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ON THE INEQUALITIES OF BABUŠKA–AZIZ, FRIEDRICHS AND

HORGAN–PAYNE

MARTIN COSTABEL AND MONIQUE DAUGE

ABSTRACT. The equivalence between the inequalities of Babuška–Aziz and Friedrichs for

sufficiently smooth bounded domains in the plane has been shown by Horgan and Payne

30 years ago. We prove that this equivalence, and the equality between the associated

constants, is true without any regularity condition on the domain. For the Horgan–Payne

inequality, which is an upper bound of the Friedrichs constant for plane star-shaped do-

mains in terms of a geometric quantity known as the Horgan–Payne angle, we show that it

is true for some classes of domains, but not for all bounded star-shaped domains. We prove

a weaker inequality that is true in all cases.

1. INTRODUCTION

In 1983, Horgan and Payne published a paper [12] that has since become a classical ref-

erence, in which they proved equivalence of three inequalities pertaining to plane domains:

the Korn inequality from linear elasticity, the Friedrichs inequality for conjugate harmonic

functions, and the Babuška–Aziz inequality that quantifies the inf-sup condition for the di-

vergence. After finding equations between the constants in these inequalities, they estimate

the constant in the Friedrichs inequality for star-shaped domains. The estimate involves the

minimal angle between the radius vector and the tangent on the boundary, later sometimes

called “Horgan–Payne angle” [21].

The present paper evolved from trying to understand the precise hypotheses on the do-

main that are needed for the proofs in the paper [12]. On one hand, in [12] it is said that

“we assume that the domain is simply-connected, with C1 boundary. It will be clear from

our arguments that the results hold for simply-connected Lipschitz domains.” Some of the

proofs use even higher regularity, however. On the other hand, recently the Babuška–Aziz

inequality has been proved [1] for the class of John domains, which is a larger class than

Lipschitz domains, including unions of Lipschitz domains, weakly Lipschitz domains, and

even some domains with a fractal boundary. It is therefore desirable to know whether the

equivalence between the inequalities of Friedrichs and of Babuška–Aziz persists for this

larger class of domains. We show that, indeed, this equivalence holds without any regular-

ity assumption on the domain.

For star-shaped domains, we prove that the Horgan–Payne estimate of the Friedrichs

constant holds for some domains, including all triangles, rectangles and regular polygons,

but that to be true in general, it has to be replaced by a more complicated estimate. We give

a counterexample of a domain for which the Horgan–Payne estimate is not true. Finally,
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2 MARTIN COSTABEL AND MONIQUE DAUGE

using the approach of Horgan and Payne, we obtain, for the case of plane star-shaped do-

mains, an improvement of the Babuška–Aziz inequality shown by Durán [10] for bounded

domains in any dimension.

2. THE INEQUALITIES

2.1. Notation. Let Ω be a bounded domain in Rd, d ≥ 2. Thus we will assume throughout

that Ω is bounded and connected, but we will not impose any a-priori regularity hypothesis.

We use the standard definitions of the space of square integrable functions L2(Ω) and of

the Sobolev spaceH1(Ω). The norm and scalar product in L2(Ω) will be denoted by ‖·‖0,Ω
and 〈·, ·〉Ω . We will need the subspace of functions of mean value zero

L2
◦(Ω) =

{
q ∈ L2(Ω) |

∫

Ω

q(x) dx = 0
}
.

The space H1
0 (Ω) is the closure of C ∞

0 (Ω) in the norm of H1(Ω). On account of the

Poincaré inequality, theH1 seminorm is a norm on H1
0 (Ω), which we will denote by | · |1,Ω.

The dual space of H1
0 (Ω) with L2(Ω) as pivot space is H−1(Ω). The dual norm to | · |1,Ω is

‖ · ‖−1,Ω, and the duality is again denoted by 〈·, ·〉Ω . We will also use the natural extension

of these notations to vector functions, so that for instance for v = (v1, . . . , vd) ∈ H1
0 (Ω)

d

|v |1,Ω = ‖ gradv‖0,Ω =
( d∑

k=1

d∑

j=1

‖∂xjvk‖20,Ω
)1/2

.

If no misunderstanding is possible, we will simply write ‖ · ‖0 and | · |1 for ‖ · ‖0,Ω and

| · |1,Ω. Most of the discussion of this paper will concern plane domains, but one of the new

technical tools proved later on (see Lemma 5.4) will be valid for any dimension d ≥ 2.

2.2. The Babuška–Aziz inequality. In [2, Lemma 5.4.3, p. 172], Babuška and Aziz prove

the existence of a finite constant C such that for any q ∈ L2
◦(Ω) there exists a solution

u ∈ H1
0 (Ω)

2 of the equation

divu = q

satisfying the estimate

(2.1) |u|2
1,Ω

≤ C ‖q‖2
0,Ω

.

Following [12], we call (2.1) the Babuška–Aziz inequality and the smallest possible con-

stant C in (2.1), which we will denote by C(Ω), the Babuška–Aziz constant of the domain

Ω. Babuška and Aziz give a proof for bounded smooth domains in dimension d = 2, and

Horgan and Payne formulate the result for bounded Lipschitz domains [12, Theorem 1].

Estimates such as (2.1) for smooth domains have been shown as early as 1961 by Cat-

tabriga [4] in the the context of boundary value problems for the Stokes system, using even

Lp norms with p 6= 2.

Applying duality and basic Hilbert space theory, one finds the well known [3] equiva-

lence between the Babuška–Aziz inequality and the a-priori estimate for the gradient with

a constant β > 0

(2.2) ∀q ∈ L2
◦(Ω) : ‖ grad q‖−1,Ω ≥ β‖q‖0,Ω ,
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as well as the inf-sup condition β(Ω) > 0, where

(2.3) β(Ω) = inf
q∈L2

◦(Ω)

sup
v∈H1

0 (Ω)2

〈
div v, q

〉
Ω

|v|1,Ω ‖q‖0,Ω
.

The relation between the inf-sup constant β(Ω), which is also the best possible constant in

(2.2), and the Babuška–Aziz constant is

(2.4) C(Ω) =
1

β(Ω)2
.

The gradient estimate (2.2) is one of the standard tools in the proof of the Korn inequality

and has been proved in this context for bounded Lipschitz domains in any dimension by

Nečas [18, Chap. 3, Lemme 3.7.1]. It is sometimes associated with the name of Lions, see

[5] and [14, Note (27) p. 320].

The inf-sup condition plays an important role for the pressure stability in hydrodynam-

ics [8], for the rate of convergence of iterative methods such as the Uzawa algorithm

[6, 21] and, in a discrete version, for the finite element approximation of the Stokes equa-

tion. In the context of mixed variational formulations and their approximation this has

been explored since Brezzi’s fundamental paper [3]. In this context, it is often referred to

as Babuška–Brezzi or Ladyzhenskaya-Babuška-Brezzi condition and the inf-sup constant

β(Ω) as LBB constant, see [15, 19] and many later references. In the paper [13], La-

dyzhenskaya and Solonnikov discuss the validity of this estimate — but in the form of the

Babuška–Aziz estimate (2.1) — for a class of domains larger than the class of Lipschitz

domains.

