
HAL Id: hal-00804415
https://hal.science/hal-00804415

Submitted on 25 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Modelling of Reactive Discrete Event
Systems from External Behavioural Data

Ana-Paula Estrada-Vargas, Ernesto López-Mellado, Jean-Jacques Lesage

To cite this version:
Ana-Paula Estrada-Vargas, Ernesto López-Mellado, Jean-Jacques Lesage. Automated Modelling of
Reactive Discrete Event Systems from External Behavioural Data. 23rd Int. Conf. on Electronics,
Communications and Computing ”CONIELECOMP 2013”, Mar 2013, Cholula Puebla, Mexico. pp.
120-125. �hal-00804415�

https://hal.science/hal-00804415
https://hal.archives-ouvertes.fr

Automated Modelling of Reactive Discrete Event
Systems from External Behavioural Data

Ana Paula Estrada-Vargas, Ernesto López-Mellado
 CINVESTAV Unidad Guadalajara

Zapopan, Jal., Mexico
{aestrada, elopez}@gdl.cinvestav.mx

Jean-Jacques Lesage
LURPA Ecole Normale Supérieure de Cachan

Cachan, France
Jean-Jacques.lesage@lurpa.ens-cachan.fr

Abstract— This paper deals with automated modelling of reactive
discrete event systems (DES). A software tool for building
automatically interpreted Petri net models from an observed
system’s input/output sequence is presented. The tool is based on
a black-box identification method that processes the input/output
sequence, and synthesises and draws the model corresponding to
such a sequence. First, the identification method is outlined; then
the developed software is described and applied to an illustrative
example from the manufacturing area.

Keywords— Discrete event systems; Automated modelling;
Stepwise identification; Interpreted Petri nets.

I. INTRODUCTION
Modelling is an important stage during the systems’
developing life-cycle or during the analysis of an existing
system. In the second situation the modelling is necessary
when the original model is unknown or ill-known, or the
system’s operation has changed without updating the original
model. Identification methods yield a mathematical model
from data representing the behaviour exhibited during the
system functioning; in the case of discrete event systems
(DES) the obtained models are abstract machines that
reproduce the observed sequences of events.

The above described problem has been addressed from
several years ago in diverse domains. It has received
alternative names such as learning techniques, grammatical
inference, system identification, process mining, and process
discovery.

The first identification methods appeared in the field of
theoretical computer sciences as a problem of obtaining a
language representation by finite automata (FA) from sets of
accepted words; such methods have been reported as learning
techniques [1][2]. Other related works use as description
formalism Petri net (PN) models [3].

In recent years, the automation community has proposed
identification approaches for obtaining approximated models
(PN or FA) of DES whose behaviour is unknown or ill-known.
In the context of automated manufacturing systems,
identification methods allow obtaining a first model that can
be detailed using established modelling techniques and
available knowledge of the system; such a model describes the

controller-plant behaviour during the closed-loop functioning.
Three main approaches for identifying DES have been
proposed in literature [4].

The incremental synthesis approach, proposed in [5] [6],
deals with unknown partially measurable DES exhibiting
cyclic behaviour. Several PN synthesis algorithms have been
proposed allowing the on-line identification of concurrent
DES from output sequences. Although the techniques are
efficient, the obtained models may represent more sequences
than those observed.

Other recent method [7] allows building efficiently a non
deterministic FA (NFA) from a set of input/output sequences,
measured from DES to be identified. The obtained NFA
generates exactly the same input/output (I/O) sequences of
given length than the observed ones. The method was
conceived for fault detection in a model-based approach [8]
and extended for obtaining an optimal partitioning of
concurrent subsystems for distributed fault detection [9].

The off-line techniques based on integer linear
programming (ILP) approach yield free-labelled Petri net
models representing exactly the observed behaviour [10].
However both the ILP problem statement from event
sequences and the processing have exponential complexity.
This approach is being explored for other IPN classes;
representative papers of this approach are [11] and [12].

