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Dynamic Control of the Quattro Robot by the Leg Edges

Erol Özgür, Nicolas Bouton, Nicolas Andreff, Philippe Martinet

Abstract— This paper discusses variable selection for the effi-
cient dynamic control of the Quattro parallel robot through an
inverse dynamic model expressed by means of leg orientations.
A selection is made within a group of variables where each
can imply the state of the robot. Besides, in this work, steering
a parallel robot dynamically using its self-projection onto the
image plane (where the edges of the lower-legs are exploited
in control) is proposed and validated for the first time. In the
light of the realistic control simulation, the formative points of
better control of the Quattro robot are figured out.

I. INTRODUCTION

In an industrial automated plant, robots are the key ma-

chines for the typical applications such as pick-and-place,

high-speed machining, etc., and nowadays the parallel robots

meet the demands of production bands well since they are

faster and potentially have better stiffness and accuracy than

the serial robots [1].

However, they are structurally very complex to be con-

trolled precisely so as to exploit their full potential. There

have been many studies in this area in the last two decades

(see [2] for a literature review) which have offered concep-

tually generic solutions to the problem. The solution of this

difficult problem was simply looked for in the following

conventional scenario, where it has usually been treated in

separate modules, namely sensing, modeling and control,

respectively.

In sensing, since the robots are directly equipped with

motor encoders that measure the articular positions, many

researchers tried to develop models by hovering around this

shallow information. As a result, the models were very long,

time consuming (difficult to warrant the real-time constraints)

and hard to understand. Therefore, inevitably, this urges

one to offer simplifications [3] and to turn a blind eye to

some of the modeling errors in the mechanism, thus giving

simplified and fast [4] but less accurate new models for

control. Consequently, this pushes the community to look

for sophisticated control algorithms in order to compensate

for the loss of accuracy.

It can easily be noticed from the above scenario that each

module has poorly evolved having the negative effects of

the others on the way to the precise control of a parallel

robot. So, what would be a better approach which directly

considers the objective? If one looks over the whole problem

from a wide perspective, the answer can be seen in the
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Fig. 1. The Quattro parallel robot with a base-mounted camera.

selection of an “efficient variable set” [5]. This variable set

should let the modules be right in step with one another,

namely, make them converge to a unified single system that

governs the parallel robot right on target. In this paper, the

control module has been explored further in detail so as

to incorporate it smoothly into and complete the desired

unified system, where the integration of sensing and modeling

parts have already been discussed in our previous works [6],

[7], [8]. The expected contributions of this work are: (i) to

propose a dynamic control through the leg contour pixels

(edgels) of a parallel robot for potentially better performance,

(ii) to avoid using an artificial pattern in dynamic tracking,

while the parallel robot turns itself into a pattern, (iii) to

increase the robustness of dynamic control since the image-

space is resistant to errors, and (iv) to give intuitions that

might shed light on a complete image-based (2D) dynamic

modeling and control of parallel robots.

The remainder of this paper is organized as follows:

Section II gives background information on the geometry and

the notation of the Quattro robot (Fig. 1) and briefly talks

about the leg orientations based inverse dynamic model. In

Section III, we discuss both the choice of the sensor-signal

and the control-law used to steer the robot efficiently. In

Section IV, we give place to comparative results and their

annotations. Finally, Section V concludes the paper with

some remarks and highlights the future research directions.

II. BACKGROUND

A. The Quattro

The Quattro is composed of four identical kinematic legs,

that carry the articulated moving platform. Each of the 4

kinematic legs is actuated from the base by a revolute motor,



located at Pi, and has two consecutive bodies (an upper-

leg and a lower-leg) linked with each other at Ai. (see Fig.

1). The lower-legs are connected to the articulated moving

platform at Bi. Notation:

• i = 1,2,3,4 denotes the kinematic legs and j = { l,r}
denotes the left and right edges of the slim and cylin-

drical shaped lower-leg rods {[Ai1Bi1] , [Ai2Bi2]}.

• Vectors are denoted with boldface characters and, in

addition, unit vectors are underlined.

• Ve = [ẋ, ẏ, ż ]T and ωz are, in turn, the translational

velocity and the angular velocity around the fixed axis ze

of the end-effector E. Thus, the Cartesian pose velocity

of the end-effector frame can be represented by:

χ̇ =
[

ẋ ẏ ż ωz

]T

B. Dynamics

In previous works [6], [7], an algebraic expression for the

inverse dynamic of the Quattro robot was derived through

the following procedure:

• Khalil [9], intuition of splitting the parallel robot into

subsystems: kinematic legs and a moving platform.