In a series of recent papers, Durán, Muschietti and coauthors extended the validity of the

inf-sup condition to the class of John domains, which contains among others finite unions

of bounded Lipschitz domains, weakly Lipschitz domains, and even some domains with

fractal boundary, see [1, 9, 10].

2.3. The Friedrichs inequality. The Friedrichs inequality is an L2 estimate between con-

jugate harmonic functions in dimension d = 2. Friedrichs proved it in [11] for a class of

piecewise smooth domains and discussed its relation with the Cosserat eigenvalue problem

of plane elasticity theory and the Korn inequality. It can be formulated using holomorphic

functions in Ω, where R2 is identified with the complex plane. If w is holomorphic in Ω,

w = h + ig with real-valued h and g, then h and g are conjugate harmonic functions and

satisfy gradh = curl g. One considers the space F◦(Ω) of complex valued holomorphic

functions that are square integrable on Ω and of mean value zero.

The Friedrichs inequality is satisfied for Ω if there is a finite constant Γ such that for all

h + ig ∈ F◦(Ω)

(2.5) ‖h‖2
0,Ω

≤ Γ ‖g‖2
0,Ω
.

The smallest possible constant is the Friedrichs constant of the domain and will be denoted

by Γ(Ω). Friedrichs also gave a counter-example of a domain with an exterior cusp for

which Γ(Ω) is infinite.
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2.4. The Horgan–Payne inequality. Whereas we followed Horgan–Payne [12] for the

naming of the inequalities of Babuška–Aziz and Friedrichs, we will now introduce an

inequality that appears in [12], but has not so far been named, as far as we know. It involves

a geometric quantity ω(Ω) that has been called Horgan–Payne angle [21]. This angle is

defined for a domain Ω ⊂ R2 that is star-shaped with respect to a ball with center x0. In

this case, the boundary is Lipschitz continuous, has a tangent almost everywhere, and the

ray from x0 passing through x ∈ ∂Ω has a positive angle ω(x) ≤ π
2

with the tangent. The

quantity

(2.6) ω(Ω) = inf
x∈∂Ω

ω(x)

is also strictly positive. Note that ω(Ω) depends not only on the domain Ω, but also on the

center x0.

The Horgan–Payne inequality is the estimate for the inf-sup constant

(2.7) β(Ω) ≥ sin
ω(Ω)

2
.

In [12, Eq. (6.29)], this inequality is formulated as an estimate for the Friedrichs constant

(2.8) Γ(Ω) ≤ sup
x∈∂Ω

(
1

cos γ(x)
+

√
1

cos2 γ(x)
− 1

)2

where γ(x) = π
2
− ω(x) is the positive angle between the ray from x0 passing through

x ∈ ∂Ω and the normal in x. In view of the relation C(Ω) = Γ(Ω) + 1, see Theorem 2.1

below, and (2.4), the estimates (2.8) and (2.7) are equivalent, see also [21, Lemma 1].

2.5. The main results. We can now formulate the main results of this paper. The remain-

ing sections will be devoted to the proofs, including some technical lemmas that may be of

independent interest, and some examples and counter-examples.

Theorem 2.1. Let Ω ⊂ R2 be a bounded domain. Then the Babuška–Aziz constant C(Ω)
is finite if and only if the Friedrichs constant Γ(Ω) is finite, and

(2.9) C(Ω) = Γ(Ω) + 1 .

This identity was proved in [12, Sec. 5] under additional hypotheses. The proof there

requires that Ω is simply connected and satisfies some implicit regularity assumption that

amounts basically to C2 regularity. In Section 3, we give a different proof that does not

need any assumptions on Ω. As a corollary we obtain that the Friedrichs inequality is true

for the same class of domains as the inf-sup condition for the divergence, in particular for

John domains.

In Section 4 we revisit the proof of Horgan–Payne [12, Section 6] and prove that it

gives a weaker, more complicated estimate than (2.8), less amenable to a simple geometric

interpretation. Nevertheless we show in Section 5 that for a collection of simple plane

domains the two estimates coincide. In the opposite direction, we prove an upper bound

for the inf-sup constant for domains allowing a “small cut”, Lemma 5.4. This can be used to

disprove the Horgan–Payne inequality for some domains. Such domains can be constructed

from logarithmic spirals, or from segments and circular arcs, or even as polygons.
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Theorem 2.2. (i) Let Ω ⊂ R
2 be any triangle, rectangle, rhombus or regular polygon.

Then with respect to its barycenter, the Horgan–Payne inequality holds. (ii) There exist

domains Ω ⊂ R2 star-shaped with respect to a ball such that the Horgan–Payne inequality

(2.7) is not satisfied.

In Section 6, we use the idea of Horgan–Payne’s proof of their inequality to obtain an

explicit lower bound of the inf-sup constant for star-shaped domains.

Theorem 2.3. Let Ω ⊂ R2 be a domain contained in a ball of radius R, star-shaped with

respect to a concentric ball of radius ρ. Then

(2.10) β(Ω) ≥ ρ√
2R

(
1 +

√
1− ρ2

R2

)− 1
2

≥ ρ

2R
.

This estimate improves a recent result of Durán [10] for the case of dimension 2, where

the bound from below has the form (see [10, Remark 3.1])

β(Ω) ≥ c
ρ

R

∣∣∣ log
ρ

R

∣∣∣
−1

.

Inequality (2.10) takes a form like (2.7) if we introduce the angles τ(Ω) = arccos ρ
R

with

best possible (ρ, R), and ψ(Ω) = π
2
−τ(Ω), as replacement of γ(Ω) and ω(Ω): There holds

β(Ω) ≥ sin ψ(Ω)
2

. In contrast with the Horgan–Payne angle, the angle ψ(Ω) has a global

nature.

3. EQUIVALENCE BETWEEN BABUŠKA–AZIZ AND FRIEDRICHS

In this section, we prove Theorem 2.1. The proof is divided into two parts.

(i) In a first step, we assume that Ω is a domain in R2 such that C(Ω) is finite. We will

show that then Γ(Ω) is finite and

(3.1) Γ(Ω) ≤ C(Ω)− 1.

This part of the proof is basically the same as in [12].

Let h+ ig ∈ F◦(Ω). Thus h and g are conjugate harmonic functions in L2
◦(Ω), satisfying

∆h = 0, ∆g = 0, and gradh = curl g in Ω.

Here curl g = (∂x2g,−∂x1g). The adjoint of the curl operator is the scalar curl: curlu =
∂x1u2 − ∂x2u1. It follows from integration by parts for all u ∈ H1

0 (Ω)
2

(3.2) |u|2
1
= ‖ divu‖2

0
+ ‖ curlu‖2

0
.

Note that no regularity for Ω is needed here: One has (3.2) first on C ∞
0 (Ω)2 and then by

continuity on H1
0 (Ω)

2.

From the Babuška–Aziz inequality we get the existence of u ∈ H1
0 (Ω)

2 such that

divu = h and ‖ curlu‖2
0
= |u|2

1
− ‖ divu‖2

0
≤ (C(Ω)− 1) ‖h‖2

0
.

