
HAL Id: hal-00804430
https://hal.science/hal-00804430

Submitted on 25 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniform Node Sampling Service Robust against
Collusions of Malicious Nodes

Emmanuelle Anceaume, Yann Busnel, Bruno Sericola

To cite this version:
Emmanuelle Anceaume, Yann Busnel, Bruno Sericola. Uniform Node Sampling Service Robust against
Collusions of Malicious Nodes. 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2013), Jun 2013, Budapest, Hungary. pp.249. �hal-00804430�

https://hal.science/hal-00804430
https://hal.archives-ouvertes.fr

Uniform Node Sampling Service Robust

against Collusions of Malicious Nodes

Emmanuelle Anceaume

IRISA / CNRS

Rennes, France

Emmanuelle.Anceaume@irisa.fr

Yann Busnel

LINA / Université de Nantes

Nantes, France

Yann.Busnel@univ-nantes.fr

Bruno Sericola

Inria Rennes – Bretagne

Atlantique, France

Bruno.Sericola@inria.fr

Abstract—We consider the problem of achieving uniform node
sampling in large scale systems in presence of a strong adversary.
We first propose an omniscient strategy that processes on the
fly an unbounded and arbitrarily biased input stream made
of node identifiers exchanged within the system, and outputs
a stream that preserves Uniformity and Freshness properties.
We show through Markov chains analysis that both properties
hold despite any arbitrary bias introduced by the adversary.
We then propose a knowledge-free strategy and show through
extensive simulations that this strategy accurately approximates
the omniscient one. We also evaluate its resilience against a
strong adversary by studying two representative attacks (flooding
and targeted attacks). We quantify the minimum number of
identifiers that the adversary must insert in the input stream
to prevent uniformity. To our knowledge, such an analysis has
never been proposed before.

Index Terms—Data stream; strong adversary; uniform sam-
pling; Markov chains; randomized approximation algorithm.

I. INTRODUCTION

The uniform node sampling service offers to applications

using it a single simple primitive that returns the identifier of

a random node that belongs to the system. Providing at any

time randomly chosen nodes in the system has deserved a lot

of attention to construct large scale distributed applications. A

typical example is load balancing in cluster-based applications:

choosing a host at random among those that are available is

often a choice that provides performance close to that offered

by more complex selection criteria, without imposing any

burden [20]. Another important example is epidemic-based

applications: by periodically selecting few random nodes as

neighbors, large-scale environments preserve their connectivity

despite nodes dynamicity [5], [10], [22], [26].

Node sampling is a cooperative service in the sense that all

the nodes of the system contribute to this service by continu-

ously sending and forwarding information about their pres-

ence. Unfortunately, the unavoidable presence of malicious

nodes in large scale and open systems seriously impedes the

construction of uniform node sampling [14], [19], [25]. The

objective of malicious nodes mainly consists in continuously

and largely biasing the input data stream out of which samples

are obtained, to prevent (correct) nodes from being selected

as samples. Consequences of these collective attacks (typically

called Sybil attacks [11]) are, among others, the overwhelming

load of some specific nodes when it is used to provide random

locations for data caching or storage, or the eventual partition-

ing of the system when the node sampling service is used to

build nodes local views in epidemic-based protocols. Solutions

that basically consist in storing the identifier of all the nodes

of the system so that each of these node identifiers can be

randomly selected when needed are impracticable and even

infeasible due to the size and the dynamicity of such networks.

Rather providing a solution that requires as little space as

possible (e.g. sublinear in the population size of the system) is

definitely desirable. Bortnikov et al. [6] have recently proposed

a uniform node sampling algorithm that tolerates malicious

nodes by exploiting the properties offered by min-wise per-

mutations. Specifically, the sampling component, which is fed

with the stream of node identifiers periodically gossiped by

nodes, outputs the node identifier whose image value under

the randomly chosen permutation is the smallest value ever

encountered. Thus eventually, by the property of min-wise

permutation, the sampler converges towards a random sample.

However by the very same properties of min-wise permutation

functions, once the convergence has been reached, it is stuck

to this convergence value independently from any subsequent

input values. Thus the sample does not evolve according to the

current composition of the system, which makes it static. Ac-

tually it has been shown in [2] that imposing strict restrictions

on the number of messages sent by malicious nodes during

a given period of time and providing each correct node with

a very large memory (proportional to the size of the system)

is a necessary and sufficient condition to output an unbiased

and non static stream. Thus, lack of adaptivity or full-space

algorithms seem to be the only defenses against adversarial

behaviors when considering deterministic algorithms.

In this paper, we solve this problem by adopting a prob-

abilistic approach. We first propose an omniscient algorithm,

called in the following the omniscient strategy, that is capable

of tolerating any bias introduced by the adversary in the input

stream. By omniscient we mean that the algorithm knows

the number of occurrences of each received element in the

full input stream. We analyze the stationary behavior of this

algorithm through a Markov chains analysis. We then propose

a randomized approximation algorithm, called in the following

the knowledge-free strategy, that is capable of outputting an

unbiased and non static sample of the population whatever the

strategy of the adversary is. This sample may deviate from

an exact uniform sample, however the deviation is bounded

with any tunable probability. This algorithm is a one-pass

algorithm, i.e., each piece of data of the input stream is

scanned sequentially on the fly, and only compact synopses

or sketches that contain the most important information about

data items are locally stored. This algorithm does not require

any a priori knowledge neither on the size of the input stream,

nor on the number of distinct elements that compose it, nor on

the frequency distribution of these elements. We then evaluate

the minimum effort that needs to be exerted by a strong

adversary to bias the output stream when two representative

attacks are launched, i.e., the targeted attacks in which the

adversary focuses on biasing the frequency of a single node

identifier, and the flooding attack which aims at biasing all the

node identifiers frequencies. Both evaluations are conducted by

modeling them as a urn problem. One of the main results of

this analysis is the fact that the effort that needs to be exerted

by the adversary to subvert the sampling service can be made

arbitrarily large by any correct node by just increasing the

memory space of the sampler. Finally, extensive simulations

(both on real data and synthetic traces) confirm the robustness

of our sampler service. To the best of our knowledge, no

previous work has proposed such an analysis.

The outline of this paper is the following. In Section II,

we present related works. Section III describes the model

of the system and the one of the adversary. Section IV

details the properties characterizing the node sampling service,

and presents the omniscient and knowledge-free strategies to

implement such a service. Stationary behavior of the node

sampling service is studied. Section V presents an analysis of

the minimum effort that needs to exerted by the adversary to

subvert the node sampling service. Finally, extended simula-

tions have been conducted in different adversarial contexts and

the main lessons drawn from these simulations are presented

in Section VI. Section VII concludes.

