N

N

Requirements formalization for systems engineering: an
approach for interoperability analysis in collaborative
process model
Sihem Mallek, Nicolas Daclin, Vincent Chapurlat, Bruno Vallespir

» To cite this version:

Sihem Mallek, Nicolas Daclin, Vincent Chapurlat, Bruno Vallespir. Requirements formalization for
systems engineering: an approach for interoperability analysis in collaborative process model. Work-
shop IWEI International IFIP Working Conference on Enterprise Interoperability 2013, Mar 2013,
Enschede, Netherlands. pp.243-257. hal-00804283

HAL Id: hal-00804283
https://hal.science/hal-00804283

Submitted on 20 Jun 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00804283
https://hal.archives-ouvertes.fr

Requirements for malization for systems engineering:
an approach for interoperability analysisin collaborative
process model

Sihem Mallek, Nicolas Daclifl, Vincent Chapurlat Bruno Vallespif,

L LGI2P - Laboratoire de Génie Informatique et ddnigrie de Production
site de I'Ecole des Mines d’Alés, Parc Scientifigbeorges Besse,
F30035 Nimes Cedex 5, France
{Sihem.Mallek, Nicolas.Daclin, Vincent.Chapugl@mines-ales.fr

2 Université Bordeaux, IMS, UMR 5218, F — 33400 Taterferance
Bruno.Vallespi@ims-bordeaux.fr

Abstract. In the field of requirement’s engineering, writingquirements is a
fundamental stage. Indeed, requirements must beviiiten correctly by the
user, (2) relevant to the studied domain and (8jifigble. In this research
work, the studied domain is related to the vertfaa of interoperability
requirements on a collaborative process model bymdb verification
techniques. In this case, it is necessary to dffex user the mean to write its
own interoperability requirements easily, correethd human readable in order
to be re-writing into properties and to allow theerification. Precisely, this
communication presents the mapping between inteabpity requirements
expressed in SBVR into properties expressed in TCTL.

Keywords: interoperability requirements, formalization, ruteapping, SBVR,
UPPAAL.

1 Introduction

In Systems Engineering domain (SE) [1] as in anyengpecific engineering domain
(mechanical, information systems, mechatronic.. quirments description, analysis
and verification are crucial activities.

On the one hand, a requirement results from stdétels) expectations and
prescriptionsi.e. from stakeholders’ needs analysis. It can be atsluced by
technical, technological or organizational choicesmde by designers. So, a
requirement fixes without ambiguities, in a cohéneay, and even constraints, what
designers have to respect when designing a solufinst, in order to describe a
requirement, these designers can be helped byastiselg.[2] and [3] that propose
reference models and reference vocabularies. Isahee way, they promote splitting
up requirements into various categories. Therebased classically on the distinction
between functional requirements (what a system Stbado?) and non-functional
requirements (how this must be done?). However, réseilting vocabularies and

requirements check lists commonly adopted in the d®Bain are more or less
perfectible when taking into account interoperapitiroblematic.

On the other hand, a requirement can evolve, begfiged or decomposed all
along the System Engineering project. These refamsn or decompositions are
requested, and then done by designers from vadouosins having different points
of view about the system under design. So, theyiregarious domains vocabularies
having to be coherent for describing a requirement.

Last, design activities are considered generallynasliel based or model guided
activities [4]. Indeed, designers’ work is orientaa modeling and analysis activities
of the obtained models. However, verification, awen partial validation, activities
of these models are required for two reasons. ,Firsé necessary to assume the
quality of any model of a system S under desigoteeperforming any analysis. For
instance, analysis can consist to simulate thewehaf S in order to evaluate the
performance and the relevance of a given commuaitairotocol between S and
another system. Second, when verified, a modetdag used in order to check if a
given part of the requirements is really respe¢&dThis is classically the aim of
verification and validation activities. The goal is prove and to justify that the
system meets these requirements based only on snofdtis system we have. There
is obviously no magic bullet to ensure completenafssnodeling and then of the
requested proofs. However, it should help desigt@rsnsure that at least some of
these requirements are met.