We find

‖h‖2
0
=

〈
h, divu

〉
Ω
= −

〈
gradh,u

〉
Ω
= −

〈
curl g,u

〉
Ω
= −

〈
g, curlu

〉
Ω
.
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With the Cauchy-Schwarz inequality and the estimate of curlu, we deduce

‖h‖2
0
≤

√
C(Ω)− 1 ‖h‖0 ‖g‖0 ,

hence the estimate

‖h‖2
0
≤ (C(Ω)− 1) ‖g‖2

0
,

which proves (3.1).

(ii) In a second step, we assume that Ω is such that Γ(Ω) is finite. We will show that C(Ω)
is finite and

(3.3) C(Ω) ≤ Γ(Ω) + 1.

This part of our proof is different from the one given in [12].

Let p ∈ L2
◦(Ω) be given and define u ∈ H1

0 (Ω)
2 as the solution of ∆u = grad p, that is

u satisfies

(3.4) ∀v ∈ H1
0 (Ω)

2 :
〈

gradu, gradv
〉
Ω
=

〈
p, div v

〉
Ω
.

We set q = divu and g = curlu and observe the following relations as consequences of

(3.4):

〈p, q〉Ω = |u|2
1

= ‖q‖2
0
+ ‖g‖2

0
(3.5)

∆q = div∆u = ∆p(3.6)

∆g = curl∆u = 0(3.7)

curl g − grad q = −∆u = − grad p(3.8)

‖g‖2
0
= 〈p, q〉Ω − ‖q‖2

0
= 〈q, p− q〉Ω .(3.9)

It follows that g and q − p are conjugate harmonic functions. Note that both belong to

L2
◦(Ω), so that we can use the Friedrichs inequality:

(3.10) ‖p− q‖2
0
≤ Γ(Ω) ‖g‖2

0
.

Then we have with (3.9)

‖g‖2
0
≤ ‖q‖0‖p− q‖0 ≤ ‖q‖0

√
Γ(Ω)‖g‖0 ,

hence

(3.11) ‖g‖2
0
≤ Γ(Ω)‖q‖2

0
.

Now we estimate, using (3.5) and both (3.10) and (3.11):

‖p‖2
0
= ‖p− q‖2

0
− ‖q‖2

0
+ 2〈p, q〉Ω

= ‖p− q‖2
0
+ ‖g‖2

0
+ ‖q‖2

0
+ ‖g‖2

0

≤ Γ(Ω)‖g‖2
0
+ Γ(Ω)‖q‖2

0
+ ‖q‖2

0
+ ‖g‖2

0

=
(
Γ(Ω) + 1

)
|u|2

1
.

Now (3.4) shows that the Laplacian is an isometry from H1
0 (Ω)

2 to H−1(Ω)2, and |u|1 =
‖ grad p‖−1. This gives the estimate

‖p‖2
0
≤

(
Γ(Ω) + 1

)
‖ grad p‖2−1

,
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which is the dual or “Lions” version (2.2) of the Babuška–Aziz inequality. Together with

(2.4) this gives the desired inequality (3.3).

Theorem 2.1 is proved.

4. STRICTLY STAR-SHAPED DOMAINS AND THE HORGAN–PAYNE INEQUALITY

We say that Ω is strictly star-shaped if there is an open ballB ⊂ Ω such that any segment

with one end in B and the other in Ω, is contained in Ω. Let x0 be the center of B and

(r, θ) be polar coordinates centered at x0. Let θ 7→ r = f(θ) be the polar parametrization

of the boundary ∂Ω, defined on the torus T = R/2πZ. Then f is Lipschitz continuous in

virtue of a result by MAZ’YA [16, Lemma 1.1.8].

In this section we follow [12, §6] to construct an upper bound for Γ(Ω) depending on

the values of f and its first derivative f ′ only. Since Γ(Ω) is invariant by dilation, we may

normalize f by the condition

(4.1) max
θ∈T

f(θ) = 1

We introduce P = P (α, θ) as the function defined on R+ × T by

(4.2) P (α, θ) =
1

αf(θ)2

(
1 +

f ′(θ)2

f(θ)2 − αf(θ)4

)
.

We denote by M(Ω) and m(Ω) the following candidates for an upper bound:

Notation 4.1. Under condition (4.1), let M(Ω) and m(Ω) be the following two positive

numbers

(4.3) M(Ω) = inf
α∈(0,1)

{
sup
θ∈T

P (α, θ)

}
and m(Ω) = sup

θ∈T

{
inf

α∈
(
0, 1

f(θ)2

)P (α, θ)
}
.

Note that, unlike Γ(Ω), the quantities M(Ω) and m(Ω) depend on the choice of the

origin x0 of polar coordinates chosen to parametrize the boundary.

Lemma 4.2. For any strictly star-shaped domain Ω with center x0, there holds

(4.4) M(Ω) ≥ m(Ω).

Proof. Let us choose θ ∈ T and define Pθ as the function α 7→ P (α, θ) for α ∈
(
0, 1

f(θ)2

)
.

Calculating the second derivative of Pθ, we find that Pθ is strictly convex. The function Pθ
tends to +∞ as α → 0, and if f ′(θ) 6= 0, as α→ 1

f(θ)2
.

In any case, there exists a unique α(θ) in
(
0, 1

f(θ)2

]
such that P (α(θ), θ) coincides with

infα∈(0, 1
f(θ)2

) P (α, θ). So,

(4.5) m(Ω) = sup
θ∈T

P (α(θ), θ) .

Since, in particular, for all α ∈ (0, 1) and θ ∈ T, P (α(θ), θ) ≤ P (α, θ), we find (4.4). �

The quantity m(Ω) is the original bound introduced by Horgan–Payne in [12], cf. (2.8):
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Lemma 4.3. For any strictly star-shaped domain Ω with center x0, there holds

(4.6) m(Ω) = sup
x∈∂Ω

(
1

cos γ(x)
+

√
1

cos2 γ(x)
− 1

)2

where we recall that γ(x) is the angle between the ray [x0,x] and the normal at ∂Ω in x.

Proof. To prove the lemma, relying on (4.5), it suffices to establish that for any θ ∈ T

(4.7) P (α(θ), θ) =

(
1

cos γ(x)
+

√
1

cos2 γ(x)
− 1

)2

,

where x = x0+(f(θ) cos θ, f(θ) sin θ). For this we calculate the value α(θ) which realizes

the minimum of P (α, θ) for α ∈ (0, 1/f(θ)2]: Setting

t(θ) =
f ′(θ)

f(θ)

we find

P (α, θ) =
1

αf(θ)2

(
1 +

t(θ)2

1− αf(θ)2

)

and

∂αP (α, θ) = − 1

α2f(θ)2

(
1 +

t(θ)2

1− αf(θ)2

)
+

1

αf(θ)2
t(θ)2f(θ)2

(1− αf(θ)2)2
.

Setting ζ = αf(θ)2, we see that ∂αP (α, θ) = 0 if and only if

(4.8) ζ2 − 2(1 + t(θ)2)ζ + 1 + t(θ)2 = 0.

Since we look for ζ ∈ (0, 1], the convenient root of equation (4.8) is

α(θ)f(θ)2 = ζ = 1 + t(θ)2 − t(θ)
√

1 + t(θ)2 .