II. RELATED WORK

Different approaches have been proposed to solve the node

sampling problem in presence of malicious behaviors in large

scale systems. Jesi et al. [14] propose a random sampling

algorithm taking explicitly into account malicious nodes. Their

solution assumes that the ultimate goal of the malicious nodes

is to mutate the random graph into a hub-based graph, hub

for which malicious nodes gain the lead. This approach,

also adopted in several structured based systems [25] through

auditing mechanisms, or in sensor networks [19], is effective

only if the number of malicious nodes is very small with

respect to the size of the system (i.e., typically of O(log n)).
As said in the Introduction, Bortnikov et al. [6] have proposed

a uniform node sampling algorithm that tolerates up to a

linear number of malicious nodes. Their sampling mechanism

exploits the properties offered by min-wise permutations. The

sampling component is fed with the stream of node identifiers

periodically gossiped by nodes, and outputs the node identifier

whose image value under the randomly chosen permutation

is the smallest value ever encountered. Thus eventually, by

the property of min-wise permutation, the sampler converges

towards a random sample. By limiting the number of node

identifiers malicious nodes can periodically issue (no more

than 20% of the total number of requests can be sent

by malicious nodes), their solution requires a single node

identifier to be stored in the local memory. However, once

convergence has been reached, it is stuck to this convergence

value independently from the input values. Thus the sample

does not evolve according to the current composition of the

system.

Streaming algorithms have shown their highly desirable

properties in data intensive monitoring applications. These al-

gorithms process the input stream in a single pass and sequen-

tially. All these algorithms rely on pseudo-random functions

that map elements of the stream to uniformly distributed image

values. The interested reader is invited to read the nice survey

by Muthukrishnan [23]. Most of the research done so far with

this approach has manly focused on computing functions or

statistic measures with error ε using poly(1/ε, log n) space

where n is the domain size of the data items. These include the

computation of the number of different data items in a given

stream [4], [12], [15], the frequency moments [1], the most

frequent data items [1], [8], or the entropy of the stream [7],

[18].

In this work, we go a step further by continuously comput-

ing, in a strong adversarial context, a uniform sample of the

nodes of the system so that for any node identifier present in

the stream, the probability that this node identifier is selected

as a sample is equal to 1/n, and at any time, any node identifier

in the stream has a non null probability to be selected as a

sample.

III. SYSTEM MODEL AND ASSUMPTIONS

A. Model of the Network

We consider a large scale and dynamic open system N in

which each node i ∈ N receives a very large stream σi (or

σ when it is clear from context) made of node identifiers

(also denoted ids in the following). Node identifiers arrive

quickly and sequentially. Each node identifier j of σ is

drawn from a set Ω = {1, . . . , 2r}, where r is chosen to be

large enough to make the probability of identifiers collision

negligible (r = 160 for the standard SHA-1 hash function).

Node identifiers may recur in the stream with an unknown

bias. The number of times a node identifier i recurs in the

stream is commonly called the frequency of i. Data streams

are potentially unbounded in size. For memory constraints,

nodes can locally store only a small amount of information

with respect to the number of nodes in the system. Thus the

stream needs to be processed in an online manner, that is, any

item of the stream that has not been locally stored for any

further processing cannot be read anymore. In addition the

amount of computation per data element of the stream must

be low to keep pace with the data stream.

2

B. Adversary

We assume the presence of malicious (i.e., Byzantine) nodes

that collectively try to subvert the system by manipulating

the prescribed protocol. We model these adversarial behaviors

through an adversary that fully controls and manipulates these

malicious nodes. We suppose that the adversary is strong in

the sense that it may actively tamper with the data stream

of any node i by observing, and inserting any number of

malicious nodes identifiers. Indeed, the goal of the adversary

is to judiciously increase the frequency of ℓ chosen node

identifiers to bias the sample built by non malicious nodes.

The number ℓ is chosen by the adversary and depends on the

sampling protocol parameters. Note that each malicious node

identifier does not need to correspond to a single real node.

Indeed, the adversary will augment its power by generating

numerous node identifiers, such that only a limited number of

real malicious nodes are linked to these identifiers. However,

affecting multiple identifiers to a single node is costly as one

needs to interact with a central authority to receive a certificate

assessing the validity and integrity of the identifier. This model

refers to the Sybil model attack presented by Douceur and

Donath [11].

A node present in the system that is not malicious is said to

be correct. Note that correct nodes cannot a priori distinguish

correct node identifiers from malicious ones. Classically, we

assume that the adversary can neither drop a message ex-

changed between two correct nodes nor tamper with its content

without being detected. This is achieved by assuming the

existence of a signature scheme (and the corresponding public-

key infrastructure) ensuring the authenticity and integrity of

messages. This refers to the authenticated Byzantine failure

model [21].We finally suppose that any algorithm run by any

correct node to build a uniform node sampling service is

public knowledge to avoid some kind of security by obscurity.

However the adversary has not access to the local random

coins used in the algorithms.

C. Sampling Assumptions

Similarly to Bortnikov et al. [6], we first assume that there

exists a time T0 such that after that time, the churn of the

system ceases (churn is classically defined as the rate of

turnover of nodes in large scale systems [13]). This assumption

is necessary to make the notion of uniform sample meaningful.

Thus from T0 onwards, the population of the system N is

composed of n ≤ 2r nodes such that ℓ of them are malicious,

with ℓ < n. We also suppose that at any discrete time t ≥ T0

all the correct nodes in N are weakly connected, which means

that there exists a path between any pair of correct nodes in

N . In the following, without loss of generality, we consider

that T0 = 0.

D. 2-universal Hash Functions

In the following, we intensively use hash functions ran-

domly picked from a 2-universal hash family. Given an integer

Y , let us denote [Y] = {1, . . . , Y } in the remaining of this

paper. A collection H of hash functions h : [M] → [M ′]

is said to be 2-universal if for every two different items

x, y ∈ [M],

∀h ∈ H,P{h(x) = h(y)} ≤
1

M ′
,

which is exactly the probability of collision obtained if the

hash function assigned truly random values to any x ∈ [M].

IV. NODE SAMPLING SERVICE TOLERANT TO MALICIOUS

NODES

A node sampling service tolerant to malicious nodes is

a functionality local to each correct node i of the system1.

This service continuously reads the input stream σi received

by node i. Data streams are made of the nodes identifiers

exchanged within the system. Note that the analysis presented

in this paper is independent from the way data streams are

built. That is, they may result from the continuous propagation

of node ids through gossip-based algorithms, or from the node

ids received during random walks initiated at each node of the

system.

In addition, the input stream of any correct node can

be arbitrarily biased by an adversary, which is achieved by

infinitely often augmenting it with the ℓ ids it manipulates.

The objective of the sampling service strategy is to process on

the fly the input stream and to output a stream guaranteeing

both Uniformity and Freshness. Specifically, if Si(t) denotes

the output of the sampling service at any correct node i at any

discrete time t, then a sampling service tolerant to malicious

behaviors should meet the following two properties.

Property 1 (Uniformity): For any discrete time t ≥ 0, for

any node j ∈ N ,

P{Si(t) = j} =
1

n

Property 2 (Freshness): For any discrete time t ≥ 0, for

any node j ∈ N ,

{t′ > t | Si(t
′) = j} 6= ∅ with probability 1.

Uniformity states that any node in the system should have

the same probability to appear in the sample of correct

nodes in the overlay, while Freshness says that any node that

recurs infinitely often in the stream, should have a non-null

probability to appear infinitely often in the sample of any

correct nodes in the system. It is important to note that even

if the adversary can insert infinitely often the identifiers of the

ℓ nodes it manipulates, by the weak connectivity assumption,

at any discrete time t ≥ 0 there is a non null probability that

the node identifier of any correct node in N appears in the

input stream of any correct node.

