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Maximum likelihood estimation from Uncertain
Data in the Belief Function Framework

Thierry Denœux

Abstract—We consider the problem of parameter estimation in statistical models in the case where data are uncertain and represented
as belief functions. The proposed method is based on the maximization of a generalized likelihood criterion, which can be interpreted
as a degree of agreement between the statistical model and the uncertain observations. We propose a variant of the EM algorithm that
iteratively maximizes this criterion. As an illustration, the method is applied to uncertain data clustering using finite mixture models, in
the cases of categorical and continuous attributes.

Index Terms—Uncertain data Mining, Dempster-Shafer theory, Evidence theory, Clustering, EM Algorithm, Mixture Models.

F

1 INTRODUCTION

Recent years have seen a surge of interest in methods
for managing and mining uncertain data [1], [2], [3].
As noted in [1], [4], [5], uncertain data arise in many
applications due to limitations of the underlying equip-
ment (e.g., unreliable sensors or sensor networks), use
of imputation, interpolation or extrapolation techniques
(to estimate, e.g., the position of moving objects), partial
or uncertain responses in surveys, etc.

In recent work on uncertain data mining, probability
theory has often been adopted as a formal framework
for representing data uncertainty. Typically, an object
is represented as a probability density function (pdf)
over the attribute space, rather than as a single point
as usually assumed when uncertainty is neglected. Min-
ing techniques that have been proposed for such data
include clustering algorithms [6], [7], [8], [9], density
estimation techniques [10], outlier detection [11], support
vector classification [12], decision trees [5], etc.

Beside this recent body of literature, a lot of work has
been devoted to the analysis of interval-valued or fuzzy
data, in which ill-known attributes are represented, re-
spectively, by intervals [13] and possibility distributions
[14], [15]. As examples of techniques developed for such
data, we may mention principal component analysis
[16], [17], [18], clustering [19], [20], [21], linear regression
[22], [23], [24] and multidimensional scaling [25], [26],
[27].

Probability distributions, intervals and possibility dis-
tributions may be seen as three instances of a more
general model, in which data uncertainty is expressed by
means of belief functions. The theory of belief functions,
also known as Dempster-Shafer theory or Evidence the-
ory, was developed by Dempster [28], [29] and Shafer
[30], and was further elaborated by Smets [31], [32].
A belief function may be seen both as a generalized

T. Denœux is with Heudiasyc, Université de Technologie de Compiègne,
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set and as a non-additive measure, i.e., a generalized
probability distribution. The theory of belief functions
thus includes extensions of set-theoretic operations, such
as intersection and union, and extensions of probabilistic
operations, such as conditioning and marginalization.

Until now, the use of belief functions for representing
data uncertainty has been mostly confined to classi-
fication. In [33], a k-nearest neighbor rule based on
Dempster-Shafer theory was introduced. This rule makes
it possible to handle partially supervised data, in which
uncertain class labels are represented by belief functions
(see also [34], [35]). This rule was applied to regres-
sion problems with uncertain dependent variable in
[36]. Methods for building decision trees from partially
supervised data were proposed in [37], [38], [39]. An
extension of the k-mode clustering algorithm to data
with uncertain attributes was introduced in [40]. Follow-
ing preliminary work presented in [41] and [42], Côme
et al. [43] proposed another approach to the partially
supervised learning problem based on mixture models
and a variant of the EM algorithm [44] maximizing a
generalized likelihood criterion. A similar method was
used in [45] for partially supervised learning in hidden
Markov models.

In this paper, we extend the approach introduced
in [43], by allowing uncertainty to be expressed not
only on class labels in classification problems, but on
any continuous or discrete attribute, in any learning
problem based on a parametric statistical model1. The
contribution of this paper is threefold:

1) We propose an uncertain data model in which data
uncertainty is represented by belief functions; this
model encompasses probabilistic data, interval-
valued data and fuzzy data as special cases;

2) We introduce an extension of the EM algorithm,
called the evidential EM (E2M) algorithm, allowing

1. A preliminary version of some of the ideas introduced here was
presented in [46]. The present paper is a deeply revised and extended
version of this work, with several new results.
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us to estimate parameters in parametric statistical
models based on uncertain data.

3) We demonstrate the application of this algorithm
for handling partially supervised clustering prob-
lems with uncertain attributes using finite mixture
models.

The rest of this paper is organized as follows. The
main concepts of the theory of belief functions useful
for our purpose are recalled in Section 2. The proposed
data model is then presented in Section 3 and the E2M
algorithm is introduced in Section 4. Applications to
clustering of discrete and continuous data using finite
mixture models are presented in Section 5 and 6, respec-
tively. Finally, Section 7 summarizes our main results and
presents some research challenges and ongoing work.

2 THEORY OF BELIEF FUNCTIONS

This section recalls the necessary background notions
related to Dempster-Shafer theory. Belief functions on
discrete domains and Dempster’s rule of combination
are first recalled in Subsections 2.1 and 2.2, respectively.
The notion of cognitive independence is then introduced
in Subsection 2.3. Finally, some notions regarding the
definition and manipulation of belief functions on the
real line are recalled in Subsection 2.4.

2.1 Belief functions on discrete domains

Let X be a variable taking values in a finite domain
Ω, called the frame of discernment. Uncertain information
about X may be represented by a mass function m on Ω,
defined as a function from the powerset of Ω, denoted
as 2Ω, to the interval [0, 1], such that∑

A⊆Ω

m(A) = 1. (1)

Function m is said to be normalized if m(∅) = 0, a
condition that will be assumed in the rest of this paper.
Any subset A of Ω such that m(A) > 0 is called a focal
element of m. Two special cases are of interest:

1) If m has a single focal element A, it is said to
be categorical and denoted as mA. Such a mass
function encodes a piece of evidence that tells us
that X ∈ A, and nothing else. There is a one-to-
one correspondence between subsets A of Ω and
categorical mass functions mA: categorical mass
functions are thus equivalent to sets.

2) If all focal elements of m are singletons, then
m is said to be Bayesian. There is a one-to-one
correspondence between probability distributions
p : Ω → [0, 1] and Bayesian mass functions m
such that m({ω}) = p(ω), for all ω ∈ Ω: Bayesian
mass functions are thus equivalent to probability
distributions.

To each normalized mass function m, we may asso-
ciate belief and plausibility functions from 2Ω to [0, 1]

defined as follows:

Bel(A) =
∑
B⊆A

m(B) (2a)

Pl(A) =
∑

B∩A6=∅

m(B), (2b)

for all A ⊆ Ω. These two functions are linked by the
relation Pl(A) = 1 − Bel(A), for all A ⊆ Ω. Each
quantity Bel(A) may be interpreted as the degree to
which the evidence supports A, while Pl(A) can be
interpreted as an upper bound on the degree of support
that could be assigned to A if more specific information
became available [32]. The following inequalities always
hold: Bel(A) ≤ Pl(A), for all A ⊆ Ω. The function
pl : Ω → [0, 1] such that pl(ω) = Pl({ω}) is called the
contour function associated to m.