Hence we find

P (α(θ), θ) =
1

(√
1 + t(θ)2 − t(θ)

)2 =
(√

1 + t(θ)2 + t(θ)
)2
.

Now (4.7) is a consequence of the latter identity and of the classical formula

t(θ) =
f ′(θ)

f(θ)
= tan γ(x)

valid for the polar parametrization. �

The quantity M(Ω) is our modified Horgan–Payne like bound.

Theorem 4.4 (Estimate (6.24) in [12]). Let Ω be a bounded strictly star-shaped domain.

Its Friedrichs constant satisfies the bound

(4.9) Γ(Ω) ≤M(Ω) .
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The proof of this theorem is due to Horgan and Payne. Unfortunately, instead of simply

concluding that M(Ω) is an upper bound for Γ(Ω), they try to show that M(Ω) coincides

with m(Ω) and this part of their argument is flawed and invalid, in general. For the conve-

nience of the reader we reproduce here the correct part of [12, §6] leading to the proof of

the bound (4.9).

Proof. We assume for simplicity that the origin x0 of polar coordinates coincides with the

origin 0 of Cartesian coordinates. Let h ∈ L2(Ω) and g ∈ L2(Ω) be a conjugate harmonic

functions such that gradh = curl g. We normalize h such that h(0) = 0. If we bound the

L2(Ω) norm of h, we bound a fortiori the L2(Ω) norm of h− 1
|Ω|

∫
Ω
h which is the harmonic

conjugate of g in L2
◦(Ω), hence with minimal L2(Ω) norm.

Since h+ ig is holomorphic, its square is holomorphic, too, and therefore the functions

H := h2−g2 and G := 2gh are harmonic conjugate. The equation gradH = curlG leads

to the relation in polar coordinates

∂ρH̃ =
1

ρ
∂θG̃

where H̃(r, θ) = H(x) and G̃(r, θ) = G(x) for x = (r cos θ, r sin θ). Thus for any θ ∈ T

and r ∈ (0, f(θ)) we have

H̃(r, θ)−H(0) =

∫ r

0

∂ρH̃(ρ, θ) dρ =

∫ r

0

1

ρ
∂θG̃(ρ, θ) dρ .

We divide by f(θ)2 and integrate for θ ∈ T and r ∈ (0, f(θ)):

∫

T

∫ f(θ)

0

H̃(r, θ)−H(0)

f(θ)2
rdrdθ =

∫

T

∫ f(θ)

0

1

f(θ)2

{∫ r

0

1

ρ
∂θG̃(ρ, θ) dρ

}
rdrdθ

=

∫

T

∫ f(θ)

0

1

f(θ)2
1

ρ
∂θG̃(ρ, θ)

{∫ f(θ)

ρ

rdr

}
dρdθ

=
1

2

∫

T

∫ f(θ)

0

f(θ)2 − ρ2

ρ2f(θ)2
∂θG̃(ρ, θ) ρdρdθ .

Since the function f(θ)2 − ρ2 is 0 on the boundary, integration by parts yields

∫

T

∫ f(θ)

0

H̃(r, θ)−H(0)

f(θ)2
rdrdθ = −

∫

T

∫ f(θ)

0

f ′(θ)

f(θ)3
G̃(ρ, θ) ρdρdθ .

We recall the notation t(θ) = f ′(θ)
f(θ)

. Coming back to h and g and Cartesian variables x ∈ Ω

we find:

(4.10)

∫

Ω

h(x)2

f(θ)2
dx =

∫

Ω

{
g(x)2 − g(0)2

f(θ)2
dx− 2

∫

Ω

t(θ)h(x)g(x)

f(θ)2

}
dx.

In order to take the best advantage of the previous identity we introduce a parameter

α ∈ (0, 1)
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and write for any θ ∈ T (here we use condition (4.1) which ensures that 1− αf(θ)2 > 0)

2
∣∣t(θ)h(x)g(x)

∣∣ ≤
{
1− αf(θ)2

}
h(x)2 +

t(θ)2

1− αf(θ)2
g(x)2

and deduce from (4.10) that (note that the same α has to be used for all θ)

α

∫

Ω

h(x)2 dx ≤
∫

Ω

g(x)2

f(θ)2
+

t(θ)2

1− αf(θ)2
g(x)2

f(θ)2
dx .

Thus, for any α ∈ (0, 1)
∫

Ω

h(x)2 dx ≤ sup
θ∈T

{ 1

αf(θ)2

(
1 +

t(θ)2

1− αf(θ)2

)}∫

Ω

g(x)2 dx .

Optimizing on α ∈ (0, 1) and coming back to the definition of t and P , we find
∫

Ω

h(x)2 dx ≤ inf
α∈(0,1)

{
sup
θ∈T

P (α, θ)
}∫

Ω

g(x)2 dx,

which is nothing else than ‖h‖20,Ω ≤M(Ω)‖g‖20,Ω, whence the theorem. �

5. EXAMPLES AND COUNTEREXAMPLES

5.1. Examples. In this section we exhibit classes of domains Ω for which the Horgan–

Payne inequality (2.7) is valid, because the equality m(Ω) =M(Ω) holds.

Theorem 5.1. The equality m(Ω) =M(Ω) holds for the following classes of domains Ω

(1) Ellipses, with x0 at the center of the domain,

(2) Cyclic polygons containing the center c of their circumscribed circle, with x0 = c,

(3) Circumscribed polygons, with x0 at the center of the inscribed circle.

Example 5.2. Here are examples corresponding to the three classes above.

(1) Discs realize the minimum value 1 of Γ(Ω) out of all plane domains.

(2) Cyclic polygons: Rectangles, and all regular (convex) polygons.

(3) Circumscribed polygons: Triangles, rhombi, (and again, regular polygons).

We are going to prove Theorem 5.1 for each class of domain, successively. We will give

formulas for m(Ω) =M(Ω) and the corresponding bound of β(Ω).

5.1.1. Ellipses. The canonical form of the equation of an ellipse is

x2

a2
+
y2

b2
= 1

with positive coefficients a ≤ b. We take the center x0 of polar coordinates at the origin

(center of the ellipse). One can prove the identities, see details in [7, §5.1]

m(Ω) =
b2

a2
and M(Ω) =

b2

a2
.

Moreover the constant Γ(Ω) is analytically known, cf. [11], and finally

(5.1) m(Ω) =M(Ω) =
b2

a2
= Γ(Ω) .



ON THE INEQUALITIES OF BABUŠKA–AZIZ, FRIEDRICHS AND HORGAN–PAYNE 11

In particular, if Ω is a disk m(Ω) =M(Ω) = Γ(Ω) = 1. Note the corresponding values for

the inf-sup constant deduced from the relation β(Ω) = (1 + Γ(Ω))−1/2, cf (2.4) and (2.9),

β(Ω) =
1√

1 + b2

a2

in general, and β(Ω) =
1√
2

if Ω is a disk.

5.1.2. Polygons. Let Ω be a strictly star-shaped polygon associated with the origin x0.

Let cj , j = 1, . . . , J be its vertices. The sides of Ω are the segments [cj , cj+1] (with the

convention cJ+1 = c1). We denote by

• rj = max{|cj − x0|, |cj+1 − x0|}
• dj = dist(x0, Lj) with Lj the line containing the side [cj, cj+1].