1Although malicious nodes have also access to a sampling service, we
cannot impose any assumptions on how they use it as their behavior can be
totally arbitrary.

3

ids stream S (t)is
!

i

Fig. 1. Sampling component of node i ∈ N .

Algorithm 1: Omniscient Node Sampling Strategy run at

any correct node i ∈ N

Input: An arbitrary input stream σi;
Output: A modified output stream σ′

i;
Data: Γi a set of maximum size c;

1 for j ∈ σi do
2 if |Γi| < c then
3 Γi ← Γi ∪ {j};
4 else
5 with probability aj do
6 choose k from Γi with probability

rk∑
ℓ∈Γi

rℓ
;

7 Γi ← (Γi \ {k}) ∪ {j};

8 choose k′ from Γi with probability 1

c
;

9 write k′ in the output stream;

A. Omniscient One-pass Strategy

This section presents an omniscient one-pass strategy that

guarantees both the Uniformity and Freshness properties. We

recall that, by one-pass, we mean that the strategy reads

sequentially the input stream and if some node id has not

been locally stored for further processing, once it has been

read it cannot be read anymore. By omniscient, we mean that

the strategy knows exactly the population size n of the system

N and each time a node id j is received in σi, the strategy

knows exactly the occurrence probability pj of j in the full

stream σi. Note however that the omniscient strategy does not

know ahead of time the identifiers that will appear in σi. This

knowledge is built on the fly when reading σi.

The omniscient strategy has uniquely access to a data

structure Γi, referred to as the sampling memory as illustrated

in Figure 1. The cardinality of Γi is constant and is denoted

by c with c ≪ n. The sampling memory will contain the node

ids that will be selected by the strategy when reading σi and

that will be output by the sampler. Algorithm 1 describes the

pseudo-code of the omniscient strategy.

Specifically, the omniscient strategy reads on the fly and

sequentially the input stream and for each read element j,

decides whether j is a good candidate for being stored into the

constant size memory Γi or not. If pj is very small, then j must

definitively be stored into Γi so that j might have a chance to

be part of the output stream. On the other hand, with larger pj ,

there will be other opportunities for the sampler to receive j
in the future. The probability to insert j in Γi is denoted by aj
in the algorithm. Although inserting j into Γi with probability

aj is a necessary condition to prevent very frequent ids from

continuously eclipsing the ids already stored in Γi, this is not

sufficient to guarantee that a rare id k already stored in Γi

will not be evicted each time a new id j is stored (assuming

that Γi is full upon receipt of j). Recall that the goal of the

adversary is to prevent identifiers of correct nodes to uniformly

appear in the output stream. A sufficient condition is achieved

by removing k from Γi with probability rk/
∑

ℓ∈Γi
rℓ, where

r1, . . . , rn are positive real numbers. Finally, a random node

id k′ is chosen from Γi and written in the output stream (note

that k′ is not removed from Γi). Clearly, for any node identifier

j ∈ N , aj depends on (pl)l∈N and rj depends on (pl)l∈N and

(al)l∈N .

In the remaining of this section, we prove that there exist

both (aj)j∈N and (rj)j∈N such that the output stream pro-

vided by Algorithm 1 meets the Uniformity and Freshness

properties. Specifically, we show that this is verified for the

following two families

∀j ∈ N , aj =
mini∈N (pi)

pj
and rj =

1

n
.

To prove this assertion, we model the receipt of node ids

from σi by using a homogeneous discrete-time Markov chain

denoted by Xi = {Xi,t, t ≥ 0}. Markov chain Xi represents

the evolution of the node identifiers in Γi. Note that for clarity

reason we shall omit the subscript i when it is clear from

context. The state space S of X is defined by S = {A ⊆
N such that |A| = c}. For any t ≥ 0, the event Xt = A
means that after the t-th transition (i.e., the t-th received node

identifier), Γ = A. The transition probability matrix, denoted

by P , is given for every A,B ∈ S with A 6= B, by

PA,B =



















ri
∑

ℓ∈A

rℓ
pjaj if A \B = {i} and B \A = {j}

0 otherwise

Matrix P being stochastic, we have for every A ∈ S,

PA,A = 1−
∑

B∈S,B 6=A

PA,B

= 1−
∑

i∈A

∑

j /∈A





∑

B∈S,A\B={i},B\A={j}

PA,B





= 1−
∑

i∈A

∑

j /∈A

ri
∑

ℓ∈A

rℓ
pjaj

= 1−
∑

j /∈A

pjaj

= 1−
∑

j∈N

pjaj +
∑

j∈A

pjaj .

It is easily checked that |S| =

(

n

c

)

.

The Markov chain X is clearly irreducible and aperiodic.

It thus have a stationary distribution that we denote by π =
(πA, A ∈ S). The row vector π is thus the unique solution to

the linear system π = πP with π1 = 1, where 1 is the column

vector with all entries equal to 1. The symmetries observed

in the transition probability matrix P gives us the intuition

4

that X is reversible, i.e., that, for every A,B ∈ S, we have

πAPA,B = πBPB,A. This intuition is verified by the following

theorem.

Theorem 3: The Markov chain X is reversible and for

every A ∈ S, we have

πA =
1

K

(

∑

ℓ∈A

rℓ

)(

∏

h∈A

phah
rh

)

(1)

where

K =
∑

A∈S

(

∑

ℓ∈A

rℓ

)(

∏

h∈A

phah
rh

)

.

Proof: Consider the vector π = (πA, A ∈ S) defined

by Relation (1) and let A,B ∈ S such that A 6= B. We then

have, by definition of matrix P ,

πAPA,B

=
1

K

(

∑

ℓ∈A

rℓ

)(

∏

h∈A

phah
rh

)

ripjaj
∑

ℓ∈A

rℓ
1{A\B={i},B\A={j}}

=
1

K

(

∏

h∈A

phah
rh

)

ripjaj1{A\B={i},B\A={j}}

=
1

K

(

∏

h∈A∩B

phah
rh

)

piai
ri

ripjaj1{A\B={i},B\A={j}}

=
1

K

(

∏

h∈A∩B

phah
rh

)

piaipjaj1{A\B={i},B\A={j}}

In the same way, exchanging the roles of integers i and j and

of sets A and B, we get

πBPB,A

=
1

K

(

∑

ℓ∈B

rℓ

)(

∏

h∈B

phah
rh

)

rjpiai
∑

ℓ∈B

rℓ
1{B\A={j},A\B={i}}

=
1

K

(

∏

h∈B

phah
rh

)

rjpiai1{A\B={i},B\A={j}}

=
1

K

(

∏

h∈B∩A

phah
rh

)

pjaj
rj

rjpiai1{A\B={i},B\A={j}}

=
1

K

(

∏

h∈B∩A

phah
rh

)

pjajpiai1{A\B={i},B\A={j}}.

We thus have shown that, for every A,B ∈ S such that A 6= B,

we have πAPA,B = πBPB,A. This implies that X is reversible

and that the probability vector π = (πA, A ∈ S), given by

Relation (1), is the stationary distribution of X .