• Kane [10] and Newton-Euler, to calculate the gener-

alized forces on the decomposed parts of the parallel

robot.

• d’Alembert / principle of virtual work, to combine all the

works and write the final equations of motion.

yielding the inverse dynamic model (IDM) by means of the

lower-leg orientations xai as below:

Γ = IDM( ẍai, ẋai, xai ) = A(xai) ẍai +h(xai, ẋai ) (1)

where Γ ∈ ℜ4×1 is the motor torque vector. The reason for

writing the inverse dynamic model as a function of such

variables is not only its simple closed-form expression but

is also related to sensor-based control issues.

III. SENSOR-BASED DYNAMIC CONTROL

A. Background

The standard method for dynamic control is the so-called

computed-torque control (CTC) [11] which linearizes and

decouples the control. Its well-known form, adapted to serial

mechanisms, is derived from the Lagrange formulation of the

dynamic model:

Γ = A(q)q̈+h(q, q̇), IDM(q, q̇, q̈) (2)

Under the assumption that Â and ĥ are correct estimates of

A(q) and h(q, q̇), one can build a control torque of the form:

Γ = Âuq + ĥ (3)

where uq is an auxiliary control vector, equivalent to an

acceleration in the joint-space. Indeed, inserting such a

control in the direct dynamic model yields a closed-loop

equation of the form:

q̈ = A(q)−1 Â︸ ︷︷ ︸
≈I

uq +A(q)−1( ĥ−h(q, q̇)︸ ︷︷ ︸
≈0

) (4)

which is a second-order linear-system and can therefore be

controlled by any linear controller, the latter being often cho-

sen as a proportional-derivative plus feedforward (PD+FF)

controller in the joint-space.

Now, for parallel kinematic manipulators, this control is

hardly used because it is computationally heavy (partly be-

cause one has to solve for the forward kinematic problem at

each iteration). It is therefore often discarded to the profit of

simplified controllers (the worst being a PID controller in the

joint-space) which can be shown [12] to have poor properties

as far as linearization and decoupling are concerned.

The essential drawback of this joint-space computed-

torque control is its reliance on a dynamic model ex-

pressed in joint-space. An alternative to this is to set up a

Cartesian-space computed-torque control according to many

recommendations for expressing the dynamic model in the

Cartesian-space [13], [14]:

Γ = Â(χ)uχ + ĥ(χ, χ̇) (5)

where uχ is now equivalent to a Cartesian acceleration and

(χ, χ̇) are the Cartesian pose and velocity of the end-effector

to be estimated. This is often considered as a second-order

linear-model and controlled with a PD+FF [11], [12], [14],

although there exits a formal non-linear control based on the

Lie group structure of SE(3) [15]. This control is a state

feedback in the case where the inverse kinematic problem

has a single solution.

However, despite the fact that the dynamic model is

lighter, the estimation of χ and χ̇ is not easy and, conse-

quently, one would like to set up a sensor-based computed-

torque control:

Γ = Â(s)us + ĥ(s, ṡ) (6)

where us is now equivalent to the second-order time-

derivative of the sensor signal s. This control encompasses

the former two since a joint-space computed-torque control

can be seen as a sensor-based control where the sensor

signal is given by the joint encoders and a Cartesian-space

control as a sensor-based control where the sensor-signal is

the end-effector pose. In fact, the theoretical condition for

the validity of a sensor-based control is that there exists

a diffeomorphism (i.e. a differentiable bijective mapping)

between the sensor-space and the state-space of the system

[16]. That is where it hurts in parallel kinematics, especially

when one considers only the actuator positions for sensing:

the mapping is neither bijective (several solutions to the

forward kinematic problem) nor differentiable (singularities

of any type). Then, which sensor-signal shall be used?

B. Choosing a sensor signal

The choice of the sensor is influenced by the state of

the technology, but more relevantly, since the latter is ever

improving, by the control algorithm and, in turn, the control

algorithm depends on the model it is built upon. In corre-

lation with the proposed methodology, this comes down to

examining the variables in models and to determining how



to get them efficiently. There are three kinds of variables

involved in the models:

• Variables related to the actuators: {xpi, ẋpi }
• Variables related to the end-effector: {xe, ẋe }
• Redundant variables: {xai, ẋai }

Which kind, if any, will best conform to an efficient

control? Of course, if one can sense all of these variables,

the problem is completely solved, except for itching cali-

bration and data coherence issues. For the same reason, a

combination of two of the three kinds is temporarily left out

of the discussion here (although there might lie the practical

optimum).

