2 > 15R−2t+ 6‖θ0 − θ∗‖2
)

6 2 exp(−t).

We can make the following observations:
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– The results above bounding the norm between the last iterate and a global optimum extends to

the averaged iterate.

– The iterates θn and θ̄n do not necessarily converge to θ∗ (note that θ∗ may not be unique in

general anyway).

– Given that (E[f(θ̄n)− f(θ∗)]p)1/p is affine in p, we obtain a subexponential behavior, i.e., tail

bounds similar to an exponential distribution. The same decay was obtained by Nesterov and Vial

(2008) and Nemirovski et al. (2009), but with an extra orthogonal projection step that is equiv-

alent in our setting to know a bound on ‖θ∗‖, which is in practise not available.

– The proof of Prop. 3 is rather technical and makes heavy use of martingale moment inequalities.

A simpler alternative proof has been derived by Bach and Moulines (2013), which uses the

Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem 4.1).

– The constants in the bounds of of Prop. 3 (and thus other results as well) could clearly be

improved. In particular, we have, for p = 1, 2, 3 (see proof in Appendix E):

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)

6 ‖θ0 − θ∗‖2 + nγ2R2,

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)2

6
(

‖θ0 − θ∗‖2 + 9nγ2R2
)2
,

E

(

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
)3

6
(

‖θ0 − θ∗‖2 + 20nγ2R2
)3
.

3.3 Convergence of gradients

In this section, we prove higher-order bounds on the convergence of the gradient, with an improved

rate O(1/n) for ‖f ′(θ̄n)‖2. In this section, we will need the self-concordance property in Assump-

tion (A2).

Proposition 7 Assume (A1-7). With constant step size equal to γ, for any n > 0 and integer p, we

have:

(

E

∥

∥

∥

∥

f ′
(

1

n

n
∑

k=1

θk−1

)
∥

∥

∥

∥

2p)1/2p

6
R√
n

[

8
√
p+

4p√
n
+40R2γp

√
n+

3

γ
√
n
‖θ0−θ∗‖2+

3

γR
√
n
‖θ0−θ∗‖

]

.

(8)

Corollary 8 Assume (A1-7). With constant step size equal to γ = 1
2R2

√
N

, for any integer p, we

have:

(

E

∥

∥

∥

∥

f ′
(

1

N

N
∑

k=1

θk−1

)
∥

∥

∥

∥

2p)1/2p

6
R√
N

[

8
√
p+

4p√
n
+20p+6R2‖θ0− θ∗‖2+6R‖θ0− θ∗‖

]

. (9)

We can make the following observations:

– The squared norm of the gradient ‖f ′(θ̄N )‖2 converges at rate O(1/N).

– Given that (E‖f ′(θ̄N )‖2p)1/2p is affine in p, we obtain a subexponential behavior for ‖f ′(θ̄N )‖,

i.e., tail bounds similar to an exponential distribution.

8
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– The proof of Prop. 7 makes use of the self-concordance assumption (that allows to upper-

bound deviations of gradients by deviations of function values) and of the proof technique

of Polyak and Juditsky (1992).

4. Self-concordance analysis for strongly-convex problems

In the previous section, we have shown that ‖f ′(θ̄N )‖2 is of order O(1/N). If the function f was

strongly convex with constant µ > 0, this would immediately lead to the bound f(θ̄N) − f(θ∗) 6
1
2µ‖f ′(θ̄N )‖2, of order O(1/µN). However, because of the Lipschitz-continuity of f on the full

Hilbert space H, it cannot be strongly convex. In this section, we show how the self-concordance

assumption may be used to obtain the exact same behavior, but with µ replaced by the local strong

convexity constant, which is more likely to be strictly positive.

The required property is summarized in the following proposition about (generalized) self-concordant

function (see proof in Appendix B.1):

Proposition 9 Let f be a convex three-times differentiable function from H to R, such that for all

θ1, θ2 ∈ H, the function ϕ : t 7→ f
[

θ1 + t(θ2 − θ1)
]

satifies: ∀t ∈ R, |ϕ′′′(t)| 6 R‖θ1 − θ2‖ϕ′′(t).
Let θ∗ be a global minimizer of f and µ the lowest eigenvalue of f ′′(θ∗), which is assumed strictly

positive.

If
‖f ′(θ)‖R

µ
6

3

4
, then ‖θ − θ∗‖2 6 4

‖f ′(θ)‖2
µ2

and f(θ)− f(θ∗) 6 2
‖f ′(θ)‖2

µ
.

We may now use this proposition for the averaged stochastic gradient. For simplicity, we only

consider the step-size γ = 1
2R2

√
N

, and the last iterate (see proof in Appendix F):

Proposition 10 Assume (A1-7). Assume γ = 1
2R2

√
N

. Let µ > 0 be the lowest eigenvalue of the

Hessian of f at the unique global optimum θ∗. Then:

Ef(θ̄N)− f(θ∗) 6
R2

Nµ

(

5R‖θ0 − θ∗‖+ 15
)4
,

E
∥

∥θ̄N − θ∗
∥

∥

2
6

R2

Nµ2

(

6R‖θ0 − θ∗‖+ 21
)4
.

We can make the following observations:

– The proof relies on Prop. 9 and requires a control of the probability that
‖f ′(θ̄N )‖R

µ 6 3
4 , which

is obtained from Prop. 7.

– We conjecture a bound of the form
[

R2

Nµ(�R‖θ0 − θ∗‖+△√
p)4

]p
for the p-th order moment

of f(θ̄N )− f(θ∗), for some scalar constants � and △.

– The new bound now has the term R‖θ0 − θ∗‖ with a fourth power (compared to the bound in

Prop. 1, which has a second power), which typically grows with the dimension of the underlying

space (or the slowness of the decay of eigenvalues of the covariance operator when H is infinite-

dimensional). It would be interesting to study whether this dependence can be reduced.

9
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– The key elements in the previous proposition are that (a) the constant µ is the local convexity

constant, and (b) the step-size does not depend on that constant µ, hence the claimed adaptivity.

– The bounds are only better than the non-strongly-convex bounds from Prop. 1, when the Hes-

sian lowest eigenvalue is large enough, i.e., µR2
√
N larger than a fixed constant.