If m is Bayesian, then functions Bel is identical to Pl
and it is a probability measure. Another special case
of interest is that where m is consonant, i.e., its focal
elements are nested. The following properties then hold
[30]:

Pl(A ∪B) = max (Pl(A), P l(B)) (3a)

and
Bel(A ∩B) = min (Bel(A), Bel(B)) , (3b)

for all A,B ⊆ Ω. The plausibility function is thus a
possibility measure, and Bel is the dual necessity measure
[14], [47]. The contour function pl is then the associ-
ated possibility distribution. Consequently, the theory
of belief functions can be considered as having greater
expressive power than possibility theory.

2.2 Dempster’s rule
Let m1 and m2 be two mass functions induced by
independent items of evidence. They can be combined
using Dempster’s rule [30] to form a new mass function
defined as:

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C) (4)

for all A ⊆ Ω, A 6= ∅ and (m1 ⊕m2)(∅) = 0, where

κ =
∑

B∩C=∅

m1(B)m2(C) (5)

is the degree of conflict between m1 and m2. If κ = 1,
there is a logical contradiction between the two pieces
of evidence and they cannot be combined. Dempster’s
rule is commutative, associative, and it admits as neutral
element the vacuous mass function defined as m(Ω) = 1.

Let us now assume that m1 is Bayesian. Its con-
tour function is a probability distribution p1 defined by
p1(ω) = m1({ω}) for all ω ∈ Ω. Combining m1 with an
arbitrary mass function m2 with contour function pl2
yields a Bayesian mass function m1 ⊕ m2 with contour
function p1 ⊕ pl2 defined by

(p1 ⊕ pl2)(ω) =
p1(ω)pl2(ω)∑

ω′∈Ω p1(ω′)pl2(ω′)
. (6)
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(We note that, without ambiguity, the same symbol ⊕
is used for mass functions and contour functions). The
degree of conflict between p1 and pl2 is

κ = 1−
∑
ω′∈Ω

p1(ω′)pl2(ω′). (7)

It is equal to one minus the mathematical expectation of
pl2 with respect to p1. Finally, we may also note that, if
m2 is categorical and such that m2(A) = 1, then p1 ⊕ pl2
is the probability distribution obtained by conditioning
p1 with respect to A.

2.3 Cognitive independence
Let X and Y be two variables defined on finite frames of
discernment ΩX and ΩY , and let mXY be a mass function
on the product frame ΩX × ΩY , expressing evidence on
(X,Y ). The marginal mass function on ΩX is defined as

mXY ↓X(A) =
∑

C↓ΩX=A

mXY (C), (8)

for all A ⊆ ΩX , where C ↓ ΩX denotes the projection of
C ⊆ ΩX × ΩY on ΩX .

Let mX and mY denote, respectively, the marginal
mass functions on ΩX and ΩY , and let plX and plY de-
note the corresponding plausibility functions. Variables
X and Y are said to be cognitively independent [30, page
149] with respect to mXY if the following equalities hold:

PlXY (A×B) = PlX(A)PlY (B), (9)

for all A ⊆ ΩX and B ⊆ ΩY . As shown by Shafer [30],
this property means that new evidence on one variable
does not affect our beliefs in the other variable. It is
clear that cognitive independence reduces to stochastic
independence when mX and mY are Bayesian.

2.4 Belief functions on the real line
The theory of belief function can be extended to a
continuous frame Ω by replacing the mass function m
by a density function over a suitable family of subsets
of Ω. We will only need to address the simplest case
in which Ω = R (see, e.g., [29], [48], [49]). In this case,
a mass density function can be defined as a function
m from the set of closed real intervals to [0,+∞) such
that m([u, v]) = f(u, v) for all u ≤ v, where f is a
two-dimensional probability density function (pdf) with
support in {(u, v) ∈ R2|u ≤ v}. Intervals [u, v] such
that m([u, v]) > 0 are called focal intervals of m. The
contour function pl corresponding to m is defined by
the following integral:

pl(x) =

∫ x

−∞

∫ +∞

x

f(u, v)dvdu. (10)

Two important special cases of continuous belief func-
tions are Bayesian belief function, for which focal inter-
vals are reduced to points, and consonant belief func-
tions, for which focal intervals are nested. The two-
dimensional pdf corresponding to a Bayesian belief func-
tion has the following form: f(u, v) = p(u)δ(u−v), where

p is a univariate pdf and δ is the Dirac delta function.
As in the discrete case, a consonant belief function on
R corresponds to a possibility measure, the contour
function being equal to the corresponding possibility
distribution.

The reader is referred to [48] for a detailed exposition
of different notions pertaining to belief functions on the
real line. We will only recall here the following result
that will be needed in the sequel. Let m1 be a Bayesian
mass density function defined by the univariate pdf p1,
and let m2 be an arbitrary mass density function with
contour function pl2. The degree of conflict between m1

and m2 is:

κ = 1−
∫ +∞

−∞
p1(x)pl2(x)dx. (11)

Assuming that κ < 1, the combination of m1 and m2 is
Bayesian with corresponding pdf:

(p1 ⊕ pl2)(x) =
p1(x)pl2(x)

1− κ
. (12)

We note the similarity between (12) and (6)-(7).

Example 1 Let φ(·;µ, σ2) denote the univariate Gaussian
pdf with mean µ and variance σ2. Let us assume that p1(x) =
φ(x;µ1, σ

2
1) and that pl2 is a normalized Gaussian, taking

values in [0, 1]: pl2(x) = φ(x;µ2, σ
2
2)σ2

√
2π. Application of

Eq. (12) can be shown [50] to give

p1(x)pl2(x) = cφ(x;µ12, σ
2
12) (13a)

with µ12 =
µ1σ

2
2+µ2σ

2
1

σ2
1+σ2

2
, σ2

12 =
σ2
1σ

2
2

σ2
1+σ2

2
and

c = φ(µ1;µ2, σ
2
1 + σ2

2)σ2

√
2π. (13b)

Consequently, p1⊕pl2 is the Gaussian pdf φ
(
·;µ12, σ

2
12

)
and

the degree of conflict is

κ = 1− φ(µ1;µ2, σ
2
1 + σ2

2)σ2

√
2π. (14)

3 DATA MODEL

The data model and the generalized likelihood crite-
rion will now first be described in the discrete case in
Subsection 3.1. The interpretation of the criterion will
then be discussed in Subsection 3.2 and independence
assumptions allowing us to simplify its expression will
be introduced in Subsection 3.3. These notions will be
illustrated using a simple example in Subsection 3.4.
Finally, the continuous case will be addressed in Sub-
section 3.5.

3.1 Discrete case
To simplify the exposition, our data model will first be
introduced in the discrete setting. The extension to the
continuous setting will be postponed until Subsection
3.5.