Let us introduce now, for every ℓ ∈ N , the subset of states

Sℓ defined by

Sℓ = {A ∈ S | ℓ ∈ A}

and consider the probability for X to be in subset Sℓ in

stationary regime. If we denote by γℓ this probability, we have

γℓ =
∑

A∈Sℓ

πA.

Theorem 4: For every ℓ ∈ N , the probability γℓ is

γℓ =
c

n
.

Proof: It is easily checked, as expected, that we have

|Sℓ| =

(

n− 1

c− 1

)

and

n
∑

ℓ=1

γℓ = c.

By taking, for every h ∈ N , rh = 1/n and ah = 1/ph ×
mini∈N/(pi), we easily get,

K =
c

n

(

n

c

)

nc

(

min
i∈N

(pi)

)c

and, for every A ∈ S,

πA =
1
(

n

c

) ,

which leads, for every ℓ ∈ N , to

γℓ =
∑

A∈Sℓ

πA =
|Sℓ|
(

n

c

) =
c

n
.

The following corollary summarizes the analysis.

Corollary 5: Algorithm 1 implements a Byzantine-tolerant

node sampling service if

∀j ∈ N , aj =
mini∈N (pi)

pj
and rj =

1

n
.

Proof: Let any correct node i run Algorithm 1. By

assumption, at any discrete time t, every node j in N has

probability pj > 0 to feed Algorithm 1. Thus, aj > 0 for

every j ∈ N . From Theorem 4, when t tends to infinity,

any node j has probability γj = c/n to be in the sampler

memory. From Algorithm 1, the output of the sampler is any

node from Γi chosen with probability 1/c. Thus j appears

as output with probability 1/n, which ensures the Uniformity

property. Similarly, as pjaj > 0, j is guaranteed to appear

in Γi with non null probability. Thus the Freshness property

holds.

B. Knowledge-free One-pass Strategy

We have proposed in Section IV an omniscient sampling

strategy capable of locally unbiasing on the fly any unbounded

and continuous stream σ that may have been arbitrarily ordered

and manipulated by a strong adversary. This strategy uses a

constant amount of memory, and does not need to know ahead

of time which node identifiers will appear in σ. However the

strategy needs to know the size n of N , and upon receipt of

a data item j, its occurrence probability pj in σ. Clearly both

assumptions are unrealistic since the adversary may modify on

the fly the occurrence probability of any node identifier in the

stream by increasing the occurrence frequency of the ℓ node

identifiers it manipulates.

5

Algorithm 2: Estimating the Frequency of Items in the

Input Stream (Count-Min Sketch algorithm [9])

Input: An input stream σ; δ and ε settings;

Output: The estimate f̂j for the frequency of any item j read
from the input stream

1 s← ⌈log(1/δ)⌉;
2 k ← ⌈e/ε⌉;

3 F̂ [1..s][1..k]← 0;
4 Choose s 2-universal hash functions h1..hs : {1..2r} → {1..k};
5 for j ∈ σ do
6 for s = 1 to s do

7 F̂ [s][hs(j)]← F̂ [s][hs(j)] + 1;

8 Upon query of Estimate(fj) return

f̂j = min1≤s≤t F̂ [s][hs(j)];

In this section, we propose a strategy, called hereafter

knowledge-free strategy, that makes no assumption with re-

spect to the input stream σ. For each received j from σ, the

proposed strategy selects the id that will be part of the output

stream by solely relying on an estimation of both n and pj .

Both estimations are computed on the fly by using very few

space and a small number of operations.

Specifically, the knowledge-free strategy uses one additional

data structure with respect to the omniscient one, as illustrated

in Figure 2. This data structure is the Count-Min Sketch matrix

F̂ proposed by Cormode and Muthukrishnan [9]. Matrix F̂
is built on the fly and provides at any time, and for each

j read from σ, an approximation of the number of times j
has appeared in σ from the inception of the stream. For self-

containment reasons, we briefly describe how F̂ is built.

1) Estimating the frequency of each element in the stream:

For any item j in the input stream σ, the algorithm proposed

by Cormode and Muthukrishnan [9] outputs an estimation f̂j
of the number of times j has occurred in the stream so far. The

error of the estimator in answering a query for f̂j is within a

factor of ε with probability δ. The estimation is computed by

maintaining a two-dimensional array F̂ of k×s counters with

k = ⌈e/ε⌉ and s = ⌈log2(1/δ)⌉, and by using a collection of

2-universal hash functions {h1, . . . , hs} (where e is the base

of the natural logarithm function ln). Each time an item j is

read from the input stream, this causes one counter per line to

be incremented, i.e., F̂ [v][hv(j)] is incremented for all v ∈ [s].
When a query is issued to get an estimate f̂j of the frequency

of j (i.e., the number of occurrences of j read so far from

the stream), the returned value corresponds to the minimum

among the s values of F̂ [v][hv(j)] (1 ≤ v ≤ s). Algorithm 2

presents the pseudo-code of the Count-Min Sketch algorithm.

Space required by Algorithm 2 is proportional to 1
ε log2

1
δ ,

and the update time per element is significantly sublinear in

the size of the sketch [9], which makes this algorithm fully

adapted to our context.

2) The knowledge-free strategy: The knowledge-free strat-

egy is a simple extension of the omniscient one, where the

insertion probability aj for any received j ∈ σ is computed by

using the estimation f̂j provided by Algorithm 2. Algorithm 3

Algorithm 3: Knowledge-free Node Sampling Strategy

run at any correct node i ∈ N

Input: An arbitrary input stream σi;
Output: A modified output stream σ′

i;
Data: Γi a set of maximum size c;

Data: F̂ the Count-min Sketch matrix
1 cobegin on σi

2 execute Algorithm 2;

3 cobegin on σi

4 for j ∈ σi do

5 f̂j ← Estimate(fj);

6 minσ ← min1≤s≤t min1≤r≤k F̂ [s][r];
7 if |Γi| < c then
8 Γi ← Γi ∪ {j};
9 else

10 with probability aj = minσ

f̂j
do

11 choose k from Γi with probability rk = 1

c
;

12 Γi ← (Γi \ {k}) ∪ {j};

13 choose k′ from Γi with probability 1

c
;

14 write k′ in the output stream;

presents its pseudo-code. Note that the instructions cobegin

at lines 1 and 3 mean that codes of Algorithm 2 and lines

(4-14) are executed in parallel (at any discrete time t the first

id of σi is read by both codes). We analyze in Section V the

resilience of Algorithm 3 against representative attacks, and

evaluate in Section VI from extensive simulations the quality

of the knowledge-free strategy w.r.t. the omniscient one.

V. THE REASON WHY THE KNOWLEDGE-FREE STRATEGY

IS ROBUST AGAINST COLLUSION OF MALICIOUS NODES

As previously said, we suppose that the adversary has

enough resources to generate a large number of node iden-

tifiers, and to judiciously inject them in the input stream σ
of any correct node, in order to prevent the sampler service

of this node to output a uniform stream. In this section we

derive the minimum number of identifiers the adversary has

to generate to subvert the node sampling service.