The normalization maxθ∈T f(θ) = 1 becomes

J
max
j=1

rj = 1 .

Let θj ∈ T the angle corresponding to the vertex cj and θ̃j the angle corresponding to the

point c̃j ∈ Lj such that dj = |x̃j − x0|. For θ ∈ (θj , θj+1), we find

f(θ) =
dj

cos(θ − θ̃j)
and γ(x) = θ − θ̃j .

We deduce the formula for P (see also [7, §5.2])

P (α, θ) =
1

αd2j

1− αd2j
1− αf(θ)2

for θ ∈ (θj , θj+1).

For any α ∈ (0, 1) and θ ∈ (θj , θj+1), the maximal value of P is attained for f(θ) maximal,

i.e., at the most distant end of the segment [cj, cj+1]. Hence

M(Ω) = inf
α∈(0,1)

J
max
j=1

1

αd2j

1− αd2j
1− αr2j

(5.2)

= inf
α∈(0,1)

J
max
j=1

1

αr2j

r2jd
−2
j − αr2j
1− αr2j

.(5.3)

To calculate m(Ω), we use (4.6) and find

(5.4) m(Ω) =
J

max
j=1

(
rj
dj

+

√
r2j
d2j

− 1

)2

.

The maximum is attained when rj/dj is maximal.

Lemma 5.3. Let Ω be a strictly star-shaped polygon associated with the center x0 and the

normalization maxj rj = 1. Let d = minj dj . If Ω is cyclic or circumscribed (with respect

to the center x0), then

m(Ω) =M(Ω) =

(
1

d
+

√
1

d2
− 1

)2

.
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Proof. If Ω is cyclic, all rj coincide, so are equal to 1. If Ω is circumscribed, all dj coincide,

so are equal to d. In both situations we deduce from (5.3) and (5.2) respectively, that

(5.5) M(Ω) = inf
α∈(0,1)

1

α

d−2 − α

1− α
.

Since d < 1, there is one value α0 of α realizing the minimum

(5.6) α0 =
1

d2
−

√
1

d4
− 1

d2
∈ (0, 1).

This leads to the formula of the lemma for M(Ω). The formula for m(Ω) is a consequence

of (5.4). �

This concludes the proof of Theorem 5.1 and provides for cyclic or circumscribed poly-

gons the associate lower bound on β(Ω) = (1 + Γ(Ω))−1/2 in the form

(5.7) β(Ω) ≥ d√
2

(
1 +

√
1− d2

)− 1
2 .

Whereas we have described several classes of polygons for which the two upper bounds

m(Ω) and M(Ω) coincide, in general they are different. It is indeed not difficult to find

domains, even polygons, for which m(Ω) 6= M(Ω). Among other examples, a simple

convex hexagon that has this property is analyzed in [7].

Now if m(Ω) 6= M(Ω), then the proven inequality Γ(Ω) ≤ M(Ω) (4.9) is weaker than

the Horgan–Payne inequality Γ(Ω) ≤ m(Ω) (2.8), but this does not yet imply that the

latter is not true. In the following section we analyze examples of domains for which the

inequality of Horgan–Payne does indeed not hold.

5.2. Counterexamples. We will now give examples of strictly star-shaped domains in

R2 that do not satisfy the Horgan–Payne inequality (2.7). We present three examples, a

“Cupid’s bow” where the boundary is composed of logarithmic spirals, a “double stadium”

where the boundary is composed of straight segments and circular arcs, and a polygonal

(octagonal) version of the “Cupid’s bow”. The examples have a common feature, a small

passage between two halves of the domain. This means that the domain can be separated

into two equal-sized parts by a very short straight cut. Or again, there are points on the

boundary where the distance to the origin is much smaller than the Horgan–Payne angle.

The proof that the Horgan–Payne inequality is not satisfied uses a new upper bound

for the inf-sup constant proved in Lemma 5.4 below. In the three examples, the domains

depend on a small parameter, and we will show that as the parameter tends to zero, the up-

per bound tends to zero much faster than the lower bound of the Horgan–Payne inequality.

This shows that for sufficiently small values of the parameter, the inequality cannot be true.

Since our upper bound features an explicit constant, we can provide explicit values of the

parameter for which the Horgan–Payne inequality is disproved.

We begin by proving an upper bound for the inf-sup constant β(Ω) in the situation where

the bounded domainΩ is separated into two subdomainsΩ+ and Ω− by a plane cut Σ. Since

this estimate may be of independent interest (it can be used to show that β(Ω) = 0 for a
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large class of domains with outward cusps, for example), we prove it in any dimension

d ≥ 2.

Without loss of generality, we can assume that Σ lies in the plane {xd = 0}. Thus we

assume with Rd
± = {x ∈ Rd | xd ≷ 0}
Ω ∩ (Rd−1 × {0}) = Σ× {0} 6= ∅ and Ω± = Ω ∩ R

d
± .

For simplicity, we assume that Σ is connected. We denote by |Ω| the d-dimensional mea-

sure of Ω and by |Σ| the d− 1-dimensional measure of Σ. By L we denote the width of Σ,

that is the minimal distance of two parallel d − 2-dimensional hypersurfaces in Rd−1 that

contain Σ between them. If d = 2 and Σ is an interval, then |Σ| = L, the length of the

interval.

Σ Ω+Ω−

FIGURE 1. Example of configuration for Lemma 5.4: the double stadium

Lemma 5.4. There exists a constant cd depending only on the dimension d such that

(5.8) β(Ω) ≤ cd

( |Ω|
|Ω+||Ω−|

L|Σ|
) 1

2

.

For d = 2, we can take c2 =
√
8√
3
, so that

(5.9) β(Ω) ≤
(
8

3

|Ω|
|Ω+||Ω−|

) 1
2

L .

Remark: This value of c2 is certainly not optimal; more elaborate methods of proof may

give smaller values.

Proof. We choose a piecewise constant function q ∈ L2
◦(Ω) as follows:

q =
1

|Ω+|
in Ω+ , q = − 1

|Ω−|
in Ω− ,

and we will obtain an upper bound for β(Ω) from

β(Ω) ≤ sup
v∈C∞

0 (Ω)d

∫
Ω
(div v)(x) q(x) dx

|v|1,Ω ‖q‖0,Ω
.

We compute explicitly

‖q‖2
0,Ω

=
1

|Ω+|
+

1

|Ω−|
=

|Ω|
|Ω+||Ω−|
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and for v ∈ C
∞
0 (Ω)d
∫

Ω

(div v)(x) q(x) dx = −
∫

Σ

vd(x, 0) dx
( 1

|Ω+|
+

1

|Ω−|
)
.

This implies

β(Ω) ≤
( |Ω|
|Ω+||Ω−|

) 1
2

sup
v∈C ∞

0 (Ω)d

∣∣ ∫
Σ
vd(x, 0) dx

∣∣
|v|1,Ω

.

Thus, as soon as we can get an estimate of the mean value for the trace on Σ for any

u ∈ C ∞
0 (Ω)

(5.10)
∣∣
∫

Σ

u(x, 0) dx
∣∣ ≤ c̃(Σ) |u|1,Ω ,

we will have an upper bound for β(Ω)

(5.11) β(Ω) ≤ c̃(Σ)
( |Ω|
|Ω+||Ω−|

) 1
2

.