Let X be a discrete random vector taking values in ΩX,
with probability mass function pX(·;θ) depending on an
unknown parameter θ ∈ Θ. Let x denote a realization of
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X, referred to as the complete data. If x was perfectly
observed, then the likelihood function given x would be
defined as the function from Θ to [0, 1] such that:

L(θ;x) = pX(x;θ), ∀θ ∈ Θ. (15)

Let us now assume that x is not precisely observed,
but it is known for sure that x ∈ A for some A ⊆ ΩX .
The likelihood function given such imprecise data is now:

L(θ;A) = pX(A;θ) =
∑
x∈A

pX(x;θ), ∀θ ∈ Θ. (16)

More generally, our knowledge of x may be not only
imprecise, but also uncertain; it can then be described by
a mass function m on ΩX with focal elements A1, . . . , Ar
and corresponding masses m(A1), . . . ,m(Ar). To extend
the likelihood function (16) given such uncertain data,
we may simply compute the weighted sum of the terms
L(θ;Ai) with coefficients m(Ai), which leads to the
following expression:

L(θ;m) =

r∑
i=1

m(Ai)L(θ;Ai). (17)

This extension of the classical likelihood criterion will be
adopted in the rest of this paper. As will be shown, this
criterion has a simple interpretation in terms of conflict
between the model and the observations, and it admits
a simple expression under independence assumptions.

Before discussing the interpretation of this criterion, it
must be emphasized that, in our model, the probability
mass function pX(·,θ) and the Dempster-Shafer mass
function m represent two different pieces of knowledge:
• pX(·,θ) represents generic knowledge about the data

generating process or, equivalently, about the un-
derlying population; it corresponds to random un-
certainty;

• m represents specific knowledge (or factual evi-
dence2) about a given realization x of X; this knowl-
edge is only partial because the observation process
is imperfect; function m captures epistemic uncer-
tainty, i.e., uncertainty due to lack of knowledge.

The uncertain data m is thus not assumed to be produced
by a random experiment, which is in sharp contrast with
alternative approaches based on random set (see, e.g.
[52], [53]) or fuzzy random variables (see, e.g., [54], [55],
[24]).

3.2 Interpretation
To better understand the meaning of (17), let us rewrite
L(θ;m) as:

L(θ;m) =

r∑
i=1

m(Ai)
∑
x∈Ai

pX(x;θ) (18a)

=
∑

x∈ΩX

pX(x;θ)
∑
Ai3x

m(Ai) (18b)

2. See, e.g., [51] for discussion on the distinction between generic
and specific information.

=
∑

x∈ΩX

pX(x;θ)pl(x). (18c)

The likelihood L(θ;m) thus only depends on m through
its associated contour function pl. For this reason, we
will write indifferently L(θ;m) or L(θ; pl).

By comparing (18c) with (7), we can see that L(θ;m)
equals one minus the degree of conflict (7) between pX(·;θ)
and m. Consequently, maximizing L(θ;m) with respect
to θ amounts to minimizing the conflict between the
parametric model and the uncertain observations. Alter-
natively, L(θ;m) can be regarded as a degree of agreement
[56] between the model and the observations.

We may also observe from (18c) that L(θ;m) can be
alternatively defined as the mathematical expectation of
pl(X), given θ:

L(θ; pl) = Eθ [pl(X)] (19)

The above expression suggests an interesting link with
Zadeh’s notion of probability of a fuzzy event [57]. As-
sume that m is consonant. Then, as recalled in Subsection
2.1, its contour function pl is a possibility distribution:
it can thus be considered as fuzzy data. The generalized
likelihood L(θ;m) is then the probability of the fuzzy data,
given the parameter value θ (see [58], [59]).

3.3 Independence assumptions
Let us assume that the random vector X can be written
as X = (X1, . . . ,Xn), where each Xi is a p-dimensional
random vector taking values in ΩXi

. Similarly, its real-
ization can be written as x = (x1, . . . ,xn) ∈ ΩX. Two
different independence assumptions can then be made:

1) Under the stochastic independence of the random
variables X1, . . . ,Xn, the probability mass function
pX(·;θ) of X can be decomposed as:

pX(x;θ) =

n∏
i=1

pXi
(xi;θ), ∀x = (x1, . . . ,xn) ∈ ΩX

(20)
2) Under the cognitive independence of x1, . . . ,xn with

respect to m (see Subsection 2.3), we can write:

pl(x) =

n∏
i=1

pli(xi), ∀x = (x1, . . . ,xn) ∈ ΩX, (21)

where pli is the contour function corresponding to
the mass function mi obtained by marginalizing m
on ΩXi .

We can remark here that the two assumptions above
are totally unrelated as they are of different natures:
stochastic independence of the random variables Xi is
an objective property of the random data generating
process, whereas cognitive independence pertains to our
state of knowledge about the unknown realization x of
X.

If both assumptions hold, the likelihood criterion (19)
can be written as a product of n terms:

L(θ; pl) =

n∏
i=1

Eθ [pli(Xi)] . (22)
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3.4 Illustrative example

As an illustrative example, let us consider a medical
study in which n patients are taken at random from
some population, in which some disease is present in
proportion θ. Let Xi be the Bernoulli variable such that
Xi = 1 if patient i has the disease, Xi = 0 otherwise.
Assuming the random sample X = (X1, . . . , Xn) to be
independent and identically distributed (iid), we have

pX(x; θ) =

n∏
i=1

θxi(1− θ)1−xi , (23)

for all x = (x1, . . . , xn) ∈ ΩX = {0, 1}n.
After the n patients have been sampled from the

population, the complete data consists in the vector
x = (x1, . . . , xn) describing the states of the n patients.
However, assume that these states are only partially
known from the opinions of a physician, who provides
a mass function m on ΩX. Let mi be the marginal
mass function concerning the state of patient i and pli
the corresponding contour function. Using (22), we get
the following expression for the log-likelihood given m
under the cognitive independence assumption (21):

logL(θ; pl) =

n∑
i=1

log [(1− θ)pli(0) + θpli(1)] . (24)

3.5 Continuous case

The above definitions can be straightforwardly trans-
posed to the continuous case. Assume that X is a
continuous random vector with pdf pX(·;θ) and let
pl : ΩX → [0, 1] be the contour function of a continuous
mass function m on ΩX. Similarly to (18c), the likelihood
function given pl can be defined in this case from (19)
as

L(θ; pl) =

∫
ΩX

pX(x;θ)pl(x)dx, (25)

assuming this integral to exist and to be nonzero. Ac-
cording to (11), the interpretation of L(θ; pl) as a degree
of agreement between pX(·;θ) and m is still valid in this
case. Equation (22) also holds under the assumptions of
stochastic and cognitive independence.

4 EVIDENTIAL EM ALGORITHM

In this section, the classical EM algorithm [44], [60] will
first be recalled in Subsection 4.1. A version of this
algorithm, called the evidential EM (E2M) algorithm,
which maximizes the generalized criterion introduced in
the previous section will then be described in Subsection
4.2. Finally, the application of this algorithm to solve the
Bernoulli example of Subsection 3.4 will be presented in
Subsection 4.3.