The variables related to the actuators definitely have to be

discarded, since they face up the forward kinematic problem,

which is not only a non-linear but also a square problem.

The variables related to the end-effector are not necessarily

the answer due to either their technological cost (laser) or

algorithmic cost (pose estimation in computer vision). The

latter case is nevertheless better than the forward kinematic

problem since the non-linear problem of pose estimation is

not square but over-constrained, which makes it numerically

more robust, and since it relies on optics rather than on

mechanical parts.

Focusing on the use of redundant variables only and

having inspirations of metrological redundancy [17], we have

found out that they provide us with a linear formulation of

the whole problem. Indeed, once all the variables are known,

the proposed models make only use of linear algebra. The

variables related to the actuators and the end-effector can

linearly be expressed from the known variables related to

the lower-legs and the known constant parameters [6].

Consequently, as soon as one can sense the redundant

variables, one can derive a control using only linear algebra.

And so, the only remaining question is how to measure

those redundant variables. Our answer is, unsurprisingly, to

observe by vision the associated mechanical elements in the

kinematic legs, preferably as revolute cylinders, as we did it

in kinematics [8].

C. Sensor-based computed-torque control law

Since we discuss the control law in different variable

spaces than the linearized-dynamics in (1) where ẍai = u, it

will be appropriate to define a pseudo-system s̈ = ω . Then,

the error function, fe, which is expressed in terms of current

s and desired s∗ sensor signals, can simply be denoted as

follows:

e = fe(s∗, s) = s∗− s (7)

and assuming a second-order diffeomorphism between xai

and s is:

ẋai = Ls ṡ ⇒ ẍai = L̇s ṡ+Ls s̈ (8)

where Ls is the differential kinematic model between the

sensor signal and a lower-leg unit orientation vector. One

can write the control u using (8) and pseudo-control ω as

below:

u = fu(Ls, L̇s, ṡ, ω ) = L̇s ṡ+Ls ω (9)

Fig. 2. An image of lower-legs with their edgels (green), orientation vector
(blue) and projection-line vectors (red) from the base-mounted camera of
the Quattro robot in Fig. 1.

where fu is a function of a differential kinematic model Ls

and its derivative (computed numerically), of the derivative

of the sensor signal s and the pseudo-control ω , respec-

tively. Afterwards, one only needs to measure / compute the

{s, ṡ, Ls, L̇s}. One should prove as well that linearized-

dynamics ( ẍai = u) is equivalent to pseudo-system ( s̈ = ω)
in order to bring the error down to zero. Subsequently, one

can rewrite the linearized-dynamics using the right sides of

the last two expressions in (8) and (9) as follows:

L̇s ṡ+Ls s̈ = L̇s ṡ+Ls ω (10)

and this will boil down to the state of pseudo-system ( s̈=ω),
on condition that the good approximations of the models exist

and ( s̈−ω) does not lie in the null-space of Ls. Finally, the

pseudo-control ω can be set up as below:

ω = K
P

e+ K
D

ė+ s̈ ∗ (11)

where K
P

and K
D

are the proportional and derivative positive

controller gains, respectively. This yields a second-order

convergence in s. In the following three subsections, we will

be deriving the control laws with different sensor-signals for

comparative purposes of dynamic control.

1) Image-space computed-torque control (IS-CTC): On

the image plane, the left and right fitted line equations in

pixel-units
p
n ji ∈ ℜ3×1 of the edgels of a projected lower-

leg rod (see Fig. 2) of the Quattro parallel robot are exploited

as sensor signals in control (see Fig. 3). The error vector for

each leg, ei ∈ ℜ6×1, is written over them as follows:

ei =

[
eli

eri

]
=

[ p
n∗

li −
p
n li

p
n∗

ri −
p
nri

]
(12)

where {
p
n∗

li ,
p
n∗

ri} are the left and right desired projection-

lines of a lower-leg rod. One interesting advantageous side of

the representation of a projection-line is that cn ji, meanwhile,

corresponds to the unit vector orthogonal to the interpretation

plane which is defined by the 3D line L ji lying along the

surface of the cylindrical rod and the center of projection

(see Fig. 2) [8]. The transformations between the expressions

of the projection-line in pixel coordinates
p
n and in camera



Fig. 3. Image-space computed-torque control (IS-CTC).