– In the context of logistic regression, even when the covariance matrix of the inputs is invertible,

then the only available lower bound on µ is equal to the lowest eigenvalue of the covariance

matrix times exp(−R‖θ∗‖), which is exponentially small. However, the previous bound is

overly pessimistic since it is based on an upper bound on the largest possible value of 〈x, θ∗〉.
In practice, the actual value of µ is much larger and only a small constant smaller than the

lowest eigenvalue of the covariance matrix. In order to assess if this result can be improved,

it is interesting to look at the asymptotic result from Polyak and Juditsky (1992) for logistic

regression, which leads to a limit rate of 1/n times tr f ′′(θ∗)−1
(

Ef ′n(θ∗)f
′
n(θ∗)

⊤); note that

this rate holds both for the stochastic approximation algorithm and for the global optimum

of the training cost, using standard asymptotic statistics results (Van der Vaart, 1998). When

the model is well-specified, i.e., the log-odds ratio of the conditional distribution of the label

given the input is linear, then Ef ′n(θ∗)f
′
n(θ∗)

⊤ = Ef ′′n(θ∗) = f ′′(θ∗), and the asymptotic

rate is exactly d/n, where d is the dimension of H (which has to be finite-dimensional for the

covariance matrix to be invertible). It would be interesting to see if making the extra assumption

of well-specification, we can also get an improved non-asymptotic result. When the model is

mis-specified however, the quantity Ef ′n(θ∗)f
′
n(θ∗)

⊤ may be large even when f ′′(θ∗) is small,

and the asymptotic regime does readily lead to an improved bound.

5. Conclusion

In this paper, we have provided a novel analysis of averaged stochastic gradient for logistic re-

gression and related problems. The key aspects of our result are (a) the adaptivity to local strong

convexity provided by averaging and (b) the use of self-concordance to obtain a simple bound that

does not involve a term which is explicitly exponential in R‖θ0 − θ∗‖, which could be obtained by

constraining the domain of the iterates.

Our results could be extended in several ways: (a) with a finite and known horizon N , we consid-

ered a constant step-size proportional to 1/R2
√
N ; it thus seems natural to study the decaying

step size γn = O(1/R2√n), which should, up to logarithmic terms, lead to similar results—

and thus likely provide a solution to a a recently posed open problem for online logistic regres-

sion (McMahan and Streeter, 2012); (b) an alternative would be to consider a doubling trick where

the step-sizes are piecewise constant; also, (c) it may be possible to consider other assumptions,

such as exp-concavity (Hazan and Kale, 2001) or uniform convexity (Juditsky and Nesterov, 2010),

to derive similar or improved results. Finally, by departing from a plain averaged stochastic gradient

recursion, Bach and Moulines (2013) have considered an online Newton algorithm with the same

running-time complexity, which leads to a rate of O(1/n) without strong convexity assumptions for

logistic regression (though with additional assumptions regarding the distributions of the inputs). It

would be interesting to understand if simple assumptions as the ones made in the present paper are

possible while preserving the improved convergence rate.

10
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Appendix A. Probability lemmas

In this appendix, we prove simple lemmas relating bounds on moments to tail bounds, with the

traditional use of Markov’s inequality. See more general results by Boucheron et al. (2013).

Lemma 11 Let X be a non-negative random variable such that for some positive constants A and

B, and all p ∈ {1, . . . , n},

EXp 6 (A+Bp)p.

Then, if t 6 n
2 ,

P(X > 3Bt+ 2A) 6 2 exp(−t).

Proof We have, by Markov’s inequality, for any p ∈ {1, . . . , n}:

P(X > 2Bp+ 2A) 6
EXp

(2Bp + 2A)p
6

(A+Bp)p

(2A+ 2Bp)p
= exp(− log(2)p).

For u ∈ [1, n], we consider p = ⌊u⌋, so that

P(X > 2Bu+ 2A) 6 P(X > 2Bp+ 2A) 6 exp(− log(2)p) 6 2 exp(− log(2)u).

We take t = log(2)u and use 2/ log 2 6 3. This is thus valid if t 6 n
2 .

Lemma 12 Let X be a non-negative random variable such that for some positive constants A, B
and C , and for all p ∈ {1, . . . , n},

EXp 6 (A
√
p+Bp+ C)2p.

Then, if t 6 n,

P(X > (2A
√
t+ 2Bt+ 2C)2) 6 4 exp(−t).

Proof We have, by Markov’s inequality, for any p ∈ {1, . . . , n}:

P(X > (2A
√
p+ 2Bp+ 2C)2) 6

EXp

(2A
√
p+ 2Bp+ 2C)2p

6
(A

√
p+Bp+ C)2p

(2A
√
p+ 2Bp+ 2C)2p

6 exp(− log(4)p).

For u ∈ [1, n], we consider p = ⌊u⌋, so that

P(X > (2A
√
u+2Bu+2C)2) 6 P(X > (2A

√
u+2Bu+2C)2) 6 exp(− log(2)p) 6 4 exp(− log(4)u).

We take t = log(4)u and use log 4 > 1. This is thus valid if t 6 n.

11
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Appendix B. Self-concordance properties

In this appendix, we show two lemmas regarding our generalized notion of self-concordance, as

well as Prop. 9. For more details, see Bach (2010) and references therein.

The following lemma provide an upper-bound on a one-dimensional self-concordant function at a

given point which is based on the gradient at this point and the value and the Hessian at the global

minimum. This is key to going in Section 4 from a convergence of gradients to a convergence of

function values.

Lemma 13 Let ϕ : [0, 1] → R a strictly convex three-times differentiable function such that for

some S > 0, ∀t ∈ [0, 1], |ϕ′′′(t)| 6 Sϕ′′(t). Assume ϕ′(0) = 0, ϕ′′(0) > 0. Then:

ϕ′(1)
ϕ′′(0)

S > 1− e−S and ϕ(1) 6 ϕ(0) +
ϕ′(1)2

ϕ′′(0)
(1 + S).

Moreover, if α = ϕ′(1)S
ϕ′′(0) < 1, then ϕ(1) 6 ϕ(0) +

ϕ′(1)2

ϕ′′(0)
1

α
log

1

1− α
. If in addition α 6 3

4 , then

ϕ(1) 6 ϕ(0) + 2ϕ′(1)2

ϕ′′(0) and ϕ′′(0) 6 2ϕ′(1).

Proof By self-concordance, we obtain that the derivative of u 7→ logϕ′′(u) is lower-bounded

by −S. By integrating between 0 and t ∈ [0, 1], we get

logϕ′′(t)− logϕ′′(0) > −St , i.e., ϕ′′(t) > ϕ′′(0)e−St,

and by integrating between 0 and 1, we obtain (note that we have assumed ϕ′(0) = 0):

ϕ′(1) > ϕ′′(0)
1 − e−S

S
. (10)

We then get (with a first inequality from convexity of ϕ, and the last inequality from eS > 1 + S):

ϕ(1) − ϕ(0) 6 ϕ′(1) 6 ϕ′(1)
ϕ′(1)
ϕ′′(0)

S

1− e−S
=
ϕ′(1)2

ϕ′′(0)

(

S +
S

eS − 1

)

6
ϕ′(1)2

ϕ′′(0)
(1 + S).