4.1 EM algorithm

The EM algorithm is a broadly applicable mechanism for
computing maximum likelihood estimates (MLEs) from
incomplete data, in situations where maximum likeli-
hood estimation would be straightforward if complete
data were available [44].

With the same notations as in Section 2.1, let us assume
that we have a (discrete or continuous) random vector X
with probability mass function or pdf pX(x;θ). A real-
ization x has been drawn from X, but it is incompletely
observed. The observed data consists in a subset A ⊂ ΩX

such that x ∈ A. The likelihood function knowing that
X ∈ A is given by (16).

The EM algorithm approaches the problem of max-
imizing the observed-data log likelihood logL(θ;A)
by proceeding iteratively with the complete-data log-
likelihood logL(θ;x) = log pX(x;θ). Each iteration of the
algorithm involves two steps called the expectation step
(E-step) and the maximization step (M-step).

The E-step requires the calculation of

Q(θ,θ(q)) = Eθ(q) [logL(θ;X) | A] , (26)

where θ(q) denotes the current fit of θ at iteration q and
Eθ(q) [·|A] denotes expectation with respect to the condi-
tional distribution of X given A, using the parameter
vector θ(q).

The M-step then consists in maximizing Q(θ,θ(q))
with respect to θ over the parameter space Θ, i.e.,
finding θ(q+1) such that Q(θ(q+1),θ(q)) ≥ Q(θ,θ(q)) for
all θ ∈ Θ. The E- and M-steps are iterated until the
difference L(θ(q+1);A)−L(θ(q);A) becomes smaller than
some arbitrarily small amount.

It is proved in [44] that the observed-data likelihood
L(θ;A) is not decreased after an EM iteration, that is,
L(θ(q+1);A) ≥ L(θ(q);A) for q = 0, 1, 2, . . .. Hence,
convergence to some value L∗ is ensured as long as the
sequence L(θ(q);A) for q = 0, 1, 2, . . . is bounded from
above. As noted in [60, page 85], L∗ is, in most practical
applications and except in pathological cases, a local
maximum of the observed data log-likelihood L(θ;A).

4.2 Extension to uncertain data

To maximize the likelihood function L(θ;m) given un-
certain data m, as introduced in Section 3, we propose
to adapt the EM algorithm as follows.

In the E-step, the conditional expectation (26) of
logL(θ;X) is now replaced by the expectation with
respect to pX(·;θ(q)) ⊕ pl, which will be denoted as
pX(·|pl;θ(q)). We may remark that conditional expec-
tation is recovered in the special case where m is a
categorical mass function. Using (6), the probability mass
function pX(·|pl;θ(q)) has the following expression:

pX(x|pl;θ(q)) =
pX(x;θ(q))pl(x)

L(θ(q); pl)
, (27)
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where L(θ(q); pl) is given by (18c) in the discrete case,
and (25) in the continuous case. At iteration q, the
following function is thus computed:

Q(θ,θ(q)) =

∑
x∈ΩX

log(L(θ;x))pX(x;θ(q))pl(x)

L(θ(q); pl)
(28)

in the discrete case, or

Q(θ,θ(q)) =

∫
ΩX

log(L(θ;x))pX(x;θ(q))pl(x)dx

L(θ(q); pl)
(29)

in the continuous case.
The M-step is unchanged and requires the maximiza-

tion of Q(θ,θ(q)) with respect to θ. The E2M algorithm
alternately repeats the E- and M-steps above until the
increase of observed-data likelihood becomes smaller
than some threshold.

The E2M algorithm inherits the monotonicity property
of the EM algorithm, as shown by the following theorem.

Theorem 1 Any sequence L(θ(q);m) for q = 0, 1, 2, . . . of
likelihood values obtained using the E2M algorithm is non
decreasing, i.e., it verifies

L(θ(q+1); pl) ≥ L(θ(q); pl) (30)

for all q.

The proof of Theorem 1 is very similar to that given in
[44]. It is given in Appendix A for completeness.

To conclude this section, we may note that the proba-
bility mass or density function pX(x|θ)⊕ pl and, conse-
quently, the E2M algorithm depend only on the contour
function pl and are unchanged if pl is multiplied by
a constant. Consequently, the results are unchanged if
m is converted into a probability distribution by nor-
malizing the contour function, as suggested in [61], or
if pl is viewed as a possibility distribution. However,
we may observe that Dempster’s rule, which plays a
fundamental role in our approach, can only be justified
within the theory of belief functions as a rule to com-
bine independent items of evidence (see, e.g., [62] for a
comparison between the Dempster-Shafer and Bayesian
semantics for “probability judgements”). Consequently,
there seems to be no easy way to cast our approach in a
more restricted framework such as possibility theory or
probability theory.

4.3 Example

Let us come back to the example introduced in Subsec-
tion 3.4. The oberved-data likelihood to be maximized
is given by (24). The complete-data log-likelihood is
obtained by taking the logarithm of (23):

logL(θ;x) = n log(1− θ) + log

(
θ

1− θ

) n∑
i=1

xi. (31)

TABLE 1
Dataset for the Bernoulli example of Subsection 4.3.

i 1 2 3 4 5 6
pli(0) 1 1 1 α 0 0
pli(1) 0 0 0 1− α 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

θ

L
(θ

;m
) α=0

α=1

α=0.5

Fig. 1. Observed-data likelihood function for the data of
Table 1 and ten equally spaced values of α ranging from
0 to 1.

As it is a linear function of the xi, the expectation of this
quantity with respect to pX(·; θ(q))⊕pl can be computed
in the E-step at iteration q as

Q(θ, θ(q)) = n log(1− θ) + log

(
θ

1− θ

) n∑
i=1

ξ
(q)
i , (32)

where ξ
(q)
i is the expectation of Xi with respect to

pX(·|pli; θ(q)) = pX(·; θ(q))⊕ pli:

ξ
(q)
i = E[Xi|pli; θ(q)] =

θ(q)pli(1)

(1− θ(q))pli(0) + θ(q)pli(1)
. (33)

The maximum of (32) computed at the M-step is ob-
tained for:

θ(q+1) =
1

n

n∑
i=1

ξ
(q)
i , (34)

which is the estimate of θ at iteration q.
The above algorithm was applied to the data shown in

Table 1. This dataset is composed of n = 6 observations,
one of which (for i = 4) is uncertain and depends
on a coefficient α. In that special case it is assumed
that pl4(0) + pl4(1) = 1, i.e., the corresponding mass
function mi is Bayesian. Figure 1 shows the observed-
data likelihood function L(θ;m) for ten different values
of α ranging from 0 to 1. In the special cases where
α = 0 and α = 1 there is no data uncertainty and the
MLEs are, respectively, θ̂ = 0.5 and θ̂ = 2/3. The E2M
algorithm was applied to the data with α = 0.5. The
results are shown in Table 2. The algorithm was stopped
when the relative increase of the likelihood between two
iterations was less than 10−6. Starting from the initial
value θ(0) = 0.3, this condition was met after 5 iterations.
The final MLE is θ̂ = 0.6. This is the value of θ that
minimizes the conflict between the uncertain data given
in Table 1 and the parametric model (23).
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TABLE 2
Intermediate and final results for the E2M algorithm

applied to the data of Table 1 with α = 0.5.

q θ(q) L(θ(q); pl)× 103

0 0.3000 6.6150
1 0.5500 16.8455
2 0.5917 17.2676
3 0.5986 17.2797
4 0.5998 17.2800
5 0.6000 17.2800

5 CLUSTERING OF CATEGORICAL DATA

In this section, we demonstrate the application of the
E2M algorithm to the clustering of uncertain categorical
data based on a latent class model [63], [64]. The nota-
tions and the model will first be described in Subsection
5.1. The estimation algorithm for this problem will then
be given in Subsection 5.2 and experimental results will
be reported in Subsection 5.3.