We have shown in the previous section that whatever the

power of the adversary, the omniscient strategy is capable

of unbiasing any manipulated input stream. Indeed, we have

shown with Corollary 5 that there exist two positive vectors

(aj)j∈N and (rj)j∈N — respectively describing the insertion

probability of node identifiers j ∈ N in Γ and their removal

one from it —, which guarantee that given the occurrence

probability (pj)j∈N of the node identifiers in the input stream,

the sampler outputs a stream that meets both Uniformity and

Freshness properties. Thus from Algorithm 3, the only latitude

given to the adversary in biasing the output stream of any

correct node is to increase the error made on the estimations

f̂j with j ∈ N . By construction of Algorithm 2, each received

element j is mapped to exactly one entry in each row of matrix

F̂ , and each of these entries is incremented by one. Thus to

disrupt the estimation of any f̂j , the adversary has to generate

sufficiently many node identifiers o1, . . . , oℓ such that for all

6

Input stream
F
^

i j k! v

k
S(t)

kk v i jjjjjjjj j

Output stream

fj ?
^

j

Fig. 2. Sampling component of node i ∈ N .

v ∈ [s], there exists i ∈ [ℓ] such that hv(oi) = hv(j). Recall

that the s hash functions are locally chosen, thus the adver-

sary cannot know which identifiers map to h1(j), . . . , hs(j).
By injecting numerous times these node ids o1, . . . , oℓ, the

estimation f̂j will be arbitrarily overestimated, and thus, by

Algorithm 3, j will recur in the output stream with an arbitrary

smaller frequency. We call this attack a targeted attack.

Whereas the goal of the adversary is to bias the frequency

of a single targeted (correct) node identifier (refer as j in the

argumentation above), the knowledge-free strategy forces the

adversary to inject a series of node identifiers o1, . . . , oℓ that

will also bias the frequency estimation of other node identifiers

that are mapped to the same entries (i.e., the ones mapped by

o1, . . . , oℓ). Thus, the adversary will blindly bias the frequency

estimation of several node identifiers, including its owns. In

the worst case, these additional bias inflicted to these other

nodes will be at most as large as the one caused to j. In

Section V-B, we will study the gap that exists between the

effort needed by the adversary to perform a targeted attack and

the one needed to bias all the frequencies estimation (of both

correct and malicious nodes from what has been said above).

We will refer to the latter attack as the flooding attack.

We now analyze the minimum effort that needs to be exerted

by the adversary to make a targeted attack successful with

probability 1− ηT where ηT < 1.

A. Analysis of the effort needed to make a targeted attack

successful

We model a targeted attack as a urn problem, where each

entry of F̂ is modeled as an urn and each received distinct node

identifier as a ball. Consider a set of k urns initially empty in

which we throw balls, one by one, according to the uniform

distribution (by definition of 2-universal hash functions, each

ball has an equal probability to be thrown in any of the k urns

– cf Section III). We denote by Nℓ the number of non empty

urns at time ℓ, i.e., just after the throwing of the ℓ-th ball

and we consider the integer Lk which counts the number of

balls needed to get a collision with a probability greater than

1−ηT . More formally, for a given value of k and ηT ∈ (0, 1),
we have

Lk = inf{ℓ ≥ 2 | P{Nℓ = Nℓ−1} > 1− ηT }.

In the knowledge-free algorithm, the previous experiment

is executed identically and independently in s sets of k urns.

At each time, we throw in parallel s balls, one in each set

of k urns. For i ∈ [s], the random variable N
(i)
ℓ counts the

number of non empty urns among the i-th set of k urns at

time ℓ and we consider the integer Lk,s which counts the

number of balls needed to get a collision in each set of k
urns, with a probability greater than 1− ηT . We thus have in

particular Lk = Lk,1. More formally, for given values of k, s
and ηT ∈ (0, 1), integer Lk,s is defined by

inf{ℓ ≥ 2 | P{N
(1)
ℓ = N

(1)
ℓ−1, . . . , N

(s)
ℓ = N

(s)
ℓ−1} > 1− ηT }.

Since the s experiments in parallel are identical and indepen-

dent, the random variables N
(1)
ℓ , . . . , N

(s)
ℓ are, for each ℓ ≥ 1,

independent and identically distributed. It is thus sufficient to

consider a single set of k urns and Lk,s is then given by

Lk,s = inf{ℓ ≥ 2 | (P{Nℓ = Nℓ−1})
s
> 1− ηT }. (2)

The random variable Nℓ takes its values in the set {1, . . . , k∧
ℓ}, where k ∧ ℓ denotes the minimum between k and ℓ. The

distribution of Nℓ is given, for every k ≥ 1 and ℓ ≥ 1, by the

following theorem which uses the Stirling numbers S(ℓ, i) of

the second kind. These numbers are defined, for ℓ ≥ 1 and

i = 1, . . . , ℓ, by the relations S(1, 1) = 1 and

S(ℓ, i) = S(ℓ− 1, i− 1)1{i 6=1} + iS(ℓ− 1, i)1{i 6=ℓ}. (3)

It is well-known that this recursion leads to the explicit

formula

S(ℓ, i) =
1

i!

i
∑

h=0

(−1)h
(

i

h

)

(i− h)ℓ. (4)

Theorem 6: For every k ≥ 1, ℓ ≥ 1 and i = 1, . . . , k ∧ ℓ,
we have

P{Nℓ = i} =
S(ℓ, i)k!

kℓ(k − i)!
.

Proof: The relation is true for ℓ = 1 since P{N1 = 1} =
1. For ℓ = 2, . . . , k and i = 1, . . . , ℓ, we have

P{Nℓ = i} = P{Nℓ = i | Nℓ−1 = i− 1}P{Nℓ−1 = i− 1}1{i 6=1}

+ P{Nℓ = i | Nℓ−1 = i}P{Nℓ−1 = i}1{i 6=ℓ}

=
k − i+ 1

k
P{Nℓ−1 = i− 1}1{i 6=1}

+
i

k
P{Nℓ−1 = i}1{i 6=ℓ}.

Suppose that the relation is true for integer ℓ−1, i.e., suppose

that for every i = 1, . . . , ℓ− 1, we have

P{Nℓ−1 = i} =
S(ℓ− 1, i)k!

kℓ−1(k − i)!
.

7

We then have, for i = 1, . . . , ℓ,

P{Nℓ = i} =
k − i+ 1

k

S(ℓ− 1, i− 1)k!1{i 6=1}

kℓ−1(k − i+ 1)!

+
i

k

S(ℓ− 1, i)k!1{i 6=ℓ}

kℓ−1(k − i)!

=
S(ℓ− 1, i− 1)k!1{i 6=1}

kℓ(k − i)!
+

iS(ℓ− 1, i)k!1{i 6=ℓ}

kℓ(k − i)!

=

[

S(ℓ− 1, i− 1)1{i 6=1} + iS(ℓ− 1, i)1{i 6=ℓ}

]

k!

kℓ(k − i)!

Relation (3) then gives the desired result.

For ℓ > k, the term 1{i 6=ℓ} is equal to 1. Actually, we have

for ℓ > k and i = 1, . . . , k,

P{Nℓ = i} =
k − i+ 1

k
P{Nℓ−1 = i− 1}1{i 6=1}

+
i

k
P{Nℓ−1 = i}.

In the same way, this recursion leads, for i = 1, . . . , k, to

P{Nℓ = i} =
S(ℓ, i)k!

kℓ(k − i)!
,

which completes the proof.