Eq. (10) implies that α > 1− e−S , which implies, if α < 1, S 6 log 1
1−α . This implies that

ϕ(1)− ϕ(0) 6 ϕ′(1)
ϕ′(1)
ϕ′′(0)

S

1− e−S
6
ϕ′(1)2

ϕ′′(0)
1

α
log

1

1− α
,

using the monotinicity of S 7→ S
1−e−S . Finally the last bounds are a consequence of S

α 6 1
α log 1

1−α 6

2, which is valid for α 6 3
4 .

The following lemma upper-bounds the remainder in the first-order Taylor expansion of the gradient

by the remainder in the first-order Taylor expansion of the function. This is important when function

values behave well (i.e., converge to the minimal value) while the iterates may not.

12
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Lemma 14 Let f be a convex three-times differentiable function from H to R, such that for all

θ1, θ2 ∈ H, the function ϕ : t 7→ f
[

θ1 + t(θ2 − θ1)
]

satifies: ∀t ∈ R, |ϕ′′′(t)| 6 R‖θ1 − θ2‖ϕ′′(t).
For any θ1, θ2 ∈ H , we have:

∥

∥f ′(θ1)− f ′(θ2)− f ′′(θ2)(θ2 − θ1)
∥

∥ 6 R
[

f(θ1)− f(θ2)− 〈f ′(θ2), θ2 − θ1〉
]

.

Proof For a given z ∈ H of unit norm, let ϕ(t) =
〈

z, f ′
(

θ2+t(θ1−θ2)
)

−f ′(θ2)−tf ′′(θ2)(θ2−θ1)
〉

and ψ(t) = R
[

f(θ2+t(θ1−θ2))−f(θ2)−t〈f ′(θ2), θ2−θ1〉
]

. We have ϕ(0) = ψ(0) = 0. Moreover,

we have the following derivatives:

ϕ′(t) =
〈

z, f ′′
(

θ2 + t(θ1 − θ2)
)

− f ′′(θ2), θ1 − θ2
〉

ϕ′′(t) = f ′′′
(

θ2 + t(θ1 − θ2)
)

[z, θ1 − θ2, θ1 − θ2]

6 R‖z‖2f ′′
(

θ2 + t(θ1 − θ2)
)

[θ1 − θ2, θ1 − θ2], using the Appendix A of Bach (2010),

= R
〈

θ2 − θ1, f
′′(θ2 + t(θ1 − θ2)

)

(θ1 − θ2)
〉

ψ′(t) = R
〈

f ′
(

θ2 + t(θ1 − θ2)
)

− f ′(θ2), θ1 − θ2
〉

ψ′′(t) = R
〈

θ2 − θ1, f
′′(θ2 + t(θ1 − θ2)

)

(θ1 − θ2)
〉

,

where f ′′′(θ) is the third order tensor of third derivatives. This leads to ϕ′(0) = ψ′(0) = 0 and

ϕ′′(t) 6 ψ′′(t). We thus have ϕ(1) 6 ψ(1) by integrating twice, which leads to the desired result

by maximizing with respect to z.

B.1 Proof of Prop. 9

We follow the standard proof techniques in self-concordant analysis and define an appropriate func-

tion of a single real variable and apply simple lemmas like the ones above.

Define ϕ : t 7→ f
[

θ∗ + t(θ − θ∗)
]

− f(θ∗). We have

ϕ′(t) =
〈

f ′
[

θ∗ + t(θ − θ∗)
]

, θ − θ∗〉
ϕ′′(t) =

〈

θ − θ∗, f
′′[θ∗ + t(θ − θ∗)

]

(θ − θ∗)〉
ϕ′′′(t) = f ′′′

[

θ∗ + t(θ − θ∗)
]

[θ − θ∗, θ − θ∗, θ − θ∗].

We thus have: ϕ(0) = ϕ′(0) = 0, 0 6 ϕ′(1) = 〈f ′(θ), θ − θ∗〉 6 ‖f ′(θ)‖‖θ − θ∗‖, ϕ′′(0) =
〈θ − θ∗, f ′′(θ∗)(θ − θ∗)〉 > µ‖θ − θ∗‖2, and ϕ(t) > 0 for all t ∈ [0, 1]. Moreover, ϕ′′′(t) 6

R‖θ − θ∗‖ϕ′′(t) for all t ∈ [0, 1], i.e., Lemma 13 applies with S = R‖θ − θ∗‖. This leads to the

desired result, with α = ϕ′(1)S
ϕ′′(0) 6

‖f ′(θ)‖R
µ . Note that we also have (using the second inequality in

Lemma 13), for all θ ∈ H (and without any assumption on θ):

f(θ)− f(θ∗) 6
(

1 +R‖θ − θ∗‖
)‖f ′(θ)‖2

µ
.

Appendix C. Proof of Prop. 3

We consider a direct proof based on taking powers of the inequality in Eq. (2), and then using

the appropriate martingale properties. The proof is rather technical and does not use any known
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martingale inequalities about p-th order moments. A simpler alternative proof has been derived

by Bach and Moulines (2013), which uses the Burkholder-Rosenthal-Pinelis inequality (Pinelis,

1994, Theorem 4.1).

The proof works as follows: (a) derive a recursion between the p-th moments and the lower-order

moments and (c) prove the result by induction on p. Note that we have to treat separately small

values on n in the recursion, which do using almost sure bounds in Appendix C.2.

C.1 Derivation of recursion

From the proof of Prop. 1, we have the recursion:

2γ
[

f(θn−1)− f(θ∗)
]

+ ‖θn − θ∗‖2 6 ‖θn−1 − θ∗‖2 + γ2R2 +Mn,

with

Mn = −2γ〈θn−1 − θ∗, f
′
n(θn−1)− f ′(θn−1)〉.

This leads to, by summing from 1 to n, and using the convexity of f :

2γnf

(

1

n

n
∑

k=1

θk−1

)

− 2γnf(θ∗) + ‖θn − θ∗‖2 6 An,

with An = ‖θ0 − θ∗‖2 + nγ2R2 +
∑n

k=1Mk > 0, or defined through the recursion An = An−1 +
γ2R2 +Mn, with A0 = ‖θ∗ − θ0‖2. Note that E(Mk|Fk−1) = 0 and |Mk| 6 4γR‖θk−1 − θ∗‖ 6

4γRA
1/2
k−1 almost surely. This leads to, by using the binomial expansion formula:

Ap
n 6

(

An−1 + γ2R2 +Mn

)p
=

p
∑

k=0

(

p

k

)

(

An−1 + γ2R2
)p−k

Mk
n

6
(

An−1 + γ2R2
)p

+ p
(

An−1 + γ2R2
)p−1

Mn +

p
∑

k=2

(

p

k

)

(

An−1 + γ2R2
)p−k(

4γRA
1/2
n−1

)k
.