5.1 Problem description and generative model
Let us consider a dataset composed of n objects de-
scribed by p categorical attributes and a class attribute
taking values in a set of g classes.

Let wi = (w1
i , . . . , w

p
i ) be the attribute vector for object

i, and wji the value of attribute j for object i. Each
attribute j will be assumed to have rj modalities and
we will denote wjhi = 1 if attribute j takes modality h
for object i and wjhi = 0 otherwise.

Similarly, the class of object i will be described by
a vector zi = (zi1, . . . , zig) of binary variables zik such
that zik = 1 if object i belongs to class k, and zik = 0
otherwise.

The complete data x = {(w1, z1), . . . , (wn, zn)} will
be assumed to be a realization from an iid random
sample X = (X1, . . . ,Xn), with Xi = (Wi,Zi). We will
further assume the attributes W j

i to be conditionally
independent given the class Zi. Denoting by αjhk the
probability that attribute j takes modality h given class k
and by πk the prior probability of class k, we thus have:

p(x;θ) =

n∏
i=1

p(wi, zi;θ), (35)

where θ = ({αjhk }, {πk}) is the vector of all parameters,
and

p(wi, zi;θ) = p(zi;θ)p(wi|zi;θ) (36a)

=

g∏
k=1

πzikk

g∏
k=1

p(wi|zik = 1;θ)zik (36b)

=

g∏
k=1

πk p∏
j=1

rj∏
h=1

(αjhk )w
jh
i

zik

. (36c)

The complete data x will be assumed to be imper-
fectly observed, and partial knowledge about x will
be assumed to be described by a mass function m

on the domain of x. Assuming cognitive independence
(21) between all variables according to m, the contour
function associated to m is

pl(x) =

n∏
i=1

pl(zi)pl(wi) (37a)

=

n∏
i=1

pl(zi) p∏
j=1

pl(wji )

 (37b)

=

n∏
i=1

 g∏
k=1

(plik)zik
p∏
j=1

rj∏
h=1

(pljhi )w
jh
i

 , (37c)

where plik is the plausibility that object i belongs to
class k, and pljhi is the plausibility that attribute j takes
modality h for object i.

The observed-data likelihood for this model has the
following expression:

L(θ; pl) =

n∏
i=1

Eθ[pl(Xi)] (38a)

=

n∏
i=1

Eθ [pl(Wi)pl(Zi)] (38b)

=

n∏
i=1

g∑
k=1

Eθ [pl(Wi)pl(Zi)|Zik = 1]πk(38c)

=

n∏
i=1

g∑
k=1

πkplik

p∏
j=1

rj∑
h=1

pljhi α
jh
k . (38d)

5.2 Solution
The derivation of the E2M algorithm for the above
model3 is detailed in Appendix B. Only the main equa-
tions are given here without proof.

E-step: The expectation of the complete-data log-
likelihood logL(θ;x) with respect to p(·|pl;θ(q)) =

p(·;θ(q)) ⊕ pl, where θ(q) is the current estimate of θ at
iteration q, is:

Q(θ,θ(q)) =
∑
i,k

t
(q)
ik log πk +

∑
i,j,k,h

β
jh(q)
ik logαjhk , (39)

where t
(q)
ik and β

jh(q)
ik are, respectively, the expectations

of Zik and W jh
i Zik with respect to p(·|pl;θ(q)). They are

given by the following equations:

t
(q)
ik =

π
(q)
k plik

∏
j

∑
h α

jh(q)
k pljhi∑

` π
(q)
` pli`

∏
j

∑
h α

jh(q)
` pljhi

(40)

and
β
jh(q)
ik = γ

jh(q)
ik t

(q)
ik (41)

with

γ
jh(q)
ik =

α
jh(q)
k pljhi∑

h′ α
jh′(q)
k pljh

′

i

. (42)

3. Matlab source code for all the algorithms described in
this paper can be downloaded from the author’s web page at
http://www.hds.utc.fr/˜tdenoeux.
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TABLE 3
Conditional probability vectors for each attribute j given

each class k for the simulated categorical data.

αj
k k = 1 k = 2 k = 3

j = 1 (.1, .1, .1, .7) (.1, .1, .7, .1) (.1, .7, .1, .1)
j = 2 (.7, .1, .1, .1) (.1, .1, .1, .7) (.1, .7, .1, .1)
j = 3 (.7, .1, .1, .1) (.1, .7, .1, .1) (.1, .1, .7, .1)

M-step: The maximum of Q(θ,θ(q)) is then obtained
at the M-step for the following parameter estimates:

π
(q+1)
k =

1

n

n∑
i=1

t
(q)
ik (43)

and

α
jh(q+1)
k =

∑n
i=1 γ

jh(q)
ik t

(q)
ik∑n

i=1 t
(q)
ik

. (44)

5.3 Experimental results
The above approach was first applied to simulated data
with g = 3 equiprobable classes and p = 3 attributes
(with rj = 4 modalities each). The conditional probabil-
ity distributions of attributes given each class are shown
in Table 3.

A dataset of size n = 500 was generated from this
distribution. To simulate uncertainty on attributes and
class labels, we proceeded as follows. For each object i
and each attribute j, an error probability qji was drawn
randomly from a beta distribution with mean ρ and
standard deviation 0.2. With probability qji , the value wji
of attribute j for object i was then replaced by a com-
pletely random value w̃ji (with a uniform distribution
over the four modalities). The plausibilities pljhi were
then determined as

pljhi = P (wjhi = 1|w̃jhi ) =

{
qji /4 if w̃jhi = 0,

qji /4 + 1− qji if w̃jhi = 1.

Similarly, class labels zi were replaced with noisy ver-
sions z̃i with probabilities qi drawn from the same distri-
butions as the qji s, and plausibilities plik were computed
in a similar way.