The rest of the proof is dedicated to the L1 estimate (5.10). This estimate will be obtained

in three steps : First we show a precise version (5.12) of the H1/2 estimate of the standard

trace lemma. Then, given that u(·, 0) vanishes outside of Σ, we deduce from (5.12) a

weighted L2 estimate (5.14). Finally, the Cauchy-Schwarz inequality gives the L1 estimate

(5.10).

The first step is a version with explicit (though not optimal) constant of the standard

H1/2 estimate of the trace lemma. Namely, we will show: There holds for all u ∈ C ∞
0 (Rd)

(5.12)

∫

Rd−1

∫

Rd−1

|u(x, 0)− u(y, 0)|2
|x− y|d dx dy ≤ 16ωd−1|u|21,Rd

+

where ωd−1 is the surface of the unit sphere in R
d−1; ω1 = 2 for d = 2. In order to keep

control of the constants, we present a short proof of this classical result, see [17] for this

and other variants of the proof.

One writes h = (y − x)/2 and

u(x, 0)− u(y, 0) =
(
u(x, 0)− u(x+ h, |h|)

)
−

(
u(y, 0)− u(y − h, |h|)

)
.

We only need to estimate the first term on the right hand side, the second term being of the

same form. For x, h ∈ Rd−1 we have

|u(x, 0)− u(x+ h, |h|)| = |
∫ 1

0

gradu(x+ sh, s|h|) ·
(
h

|h|

)
ds|

≤
√
2|h|

∫ 1

0

| gradu(x+ sh, s|h|)| ds .

Integrating in x on R
d−1, this implies

‖u(·, 0)− u(·+ h, |h|)‖L2(Rd−1) ≤
√
2|h|

∫ 1

0

‖ gradu(·+ sh, s|h|)‖L2(Rd−1) ds

=
√
2|h|

∫ 1

0

‖ gradu(·, s|h|)‖L2(Rd−1) ds .
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Integrating now in h on R
d−1, we obtain

(5.13)

∥∥∥|h|− d
2‖u(·, 0)− u(·+ h, |h|)‖L2(Rd−1)

∥∥∥
L2(Rd−1,dh)

≤
√
2

∫ 1

0

∥∥∥|h|1− d
2‖ gradu(·, s|h|))‖L2(Rd−1)

∥∥∥
L2(Rd−1,dh)

ds .

Using polar coordinates (|h|, h|h|) for the integral in h:

∥∥∥|h|1− d
2‖ gradu(·, s|h|))‖L2(Rd−1)

∥∥∥
2

L2(Rd−1,dh)
=

∫

Rd−1

∫

Rd−1

|h|2−d| gradu(x, s|h|))|2 dx dh

= ωd−1

∫

Rd−1

∫ ∞

0

| gradu(x, s|h|))|2 d|h| dx

= ωd−1 s
−1‖ gradu‖2L2(Rd

+) .

Inserting this into (5.13), we obtain with
∫ 1

0
s−1/2ds = 2

∫

Rd−1

∫

Rd−1

|h|−d|u(x, 0)− u(x+ h, |h|)|2 dx dh ≤ 8ωd−1 ‖ gradu‖2L2(Rd
+)

and, using 2|x− y|−ddy = |h|−ddh, finally (5.12).

Next we consider u ∈ C ∞
0 (Rd) such that u(y, 0) = 0 whenever y 6∈ Σ (which is the case

for u ∈ C ∞
0 (Ω)). Then we find from (5.12) the weighted L2 estimate

(5.14)

∫

Rd−1

w(x)|u(x, 0)|2 dx ≤
∫

Rd−1

∫

Rd−1

|u(x, 0)− u(y, 0)|2
|x− y|d dx dy ≤ 16ωd−1|u|21,Rd

+

with the weight function

w(x) =

∫

Rd−1\Σ

dy

|x− y|d .

Finally, from the Cauchy-Schwarz inequality,
(∫

Σ

|u(x, 0)| dx
)2

≤
( ∫

Σ

dx

w(x)

) ∫

Rd−1

w(x)|u(x, 0)|2 dx ,

we obtain the L1 estimate

(5.15)
( ∫

Σ

|u(x, 0)| dx
)2

≤
(∫

Σ

dx

w(x)

)
16ωd−1|u|21,Rd

+
.

Noting that the same estimate holds with |u|2
1,Rd

+
replaced by |u|2

1,Rd
−

and using

|u|2
1,Rd

+
+ |u|2

1,Rd
−

= |u|2
1,Rd ,

we have proved (5.10) with c̃(Σ) =
(
8ωd−1

∫
Σ

dx
w(x)

)1/2
. It remains to estimate

∫
Σ

dx
w(x)

.

In dimension d = 2, when Σ is the interval (0, L), we can compute w(x) explicitly:

w(x) =

∫ 0

−∞

dy

(y − x)2
+

∫ ∞

L

dy

(y − x)2
=

1

x
+

1

L− x
,
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hence ∫

Σ

dx

w(x)
=
L2

6
,

and we find (5.8) with c2 =
√

8ω1/6 =
√
8/
√
3.

For general d ≥ 2, if Σ lies between two hyperplanes of distance L, then it is not hard

to see that for all x ∈ Σ, w(x) ≥ c′d/L with some constant c′d independent of x, Σ and L.

This gives
∫
Σ

dx
w(x)

≤ L |Σ|/c′d, whence (5.8) with cd =
√
8ωd−1/c′d. �

5.2.1. First counterexample: Cupid’s bow. Choose a constant c > 0 and define the loga-

rithmic spiral by the polar parametrization

r = f(θ) = e−cθ .

To define the domain Ω, we use the logarithmic spiral in the first quadrant and complete

the boundary curve by reflections about the x and y axes. Thus the polar parametrization

of the boundary curve can be written as

f(θ) = e−c(
π
2
−|π

2
−|θ||), −π ≤ θ ≤ π .

Σ Ω+Ω−

FIGURE 2. Cupid’s bow with c = 2.58

The important observation is that the angle γ(θ) is constant along the boundary curve,

satisfying

tan γ(θ) =
|f ′(θ)|
f(θ)

= c .

Therefore the Horgan–Payne angle is ω(Ω) = π
2
− γ(θ) = arctan 1

c
. The Horgan–Payne

inequality in this case amounts to

(5.16) β(Ω)2 ≥ sin2 ω(Ω)

2
=

√
c2 + 1− c

2
√
c2 + 1

=
1

4c2
+O(c−4) as c→ ∞ .

Now we look at our upper bound from Lemma 5.4. The main observation here is that Ω is

separated into equal left and right halves by a vertical cut {0} × Σ with

Σ = (−e−c
π
2 , e−c

π
2 )

which is exponentially small. The quantities appearing in the estimate (5.8) are as follows:

|Ω+| = |Ω−| = 2

∫ π
2

0

∫ f(θ)

0

r dr dθ =
1− e−cπ

2c
, |Ω| = 2|Ω+| , L = 2e−c

π
2 .