This leads to, using E(Mn|Fn−1) = 0, upper bounding γ2R2 by 4γ2R2, and using the binomial

expansion formula several times:

E
[

Ap
n

∣

∣Fn−1

]

6
(

An−1 + 4γ2R2
)p

+

p
∑

k=2

(

p

k

)

(

An−1 + 4γ2R2
)p−k(

4γRA
1/2
n−1

)k

=
(

An−1 + 4γ2R2 + 4γRA
1/2
n−1

)p − 4γRp
(

An−1 + 4γ2R2
)p−1

A
1/2
n−1

=
(

A
1/2
n−1 + 2γR

)2p − 4γRp
(

An−1 + 4γ2R2
)p−1

A
1/2
n−1

=

2p
∑

k=0

(

2p

k

)

A
k/2
n−1(2γR)

2p−k − 4γRpA
1/2
n−1

p−1
∑

k=0

(

p− 1

k

)

Ak
n−1(2γR)

2(p−1−k)

=

2p
∑

k=0

A
k/2
n−1(2γR)

2p−kCk,

14
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with the constants Ck defined as:

C2q =

(

2p

2q

)

for q ∈ {0, . . . , p},

C2q+1 =

(

2p

2q + 1

)

− 2p

(

p− 1

q

)

for q ∈ {0, . . . , p − 1}.

In particular, C0 = 1, C2p = 1, C1 = 0 and C2p−1 =
(

2p
2p−1

)

− 2p
(

p−1
p−1

)

= 0.

Our goal is now to bounding the values of Ck to obtain Eq. (13) below. This will be done by

bounding the odd-indexed element by the even-indexed elements.

We have, for q ∈ {1, . . . , p− 2},

C2q+1
2q + 1

2p− 2q − 1
6

(

2p

2q + 1

)

2q + 1

2p − 2q − 1

=
(2p)!

(2q + 1)!(2p − 2q − 1)!

2q + 1

2p − 2q − 1

=
(2p)!

(2q)!(2p − 2q)!

2p − 2q

2p − 2q − 1
=

(

2p

2q

)

2p− 2q

2p − 2q − 1
. (11)

For the end of the interval above in q, i.e., q = p − 2, we obtain C2q+1
2q+1

2p−2q−1 6 C2q
4
3 , while for

q 6 p− 3, we obtain C2q+1
2q+1

2p−2q−1 6 C2q
6
5 .

Moreover, for q ∈ {1, . . . , p− 2},

C2q+1
2p− 2q − 1

2q + 1
6

(

2p

2q + 1

)

2p− 2q − 1

2q + 1

=
(2p)!

(2q + 1)!(2p − 2q − 1)!

2p− 2q − 1

2q + 1

=
(2p)!

(2q + 2)!(2p − 2q − 2)!

2q + 2

2q + 1
=

(

2p

2q + 2

)

2q + 2

2q + 1
. (12)

For the end of the interval above in q, i.e., q = 1, we obtain C2q+1
2p−2q−1
2q+1 6 C2q+2

4
3 , while for

q > 2, we obtain C2q+1
2p−2q−1
2q+1 6 C2q+2

6
5 .

We have moreover, by using the bound 2γRA
1/2
n−1 6

α
2 (2γR)

2 + 1
2αAn−1 for α = 2q+1

2p−2q−1 :

C2q+1A
q+1/2
n−1 (2γR)2p−2q−1

= C2q+1A
q
n−1(2γR)

2p−2q−2A
1/2
n−1(2γR)

6 C2q+1A
q
n−1(2γR)

2p−2q−2 1

2

[

2q + 1

2p − 2q − 1
(2γR)2 +

2p− 2q − 1

2q + 1
An−1

]

=
1

2
C2q+1

2p− 2q − 1

2q + 1
Aq+1

n−1(2γR)
2p−2q−2 +

1

2
C2q+1

2q + 1

2p − 2q − 1
Aq

n−1(2γR)
2p−2q.

By combining the previous inequality with Eq. (11) and Eq. (12), we get that the terms indexed by

2q + 1 are bounded by the terms indexed by 2q + 2 and 2q. All terms with q ∈ {2, . . . , p − 3}
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are expanded with constants 3
5 , while for q = 1 and q = p − 2, this is 2

3 . Overall each even term

receives a contribution which is less than max{6
5 ,

3
5 + 2

3 ,
2
3} = 19

15 . This leads to

p−2
∑

q=1

C2q+1A
q+1/2
n−1 (2γR)2p−2q−1 6

19

15

p−1
∑

q=0

C2qA
q
n−1(2γR)

2p−2q,

leading to the recursion that will allow us to derive our result:

E
[

Ap
n

∣

∣Fn−1

]

6 Ap
n−1 +

34

15

p−1
∑

q=0

(

2p

2q

)

Aq
n−1(2γR)

2p−2q. (13)

C.2 First bound

In this section, we derive an almost sure bound that will be valid for small n. Since ‖θn − θ∗‖ 6

‖θn−1 − θ∗‖ + γR almost surely, we have ‖θn − θ∗‖ 6 ‖θ0 − θ∗‖ + nγR for all n > 0. This in

turn implies that

An 6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γR
n
∑

k=1

‖θk−1 − θ∗‖ using |Mk| 6 4γR‖θk−1 − θ∗‖,

6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γR
n
∑

k=1

[

‖θ0 − θ∗‖+ (k − 1)γR
]

using the inequality above,

6 ‖θ0 − θ∗‖2 + nγ2R2 + 4γnR‖θ0 − θ∗‖+ 2γ2R2n2 by summing over the first n− 1 integers,

6 ‖θ0 − θ∗‖2 + nγ2R2 + 2γ2n2R2 + 2‖θ0 − θ∗‖2 + 2γ2R2n2 using ab 6
a2

2
+
b2

2
,

6 3‖θ0 − θ∗‖2 + 5nγ2R2 almost surely. (14)

C.3 Proof by induction

We now proceed by induction on p. If we assume that EAq
k 6

(

3‖θ0 − θ∗‖2 + kqγ2R2A
)q

for all

q < p, and a certain B (which we will choose to be equal to 20). We first note that if n 6 4p, then

from Eq. (14), we have

EAp
n 6

(

3‖θ0 − θ∗‖2 + 5n2γ2R2
)p

6
(

3‖θ0 − θ∗‖2 + 20npγ2R2
)p
.