The whole experiment (generation of initial and noisy
data) was repeated 20 times. For each obtained data set,
the E2M algorithm was applied to

1) Uncertain labels plik and uncertain attributes pljhi ;
2) Noisy labels z̃ik and noisy attributes w̃jhi ;
3) Uncertain attributes pljhi and no information on

class labels;
4) Noisy attributes w̃jhi and no information on class

labels.
In each case, the E2M algorithm was run 5 times with
random initial conditions, and the best solution accord-
ing to the observed-data likelihood was retained. Each
object was then assigned to the class with the largest es-
timated posterior probability, and the obtained partition
was compared to the true partition using the adjusted
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Fig. 2. Average values (plus and minus one standard
deviation) of the adjusted Rand index over the 20 repe-
titions, as a function of the mean error probability ρ for the
simulated categorical data.

Rand index [65]. We recall that this commonly used
clustering performance measure is a corrected-for-chance
version of the Rand index, which equals 0 on average for
a random partition, and 1 when comparing two identical
partitions.

The results are shown graphically in Figure 2. As
expected, a degradation of the clustering performances
is observed when the mean error probability ρ increases,
with the adjusted rand index tending to zero as ρ tends
to 1. More importantly, Figure 2 shows that the use of
uncertain labels and/or uncertain attribute values (in the
form of plausibilities) allows us to reach better clustering
results than those obtained using noisy labels and/or
attributes. These results show that our method is able to
exploit additional information on data uncertainty, when
such information is available.

We may remark here that, in the previous experiment,
uncertain labels and attributes had to be generated by
a random process. One could object that this random
process, if known, could be incorporated in the gen-
erative model, and the standard EM algorithm could
be used. It must be emphasized, however, that mass
or plausibility functions in our model introduced in
Section 3 represent epistemic uncertainty, which cannot
be represented within a random generative model. They
are only generated randomly here for the purpose of the
experiment.

Our approach was also tested on the Breast Cancer
dataset available from the UCI Machine Learning Repos-
itory4. This is a two-class dataset with 201 instances
of one class and 85 instances of the other class. The
instances are described by 9 discrete attributes treated as

4. This data set is available at http://archive.ics.uci.edu/ml.
It was obtained from the University Medical Centre, Institute of
Oncology, Ljubljana, Yugoslavia.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

rho

a
d
ju

s
te

d
 R

a
n
d
 i
n
d
e
x

δ=20%

uncertain attributes

noisy attributes

Fig. 3. Average values (plus and minus one standard
deviation) of the adjusted Rand index over 20 repetitions,
as a function of the mean error probability ρ for the Breast
Cancer data with δ = 20%.

categorical. Noisy attributes w̃jhi and uncertain attributes
pljhi were generated in exactly the same way as in the
previous experiment. We considered a semi-supervised
learning task, in which a proportion δ of the objects is
labeled. As before, we estimated the model parameters,
assigned each unlabeled object to the class with the
largest estimated posterior probability, and evaluated the
result using the adjusted Rand index. The experiment
was repeated 20 times. Figures 3 and 4 show the average
values of the adjusted Rand index as a function of
the mean error probability ρ, for noisy and uncertain
attributes, with proportions of labeled data equal to
δ = 20% and δ = 30%, respectively. Once again, better
results are obtained when taking into account attribute
uncertainty, which demonstrates the usefulness of our
approach.

6 CLUSTERING OF CONTINUOUS DATA

Gaussian mixture models are commonly used for cluster-
ing continuous data (see, e.g., [66], [67]). In this section,
we investigate the estimation of parameters in such
models, when uncertainty on attributes is represented
by belief functions with Gaussian contour functions,
and partial information on class labels may also be
available in the form of arbitrary mass functions. As in
the previous section the model will first be introduced
in Subsection 6.1. The estimation algorithm will then be
described in Subsection 6.2 and simulation results will
be presented in Subsection 6.3.

6.1 Problem description and generative model
The notations and assumptions are basically the same as
those in Subsection 5.1, except that the attribute vector
Wi = (W 1

i , . . . ,W
p
i ) for object i is now assumed to be
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Fig. 4. Average values (plus and minus one standard
deviation) of the adjusted Rand index over 20 repetitions,
as a function of the mean error probability ρ for the Breast
Cancer data with δ = 30%.

normally distributed conditionally on zik = 1, with mean
µk = (µ1

k, . . . , µ
p
k) and diagonal covariance matrix Σk =

diag[(σ1
k)2, . . . , (σpk)2]:

p(wi|zik = 1;µk,Σk) = φ(wi;µk,Σk) =
p∏
j=1

φ(wji ;µ
j
k, (σ

j
k)2). (45)

Denoting by θ = ({µk}, {Σk}, {πk}) the vector of all
parameters, the complete data pdf is

p(x;θ) =

n∏
i=1

p(zi;θ)p(wi|zi;θ) (46a)

=

n∏
i=1

g∏
k=1

(πkφ(wi;µk,Σk))
zik . (46b)

As before, assuming cognitive independence (21), par-
tial knowledge about x will be assumed to be repre-
sented by a mass function m with contour function

pl(x) =

n∏
i=1

pl(zi)pl(wi) (47a)

=

n∏
i=1

 g∏
k=1

(plik)zik
p∏
j=1

pl(wji )

 . (47b)

Assuming the marginal contour function pl(wji ) on wji to
be a normalized Gaussian with mean mj

i and standard
deviation sji : pl(w

j
i ) = φ(wji ;m

j
i , (s

j
i )

2)sji
√

2π, we can
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write

pl(xi) = (2π)p/2

∏
j

sji

×
(

g∏
k=1

(plik)zik

)
φ(wi;mi, Si), (48)

with mi = (m1
i , . . . ,m

p
i ) and Si = diag[(s1

i )
2, . . . , (spi )

2].
Using the same derivation as in (38a)-(38d), we get the

following expression for the observed-data likelihood:

L(θ; pl) =

n∏
i=1

g∑
k=1

πkplikEθ [pl(Wi)|Zik = 1] , (49)

with (using (13b) and the conditional independence of
the attributes W j

i given Zik = 1):

Eθ [pl(Wi)|Zik = 1] = (2π)p/2
p∏
j=1

φjiks
j
i (50)

and φjik = φ(mj
i ;µ

j
k, (σ

j
k)2 + (sji )

2).

6.2 Solution

A before, only the main equations of the E2M algorithm
for the above model will be given in this section. The
derivation of these equations is detailed in Appendix C.