The research work herein presented focuses onngyritverifying, partially
validating and justifying requirements in a modaséd design environment by using
various formal techniques.g. those promoted by [6]. This communication applies
and illustrates a research work in order to helgigteers for the writing and proving
interoperability requirements on a sociotechnigaltesm. This one is a collaborative
process aiming to involve various partners fromiows business domains, to share
activities, data and time. By assumption, in these; interoperability requirements
allow us to focus precisely on issues dreaded Bahamplied a non-interoperable
partner involved in a collaborative process wilbser or later lead to malfunctions
and interfacing problems both from technical, oigational or also human points of
view.

As a consequence, this paper is organized as fol®&ction 2 presents the
problematic of writing interoperability requiremenand related state of the art.
Section 3 presents our proposed approach to vaiteatly and easily interoperability
requirements and its re-writing to make their \eaifion possible. Section 4 gives a
case study in order to illustrate the re-writingraéroperability requirements.

2 Stateof theart and problematic

From [7], four categories of interoperability requirementsiéhao be considered
(compatibility, interoperation, autonomy and revgiigy). In this study, an
interoperability requirement can be qualified atemporali.e. it is independent of
time and has to be verified in all steps of systashavior. Conversely, it can be
qualified as temporale. it is dependent of temporal hypotheses and has teerified

only at some stages of the system life cycle. Titoblpm addressed in this article is
triple that means it is necessary to ensure that:

1 I nter oper ability requirements are well written i.e. written correctly. By
hypotheses, interoperability requirements can bem foheterogeneous nature
(functional as non-functional), from various origiffor whom or what purpose has
this requirement is written?) and can appear, somst change or even become
obsolete. For these reasons, natural languagden pfeferred and classically used
for writing them rather than using formal languagigch as logic which can be
difficult to understand by all end users. This iods, however, classical rewording
problems and ambiguities. At the opposite, varibusiness vocabularies and their
respective semantics can be employed to abandoorahatanguage. These
vocabularies help designers not only to write tequirement itself, but also to
decompose or refine it from a more relevant andnédrmanner into a set of sub-
requirements. There exist various approaches allpwo handle these vocabularies.
We can site mental maps and guided interviews antbagnore non formal ones.
KAOS method [8], Boiler plates approaches [9], USase Map notation [10],
standardized requirements check lists [3] or theGRE approach [11] are now
recognized as good methodologies. Last, it seerme adequate here to use standards
and implanted tools which remain conform to théaedards. We propose then to use
Semantic Business Vocabulary Rules (SBVR) [12]Ibtis mention also URN [13]
or GRL [14] as potential candidates.

2. These requirements are good and relevant when regarding the system to
be designed. In this way, requirements have toxpeegsed according to all concepts
used to describe the system to analyze. Thus,neégssary to ensure that the used
language to write requirements is sufficient, cagtgland correctly built to guide the
user in the writing process of its requirements.

3. The system model can allow to check all or part of these requirements
taking into account their nature (functional or ffanctional) and other
characteristics. It is proposed here to make a mgppetween the used language to
describe requirements and the used verificationigcie to analyze them.

This approach is applied, in order to guide designethe definition and the
expression of interoperability requirements. Pdgisthe final goal is to allow
verification of interoperability requirements incallaborative process model using
formal verification techniques. In this case, tb##aborative process is modeled using
the BPMN 2.0 language [15] and has to be translatesing model transformation
rules -into an equivalent model upon which the falrrerification techniques can be
applied as presented in [7]. In this way, one efuked formal verification techniques
is based on model checking [16] using the modetkée UPPAAL [17] to verify
temporal interoperability requirements. As a consage, it is necessary to write
these interoperability requirements into propentith TCTL (temporal logic used by
UPPAAL). However, it is difficult to ensure comptiee and quality of expression of
a property. In addition, the user must have the tenpsexplicit representation
languages properties. As a consequence, it is pegpimn this paper (1) to allow the
user to express correctly its requirements in alabke language, (2) to establish
mapping rules to re-write correctly these interapdity requirements into TCTL
properties and facilitate the use of our tool foe tend user as presented in the
following figure.

| Formaiization — — 1|

o1 a
1/ « 5
Networks of / PP e
Timed Automata || .
L N —£] *. ______

E<> task.Active

Re-writing rules
for mapping

Interoperability
Requirements

> TCTL properties

~- e o =

Fig. 1. From the expression of an interoperability requieat to the corresponding TCTL
property to verify.