Thus, we only need to consider n > 4p. We then get from Eq. (13):

E‖θn − θ∗‖2p 6 ‖θ0 − θ∗‖2p +
34

15

n−1
∑

k=0

p−1
∑

q=0

(

2p

2q

)

EAq
k(2γR)

2p−2q

6 ‖θ0 − θ∗‖2p +
34

15

n−1
∑

k=0

p−1
∑

q=0

(

2p

2q

)

(

3‖θ0 − θ∗‖2 + kqγ2R2B
)q
(2γR)2p−2q,

16
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using the induction hypothesis. We may now sum with respect to k:

E‖θn − θ∗‖2p 6 ‖θ0 − θ∗‖2p +
34

15

p−1
∑

q=0

(

2p

2q

)

(2γR)2p−2q
n−1
∑

k=0

(

3‖θ0 − θ∗‖2 + kqγ2R2B
)q

6 ‖θ0 − θ∗‖2p +
34

15

p−1
∑

q=0

(

2p

2q

)

(2γR)2p−2q
q

∑

j=0

3j‖θ0 − θ∗‖2j
(

q

j

)

(

qγ2R2B
)q−j nq−j+1

q − j + 1

using

n−1
∑

k=0

kα 6
nα+1

α+ 1
for any α > 0,

= ‖θ0 − θ∗‖2p +
34

15

p−1
∑

j=0

3j‖θ0 − θ∗‖2j(4γ2R2n)p−j
p−1
∑

q=j

(

2p

2q

)(

q

j

)

(qB

4

)q−j nq−p+1

q − j + 1
,

by changing the order of summations. We now aim to show that it is less than

(

3‖θ0 − θ∗‖2 + kpγ2R2B
)p

= 3p‖θ0 − θ∗‖2p +
p−1
∑

j=0

3j‖θ0 − θ∗‖2j(γ2R2n)p−j(Bp)p−j

(

p

j

)

.

By comparing all terms in ‖θ0 − θ∗‖2j , this is true as soon as for all j ∈ {0, . . . , p − 1},

34

15

p−1
∑

q=j

(

2p

2q

)(

q

j

)

(

qB/4
)q−j 1

q − j + 1

1

np−q−1
6 (Bp/4)p−j

(

p

j

)

⇔ 34

15

p−1−j
∑

k=0

(

2p

2k + 2

)(

p− 1− k

j

)

(

(p − 1− k)B/4
)p−1−k−j 1

p− k − j

1

nk
6 (Bp/4)p−j

(

p

j

)

,

obtained by using the change of variable k = p− 1− q. This is implied by, using n > 4p:

136

15

p−1−j
∑

k=0

B−1−kp−k−p+j

(

2p

2k + 2

)

(

p−1−k
j

)

(

p
j

)

(

p− 1− k
)p−1−k−j 1

p− k − j
6 1.

By expanding the binomial coefficients and simplifying by p− k − j, this is equivalent to

136

15

p−1−j
∑

k=0

B−1−kp−k−p+j

(

2p

2k + 2

)

(p− 1− k) · · · (p− k − j + 1)

p · · · (p− j + 1)

(

p− 1− k
)p−1−k−j

6 1.

We may now write

(p− 1− k) · · · (p− k − j + 1)

p · · · (p− j + 1)
=

(p− 1− k)!

(p− k − j)!

(p− j)!

p!
=

(p− 1− k)!

p!

(p− j)!

(p− k − j)!

=
(p− j) · · · (p− k − j + 1)

p · · · (p− k)
,

so that we only need to show that

136

15

p−1−j
∑

k=0

B−1−kp−k−p+j

(

2p

2k + 2

)

(p− j) · · · (p− k − j + 1)

p · · · (p− k)

(

p− 1− k
)p−1−k−j

6 1.
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We have, by bounding all terms then than p by p:

136

15

p−1−j
∑

k=0

A−1−kp−k−p+j

(

2p

2k + 2

)

(p− j) · · · (p− k − j + 1)

p · · · (p− k)

(

p− 1− k
)p−1−k−j

6
136

15

p−1−j
∑

k=0

A−1−kp−k−p+j

(

2p

2k + 2

)

pk

p · · · (p − k)
pp−1−k−j

=
136

15

p−1−j
∑

k=0

A−1−kp−k−1

(

2p

2k + 2

)

1

p · · · (p− k)

=
136

15

p−1−j
∑

k=0

A−1−k p−k−1

(2k + 2)!

2p(2p − 1) · · · (2p − 2k − 1)

p · · · (p− k)

=
136

15

p−1−j
∑

k=0

A−1−k p
−2−122k+2

(2k + 2)!

p(p− 1/2) · · · (p− k − 1/2)

p · · · (p− k)

6
136

15

p−1−j
∑

k=0

A−1−k 22k+2

(2k + 2)!
by associating all 2k + 2 terms in ratios which are all less than 1,

6
136

15

+∞
∑

k=0

(2/
√
A)2k+2

(2k + 2)!
=

136

15

[

cosh(2/
√
A)− 1

]

< 1 if A 6 20.

We thus get the desired result EAp
n 6

(

3‖θ0 − θ∗‖2 + 20npγ2R2
)p

, and the proposition is proved

by induction.

Appendix D. Proof of Prop. 7

The proof is organized in two parts: first show a bound on the averaged gradient 1
n

∑n
k=1 f

′(θk−1),

then relate it to the gradient at the averaged iterate, i.e., f ′
(

1
n

∑n
k=1 θk−1

)

, using self-concordance.

D.1 Bound on 1
n

∑n
k=1 f

′(θk−1)

We have, following Polyak and Juditsky (1992); Bach and Moulines (2011):

f ′n(θn−1) =
1

γ
(θn−1 − θn),

which implies, by summing over all integers between 1 and n:

1

n

n
∑

k=1

f ′(θk−1) =
1

n

n
∑

k=1

[

f ′(θk−1)− f ′k(θk−1)
]

+
1

γn
(θ0 − θ∗) +

1

γn
(θ∗ − θn).

We denote Xk = 1
n

[

f ′(θk−1) − f ′k(θk−1)
]

∈ H. We have: ‖Xk‖ 6 2R
n almost surely and

E(Xk|Fk−1) = 0, with
(
∑n

k=1 E(‖Xk‖2|Fk−1)
)1/2

6 2R√
n

. We may thus apply the Burkholder-
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ADAPTIVITY OF AVERAGED STOCHASTIC GRADIENT DESCENT

Rosenthal-Pinelis inequality (Pinelis, 1994, Theorem 4.1), and get:

[

E

∥

∥

∥

∥

1

n

n
∑

k=1

[

f ′(θk−1)− f ′k(θk−1)
]

∥

∥

∥

∥

2p]1/2p

6 2p
2R

n
+

√

2p
2R

n1/2
.