We are now able to compute, for every ℓ ≥ 2, the

probabilities P{Nℓ = Nℓ−1}. We have

P{Nℓ = Nℓ−1} =

k∧(ℓ−1)
∑

i=1

P{Nℓ = i | Nℓ−1 = i}P{Nℓ−1 = i}

=
1

k

k∧(ℓ−1)
∑

i=1

iP{Nℓ−1 = i}

=
E(Nℓ−1)

k

Figure 3 gives the number of distinct node identifiers Lk,s

(as defined in Relation 2) that the adversary has to inject to

bias the identifier of at least one correct node. Recall that

parameters k and s of Algorithm 2 are common knowledge

(except the random local coins) and thus the adversary is

capable of deriving Lk,s according to the desired probability

ηT . Lk,s is linear in k and sublinear in s and ηT which explains

why attacking a single node requires a significant number of

distinct malicious node identifiers. For instance, when k = 50
and s = 10, the adversary has to inject in the input stream 150
distinct node identifiers to have no more than 50% of chance to

get its targeted attack successful. On the other hand, with the

same settings of k and s, 571 distinct node identifiers need to

be injected to guarantee with probability 0.9999 a successful

targeted attack.

Note that this analysis, as well as the one presented in Sec-

tion V-B, derives the minimum number of distinct identifiers

that need to be injected by the adversary in σ to bias the

output stream. It does not consider the recurrence at which

these identifiers must appear in the input stream σ. As said

in Section III, the effort required by an adversary to bias

the output stream is not in the repeated injection of node

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400 450 500

L
k
,s

k

s = 10 | ηT = 0.5

s = 10 | ηT = 10
-1

s = 10 | ηT = 10
-2

s = 10 | ηT = 10
-3

s = 10 | ηT = 10
-4

s = 10 | ηT = 10
-5

s = 10 | ηT = 10
-6

Fig. 3. Number of distinct malicious node identifiers Lk,s as a function of

the number of columns k and rows s of Matrix F̂ , and ηT .

identifiers in σ but rather on the cost of creation of these

identifiers. Indeed, to own an identifier, a node typically needs

to interact with a central authority to receive a certificate

assessing the validity and integrity of the identifier. The impact

at which node identifiers recur in the input stream is analyzed

in Section VI.

B. Analysis of the effort needed to make a flooding attack

successful

We now analyze the minimum effort that needs to be exerted

by the adversary to make a flooding attack successful with

probability 1− ηF where ηF < 1. As for the targeted attack,

we model this attack as a urn problem, where as previously,

each entry is modeled as an urn and each received distinct

node identifier as a ball.

Let Uk be the number of balls needed in order to obtain

all the k urns occupied, i.e., with at least one ball. It is easily

checked that P{U1 = 1} = 1 and that, for ℓ ≥ k ≥ 2, we

have

Uk = ℓ =⇒ Nℓ−1 = k − 1.

We thus have

P{Uk = ℓ} = P{Uk = ℓ,Nℓ−1 = k − 1}

= P{Uk = ℓ | Nℓ−1 = k − 1}P{Nℓ−1 = k − 1}

=
1

k
P{Nℓ−1 = k − 1}.

From Theorem 6 and Relation (4), we get, for k ≥ 2 and

ℓ ≥ k,

P{Uk = ℓ} =
S(ℓ− 1, k − 1)(k − 1)!

kℓ−1

=
1

kℓ−1

k−1
∑

r=0

(−1)r
(

k − 1

r

)

(k − 1− r)ℓ−1.

Finally, we consider the integer Ek which counts the number

of balls needed to get a collision in all the k × s urns. Note

that this number is independent of s as by definition, the s
experiments in parallel are identical and independent. Thus,

filling entirely a set of k urns leads to obtain all the s sets of

8

 10

 100

 1000

 10000

10 50 100 150 200 250 300 350 400 450 500

E
k

k

η
F
 = 0.5

η
F
 = 10

-1

η
F
 = 10

-2

η
F
 = 10

-3

η
F
 = 10

-4

η
F
 = 10

-5

η
F
 = 10

-6

Fig. 4. Number of distinct malicious node identifiers Ek as a function of

the number of columns k of Matrix F̂ , and ηF .

Settings
ηT or ηF Lk,s Ekk s

10 5
10−1 38 44

(ε ∼ 0.3)
(

δ ∼ 10−2
)

10 5 10−4 104 110
50

5 10−1 193

306

(ε ∼ 0.05)

50
10

10−1 227(

δ ∼ 10−3
)

50
40

10−1 296(

δ ∼ 10−12
)

50 5 10−4 537
65150 10 10−4 571

50 40 10−4 640

250
10 10−1 1,138 1,617

(ε ∼ 0.01)
250 10 10−4 2,871 3,363

TABLE I
KEY VALUES OF Lk,s AND Ek

Parameters ε and δ are respectivelly defined in Algorithm 2 as
precision (t = ⌈log(1/δ)⌉) and error (k = ⌈e/ε⌉).

k urns occupied. For given value of k and ηF ∈ (0, 1), integer

Ek is defined by

Ek = inf

{

ℓ ≥ k

∣

∣

∣

∣

∣

ℓ
∑

i=k

P{Uk = i} > 1− ηF

}

. (5)

Figure 4 gives the number Ek of distinct ids the adversary

has to inject in the input stream to introduce a bias on the

identifiers of all the correct nodes. This figure actually shows

the upper bound of Lk,s given k and ηT = ηF . Making a

flooding attack successful with probability 0.9 when k = 50
requires around 300 malicious identifiers, while it requires

around 650 node identifiers when the desired probability of

success is equal to 0.9999.

The main results of both analyses are summarized in

Table V-B. The most important one is that the effort that

needs to be exerted by the adversary to subvert the sampling

service can be made arbitrarily large by any correct node

by just increasing the memory space of the sampler. The

second one, which derives from the first one, is the absence

of relationship between the effort of the adversary and the

Data trace # ids (m) # distinct ids (n) max. freq.

NASA 1,891,715 81,983 17,572

ClarkNet 1,673,794 94,787 7,239

Saskatchewan 2,408,625 162,523 52,695

TABLE II
STATISTICS OF REAL DATA TRACES.

size of the population size. This astonishing result definitely

guarantees the scalability of our node sampler service.