Based on these hypotheses, next sections presergroiposed approach of re-
writing interoperability requirements expressedstnuctural language into TCTL
based on the use of mapping rules.

3 Interoperability requirementswriting

As mentioned previously, it is necessary to helpketolders to write their
interoperability requirements with a simplified tarage such as natural language. So,
it is important to offer a language readily undenstable and easily accessible for
each stakeholder. This research work is based eruse of SBVR (Semantic of
Business Vocabulary and Rule) [12]. In fact, SB\MRfines the vocabulary and rules
for documenting the semantics vocabularies, busifeasts and business rules for the
interchange of business vocabularies and businakss ramong organizations and
between software todlsSBVR is based on natural language allowing tdtewr
requirements easier rather than with a more fotargjuage — such as temporal logic
as presented in [18].

The SBVR language allows to define a limited bufisient vocabulary to write
rules and to ensure, further, their verificatioported by a verification technique.
Thus, this vocabulary has to be made in accordaittethe studied domain. In our
case the vocabulary is based on:

1. The modeling language used to model the collabargirocessi.e BPMN
[15]. Thus, the proposed vocabulary has to allowsatering all concepts
included in BPMN (e.g. task, resource, event...). iRstance, each BPMN

object and its attributes are well considered ia BPMNVocabularyas
“terms.

2. The verification techniquée. UPPAAL language [17] used to model the
process behavior as well as properties. Thus, dleahulary has to allow to
consider all the automaton and their states thaesponds to the behavior of
each BPMN objectd(g. task is in state “Working”, resource is in state
“Active”...). As an example, states of an automatea described as in
UPPAALVocabulanas ‘verbs.

3. Interoperability concepts that represent all cotedéipat are not proposed in
the previous defined vocabularies but that allowvtde an interoperability
requirement [19] (aptitude, is_less_than, authtidra..). Depending of the
nature of the interoperability concepts, they candither a term’ or a
“verld’. For instance, the interoperability concept “audie” is an attribute
added to enrich the BPMN language, thus, itde facto a “ternt.
Furthermore, the interoperability concepis 1ess_thah represents an
operator and so avérld’ in InteroperabilityVocabulary

As a consequence the proposed vocabulary can lealiged as shown in the
following formula:

InteroperabilityRequirementVocabulary = {BPMNVoc#dy, (D]
UPPAALVocabulary, InteroperabiltyVocabulary}

Based on this vocabulary, a userg(stakeholder) can write an interoperability
requirement which can be verified on a collabormfivocess model. For instance, the
simplified interoperability requirementt“is possible that a task is working and a
resource is active is built based onBPMNVocabulary (task, resource) and
UPPAALVocabulanfworking, active).

Once the vocabulary is defined, and the SBVR rmlaritten, it is necessary to re-
write the rule into a property expressed in th@dtiproperty verification language
(TCTL in our case). In order to perform this stéps mandatory to dispose of the
SBVR syntax to write an SBVR rule, to dispose af HCTL syntax to write TCTL
property, and finally to establish mapping rule viegn SBVR rule and TCTL
property.

In this way, the following sections describes (1§ syntax of SBVR rules, (2) the
syntax of TCTL property and (3) the mapping ruléseswriting at the current stage
of our research work.