This leads to, using Prop. 3 and Minkowski’s inequality:

[

E

∥

∥

∥

∥

1

n

n
∑

k=1

f ′(θk−1)

∥

∥

∥

∥

2p]1/2p

6

[

E

∥

∥

∥

∥

1

n

n
∑

k=1

[

f ′(θk−1)− f ′k(θk−1)
]

∥

∥

∥

∥

2p]1/2p

+
1

γn
‖θ0 − θ∗‖+

1

γn

[

E‖θ∗ − θn‖2p
]1/2p

6 2p
2R

n
+

√

2p
2R

n1/2
+

1

γn
‖θ0 − θ∗‖+

[ 1

γn

√

3‖θ0 − θ∗‖2 + 20npγ2R2
]

6 2p
2R

n
+

√

2p
2R

n1/2
+

1

γn
‖θ0 − θ∗‖+

[

√
3

γn
‖θ0 − θ∗‖+

1

γn

√

20npγR
]

6
4pR

n
+

√

2p
2R

n1/2
+

2

γn
‖θ0 − θ∗‖+

1

γn

√

20npγR

6
4pR

n
+

√
p
R√
n

[

2
√
2 +

√
20

]

+
1 +

√
3

γn
‖θ0 − θ∗‖

6
4pR

n
+ 8

√
p
R√
n
+

3

γn
‖θ0 − θ∗‖. (15)

D.2 Using self-concordance

Using the self-concordance property of Lemma 14 several times, we obtain:

∥

∥

∥

∥

1

n

n
∑

k=1

f ′(θk−1)− f ′
(

1

n

n
∑

k=1

θk−1

)
∥

∥

∥

∥

=

∥

∥

∥

∥

1

n

n
∑

k=1

[

f ′(θk−1)− f ′(θ∗)− f ′′(θ∗)(θk−1 − θ∗)
]

− f ′
(

1

n

n
∑

k=1

θk−1

)

+ f ′(θ∗) + f ′′(θ∗)

(

1

n

n
∑

k=1

θk−1 − θ∗

)
∥

∥

∥

∥

6
R

n

n
∑

k=1

[

f(θk−1)− f(θ∗)− 〈f ′(θ∗), θk−1 − θ∗〉
]

+R

[

f

(

1

n

n
∑

k=1

θk−1

)

− f(θ∗) +

〈

f ′(θ∗),
1

n

n
∑

k=1

θk−1 − θ∗

〉]

6 2R

(

1

n

n
∑

k=1

f(θk−1)− f(θ∗)

)

using the convexity of f .

This leads to, using Prop. 3:

(

E

∥

∥

∥

∥

1

n

n
∑

k=1

f ′(θk−1)− f ′
(

1

n

n
∑

k=1

θk−1

)
∥

∥

∥

∥

2p)1/2p

6 2R

(

E

[

1

n

n
∑

k=1

f(θk−1)− f(θ∗)

]2p)1/2p

6
2R

2γn

(

3‖θ0 − θ∗‖2 + 40npγ2R2

)

. (16)

Summing Eq. (15) and Eq. (16) leads to the desired result.
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Appendix E. Results for small p

In Prop. 3, we may replace the bound 3‖θ0−θ∗‖2+20npγ2R2 with a bound with smaller constants

for p = 1, 2, 3 (to be used in proofs of results in Section 4). This is done using the same proof

principle but finer derivations, as follows. We denote γ2R2 = b and ‖θ − θ∗‖2 = a, and consider

the following inequalities which we have considered in the proof of Prop. 3:

Ap
n 6 (An−1 + b+Mn)

p

Mn 6 4b1/2A
1/2
n−1 and E(Mn|Fn−1) = 0,

A0 = a.

We simply take expansions of the p-th power above, and sum for all first integers. We have:

EAn 6 EAn−1 + b 6 a+ nb,

EA2
n 6 E(A2

n−1 + b2 + 2bAn−1 +M2
n) 6 EA2

n−1 + 2EAn−1b+ b2 + 16bEAn−1

6 a2 + 18b

[ n−1
∑

k=0

a+ kb

]

+ b2n 6 a2 + 18b[na+
n2

2
b] + b2n using the result about EAn−1,

= a2 + 18bna+ b2(n+ 9n2)

6 (a+ 9nb)2.

We may now pursue for the third order moments:

EA3
n 6 E(An−1 + b)3 + 3E(An−1 + b)2M2

n + 3E(An−1 + b)3Mn + EM3
n−1

6 E(An−1 + b)3 + 3E(An−1 + b)216bAn−1 + 0 + 64b3/2EA
3/2
n−1

6 (EA3
n−1 + 3EA2

n−1b+ 3EAn−1b
2 + b3) + 3(EAn−1 + b)16bAn−1 + 64b3/2EA

3/2
n−1

= (EA3
n−1 + 3EA2

n−1b+ 3An−1b
2 + b3) + 3(EAn−1 + b)16bEAn−1 + 32bEAn−1[2b

/2A
1/2
n−1]

6 (EA3
n−1 + 3EA2

n−1b+ 3EAn−1b
2 + b3) + 3(EAn−1 + b)16bEAn−1 + 32EbAn−1[

An−1

4
+ 4b]

= EA3
n−1 + EA2

n−1b[3 + 48 + 8] + EAn−1b
2[3 + 48 + 128] + b3

= EA3
n−1 + 59EA2

n−1b+ 179EAn−1b
2 + b3

6 a3 + 59b

[ n−1
∑

k=1

a2 + 18bka + b2(k + 9k2)

]

+ 179b2
[ n−1
∑

k=1

a+ kb

]

+ nb3

6 a3 + 59b[na2 + 9bn2a+ b2(n2/2 + 3n3)] + 179b2[na+ bn2/2] + nb3

= a3 + 59nba2 + b2a[59 · 9n2 + 179n] + b3[59/2 · n2 + 3 · 59n3 + 179/2 · n2 + n]

= a3 + 59nba2 + b2a[531n2 + 179n] + b3[119n2 + 177n3 + n]

6 (a+ 20nb)3.

We then obtain:

E

[

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
]2

6
(

‖θ0 − θ∗‖2 + 9nγ2R2
)2

E

[

2γn
[

f(θ̄n)− f(θ∗)
]

+ ‖θn − θ∗‖2
]3

6
(

‖θ0 − θ∗‖2 + 20nγ2R2
)3
.
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Appendix F. Proof of Prop. 10

The proof follows from applying self-concordance properties (Prop. 9) applied to θ̄n. We thus need

to provide a control on the probability that ‖f ′(θ̄n)‖ >
3µ
4R .

F.1 Tail bound for ‖f ′(θ̄n)‖

We derive a large deviation bound, as a consequence of the bound on all moments of ‖f ′(θ̄n)‖
(Prop. 7) and Lemma 12, that allows to go from moments to tail bounds:

P

(

∥

∥f ′(θ̄n)‖ >
2R√
n

[

10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖

])

6 4 exp(−t).