Therefore the estimate (5.9) implies

(5.17) β(Ω)2 ≤ 8

3

4c

1− e−cπ
(2e−c

π
2 )2 =

128

3

c e−cπ

1− e−cπ
.
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Clearly, for c large enough, the proven upper bound (5.17) contradicts the Horgan–Payne

inequality (5.16). Concretely, for c = 2.58 we find numerically for the upper bound

128

3

c e−cπ

1− e−cπ
< 0.0333

which is smaller than the lower bound in (5.16)√
c2 + 1− c

2
√
c2 + 1

> 0.0337 .

In this example, without using Lemma 5.4, one can also see that the Friedrichs constant

Γ(Ω) must be exponentially large, thus contradicting the version (2.8) of the Horgan–Payne

inequality which has a right hand side growing only quadratically in c. Indeed, let ε = e−c
π
2

and define the holomorphic function

w(z) = log
iε− z

iε+ z
,

which is holomorphic in C minus two vertical branch cuts [−i∞,−iε] and [iε, i∞]. We

choose the branch that satisfies w(0) = 0. For symmetry reasons, both real and imaginary

parts of w belong to L2
◦(Ω), but otherwise these conjugate harmonic functions behave very

differently. Imw = arg iε−z
iε+z

tends to π in the right half-plane and to −π in the left half-

plane, on a length scale of the size of ε. Therefore

‖ Imw‖2
0,Ω

∼ π2|Ω| ∼ π2

c
as c→ ∞ .

On the other hand, Rew = log |1 + 2iε
z+iε

| is of the order of ε outside of any disk with a

fixed radius > 2ε. It is not hard to see that ‖Rew‖20,Ω tends to zero exponentially fast as

c→ ∞ and therefore Γ(Ω) ≥ ‖ Imw‖20,Ω/‖Rew‖20,Ω grows exponentially, too.

5.2.2. Second counterexample: Double stadium. We choose a positive number ε and con-

struct our domain Ω as follows: Take the union of the rectangle (
√
1− ε2,

√
1−ε2
ε

)×(−1, 1)

and the two circles of radius 1 with centers (
√
1− ε2, 0) and (

√
1−ε2
ε

, 0). This is the “sta-

dium”. The domain Ω is the union of the stadium and its reflection with respect to the

vertical axis, see Figure 1 in which we have set ε = 0.25. This produces a small passage

between the left and right half, and Ω is cut into two by a vertical cut {0} × Σ with

Σ = (−ε, ε) .
To determine the Horgan–Payne angle, we notice that the minimal value of ω(x) is attained

at the points (0, ε) and (
√
1−ε2
ε

, 1). In both cases it satisfies

sinω(x) = ε.

The Horgan–Payne inequality amounts to

(5.18) β(Ω)2 ≥ sin2 ω(Ω)

2
∼ ε2

4
as ε→ 0 .

To determine the upper bound resulting from (5.9), we compute

|Ω+| ∼ 2
√
1− ε2(

1

ε
− 1) + π ∼ 2

ε
as ε→ 0 , L = 2ε.
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This leads to an upper bound

(5.19) β(Ω)2 ≤ 8

3
4ε2

2

|Ω+|
∼ 32

3
ε3 as ε → 0 .

It is clear that for sufficiently small ε, the upper bound (5.19) is incompatible with the

Horgan–Payne inequality (5.18).

5.2.3. Third counterexample: Octagon. We choose a positive number q and define Ω as an

octagon with the corners at distance 1 for θ ∈ {0, π}, at distance q for θ ∈ {π
4
, 3π

4
, 5π

4
, 7π

4
},

and at distance q2 for θ ∈ {π
2
, 3π

2
}, see Figure 3. Thus the boundary curve is a polygonal

interpolation of the Cupid’s bow example if we set q = e−c
π
4 . We see that Ω is composed

Σ
Ω+

∆q

Ω−

FIGURE 3. Octagon with q = 0.25

of 8 triangles that are similar to the triangle ∆q with corners (0, 0), (1, 0), ( q√
2
, q√

2
). The

Horgan–Payne angle is easy to find: It satisfies

tanω(Ω) =
q/
√
2

1− q/
√
2
.

Hence the Horgan–Payne inequality amounts to

(5.20) β(Ω)2 ≥ sin2 ω(Ω)

2
∼ q2

8
as q → 0 .

For the quantities in the upper bound (5.9) we obtain with the area |∆q| = q

2
√
2

|Ω+| = 2(1 + q2)|∆q| =
q(1 + q2)√

2
, L = 2q2 .

Hence the upper bound is

(5.21) β(Ω)2 ≤ 8

3

2
√
2

q(1 + q2)
4q4 ∼ 64

√
2

3
q3 as q → 0 .

Clearly (5.21) contradicts (5.20) if q is small enough.

6. ESTIMATE INVOLVING THE RATIO OF RADII

Let Ω ⊂ R2 be a bounded domain star-shaped with respect to a ball centered at the

origin. Let r = f(θ), θ ∈ T, be the Lipschitz parametrization of the boundary in polar

coordinates that exists according to Maz’ya’s Lemma quoted at the beginning of Section 4.

We need a kind of quantitative version of that Lemma, namely a characterization in terms

of this parametrization of the largest ball with respect to which Ω is star-shaped.
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Lemma 6.1. Let ρmax be the radius of the largest open disk centered at the origin with

respect to which Ω is star-shaped. Then

(6.1) ρmax = inf
θ∈T

f(θ)2√
f(θ)2 + f ′(θ)2

.

Proof. If we introduce the angle γ(θ) between the radius vector and the normal as in Sec-

tion 4, so that tan γ(θ) = f ′(θ)
f(θ)

, then (6.1) can be written as

(6.2) ρmax = inf
θ∈T

f(θ) cos γ(θ) .

Considering that f(θ) cos γ(θ) is the distance to the origin of the tangent at the boundary

point (r, f(θ)), the equality appears rather plausible. We think a detailed proof is still

needed, however.

Assume then that Ω is star-shaped with respect to an open ball Bρ of radius ρ centered

at the origin. Fix a point x on ∂Ω. Without loss of generality, we can assume that x

corresponds to θ = 0, that is in Cartesian coordinates

x = (f(0), 0) .

Then the open triangle ∆ρ with corners 0 = (0, 0), a = (ρ cos τ, ρ sin τ), and x is con-

tained in Ω and thus does not contain any point on ∂Ω. Here the angle τ is such that

0 < τ < π/2 and

ρ = f(0) cos τ,

see Figure 4. The side of ∆ρ from a = (ρ cos τ, ρ sin τ) to x satisfies the equation in polar

coordinates

(6.3) r cos(τ − θ) = ρ, 0 < θ < τ .

For any θ ∈ (0, τ), from the fact that the boundary point r = f(θ) lies outside of ∆ρ, we

therefore get the inequality

(6.4) f(θ) ≥ ρ

cos(τ − θ)
, 0 < θ < τ ,

hence

(6.5)
f(0)− f(θ)

θ
≤ ρ

cos τ cos(τ − θ)

cos(τ − θ)− cos τ

θ
, 0 < θ < τ .