In this paper the problem of identifying reactive DES
composed by a controller (a Programmable logic Controller:
PLC) and a plant operating in closed loop is addressed. Both
controller’s inputs and outputs are sampled from the initial
state for building a single sequence of I/O vectors, which is
processed yielding an interpreted Petri net (IPN) model.

This approach is based on a previously presented efficient
method for coping with concurrent partially observable DES
[13]. The method is composed by several polynomial time
algorithms that process a set of cyclic input/output sequences
yielding IPN models including silent transitions and non-
labelled places.

This method has been extended and adapted for identifying
actual industrial PLC-based controlled discrete manufacturing
systems, which operate during a long time period performing
repetitive tasks [14]; the proposed technique operates stepwise

allowing updating the model when new input/output vectors
are added to the sequence. In the present paper we are
focussing on the implementation and application of a software
tool that automates the identification method.

The paper is organized as follows. In section II, the stepwise
identification method is summarised. In section III a software
tool implementing that method is described. Section IV
illustrates the application of the developed identification tool
to a case study.

II. A STEPWISE IDENTIFICATION METHOD
In this section the identification method is outlined. A detailed
description may be found in [14].

A. Problem statement
The method deals with DES composed of a Plant and a

Controller (a PLC) operating in a closed-loop as showed in
Figure 1. It is assumed that the data exchanged between plant
and PLC corresponds to binary signals. The input signals of
the PLC (outputs of the Plant) are generated by the sensors of
the plant. The output signals of the PLC (inputs of the plant)
control the actuators of the plant. The external behaviour of
such a DES system can be observed (and recorded) by the
evolution of the value of all input/output (I/O) signals
exchanged between the controller and the plant.

Figure 1. Closed loop controller-plant DES

At each end of cycle of the PLC, the current value of all

Inputs and Outputs (called I/O vector) can be easily captured
and recorded in a data base. Each new observed I/O vector
(when at least one I/O changes its value) belongs to an I/O
vector alphabet. The sequence is build with the recorded
events; this sequence is the input of the identification
algorithm.

Definition 1: The I/O vector alphabet of a DES with m
inputs and n outputs is Σm,n = {1,0}(m+n).

Definition 2: The observed input/output sequence w of a
DES S with m inputs and n outputs is:

ݓ ൌ ൥
ሺ1ሻܫ

െ
ܱሺ1ሻ

൩ ൥
ሺ2ሻܫ

െ
ܱሺ2ሻ

൩ … ൥
ሺ݆ሻܫ
െ

ܱሺ݆ሻ
൩,

where [I(j)|O(j)]T ∈Σm,n is the j-th observed I/O vector in w.

Definition 3: The observed input/output language of length
l of a DES S is defined as ख l(S) = {ε} ∪ {w(i + 1)
w(i + 2)…w(i + h)|1 ≤ i + h ≤ l}.

Now the identification problem can be defined. Given a
DES whose only available information is an observed I/O
sequence w arbitrarily large and an accuracy parameter ߢ, the
aim of the identification process is to obtain a safe IPN model
(Q, M0) such that ࣦ఑ሺܳ, ଴ሻܯ ൌ ࣦ఑ሺܵሻ . The parameter ߢ is
used to adjust the accuracy of the identified model, similarly
as proposed in [7].

B. Purpose of identification
The aim of obtaining a model through identification is not to
represent only the observed language, but to represent the
observed behaviour and to infer actual behaviour that has not
been observed during data collection. In order to accomplish
this inference, the parameter κ is used as a measure of state
equivalence. When κ-equivalent states (states whose past κ
events are the same) are found, they are merged, increasing the
accepted language of the IPN and consequently the modelled
behaviour.

In this method it is considered that the I/O sequence is
measured from the initial state of the global system (Plant and
Controller). A data base is built with the sequence in which
two consecutive I/O vector are different.