In order to derive the bound above, we need to assume that p 6 n/4 (so that 4p/n 6 2
√
p/

√
n),

and thus, when applying Lemma 12, the bound above is valid as long as t 6 n/4. It is however

valid for all t, because the gradients are bounded by R, and for t > n, we have 2R√
n
10

√
t > R, and

the inequality is satisfied with zero probabiity.

F.2 Bounding the function values

From Prop. 9, if ‖f ′(θ̄n)‖ >
3µ
4R , then f(θ̄n) − f(θ∗) 6 2‖f ′(θ̄n)‖2

µ . This will allow us to derive a

tail bound for f(θ̄n)− f(θ∗), for sufficiently small deviations. For larger deviations, we will use the

tail bound which does not use strong convexity (Prop. 5).

We consider the event

At =

{

∥

∥f ′(θ̄n)‖ 6
2R√
n

[

10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖

]}

.

We make the following two assumptions regarding γ and t:

10
√
t+ 40R2γt

√
n 6

2

3

3µ

4R

√
n

2R
=
µ
√
n

4R2
(17)

and
3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖ 6

1

3

3µ

4R

√
n

2R
=
µ
√
n

8R2
,

so that the upper-bound on ‖f ′(θ̄n)‖ in the definition of At is less than 3µ
4R (so that we can apply

Prop. 9). We thus have:

At ⊂
{

f(θ̄n)− f(θ∗) 6
8R2

µn

[

10
√
t+ 40R2γt

√
n+

3

γ
√
n
‖θ0 − θ∗‖2 +

2

γR
√
n
‖θ0 − θ∗‖

]2}

⊂
{

f(θ̄n)− f(θ∗) 6
8R2

µn

[

10
√
t+ 20�t+△

]2}

,

with � = 2γR2√n and △ =
3

γ
√
n
‖θ0 − θ∗‖2 +

3

γR
√
n
‖θ0 − θ∗‖.
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This implies that for all t > 0, such that 10
√
t+ 20�t 6 µ

√
n

4R2 , i.e., our assumption in Eq. (17), we

may apply the tail bound from Appendix F.1 to get:

P

(

f(θ̄n)− f(θ∗) >
8R2

µn

[

10
√
t+ 20�t+△

]2)

6 4e−t. (18)

Moreover, we have for all v > 0 (from Prop. 5):

P

(

f(θ̄n)− f(θ∗) > 30γR2v +
3‖θ0 − θ∗‖2

γn

)

6 2 exp(−v). (19)

We may now use the last two inequalities to bound the expectation E[f(θ̄n)− f(θ∗)].

We first express the expectation as an integral of the tail bound and split it into three parts:

E
[

f(θ̄n)− f(θ∗)
]

=

∫ +∞

0
P
[

f(θ̄n)− f(θ∗) > u
]

du

=

∫ △2 8R2

µn

0
P
[

f(θ̄n)− f(θ∗) > u
]

du (20)

+

∫ 8R2

µn

(

µ
√

n

4R2
+△

)2

△2 8R2

µn

P
[

f(θ̄n)− f(θ∗) > u
]

du

+

∫ +∞

8R2

µn

(

µ
√

n

4R2
+△

)2
P
[

f(θ̄n)− f(θ∗) > u
]

du.

We may now bound the three terms separately. For the first integral, we bound the probability by

one to get

∫ △2 8R2

µn

0
P
[

f(θ̄n)− f(θ∗) > u
]

du 6 △2 8R
2

nµ
.

For the third term in Eq. (20), we use the tail bound in Eq. (19) to get

∫ +∞

8R2

µn

(

µ
√

n

4R2
+△

)2
P
[

f(θ̄n)− f(θ∗) > u
]

du

=

∫ +∞

8R2

µn

(

µ
√

n

4R2
+△

)2

− 3

γn
‖θ0−θ∗‖2

P

[

f(θ̄n)− f(θ∗) > u+
3

γn
‖θ0 − θ∗‖2

]

du

6 2

∫ +∞

8R2

µn

(

µ
√

n

4R2
+△

)2

− 3

γn
‖θ0−θ∗‖2

exp
(

− u

30γR2

)

du.

We may apply Eq. (19) because

8R2

µn

(µ
√
n

4R2
+△

)2− 3

γn
‖θ0−θ∗‖2 >

8R2

µn

(µ
√
n

4R2
+△

)2− µ

8R2
>

8R2

µn

(µ
√
n

4R2

)2− µ

8R2
=

3µ

8R2
> 0.
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We can now compute the bound explicitly to get
∫ +∞

8R2

µn

(

µ
√

n

4R2
+△

)2
P
[

f(θ̄n)− f(θ∗) > u
]

du

6 60γR2 exp

(

− 1

30γR2

[

8R2

µn

(µ
√
n

4R2
+△

)2 − 3

γn
‖θ0 − θ∗‖2

])

6 60γR2 exp

(

− 1

30γR2

3µ

8R2

)

6 60γR2 exp

(

− µ

80γR4

)

6 60γR2 80γR
4

2µ
using e−α 6

1

2α
for all α > 0

=
2400γ2R6

µ
.

We now consider the second term in Eq. (20) for which we will use Eq. (18). We consider the

change of variable u = 8R2

µn

[

10
√
t + 20�t + △

]2
, for which u ∈

[

△2 8R2

µn ,
8R2

µn

(µ
√
n

4R2 +△
)2
]

implies t ∈ [0,+∞). This implies that

∫ 8R2

µn

(

µ
√

n

4R2
+△

)2

△2 8R2

µn

P
[

f(θ̄n)− f(θ∗) > u
]

du

6

∫ ∞

0
4e−td

(

8R2

µn

[

10
√
t+ 20�t+△

]2)

=
32R2

µn

∫ ∞

0
e−t

(

100 + 400�22t+ 400�
3

2
t1/2 + 20△1

2
t−1/2 + 40△�

)

dt

=
32R2

µn

(

100Γ(1) + 400�22Γ(2) + 400�
3

2
Γ(3/2) + 20△1

2
Γ(1/2) + 40△�Γ(1)

)

with Γ denoting the Gamma function,

=
32R2

µn

(

100 + 400�22 + 400�
3

2

1

2

√
π + 20△1

2

√
π + 40△�

)

.

We may now combine the three bounds to get, from Eq. (20),

E
[

f(θ̄n)− f(θ∗)
]

6 △2 8R
2

nµ
+

2400γ2R6

µ

+
32R2

µn

(

100 + 400�22 + 400�
3

2

1

2

√
π + 20△1

2

√
π + 40△�

)

6
32R2

nµ

[△2

4
+ 75γ2R4n+ 100 + 800�2 + 300�

√
π + 10△

√
π + 40△�

]

.