frame coordinates cn are given as below:

cn =
KT p

n

‖KT p
n‖

,
p
n =

K−T cn

‖K−T cn‖
(13)

where K is the intrinsic camera matrix. The geometry of a

cylindrical lower-leg rod allows one to calculate its direction

as well (see Fig. 2) through its projection-lines as follows:

cxai =
cn li ×

cnri

‖ cn li ×
cnri ‖

(14)

Hence, one can derive the differential relation between the

orientation vector of a lower-leg rod and its projection-

lines in pixel coordinates by differentiating (14) and the

first expression in (13). Afterwards, the following expression

comes up:

cẋai = Lni

[ p
ṅ li

p
ṅri

]
(15)

where Lni
∈ ℜ3×6 is the interaction matrix between the

velocities of a lower-leg rod 3D direction and its projection-

lines:

Lni
= [ fi ]v

[
[ cn ri ]

T
× [kli ]v KT [ cn li ]× [kri ]v KT

]
(16)

and where fi and k ji are:

fi =
cn li ×

cnri , k ji = KT p
n ji (17)

The [·]× represents the skew-symmetric matrix associated

to the vector cross-product and [·]v ∈ ℜ3×3 denotes the

differential tensor matrix for a given vector which will be

scaled down to a unit vector by its norm:

d

dt

(
v

‖v‖

)
= [v ]v v̇ =

1

‖v‖

(
I3 −

vvT

‖v‖2

)
v̇ (18)

Then, the corresponding control ui is derived from (9) as

follows:

ui = L̇ni

[ p
ṅ li

p
ṅri

]
+Lni

ω i (19)

where ω i =
[

p
n̈ li

T p
n̈ri

T
]T

is obtained with (12) and

(11). In Figs. 3, 4 and 5, the function fxai
calculates the

directions of the lower-legs and their first-order derivatives

via (14) and (15) in order to be used in the IDM.

2) Leg orientations space computed-torque control (LS-

CTC): Since the 3D directions of lower-legs stand in almost

at the heart of the IDM, the sensor-signal is chosen as

{xai |
4
i=1 } for control (see Fig. 4) and the error is directly

regulated over them in order to have an efficient performance:

ei =
cx∗ai −

cxai (20)

where cx∗ai is the desired i th lower-leg orientation and the

ei ∈ℜ3×1 is the error vector for the i th lower-leg. Afterwards,

the auxiliary control law, ui ∈ℜ3×1, can simply be calculated

through (20) and (11) (ω i = ui). One can directly use it as

the final control signal since the inverse dynamic model is

represented in the lower-legs orientations space.

Fig. 4. Leg orientations space computed-torque control (LS-CTC).

3) Cartesian-space computed-torque control (CS-CTC):

In Cartesian space, the end-effector pose χ of the Quattro,

which is calculated through the linear function fχ as in [6]

by using the projection-lines of the lower-legs rather than

through a non-linear pose estimation from a set of points

on a grid, is used as a sensor-signal in control (see Fig. 5).

Then, the error is defined as difference in poses as follows:

e = c
χ
∗− c

χ (21)

where cχ∗ ∈ ℜ4×1 is the desired end-effector pose. Then, the

control signal ui can be found from (9) as below:

ui = L̇χi

c
χ̇ +Lχi

ω (22)

where ω = cχ̈ is computed from (21) and (11), and Lχi
∈

ℜ3×4 is the inverse differential kinematic model between the

end-effector pose and a lower-leg 3D direction vector [18].

IV. RESULTS

The vision-based control simulations are conducted on the

ADAMS/Simulink platform. The simulation frequency is 500

Hz. A 0.2 m diameter circle motion with 2 m/s maximum

velocity and 4G maximum acceleration is planned out such

that it spans XY, XZ and YZ planes. The simulations are

executed in three different control-spaces and results are

compared. Table I gathers the accuracy obtained under vari-

ous types of noises for each control law, where the accuracy

of the control laws is assessed in terms of mean (bold)

and standard deviation (italic) values of the tracking errors

that are evaluated in the Cartesian space. Firstly, 100µm of

uncertainty is injected on the 3D coordinates of the extremity

points {Ai1,Bi1} of the lower-legs so as to imitate the effects

of clearances in passive joints, assembly errors and etc.

(This noise has a great impact since it directly changes the

orientations of the lower-legs and a good calibration is a

must in case of ignorance that kind of mechanical errors.)