If f is differentiable in θ = 0, it follows

−f ′(0) ≤ ρ sin τ

cos2 τ

and from symmetrizing we get

(6.6) |f ′(0)| ≤ ρ sin τ

cos2 τ
= f(0)

√
f(0)2

ρ2
− 1 .
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Since this is true for any boundary point x where f is differentiable, we get our final

estimate, valid for almost every θ ∈ T

(6.7) |f ′(θ)| ≤ f(θ)

√
f(θ)2

ρ2
− 1 .

This inequality (6.7) is equivalent to

(6.8) ρ ≤ f(θ)2√
f(θ)2 + f ′(θ)2

,

and we have thus shown one half of the relation (6.1). (Note that the Lipschitz continuity

of f is also a consequence of (6.5).)

0

τ
x

ρ

a

b

FIGURE 4. Triangles appearing in the proof of Lemma 6.1

It remains to show that if ρ satisfies (6.8) for almost all θ, then Ω is indeed star-shaped

with respect to Bρ. For this, it is sufficient to show that for all x ∈ ∂Ω and y ∈ Bρ the

open segment between y and x is contained in Ω. We can again assume that x corresponds

to θ = 0, so that we are in the same configuration as in the first part of the proof. More

precisely, we assume that the inequality (6.7) is satisfied almost everywhere on T, and we

have to show that the domain Ω0 which is the interior of the convex hull of Bρ ∪ {x} is

contained in Ω. This domain Ω0 is the union of Bρ and the interior of the triangle ∆̃ρ

with corners a = (ρ cos τ, ρ sin τ), b = (ρ cos τ,−ρ sin τ), and x. Note that the upper

half of ∆̃ρ is the triangle ∆ρ considered in the first part of the proof, and the line joining

a = (ρ cos τ, ρ sin τ) to x satisfies the equation (6.3).

We will show that for 0 < θ < τ , the boundary curve r = f(θ) does not cross the line

(6.3). By symmetry for 0 > θ > −τ and using the fact that f(θ) ≥ ρ for all θ, this will

imply that the boundary curve does not enter Ω0, which gives the desired result Ω0 ⊂ Ω.

Let r = g(θ) describe the line (6.3), i.e.

g(θ) =
ρ

cos(τ − θ)
.

We want to show that f(θ) ≥ g(θ) for θ ∈ (0, τ). For this purpose, define the function

G : [ρ,∞) → [0,
π

2
) ; G(r) = arccos

ρ

r
.
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Then G is increasing, satisfies G ◦ g(θ) = τ − θ for θ ∈ (0, τ) and has the derivative

G′(r) =
1

r
√

r2

ρ2
− 1

.

The inequality (6.7) is equivalent to |(G ◦ f)′(θ)| ≤ 1 . From

(G ◦ f)′(θ) ≥ −1 and (G ◦ f)(0) = τ

we deduce for θ ∈ (0, τ)

G ◦ f(θ) ≥ τ − θ = G ◦ g(θ) .
Due to the monotonicity of G, this implies f(θ) ≥ g(θ), and the proof is complete. �

Theorem 6.2. Let ρmax be the radius of the largest open disk centered at the origin with

respect to which Ω is star-shaped. Let Rmin the radius of the smallest disk centered at the

origin containing Ω. Let

(6.9) τ(Ω) = arccos
ρmax

Rmin
.

Then

(6.10) M(Ω) ≤
(
Rmin

ρmax
+

√
R2

min

ρ2max

− 1

)2

=

(
1

cos τ(Ω)
+

√
1

cos τ(Ω)2
− 1

)2

.

Proof. Without restriction we assume that Rmin = 1 and we consider the polar coordinates

parametrization of ∂Ω by f . The function P leading to M(Ω) defined in (4.2) can be

written as

P (α, θ) =
1

αf(θ)2

(
1 +

tan2 γ(θ)

1− αf(θ)2

)
.

There holds

P (α, θ) =
1

αf(θ)2

(1 + tan2 γ(θ)− αf(θ)2

1− αf(θ)2

)
.

Defining d(θ) as the distance to the origin of the line tangent to ∂Ω at the point of polar

coordinates (f(θ), θ), we find the relation

d(θ) = f(θ) cos γ(θ).

Thus

P (α, θ) =
d(θ)−2 − α

α(1− αf(θ)2)
.

Let d be the infimum on θ ∈ T of d(θ). We deduce that for all θ ∈ T and α ∈ (0, 1)

P (α, θ) ≤ d−2 − α

α(1− αf(θ)2)
≤ d−2 − α

α(1− α)
.

Therefore M(Ω) satisfies

M(Ω) ≤ inf
α∈(0,1)

d−2 − α

α(1− α)
.
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This expression has already been found before, see (5.5), and the optimal value for α is

given by (5.6), leading to

M(Ω) ≤
(
1

d
+

√
1

d2
− 1

)2

.

As the identity (6.2) yields

d = ρmax ,

the theorem is proved. �

As a consequence of the relation β(Ω) = (1 + Γ(Ω))−1/2, we deduce Theorem 2.3 from

Theorem 6.2, compare with formula (5.7). Now if we define the new angle

(6.11) ψ(Ω) =
π

2
− τ(Ω)

we obtain a bound from below for β(Ω) which has the same form as the Horgan–Payne

inequality:

(6.12) β(Ω) ≥ sin
ψ(Ω)

2
.

7. FINAL REMARKS

The article by Horgan and Payne [12] has the title “On Inequalities of Korn, Friedrichs

and Babuška–Aziz”. We discussed in Sections 2 and 3 the equivalence between the in-

equalities of Friedrichs and Babuška–Aziz and the equation C(Ω) = Γ(Ω)+1 between the

associated constants that were shown by Horgan–Payne.

In this paper, we have not mentioned Korn’s inequality, although Horgan–Payne showed

a corresponding equivalence between the inequalities of Korn and of Babuška–Aziz and an

equality

(7.1) K(Ω) = 2C(Ω)

between the associated constants. The reason is that we do not know whether this equiva-

lence holds in general. In [12], the proof of this equivalence was reduced to the equivalence

between two elliptic eigenvalue problems, an argument that is only valid for smooth do-

mains (at least C2). For more general domains, it is known that the Babuška–Aziz inequal-

ity implies Korn’s inequality; this proof of Korn’s inequality from the inf-sup condition of

the divergence is quite standard. It is, however, an open problem if the converse implication

holds, in general, too. It is also an open problem if the equality (7.1) is true for non-smooth

domains, even for Lipschitz domains where both inequalities are known to be satisfied.

Let us finally mention another famous problem, which, to our knowledge, is still open:

The exact value of the Babuška–Aziz constant C(Ω) — or, equivalently, the LBB constant

β(Ω) or the Friedrichs constant Γ(Ω) — if Ω ⊂ R2 is a square. In [12], Horgan–Payne

pronounced the conjecture that

(7.2) C(Ω) = 7/2 for a square.
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That this is overly optimistic has been known for quite some time, due to the presence of

a continuous spectrum in a related spectral problem already mentioned by Friedrichs [11],

see [6, 20]. The explicit knowledge of this continuous spectrum gives a lower bound

(7.3) C(Ω) ≥
(1
2
− 1

π

)−1

= 5.5.. for a square.

It is not known, however, whether the inequality (7.3) is strict. The current conjecture is

rather that (7.3) is an equality.
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