For γ = 1
2R2

√
N

, with α = R‖θ0 − θ∗‖, � = 1 and △ = 6α2 + 6α, we obtain

E
[

f(θ̄N )− f(θ∗)
]

6
32R2

Nµ

[

1

4
△2 + 1451 + 58∆

]

6
32R2

Nµ

[

9α4 + 18α3 + 9α2 + 1451 + 348α2 + 348α

]

6
R2

Nµ

(

625α4 + 7500α3 + 33750α2 + 67500α + 50625
)

=
R2

Nµ

(

5α + 15
)4
.
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Note that the previous bound is only valid if 3
γ
√
n
‖θ0 − θ∗‖2 + 3

γR
√
n
‖θ0 − θ∗‖ 6

µ
√
n

8R2 , i.e., under

the condition 6R2‖θ0 − θ∗‖2 + 6R‖θ0 − θ∗‖ 6
µ
√
N

8R2 . If the condition is not satisfied, then the

bound is still valid because of Prop. 1. We thus obtain the desired result.

F.3 Bound on iterates

Following the same principle as for function values in Appendix F.2, we consider the same eventAt.

With the same condition on γ and t, we have:

At ⊂
{

‖θ̄n − θ∗‖2 6
16R2

µ2n

[

10
√
t+ 20�t+△

]2}

,

which leads to the tail bound:

P

(

‖θ̄n − θ∗‖2 >
16R2

µ2n

[

10
√
t+ 20�t+△

]2)

6 4e−t. (21)

We may now split the expectation in three integrals:

E‖θ̄n − θ∗‖2 =

∫ 16R2

µ2n
△2

0
P
[

‖θ̄n − θ∗‖2 > u
]

du (22)

+

∫ 16R2

µ2n

(

µ
√

n

4R2
+△

)2

16R2

µ2n
△2

P
[

‖θ̄n − θ∗‖2 > u
]

du

+

∫ ∞

16R2

µ2n

(

µ
√

n

4R2
+△

)2
P
[

‖θ̄n − θ∗‖2 > u
]

du.

The first term in Eq. (22) is simply bounded by bounding the tail bound by one (like in the previous

section):

∫ 16R2

µ2n
△2

0
P
[

‖θ̄n−θ∗‖2 > u
]

du 6
16R2

µ2n
△2. The last integral in Eq. (22) may be bounded

as follows:

∫ ∞

16R2

µ2n

(

µ
√

n

4R2
+△

)2
P
[

‖θ̄n − θ∗‖2 > u
]

du

= E

[

1
‖θ̄n−θ∗‖2> 16R2

µ2n

(

µ
√

n

4R2
+△

)2‖θ̄n − θ∗‖2
]

6 P

[

‖θ̄n − θ∗‖2 >
16R2

µ2n

(µ
√
n

4R2
+△

)2
]1/2[

E
(

‖θ̄n − θ∗‖4
)

]1/2

using Cauchy-Schwarz inequality,

6 P

[

‖θ̄n − θ∗‖2 >
16R2

µ2n

(µ
√
n

4R2
+△

)2
]1/2(

‖θ0 − θ∗‖2 + 9γ2nR2

)

using Prop. 3.
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Moreover, if we denote by t0 the largest solution of 10
√
t0 + 20�t0 =

µ
√
n

4R2 , we have:

√
t0 =

−10 +

√

100 + 20�µ
√
n

R

40�
=

−10 + 10

√

1 + 20� µ
√
n

100R

40�

>
9

40�

√

20�
µ
√
n

100R
,

as soon as 20� µ
√
n

100R > 100, since if q > 100, −1 +
√
1 + q 6 9

10

√
q. This implies that

∫ ∞

16R2

µ2n

(

µ
√

n

4R2
+△

)2
P
[

‖θ̄n − θ∗‖2 > u
]

du

6

[

4 exp(−t0)
]1/2(

‖θ0 − θ∗‖2 + 9γ2nR2

)

6
9

2t20

(

‖θ0 − θ∗‖2 + 9γ2nR2

)

using exp(−α) 6 9

16α2
for all α > 0,

6
9

2

404�41002R4

94202�2µ2n

[

9

4
�2/R2 +

γ
√
n

3
△
]

6 686 × 64
�2R2

µ2n

[

9

4
�2 +

1

6
�△

]

.

The second term in Eq. (22) is bounded exactly like in Appendix F.2, leading to:

∫ 16R2

µ2n

(

µ
√

n

4R2
+△

)2

△2 16R2

µ2n

P
[

‖θ̄n − θ∗‖2 > u
]

du

6

∫ ∞

0
4e−td

(

16R2

µ2n

[

10
√
t+ 20�t+△

]2)

6
64R2

µ2n

∫ ∞

0
e−t

(

100 + 400�22t+ 400�
3

2
t1/2 + 20△1

2
t−1/2 + 40△�

)

dt

6
64R2

µ2n

(

100Γ(1) + 400�22Γ(2) + 400�
3

2
Γ(3/2) + 20△1

2
Γ(1/2) + 40△�Γ(1)

)

dt

6
64R2

µ2n

(

100 + 400�22 + 400�
3

2

1

2

√
π + 20△1

2

√
π + 40△�

)

.

We can now put all elements together to obtain, from Eq. (22):

E‖θ̄n − θ∗‖2

6
64R2

µ2n

(

100 + 400�22 + 400�
3

2

1

2

√
π + 20△1

2

√
π + 40△�

)

+
16R2

µ2n
△2 + 686× 64

�2R2

µ2n

[

9

4
�

2 +
1

6
�△

]

6
64R2

nµ2

[

1

4
△2 + 100 + 800�2 + 532� + 32△ + 40△� + 686

9

4
�4 + 686

△�3

6

]

.
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For γ = 1
2R2

√
N

, with α = R‖θ0 − θ∗‖, � = 1 and △ = 6α2 + 6α, we get

E‖θ̄N − θ∗‖2 6
8R2

Nµ2

[

2△2 + 8△(32 + 40 + 115) + 8(100 + 800 + 532 + 1544)

]

6
8R2

Nµ2

[

2△2 + 1496△ + 23808

]

6
8R2

Nµ2

[

72α4 + 144α3 + 72α2 + 1496 × 6α2 + 1496 × 6α+ 23808

]

6
R2

Nµ2

[

1296α4 + 18144α3 + 95256α2 + 222264α + 194481

]

=
R2

Nµ2
(

6α + 21
)4
.

The previous bound is valid as long as µ
√
N

R > 10000
20 = 500. If it is not satisfied, then Prop. 1 shows

that it is still valid.
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