Afterwards, for the sensory noise, the locations of the edgels

of a lower-leg are orthogonally perturbed (with respect to its

noiseless projection-line) in between [−2,+2] pixels which

will make the new fitted line take a slight deflection off the



Fig. 5. Cartesian-space computed-torque control (CS-CTC).

previous noiseless one. We also performed (see last row in

Table I) a computed-torque control with a feedback pose

estimated by direct observation of the end-effector (EE-CTC)

instead of the lower-legs and the feedback χ is corrupted

with a {100 µm, 0.01◦} noise, corresponding to state-of-

the-art accuracy of high-speed vision. Figure 6 shows the

reference circle motion in time. The results for the fourth

row of the Table I are plotted in Figs. 7 to 10. Figures 7, 8,

and 9 depict the traces of the performed trajectories and the

applied torques. Figure 10 shows the Euclidean and rotational

distances to the reference trajectory, respectively. Observing

the results in Table I, one can immediately conclude that

CS-CTC performs better and IS-CTC performs worse than

the others. It is surprising to have that result while our

expectations are put on the IS-CTC since the control variable
p
n is directly defined in the very sensor-space. However,

differences on the orders of magnitudes of the errors are not

so decisive to promote one over the others. Going into details

of the results, one can end up that: IS-CTC and LS-CTC

seem robust only to the errors in the sensor space (line fitting

easily smooths out the sensor noise), while being sensitive

to the mechanical errors. They are slightly better in rotation

but slightly worse in translation. It seems that, the closer the

control-variable to the operational space of the robot is, the

better the results are. Moreover, the superior robustness of the

CS-CTC to the both types of noise (mechanical and sensory)

can be explained by the fact that the pose is calculated

from the projection-lines of the lower-legs. This imposes

explicitly the closed-loop kinematic constraint that is helping

to smooth out the 3D errors. In the applied torques the CS-

CTC performs better as well, while the others are more

oscillatory and peaky. Let us finally remark that the EE-CTC

is worse than any other proposed controls, which confirms

that observing the lower-legs is probably one good way to

enhanced accuracy. Note that those results were achieved

with a PD+FF controller under the assumption of a perfect

decoupling and linearizing of the dynamics. In practice, due

to noise, this assumption might not be valid and the actual

performance of the system should be improved by making

call to advanced control.

V. CONCLUSIONS

In this paper, for a competent control performance of

a parallel robot, the variable-spaces have been explored

regarding a specific IDM expressed in leg orientations. The

prevailing results are brought by the CS-CTC. This outcome

suggests that: (i) the chosen variable set should be as close

TABLE I

TRACKING ERRORS EVALUATED IN CS (µm,deg).

IS (n ) LS (xai ) CS ( χ )

no noise 408 0.23◦ 356 0.23◦ 359 0.23◦

239 0.19◦ 190 0.16◦ 182 0.16◦

100 µm 674 0.32◦ 652 0.37◦ 553 0.36◦

447 0.26◦ 385 0.26◦ 269 0.25◦

±2 pixels 553 0.22◦ 522 0.22◦ 529 0.34◦

428 0.18◦ 371 0.16◦ 236 0.23◦

100 µm 881 0.28◦ 899 0.29◦ 560 0.36◦

±2 pixels 647 0.23◦ 703 0.24◦ 264 0.25◦

100 µm 862 0.56◦

0.01◦ 400 0.38◦
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Fig. 6. CS reference trajectory expressed in the camera frame.

as possible to the sensor space, (ii) the models should be able

to be directly / compactly expressed by that variable set and

(iii) the control-variable should be in the operational space

of the robot and has to be linearly calculated by the chosen

variable set. In this work, the only but quite challenging

assumption for the moment is that vision can perceive the

leg edges and their velocities at high speed and control rates.

However, it seems feasible in the close future, since the

sensing technology is fast by this point [19]. Thereafter,

the impact of the noisy n on IDM should be analyzed as

well, namely as decoupling is concerned. We build also the

following perspectives for the future: (i) Shall we be able

to do identification / calibration from {n, ṅ} and Γ ? and (ii)

As stated earlier, shall the way towards optimum lie in the

merging of the measurements in different spaces, such as q

and χ (calculated from n) ? Finally, we conclude that this

work bricks the last hole up theoretically in the control-

oriented unified system and, once the real-time tracking of

the edges is worked out, will let it be practically put to good

use in parallel robots as a favourable option.
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