VI. PERFORMANCE EVALUATION OF THE NODE

SAMPLING SERVICE

A. Settings of the Experiments

We have implemented both the omniscient and knowledge-

free strategies of the node sampling service and have con-

ducted a series of experiments on different types of streams

and for different parameters settings. We have fed our algo-

rithm with both real-world data sets and synthetic traces. Real

data give a realistic representation of some existing systems,

while the latter ones allow to capture phenomenon which may

be difficult to obtain from real-world traces, and thus allow to

check the robustness of our strategies. We have varied all the

significant parameters of our algorithm, that is, the size m of

the stream, the number of distinct data items n in each stream,

the size of the local memory c , the number k of entries in

each line of the count-min matrix, and the number s of lines of

this matrix. For each parameters setting, we have conducted

and averaged 100 trials of the same experiment, leading to

a total of more than 100, 000 experiments for the evaluation

of our algorithms. Real data have been downloaded from the

repository of Internet network traffic [3]. We have used three

large traces among the available ones. The first one represents

one month of HTTP requests to the NASA Kennedy Space

Center WWW server, the second one contains two weeks logs

of HTTP requests to the Internet service provider ClarkNet

WWW server (ClarkNet is a full Internet access provider

for the Metro Baltimore-Washington DC area), and the last

one represents seven months of HTTP requests to the WWW

server of the University of Saskatchewan, Canada. These data

sets will be respectively referred to as NASA, ClarkNet, and

Saskatchewan traces in the remaining of the paper. Table II

presents some statistics of these data traces, in term of stream

size (cf. “# ids” in the table), population size in each stream

(cf. “# distinct ids”) and the number of occurrences of the most

frequent id (cf. “max. freq.”). Figure 5 illustrates the shape of

each real data set distribution. Note that all these benchmarks

share a Zipfian behavior, with a lower α parameter for the

University of Saskatchwan.

In order to evaluate the accuracy of our algorithms, we

measure the distance between the output streams and a uniform

one. The distance we use is the Kullback-Leibler (KL) diver-

gence [17], also called the relative entropy, which robustly

measures the statistical difference between two data streams.

Specifically, given v and w two frequency distributions, the

9

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

It
em

 f
re

q
u
en

cy

Node identifier

NASA
ClarkNet

University of Saskatchewan

Fig. 5. Log-log scale distribution of frequencies for each real data trace.

Kullback-Leibler divergence is then defined as

DKL(v||w) =
∑

i∈N

pi log
vi
wi

= H(v, w)−H(v), (6)

where H(v) = −
∑

vi log vi is the (empirical) entropy of v
and H(v, w) = −

∑

vi logwi is the cross entropy from v to

w. Note that when v = w, the KL divergence is minimal and is

equal to zero. While all the distance measures in the Ali-Silvey

distances are applicable to quantifying statistical differences

between data streams, the KL divergence is particularly suited

to our context since it gives rise to a small number of false

positives when the two data streams are not significantly

different.

B. Main Lessons drawn from the Experiments

We now present the main lessons drawn from these ex-

periments. As said in the previous section, these experiments

aimed at showing the impact of over-represented (malicious)

node identifiers in the input stream of the sampler service.

Figure 6 presents a kind of isopleth in which the horizontal

axis shows time, the vertical axis represents the node iden-

tifiers, and the body of the graph depicts the frequency of

each node identifier (i.e., the number of occurrences of each

node identifier). A lighter color is representative of a very

frequent node identifier. The figure at the top of Figure 6

represents the frequency of each node identifier in the input

stream of the node sampler. This figure shows that at the

inception of the stream, a few number of node identifiers have

been received in the input stream which explains the dark

color on the left. As time elapses, the number of received

identifiers increases (up to 4000), and progressively the bias of

the input stream appears: a small number of identifiers recur

with a high frequency equal to 400, while the frequency of

the other node identifiers sharply decreases. This is represen-

tative to a Poisson distribution with a small index. Now the

two other figures represent the output of the node sampler

run with respectively the knowledge-free strategy and with

the omniscient one. Clearly the omniscient strategy succeeds

in outputting a uniform stream, illustrated by a color that

progressively and uniformly becomes lighter as the number

of received identifiers augments. The knowledge-free strategy

Omniscient strategy
 0

 200

 400

 600

 800

1000
0 10,000 20,000 30,000 40,000

0 50 100 150 200 250 300 350 400

Knowledge-free strategy
 0

 200

 400

 600

 800

1000

0 50 100 150 200 250 300 350 400

Input stream
 0

 200

 400

 600

 800

1000

0 50 100 150 200 250 300 350 400

Fig. 6. Frequency distribution as a function of time.
Settings: m = 40, 000, n = 1000, c = 15, k = 15, s = 17.

is not as performant as the omniscient one, nevertheless it

succeeds in significantly decreasing the peak of high frequency

identifiers with a very small memory (the sampling memory

may contain up to 15 node identifiers, and the Count-Min data

structure F̂ is a 15 × 14 matrix.) w.r.t. the length m of the

input stream.

Similarly to Figure 6, Figure 7 shows the frequency distri-

bution of node identifiers in respectively the input and output

streams as a function of the node identifiers. Figure 7(a) is

representative of a particular attack, called peak attack in the

following, in which the adversary injects 50, 000 times a single

node identifier while all the other identifiers occur 50 times

in the whole stream. Clearly the omniscient strategy fully

tolerates such an attack by successfully outputting a uniform

and fresh output stream. The knowledge-free strategy allows to

reduce by a factor 50 the frequency peak with a small amount

of memory space (the sampling memory contains 10 entries

and the Count Sketch matrix contains 50 ones) with respect

to the population size n and the length m of the input stream.

Figure 7(b) represents a scenario in which the adversary

has successfully subverted the knowledge-free strategy by

launching both a targeted and flooding attacks. Indeed, in this

figure around 50 node identifiers are over represented in the

input stream σ. Now from Table I, when k = 10, the minimum

number of malicious node identifiers that need to be injected

by the adversary to make a targeted attack successful with

probability 0.9 and 0.9999 is respectively equal to Lk,t = 38
and Lk,t = 104, while it is equal to Ek = 44 and Ek = 110 to

launch a flooding attack. Note that although both attacks are

successful, the sampler service divides by 3 the frequencies of

malicious node identifiers. Note that the omniscient strategy

is fully robust against both attacks.

Figure 8 complements Figure 7(a) by showing the gain GKL

10

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

F
re

q
u
en

cy

Node identifier

Max frequency for Knowledge-free strategy

Input Stream
Knowledge-free strategy

Omniscient strategy

(a) The input stream is biased by a peak attack generated by
Zipfian distribution with α = 4.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

F
re

q
u
en

cy

Node identifier

Input Stream
Knowledge-free strategy

Omniscient strategy

(b) The input stream is biased by both targeted and flooding
attacks generated by truncated Poisson distribution with λ =

n
2

.

Fig. 7. Frequency distribution as a function of node identifiers.
Settings: m = 100, 000, n = 1, 000, c = 10, k = 10, s = 5.

of the output stream over the input stream w.r.t. the Kullback-

Leibler divergence. Specifically, let us denote by abuse of

language D(σ,U) (respectively D(σ′,U)) as the Kullback-

Leiber divergence between a given input stream σ (respectively

output stream σ′) and a uniform one U , then

GKL = 1−
D(σ′,U)

D(σ,U)
.

This figure confirms the impressive robustness of the omni-

scient strategy, and shows that the pretty good resilience of the

knowledge-free strategy against a peak attack in a very large

system. Note that the inset graph in Figure 8 simply illustrates

the KL distance between the input and output streams and the

uniform stream.