E-step: The expectation of the complete-data log-
likelihood logL(θ;x) with respect to p(·;θ(q))⊕pl is then

Q(θ;θ(q)) =

g∑
k=1

(
log πk

n∑
i=1

t
(q)
ik

)
− np

2
log(2π)−

∑
i,k

t
(q)
ik

∑
j

log σjk

− 1

2

∑
i,k

t
(q)
ik

∑
j

ξ
j(q)
ik − 2µ

j(q)
ik µjk + (µjk)2

(σjk)2
, (51)

where

µ
j(q)
ik =

µ
j(q)
k (sji )

2 +mj
i (σ

j(q)
k )2

(sji )
2 + (σ

j(q)
k )2

, (52)

(σ
j(q)
ik )2 =

(σ
j(q)
k )2(sji )

2

(sji )
2 + (σ

j(q)
k )2

, (53)

ξ
j(q)
ik = (µ

j(q)
ik )2 + (σ

j(q)
ik )2 (54)

and

t
j(q)
ik =

π
(q)
k plik

∏
j φ

j(q)
ik∑

` π
(q)
` pli`

∏
j φ

j(q)
i`

(55)

with
φ
j(q)
ik = φ(mj

i ;µ
j(q)
k , (σ

j(q)
k )2 + (sji )

2). (56)

M-step: Maximizing (51) yields the following pa-
rameter estimates at iteration q + 1:

π
(q+1)
k =

1

n

n∑
i=1

t
j(q)
ik , (57)

µ
j(q+1)
k =

∑n
i=1 t

j(q)
ik µ

j(q)
ik∑n

i=1 t
j(q)
ik

, (58)

(σ
j(q+1)
k )2 =∑n

i=1 t
j(q)
ik (ξ

j(q)
ik − 2µ

j(q+1)
k µ

j(q)
ik + (µ

j(q+1)
k )2)∑n

i=1 t
j(q)
ik

. (59)

6.3 Experimental results

The above algorithm was applied to simulated Gaussian
data with n = 200 instances and the following parameter
values:

µ1 = (3, 0, 0)′, µ2 = (0, 3, 0)′, µ3 = (0, 0, 3)′,

Σ1 = Σ2 = Σ3 = I, π1 = π2 = π3 = 1/3.

We first considered the unsupervised learning situa-
tion in which no information on class labels is available,
i.e., plik = 1 for all i and k. To simulate uncertainty
on attributes, we randomly generated for each object
i and each attribute j a standard deviation sji from
the uniform distribution in [0, smax]. The value wji of
attribute j for object i was then replaced by a random
value w̃ji drawn from a Gaussian distribution with mean
wji and standard deviation sji . We then set mj

i = w̃ji .
The whole experiment (generation of initial and noisy
data) was repeated 20 times. For each obtained dataset,
the E2M algorithm was applied to the noisy attributes
w̃ji and to the uncertain attributes (mj

i , s
j
i ). In each

case, the E2M algorithm was run 5 times with random
initial conditions, and the best solution according to the
observed-data likelihood was retained. Each object was
then assigned to the class with the largest estimated
posterior probability, and the obtained partition was
compared to the true partition using the adjusted Rand
index. The results are shown in Figure 5. As we can
see, the algorithm successfully exploits the additional
information about attribute uncertainty, which allows us
to better recover the true partition of the data.

To investigate the influence of class label uncertainty,
we generated noisy class labels z̃ik and plausibilities
plik as explained in Subsection 5.3. Attribute uncertainty
was also simulated as above, with smax = 2. Figure 6
shows the adjusted Rand index as a function of the mean
error probability ρ on class labels, for the E2M algorithm
applied to data with uncertain and noisy labels, as
well as to unsupervised data. Here again, uncertainty
on class labels appears to be successfully exploited by
the algorithm. Remarkably, the results with uncertain
labels never get worse than those obtained without label
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Fig. 5. Average values (plus and minus one standard
deviation) of the adjusted Rand index over 20 repetitions,
as a function of the maximal standard deviation smax for
the simulated Gaussian data, with no information on class
labels.
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Fig. 6. Average values (plus and minus one standard
deviation) of the adjusted Rand index over 20 repetitions,
as a function of the error probability ρ on class labels for
the simulated Gaussian data, with smax = 2.

information, even for error probabilities close to 1. This
finding confirms a similar result reported in [43].

To corroborate the above results with real data, similar
experiments were carried out with the well-known Iris
dataset5. We recall that this dataset is composed of 150
4-dimensional attribute vectors partitioned in 3 classes,
corresponding to three species of Iris. Unsupervised
learning with attribute uncertainty generated as above
was first carried out. The results, shown in Figure 7,
are very similar to those obtained with simulated Gaus-
sian data. Finally, results with both attribute uncertainty
(with smax = 2) and label uncertainty (generated as

5. This data set is available at http://archive.ics.uci.edu/ml.
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Fig. 7. Average values (plus and minus one standard
deviation) of the adjusted Rand index over 20 repetitions,
as a function of the maximal standard deviation smax for
the Iris data, with no information on class labels.
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Fig. 8. Average values (plus and minus one standard
deviation) of the adjusted Rand index over 20 repetitions,
as a function of the error probability ρ on class labels for
the Iris data, with smax = 2.

above) are shown in Figure 8. Again, these results are
very similar to those obtained with simulated data, as
shown in Figure 6.

7 CONCLUSION

A method for estimating parameters in statistical models
in the case of uncertain observations has been intro-
duced. The proposed formalism combines aleatory un-
certainty captured by a parametric statistical model with
epistemic uncertainty induced by an imperfect observa-
tion process and represented by belief functions. Our
method then seeks the value of the unknown parameter
that maximizes a generalized likelihood criterion, which
can be interpreted as a degree of agreement between
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the parametric model and the uncertain data. This is
achieved using the evidential EM algorithm, which is
a simple extension of the classical EM algorithm with
proved convergence properties.

As an illustration, the method has been applied to
clustering problems with partial knowledge of class
labels and attributes, based on latent class and Gaussian
mixture models. In these problems, our approach has
been shown to successfully exploit the additional in-
formation about data uncertainty, resulting in improved
performances in the clustering task.

More generally, the approach introduced in this paper
is applicable to any uncertain data mining problem in
which a parametric statistical model can be postulated
and data uncertainty arises form an imperfect observa-
tion process. This includes a wide range of problems
such as classification, regression, feature extraction and
time series prediction.

APPENDIX A
PROOF OF THEOREM 1

Let g(x|pl;θ) be defined using the following expression:

g(x|pl;θ) =
L(θ;x)

L(θ; pl)
=
pX(·|pl;θ)

pl(x)
, (60)

where the rightmost expression is derived from (27). We
thus have

logL(θ; pl) = logL(θ;x)− log g(x|pl;θ). (61)

Taking the expectation of both sides with respect to
pX(·|pl;θ(q)), we get

logL(θ; pl) =

Eθ(q) [logL(θ;X)|pl]− Eθ(q) [log g(X|pl;θ)|pl] =

Q(θ,θ(q))−H(θ,θ(q)) (62)

with

H(θ,θ(q)) = Eθ(q) [log g(X|pl;θ)|pl] . (63)

We thus have

logL(θ(q+1); pl)− logL(θ(q); pl)

= Q(θ(q+1),θ(q))−Q(θ(q),θ(q))

−
(
H(θ(q+1),θ(q))−H(θ(q),θ(q))

)
. (64)

The first difference on the right-hand side of (64) is
nonnegative as θ(q+1) has been chosen to maximize
Q(θ,θ(q)) with respect to θ. It thus remains to check that
the second difference on the right-hand side of (64) is
non-positive; that is, we need to verify that the following
inequality holds: H(θ(q+1),θ(q))−H(θ(q),θ(q)) ≤ 0. Now

for any θ,

H(θ,θ(q))−H(θ(q),θ(q)) =

Eθ(q)