3.1 SBVRrulessyntax

SBVR defines an SBVR rule such asrule always tends to remove some degree of
freedoni [12]. The advantage to write a rule with SBVRtimt it allows to write a
requirement that follow good practices such as SNMARD]. Therefore, SBVR rules
are based orfécts, and ‘facts’ are based ontérms. The syntax of an SBVR rule is
described in this section, without going into detéfior more details, reader may wish
to refer to [12]). Formally, an SBVR rule can betten such as:

Rule ::= modality? p ()]

Where:

Modality = {necessity, possibility, contingencyightion, permission, 3
optionally}

and:

p={fact;, quantifiers, logicalOperation, keyworg, i € [1, n], j, k, | € [0, m], 4
n, me A

with:

- facte Fact, Factc InteroperabilityRequirementVocabulary

- quantifier € Quantifier, Quantifier = {each, some, at least,mbst,
exactly, at least n and at most n, more than one}

- logicalOperatione LogicaOperation, LogicalOperation = {it is not
the case that, and, or, but not both, if p theif gnd only if, neither,
nor, whether or not}

- keyworde Keywords, Keywords= {the, a, an, another, a giviat,
who, of, what}

Following the previous defined SBVR rule syntaxe #ig. 2 describes a given rule
that is conform to the SBVR syntax.

taskis_working resourcas_active

\ X J |\) J (X J
modality J fact / \ fact,

keyword logicalOperatiop keyword,
\
Y
proposition (p)

J

Fig. 2. Syntax of SBVR rule.

3.2 TCTL property syntax

A property in UPPAAL is written using a fragment tfie TCTL logic [17].
Therefore, the TCTL syntax is presented in thigiseavithout going into details (for
more details, reader may wish to refer to [17])rRally, a TCTL property can be
written respecting the following syntax.

Property ::= quantifierp | p— q 5)
Where:
Quantifier = (pathQuantifier, temporalOperator) (6)
With:
- pathQuantifier ={[], <>}

- temporalOperator {3, v}
- leadTo ={}
and
p, g = expression (7

An expression (p) is written according to existengtomaton and their states and
variables such as presented in the following figuith the automaton of a task which
has 4 states (Waiting, Start, Working and Stop) amd variables (timeMin and
timeMax) used in a clock T.

States Variables

7 =

Waiting Start T——timeMir Working
@ O : O
ANy A4

Fig. 3. Task automaton in UPPAAL.

Following the previous defined TCTL property syntthe Fig. 4 describes a given
property using TCTL logic.

E<> task.Working and resource.Active
_Y_J \ Y)

quantifier expression (p)

Fig. 4. Syntax of TCTL property in UPPAAL.

3.3 Mappingrulesfrom SBVR ruleto TCTL property

According to the syntax previously defined (SBVRergsyntax and TCTL property
syntax), it is possible to observe that an SBVR and a TCTL property have both a
proposition/expression which can be precede by datlitg in the case of an SBVR
rule and by a quantifier in the case of TCTL prdyemn this way, it is proposed to
develop two mappings to re-write SBVR rules intoTLCproperty. Thus, the first
mapping allows to re-write modality into quantifidr this one exists or if it is
possible. Then, the second mapping allows to réeew8BVR rule proposition into
TCTL property expression.

For the first mapping, it is possible to highlighat the modality and the quantifier
are issued from the modal logic [21]. From this sidaration and the definitions of
modalities from SBVR rules and quantifiers from TICproperties, it is proposed to
develop the following mapping as presented in thbld 1.

Tablel. Mapping between SBVR modality and TCTL quantifier.

SBVR modality Definition TCTL quantifier Definition

It is necessary that Necessity. The meaning of Ats> Inevitable. The
embedded logical formulation is proposition will
true in all possible worlds inevitably become true.

Itis obligatory that ~ Obligation. The meaning 08 ifA[] Invariantly. The
embedded logical formulation is proposition is true in
true in all acceptable worlds all reachable states.

It is permitted that Permission. The meaning of Ef| Potentially. The
embedded logical formulation is proposition is
true in some acceptable worlds. potentially always true.

It is possible that Possibility. The meaning of iEB<> Reachability. It is
embedded logical formulation is possible to reach a
true in some possible worlds. state in which the

proposition is satisfied

Furthermore, an SBVR proposition can be written ngsikeywords
logicalOperations and facts that are based omerms and verbs As presented
previously, interoperabilityRequirementVocabularwas defined according to (1)
BPMN language, (2) the used verification techniqPPAAL) and (3), the
interoperability concepts. In this way, in order gerform the second mapping, a
giventerm corresponds to an automaton or variable. Furthexy@rerb corresponds
to a state of an automaton or an operator. Theneakthis mapping is related to the
transformation from BPMN to a Network of Timed Auatata where all concepts
from BPMN related to the behavior of the process taansformed into automaton
such as (resource, task...) with several states septiag the evolution of the
process. Finally, we define thatl@gicalOperatorcorresponds to a logical operator
into TCTL as presented Table 2. It is to note Kegtwordsare not considered in the
following mapping.