Figure 9 shows that both output streams (the one constructed

with the omniscient strategy and the knowledge-free one)

reach their stationary regime (i.e., a uniform stream) very

quickly. The first 3, 000 (non necessarily distinct and adversar-

ially ordered) node identifiers are sufficient for the omniscient

strategy to build a definitively unbiased output stream made

of 1, 000 distinct ids, while it takes 3 times more elements

of the input stream for the knowledge-free strategy to reach

this stationary regime. This is still impressive given the very

limited storage space of the latter strategy.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 100 1000

G
ai

n
 G

K
L

n value

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000

K
u
ll

b
ac

k
-L

ei
b
le

r
D

iv
er

g
en

ce

Input Stream
Knowledge-free strategy

Omniscient strategy

Fig. 8. GKL as a function of the population size n. The input stream is
biased by a peak attack generated by Zipfian distribution with α = 4.
Settings: m = 100, 000, k = 10, c = 10, s = 17.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10000 100000 1e+06

G
ai

n
 G

K
L

m value

Knowledge-free strategy
Omniscient strategy

Fig. 9. GKL as a function of the population size m. The input stream is
biased by a peak attack generated by Zipfian distribution with α = 4.
Settings: n = 1, 000, k = 10, c = 10, s = 17.

Figures 10(a) and 10(b) illustrate the intuitive fact that

increasing the number of entries c of sampling memory is

a very powerful defense against respectively peak attacks and

targeted and flooding attacks. In the former case, the peak

attack is completely masked by the knowledge-free strategy

as soon as c = 300, while in the later case, both targeted and

flooding attacks are masked for c = 700 (both with k = 10).

Figure 11 illustrates the gain obtained with the knowledge-

free strategy as a function of the number of malicious node

identifiers overrepresented in the input stream. Obviously, the

strategy becomes vulnerable to malicious nodes once their

number reaches 10% of the full population of the system. This

behavior moves theory into practice according to the result

presented in Table I.

Finally, Figure 12 illustrates the fact running the sampler

service in a real environment still provides very good results.

VII. CONCLUSION

In this paper, we have studied the node sampling problem in

presence of malicious nodes in a very large system by adopting

a probabilistic approach. We have proposed and analyzed two

online algorithms. The omniscient one is fully resilient to any

attacks launched by a strong adversary, while the knowledge-

11

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 100 200 300 400 500 600 700 800 900 1000

G
ai

n
 G

K
L

c value

Knowledge-free strategy
Omniscient strategy

(a) The input stream is biased by a peak attack generated by
Zipfian distribution with α = 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

G
ai

n
 G

K
L

c value

Knowledge-free strategy
Omniscient strategy

(b) The input stream is biased by both targeted and flooding
attacks generated by truncated Poisson distribution with λ =

n
2

.

Fig. 10. GKL as a function of the number of entries c of the sampling
memory Γ. Settings: m = 100, 000, n = 1, 000, k = 10, s = 17.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 100 1000

G
ai

n
 G

K
L

Number of malicious node identifiers

Knowledge-free strategy

Fig. 11. GKL as a function of the number of malicious node identifiers.
Settings: m = 100, 000, n = 1, 000, c = 50, k = 50, s = 10.

 0

 0.5

 1

 1.5

 2

 2.5

N
A

SA

C
larkN

et

Saskatchew
an

K
u

ll
b

ac
k

-L
ei

b
le

r
D

iv
er

g
en

ce

Input Stream
Knowledge-free strategy - c = k = log n
Knowledge-free strategy - c = k = 0.01n

Omniscient strategy

Fig. 12. Kullback-Leibler divergence between the different streams (input
and output ones) and the uniform one. Note that the input stream has been
extracted from real datasets.

free one is capable of drastically decreasing the impact of

adversarial attacks by using very small memory space.

As future work, we plan to analyze the transient behavior of

the sampling service by using the results on weak lumpability

in Markov chains described in [16] and [24].

REFERENCES

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In Proceedings of the twenty-

eighth annual ACM symposium on Theory of computing (STOC), pages
20–29, 1996.

[2] E. Anceaume, Y. Busnel, and S. Gambs. Uniform and Ergodic Sam-
pling in Unstructured Peer-to-Peer Systems with Malicious Nodes. In
Proceedings of the 14th International Conference On Principles Of

Distributed Systems (OPODIS), volume 6490, pages 64–78, 2010.

[3] T. I. T. Archive. http://ita.ee.lbl.gov/html/traces.html. Lawrence Berkeley
National Laboratory, Apr. 2008.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan.
Counting distinct elements in a data stream. In Proceedings of the 6th In-

ternational Workshop on Randomization and Approximation Techniques

(RANDOM), pages 1–10. Springer-Verlag, 2002.

[5] B. Bollobás. Random Graphs – 2nd Edition. Cambridge University
Press, 2001.

[6] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer. Brahms:
Byzantine Resilient Random Membership Sampling. Computer Net-

works, 53:2340–2359, 2009.

[7] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal
algorithm for computing the entropy of a stream. In In ACM-SIAM

Symposium on Discrete Algorithms, pages 328–335, 2007.

[8] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. Theoretical Computer Science, 312(1):3–15, 2004.

[9] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[10] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for repli-
cated database mangement. In Proceedings of the 6th ACM Symposium

on Principles of Distributed Computing (PODC), 1987.

[11] J. Douceur and J. S. Donath. The Sybil Attack. In Proceedings of the

1rst International Workshop on Peer-to-Peer Systems (IPTPS), pages
251–260, 2002.

[12] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data
base applications. Journal of Computer and System Sciences, 31(2):182–
209, 1985.

[13] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn in distributed
systems. In Proceedings of the ACM SIGCOMM, 2006.

[14] G. P. Jesi, A. Montresor, and M. van Steen. Secure Peer Sampling.
Computer Networks, 54(12):2086–2098, 2010.

12

[15] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm
for the distinct element problem. In Proceedings of the Symposium on

Principles of Databases (PODS), 2010.
[16] J. G. Keneny and J. L. Snell. Finite Markov Chains. Springer-V., 1976.
[17] S. Kullback and R. A. Leibler. On information and sufficiency. The

Annals of Mathematical Statistics, 22(1):79–86, 1951.
[18] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data streaming

algorithms for estimating entropy of network traffic. In Proceedings

of the joint international conference on Measurement and modeling of

computer systems (SIGMETRICS). ACM, 2006.
[19] D. Liu, P. Ning, and W. Du. Detecting Malicious Beacon Nodes for

Secure Location Discovery in Wireless Sensor Networks. In Proceedings

of the 25th IEEE International Conference on Distributed Computing

Systems (ICDCS), 2005.
[20] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in

Unstructured Peer-to-Peer Networks. In Proceedings of the International

Conference on Supercomputing (ICS), pages 84–95, 2002.
[21] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[22] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and A. Ganesh. Peer

Counting and Sampling in Overlay Networks: Random Walk Methods.
In Proceedings of the 25th Annual Symposium on Principles of Dis-

tributed Computing (PODC), pages 123–132. ACM Press, 2006.
[23] Muthukrishnan. Data Streams: Algorithms and Applications. Now

Publishers Inc., 2005.
[24] G. Rubino and B. Sericola. On weak lumpability in Markov chains.

Journal of Applied Probability, 26, 1989.
[25] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach. Eclipse Attacks

on Overlay Networks: Threats and Defenses. In Proc. of the 25th IEEE

Intl Conference on Computer Communications (INFOCOM), 2006.
[26] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger. On

Unbiased Sampling for Unstructured Peer-to-Peer Networks. IEEE/ACM

Transactions on Networking, 17(02):377–390, 2009.

13