[
log

g(X|pl;θ)

g(X|pl;θ(q))
|pl

]

≤ logEθ(q)

[
g(X|pl;θ)

g(X|pl;θ(q))
|pl

]
(65)

and

logEθ(q)

[
g(X|pl;θ)

g(X|pl;θ(q))
|pl

]
=

log

∫
g(x|pl;θ)

g(x|pl;θ(q))
pl(x)g(x|pl;θ(q))dx =

log

∫
g(x|pl;θ)pl(x)dx =

log

∫
pX(x|pl;θ(q))dx = 0, (66)

where the inequality in (65) is a consequence of Jensen’s
inequality. �

APPENDIX B
DERIVATION OF THE E2M ALGORITHM FOR THE
CATEGORICAL DATA CLUSTERING PROBLEM
From (35) and (36c), the complete-data log-likelihood is

logL(θ;x) =
∑
i,k

zik log πk +
∑
i,j,k,h

wjhi zik logαjhk . (67)

By taking its expectation with respect to p(·|pl;θ(q)) =

p(·;θ(q)) ⊕ pl, where θ(q) is the current estimate of θ
at iteration q, we get expression (39) for Q(θ,θ(q)). To
compute this expression, we may first observe that, from
(35) and (21):

p(x|pl;θ(q)) =

n∏
i=1

p(wi, zi|pl;θ(q)). (68)

Then, using (36c) and (37c), we get:

p(wi, zik = 1|pl;θ(q)) =

π
(q)
k plik

∏
j,h(α

jh(q)
k pljhi )w

jh
i∑

` π
(q)
` pli`

∏
j

∑
h α

jh(q)
` pljhi

. (69)

Marginalizing out wi leads to the following expression
for p(Zik = 1|pl;θ(q)):

p(Zik = 1|pl;θ(q)) =
π

(q)
k plik

∏
j

∑
h α

jh(q)
k pljhi∑

` π
(q)
` pli`

∏
j

∑
h α

jh(q)
` pljhi

, (70)

from which we get (40).
Conditioning (69) on zik = 1, we get:

p(wi|zik = 1, pl;θ(q)) =
p(wi, zik = 1|pl;θ(q))

p(zik = 1|pl;θ(q))
=

∏
j

∏
h

(
α
jh(q)
k pljhi

)wjh
i

∑
h α

jh(q)
k pljhi

. (71)
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Now, βjh(q)
ik = Eθ(q) [W

jh
i Zik|pl] can be written as

β
jh(q)
ik = p(W jh

i = 1, Zik = 1|pl;θ(q)) =

p(W jh
i = 1|Zik = 1, pl;θ(q))p(Zik = 1|pl;θ(q)), (72)

from which we obtain (41) and (42).
The update equations (43) and (44) at the M-step

are obtained by maximizing Q(θ,θ(q)) with respect to
parameters πk and αjhk , taking into account the equality
constraints

∑
k πk = 1 and

∑
h α

jh
k = 1. The calculations

are the same as in the classical latent class model without
data uncertainty.

APPENDIX C
DERIVATION OF THE E2M ALGORITHM FOR THE
CONTINUOUS DATA CLUSTERING PROBLEM

Using (46b), the complete-data log-likelihood is obtained
as:

logL(θ;x) =

n∑
i=1

g∑
k=1

zik log

πk p∏
j=1

φ(wji ;µ
j
k, (σ

j
k)2)

 ,

(73)
which can be developed as

logL(θ;x) =

g∑
k=1

(
log πk

n∑
i=1

zik

)
+

n∑
i=1

g∑
k=1

zik

p∑
j=1

log φ(wji ;µ
j
k, (σ

j
k)2) (74)

with

log φ(wji ;µ
j
k, (σ

j
k)2) =

− 1

2
log(2π)− log σjk −

(wji − µ
j
k)2

2(σjk)2
. (75)

We thus have

logL(θ;x) =

g∑
k=1

(
log πk

n∑
i=1

zik

)
− np

2
log(2π)−

∑
i,k

zik
∑
j

log σjk

− 1

2

∑
i,k

zik
∑
j

(wji )
2 − 2wjiµ

j
k + (µjk)2

(σjk)2
. (76)

To compute the expectation Q(θ;θ(q)) of logL(θ;x) with
respect to p(·|pl,θ(q)) = p(·;θ(q)) ⊕ pl, where θ(q) is the
current estimate of θ at iteration q, we need to compute
the expectations of Zik, Zik(W j

i )2 and ZikW
j
i . For that

purpose, we may first observe that, similarly to the
previous model:

p(x|pl;θ(q)) =

n∏
i=1

p(wi, zi|pl;θ(q)). (77)

Then, using (46b) and (48), we get:

p(wi, zik = 1|pl;θ(q)) =

π
(q)
k plikφ(wi;µ

(q)
k ,Σ

(q)
k )φ(wi;mi, Si)∑

` π
(q)
` pli`

∫
φ(wi;µ

(q)
` ,Σ

(q)
` )φ(wi;mi, Si)dwi

. (78)

From (13a)-(13b), this expression may be simplified as

p(wi, zik = 1|pl;θ(q)) =

π
(q)
k plik

∏
j φ

j(q)
ik φ(wji ;µ

j(q)
ik , (σ

j(q)
ik )2)∑

` π
(q)
` pli`

∏
j φ

j(q)
i`

, (79)

with µ
j(q)
ik , (σ

j(q)
ik )2 and φ

j(q)
ik given, respectively, by (52),

(53) and (56).
Marginalizing out wi in (79), we obtain

P (Zik = 1|pl,θ(q)) =
π

(q)
k plik

∏
j φ

j(q)
ik∑

` π
(q)
` pli`

∏
j φ

j(q)
i`

. (80)

from which we get the expression of tj(q)ik = Eθ(q) [Zik|pl]
as (55). Conditioning (79) by zik = 1 leads to the
following conditional pdf:

p(wi|zik = 1, pl;θ(q)) =

π
(q)
k plik

∏
j φ

j(q)
ik φ(wji ;µ

j(q)
ik , (σ

j(q)
ik )2)

π
(q)
k plik

∏
j φ

j(q)
ik

=∏
j

φ(wji ;µ
j(q)
ik , (σ

j(q)
ik )2). (81)

Consequently,

Eθ(q) [Zik(W j
i )2|pl] =

Eθ(q) [(W
j
i )2|Zik = 1, pl]P (Zik = 1|pl;θ(q)) =

ξ
j(q)
ik t

j(q)
ik (82)

with ξ
j(q)
ik defined by (54) and

Eθ(q) [ZikW
j
i |pl] =

Eθ(q) [W
j
i |Zik = 1, pl]P (Zik = 1|pl;θ(q)) =

µ
j(q)
ik t

j(q)
ik . (83)

The update equations (57)-(59) are obtained as in
the standard Gaussian mixture model by maximizing
Q(θ;θ(q)) with respect to parameters πk, µjk and σjk under
the equality constraint

∑
k πk = 1.
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