Table2. Mapping between SBVR proposition and TCTL propositio

SBVR proposition TCTL proposition

term automaton or variable
verb state or operator
logicalOperator logical operator

For instance, according to the presented syntateSBY¥R rule and TCTL
property, a mapping can be done to re-write thedodohg interoperability
requirements It is possible that a task is_working and a reseuis_active and a
clock is_less_than timeMax and clock is_greatemttimeMiri. This requirement is
expressed as an SBVR rule based on a defined viacgtand can be re-written into
TCTL such as E<> task.Working ans resource.Active and T<timeMard
T>timeMin". Indeed, considering and respecting the proposapgping the modality
is re-written into a quantifier and the SBVR rul®position is re-written into a TCTL
property expression as presented in the followiggré.

modality 5

proposition (p)i

SBVR rule decomposition
(source)

TCTL property
decomposition (tar get)

E<>

task (term)
is_working(verb)

resourceterm)
is_active(verb)

clock (term)
is_less_than(verb)
time_max(term)
is_greater_than(verb)
time_min(term)

task. (automata)
Working (state)

and

resource. (automata)
Active (state)

T (variable)

< (operator)
timeMax (variable)
> (operator)
timeMin (variable)

quantifier

expression (q)

Fig. 5. Mapping between an SBVR rule and a TCTL property.

The proposed mapping, in its current stage, isdichto re-write an SBVR rule into
a TCTL property. In the case of another expressioan SBVR rule, this one can be
verified with another verification tool such asr fexample, COGITANT [22] based
on Conceptual Graphs [23] in the case of a-tempogglirements or with the
expertise for requirements that cannot be verifiesing formal verification
techniques. In fact, the objective of this reseawvohk, in a first time, is to ensure the
verification of 15-20% of interoperability requirems thanks to formal verification
techniques.

To illustrate the proposed approach, an applicatése is given in next section to
re-write interoperability requirements expressedBVR rules into TCTL to make
their verification possible using model checker BRR.

4 Application case: drug circuit process

The drug circuit is a critical process.§.it is mandatory to provide the right drug to
the right patient in time and in right measurejdesa hospital. Although this process
seems simple, its good execution depends primarilgood interactions among its
participants and precisely interactions betweeowees used by the process. Thus,
this process has to closely involve stakeholdemnimancing pharmacy practices and
strengthening the role of the Medicine Committeardcunit). A drug circuit is
typically composed of three main steps such ascppi®n, dispensation, and
administration performed by both the care unit #mel pharmacy following several
tasks. These tasks and their interactions on thg dircuit are modeled thanks to a
BPMN 2.0 modeler, as represented in the followiggre.

Pharmacy

P
(To give opinion To product and
— and analvsis control

S T

/
/
/
/
/
/
/
/
) /
(e —
o ‘ |/
(To prescribe - To administrate r< ’
e druas ‘ ‘ to the ent ‘

Care Unit

Fig. 6. Drug circuit process modeled with BPMN 2.0.

To demonstrate the usability of this approachsipioposed here to verify the
following temporal interoperability requirementspegssed by the user into natural

language.
1. “Medical practitioner is available to write a meditprescription when it
is required.”
2. “Nurses confirm to the pharmacy the administratioh drugs to the
patient.”

To make verification of these requirements possilhlés proposed, (1) to write
them into SBVR rules in order to (2) re-write thesees into TCTL properties
respecting the presented mapping rules.