C. General strategy
The method allows the progressive construction of a safe

IPN representing exactly the sampled input/output language of
length κ +1 of the DES.

From the I/O vector sequence, an event sequence is
computed and a sequence of event substrings of length κ is
built. Every substring is associated to a transition of a PN,
which describes the causal relationship between event
substrings.

A PN node path formed by non-observable places
represents the substring sequence; this path is built taking into
account the possible repetitive observed behaviour (internal
model). Then simplifications may be applied. Notice that the
number of non-observable places is not predefined.

Finally, the model is completed by including observable
places which are related to pertinent transitions in the PN
according to output changes provoked by events; also input
symbols are associated to transitions. This part of the
algorithm can be concurrently performed at any moment, for
example when a cycle is identified, whilst the internal model
is updated by processing the new I/O vectors in the database.

D. Identification algorithm
The procedure for building the IPN model from the I/O

sequence is summarized on the UML activity diagram of
Figure 2. It consists of five main steps that are described
through the following example.

Controller Plant
I(j) O(j)

I/O(j)

Figure 2. Stages of the identification algorithm

Consider a DES with three output signals, Φ = {A, B, C},

and three input signals Σ = {a, b, c}. The entries of the binary
I/O vectors have the following correspondence: [a b c | A B
C]T. Consider the following I/O sequence for which the first
eight vectors are given below:

...

0
0

0
0

0
0

0
0

.

0
0
0
0
0
0

0
0
0
0
0

1

0
0
0
0
0
1

1
0
0

1
0
0

1
0
0
1
0
1

1
0
0
1
0
0

0
0
0
0
0
1

0
1

0
0
0
0

0
1
0
0
0
1

0
1
0
0
0
0

0
0
0
0
0
1

0
0

1
0
0
0

0
0
1
0
0
1

0
0
1
0
0
1

0
0
0
0
0
0

1

1

1

1
17654321

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−
−

=

eeeeeeee

w

The algorithm starts by initializing a Petri net structure with

a non observable place initially marked associated to the first
observed vector w(1) = [0 0 0 | 0 0 0]T. (Step 1).

The second I/O vector w(2) = [1 0 0 | 1 0 0]T of the
sequence is considered and, according to the Step 2 of the
algorithm, an event vector τ(1) = w(2) – w(1) = e1 = [1 0 0 | 1
0 0]T is computed, as well as an input event vector λ(1) = [1 0
0]T and its corresponding symbolic input event λ’(1) = a_1,
i.e. the rising edge of a. Also, considering ߢ ൌ 1, a first event
trace τ1(1) = e1 is computed. Notice that, in this case, trace and
event are the same.

Step 3 of the identification algorithm relates computed event
traces to transitions of an IPN. In this case τ1(1) is related to
ଵݐ

௘భ (Figure 3).

Figure 3. PN representing e1

Considering the third I/O vector w(3) = [1 0 0 | 0 0 0]T, the

event τ(2) = w(3) – w(2) = e2 = [0 0 0 | -1 0 0]T, the input event
λ(2) = [0 0 0]T and the symbolic input event λ’(2) = ε are
computed; then the model is updated, as showed in Figure 4.

Figure 4. PN representing the sequence e1e2

Until 8th I/O vector, the situation is quite similar: a new

event is computed and the model is updated. When 9th vector
w(9) = [1 0 0 | 1 0 0]T is considered, the event τ(8) = w(9) –
w(8) = e1 = [1 0 0 | 1 0 0]T is computed and the trace τ1(8) is
identified through Step 3 as an already computed trace e1.
Since it leads to the same marking than the input place of ݐଵ

௘భ,
a cycle is found and the model is updated as observed in
Figure 5.

Figure 5. Internal model for the first detected cycle

Since a cycle has been found, Step 4 and Step 5 of the

algorithm are executed, leading to an intermediate IPN model
showed in Figure 6.

Figure 6. IPN for the first detected cycle

Simultaneously to the creation of the intermediate IPN,

more I/O vectors can be processed from the observed
sequence; consider the next subsequence of 10 vectors starting
from w(9):

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎯⎯ →⎯

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

0
0
0
0

0
0
0
0
1
0

0
0
0
0
0
1

0
1

0
0
0

0
1

0
0
1

0
0

1
0
0

0

1
0
0
1

0
1
0
0
0
0

0
0

0
0
1

0
0
1
0
0

0
0
0
0
0
0

0

0
0
0

0
0
0
0
0
1

0
1

0
0
0

0
1

0
0
1

0
0

1
0
0

0

1
0
0
1

0
1
0
0
0
0

0
0

0
0 1

1

0
0

0

1
1

1

0

1

0
0

0

1
1

1
842317423 eeeeeeeee

Two more cycles are found in this sequence and

intermediate IPN models are created. We show only the PN
obtained after founding the second cycle (Figure 7) and its
equivalent model transformed by analysing concurrency
(Figure 8). After applying the Step 4 and Step 5 the IPN
obtained from this PN is showed in Figure 9.

1
1
et

1
1
et 2

2
et

5
5
et1

1
et 2

2
et 3

3
et 4

4
et 6

6
et 7

7
et

A B C1_a ε ε ε 1_c 0_c 0_a

Initialization

Reading an
I/O vector

[An I/O vector is read]

[No more I/O vectors]

Building events
and traces

Building
internal model

[A new cycle is found]

[No cycle is found]

PN structure
simplification

Adding
interpretation

Figure 7. PN corresponding to the whole I/O sequence

Remark. The simplification by analysis of concurrency in

Step 4 is not strictly necessary for representing the event
vector sequences; however the equivalent model with
concurrent transitions may be simpler and expressive. The aim
of this simplification is not minimizing the number of nodes in
the model, but obtaining fairly reduced models useful for
understanding the DES behaviour.

Figure 8. Equivalent internal model representing concurrency

Figure 9. IPN for the complete sequence

III. AN IDENTIFICATION TOOL FOR AUTOMATED MODELLING
Based on the algorithms presented in section III, a software

tool has been developed to automate the IPN model synthesis.
It has been tested on several examples of diverse complexity
which generate long sequences. The software architecture is
shown in Figure 10.

Figure 10. Software architecture

The algorithm has been implemented with IDE Netbeans
6.5, java jdk 1.6.0 [15]. In order to manipulate matrices, the
library Java Matrix Package (Jama v1.0.2) [16] has been used.
For creating the graphic model images, the hierarchical layout
algorithm dot of Graphviz [17] has been applied. Actually,
command dot can be invoked from the application without
need to open the Graphviz interface.

An input file is a set of rows representing the cyclic
sequence obtained from measure of the system to identify.

The user interface can be observed in Figure 11. In order to
start an identification process, the user must insert the name of
the file containing the observed I/O sequence, the desired
name for the dot file (and the jpg file), the accuracy
identification parameter κ, the index mask (if only some of the
inputs or outputs of the I/O vectors will be considered), and
the mnemonics of inputs and outputs.

Figure 11. Graphic user interface

Once the identification algorithm has been executed, the

user interface displays into the text area called Data some
information about the identification process, such as the
number of transitions and places of the IPN obtained and the
execution time for identification.

Now, we present an experimental system on which the tool
has been tested.

IV. CASE STUDY
The Interactive Training System for PLC® (ITS PLC)

Professional Edition is a tool for PLC programming which
offers virtual processes for education and training in PLC
programming [18]. Each virtual process allows behavioural
and visual simulation of an industrial process including virtual
sensors and actuators; so its state can be sensed, and the
components can be controlled by a real PLC. The sensors and
actuators data is exchanged between the PLC and the system
by a data acquisition board (DAQ) with 32 I/O isolated
channels and USB interface.

For our experimental work, we have chosen the so called
Sorting system, which transports parcels from a feeder to a
couple of elevators; parcels are sorted according to their height
(Figure 12). The controller handles 11 inputs (s0, s1, s2, s3,
s4, s5, s6, s7, s8, s9, s10) and 7 outputs (A0, A1, A2, A3, A4,
A5, A6).

7
7
et

1
1
et

5
5
et

2
2
et

3
8
et

3
3
et

2
9
et

4
4
et

6
6
et

8
10
et

7
7
et

1
1
et

5
5
et

2
2
et

3
8
et

4
4
et

6
6
et

8
10
et

0_a1_a

1_c

ε

ε

ε

0_c

1_bA

B

C

User
interface

Options

Input file

Input reader Identification
Algorithm Drawer

IPN

I/O vectors dot file

Mnemonics, κ

2 0000 001001010
45 1000 101001010
67 1000 100001010
83 1000 000001010
99 0110 000101010
...

Figure 12. The sorting system from ITS PLC

For the collection of I/0 vectors, a routine written on Python
has been launched in the computer using the ITS PLC (see
Figure 13). It uses the Modbus communication protocol to
read values of the inputs and outputs at each PLC cycle. The
PLC is a Modicon TSX Premium.

If a measured I/O vector is equal to the previous one, it is
ignored. Otherwise, the I/O vectors as well as the time value
are written into a file. Figure 14 shows the experimental
environment.

Figure 13. Scheme of the data collection procedure

Figure 14 Experimental environment

After processing 30 parcels, the data collection has been
stopped, obtaining a sequence of 472 I/O vectors in the input
file. The identification procedure has been applied with
different values of κ. Identified models for κ = 1 and κ = 2 are

showed in Figure 15. The execution time for the identification
was 156ms and 157ms respectively.

Observe how incrementing the value of κ provokes that
several transition paths are created. However, the net
computed with κ = 2 does not represent a significative change
from the net computed with κ = 1 and thus, we decide that it is
not necessary to compute new nets with largest values of κ,
and the value κ = 1 is enough.

a) Identified model with κ = 1 b) Identifed model with κ = 2

Figure 15 Identified models for the Sorting system

By expertise knowledge, we have validated the obtained

models by checking that they are able to reproduce the
observed behaviour of the compound system formed by the
plant and controller. However, it is hard for someone not
familiarized with the system to know in detail how the system
works by looking at the models.

Notice that in the IPN model there are numerous paths
formed by non observable places. This is due to the
observation of input changes that do not affect the outputs, but
maybe they affect the controller state.

In order to obtain a more compact model, a simplification
strategy has been presented in [13] and is recalled below. It
consists in merging several places, representing internal
behaviour whose detected events do not have effect on the

Computer

PLC
DAQ

I/O
Sequence

ITS PLC

Python
routine

Modbus

outputs, into a single one where an output event must occur.
Consider the following I/O vector sequence involving one
input x and two outputs A, B:

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

1
0
1

0
1
1

0
1
0

B
A
x

This sequence can be represented as follows:
BAA x ⎯→⎯⎯⎯→⎯ ε1_ , which can be transformed into a more

compact one: BA x⎯⎯→⎯ 1_ . This can be generalized to the
following situation in which several events do not produce any
change in the outputs:

 B
eee

ABeA
e

AeA kjikji ⎯⎯⎯⎯ →⎯≅⎯→⎯⎯→⎯⎯→⎯
...

... .

The application of this simplification procedure yields the

IPN model showed in Figure 16. The execution time to
produce this model has been 125ms. Notice how the model is
easier to read and gives a better notion of how the system is
actually working.

Figure 16. Reduced model for the sorting system

V. CONCLUDING REMARKS
Automated modelling of reactive DES can be achieved by

efficient identification algorithms that cope with large and
complex processes. A software tool based on identification
algorithms is a valuable resource for computer-aided reverse
engineering of controlled manufacturing systems, which
allows obtaining a comprehensive Petri net model of the
closed-loop controlled system.

Identified models approximate closely the actual behaviour
of the compound system controller-plant. The processing of
sequences, corresponding to observations during long
production time, composed by thousands of I/O vectors, is
performed in few seconds thanks to efficient algorithms issued
from the identification method.

ACKNOWLEDGMENT
The first author is sponsored by CONACYT Mexico, Grant

number 50312 and Région Ile de France.

REFERENCES
[1] E.M. Gold, “Language Identification in the Limit”, Information and

Control, Vol. 10, No.5 pp. 447-474, 1967
[2] D. Angluin, “Queries and Concept Learning”, Machine Learning, Vol.

2, No.4 pp. 319-342, 1988
[3] K. Hiraishi, “Construction of Safe Petri Nets by Presenting Firing

Sequences”, Lectures Notes in Computer Sciences, Vol. 616, pp. 244-
262, 1992

[4] A.P. Estrada-Vargas, E. López-Mellado, J.-J. Lesage. “A Comparative
Analysis of Recent Identification Approaches for Discrete-Event
Systems”, Mathematical Problems in Engineering. Volume 2010,
Hindawi. doi:10.1155/2010/453254

[5] M. Meda-Campaña, E. López-Mellado, “A passive method for on-line
identification of discrete event systems”, Proc. of the IEEE Int. Conf. on
Decision and Control, Orlando, FL, USA. pp. 4990-4995, Dec 2001

[6] M. Meda-Campaña, E. López-Mellado, “Identification of Concurrent
Discrete Event Systems Using Petri Nets”, Proc. of the IMACS 2005
World Congress, Paris, France, pp.1-7, Jul 2005

[7] S. Klein, L. Litz, J.-J. Lesage, “Fault detection of Discrete Event
Systems using an identification approach”, 16th IFAC World Congress,
Paper n°02643, 6 pages, Praha (Czech Republic), July 2005

[8] M. Roth, J.-J. Lesage, L. Litz, “An FDI Method for Manufacturing
Systems Based on an Identified Model”, Proc. of IFAC Symposium on
Information Control Problems in Manufacturing (INCOM 2009),
Moscow, Russia, pp. 1389-1394, June 2009

[9] M. Roth, J.-J. Lesage, L. Litz, “Black-box identification of discrete
event systems with optimal partitioning of concurrent subsystems”, Proc.
of the American Control Conf. (ACC 2010), Baltimore, Maryland, USA,
pp. 2601-2606, June 2010

[10] M.P. Cabasino, A. Giua and C. Seatzu, “Identification of Petri Nets from
Knowledge of Their Language”, Discrete Event Dynamic Systems, Vol.
17, No. 4, pp. 447-474, 2007

[11] M. P. Cabasino, A. Giua, C. Seatzu, “Identification of unbounded Petri
nets from their coverability graph”, Proc. of the IEEE Int. Conf. on
Decision & Control, San Diego, CA, USA, pp. 434 – 440, Dec 2006

[12] M. Dotoli, M. P. Fanti, A. M. Mangini, “Real time identification of
discrete event systems using Petri nets”, Automatica, Vol. 44, No. 5, pp.
1209-1219, May 2008

[13] A.P. Estrada-Vargas, E. Lopez-Mellado, J-J. Lesage. "An Identification
Method for PLC-based Automated Discrete Event Systems". Proc. of the
IEEE Int. Conf. on Decision and Control, pp.6740-6746. Atlanta, USA.
Dec. 2010

[14] A. P. Estrada-Vargas, J-J. Lesage, E. Lopez-Mellado “Stepwise
Identification of Automated Discrete Manufacturing Systems” Proc. of
IEEE International Conference on Emergency Technologies and Factory
Automation, pp. 1-8, Toulouse, France. September 2011

[15] http://netbeans.org/
[16] http://math.nist.gov/javanumerics/jama/
[17] http://www.graphviz.org/
[18] http://www.realgames.pt/