Let us consider the first interoperability requiesth This requirement considers
the task “To prescribe drugs” and the resource ‘elddpractitioner”. As a
consequence, the end user can easily write or ehdimséo an interoperability
requirement repository) an SBVR rule which corregfsoto its initial requirement.
Thus, the corresponding SBVR rule is expressed asch task
is_starting resourceis_availablé. Furthermore, the proposed approach offers
the possibility to instantiate a rule with the cidesation of elements that are present
in the process. This one is then instantiated thighconsidered task and resource. For
instance, it can be instantiated such #sis' possible that alo prescribe drugs
is_starting and a/ledical Practitioner is_availablé.

In the same way, the second requirement is expiesgl the following SBVR

rule: “ task is_stop task is_starting. Then, it is
instantiated with the corresponding tasks: “To adstiate to the patient” and “To
supply”.

After the instantiation, the mapping can be dongebTCTL properties that can be
verified using UPPAAL on the equivalent behaviordabas a Network of Timed
Automata. For information, the previous SBVR rulase written into TCTL

properties such as:
1. “E<> Topresicibedrugs_.Start and MedicalpractitioAgailable”

“E<> Toadministratetothepatient_.Stop imply Tosyppbtart”
The different steps of the approach supported bgptication tool are presented

2.
in the following figure.

1} »

uonenuessul 13qo ppy

uoljeluelsul
J03|nsay

A

flqeiiene™s1 1auonnde1gjernpaly @ pue burieis™si sbnup aqudsaid o e jeyy 3jqissod sty | o

:uonenuelsu Ny
3|qejieae”sI 02210531 e pue BuipieysTsi gyse) e Jeyy 3|qissod si1 3
jenuelsul 03 3Ny

|apow
ssa20.d aA11BI0qE||0D

o 3y} Woly 91N0saL
© JO uoljeljuelsu|

.

|apow ssazoud
\ SA11210QR[|0D BY] WO
. yse1e o uonenuelsu

-~ Bupsqinds

sBnup jeqo6 anquisip o1)
s6nip aaeuiwou anquisip o))

|013u0> pue pnposd 0 ()

Apadoud 7101 out
Suiddew ay3 jo 3nsay
PPy A
IV P3P0
anowy ¥
Owees] | N o ___ o dum-e[] <
Siaeneny ouonmesdeApoW pue yars” stnipoquosaidol <>3 | v e
eI Aduwi doyg™ 1 <>3 [
|esodway[] »
Apadoig

N

[DOIP2UL D 2JL4M O] 2]qDJIDAD

SN A siskjeue pue uoluido anb oy ()
,:-// i 10583 103 3N|eA @ 35004
\
\
AN
N // 3|nJ 33enueysy[
o
\ T o
4 v [g [] »
\ :
- X N |esodwy-e <
\ doysTRFEE ¢
\ Poysuy s 535014 ¢ 1
. Bupseis s 5T 1 00js7S SERNe
= o N T A e
| /gerese™sy 3510531 © puE Bugseis S F5e1 ¢ 1511 3| al
[&.&lﬂ 5013 2/p0e7S 0531 Buryiom™sI 563 © | by
v |esodwiay 7
poanbaT 3|0 YAGS
1 71 uay m uondosaad 53|N1 YAGS 3500YD)

St yuopad [po1p \F\

=Enad_.=!_un=.n_ :weibeip Pajps

Bloig| afoid paps

wesbelp NN dg 35004D

Fig. 7. From the instantiation of SBVR rules to the equimalECTL properties to verify.

Finally, the verification (checking task) of botkequirements can be done and
gives the result that the two properties are satldfy the collaborative process model
as presented on the following figure.

__

/f Temporal Verification Result §2

Audited diagram: DrugCircuit.bpmn 2 satisfied, 0 unsatisfied (For 2 property checked)

1

re Unit

N\ _ 1 Property Name Verification Result
(> Topescibe —————
~— druas 1 @ E<> Toprescribedrugs_.Start and MedicalPractitioner.Available satisfied

'3 R E<> Toadministratetothepatient_.Stop imply Tosupply_.Start satisfied

Fig. 8. Results of TCTL properties verification

Finally, it is to note that the mapping and theifieation steps are not visible to
the end user.

5 Conclusion

In Systems Engineering domain, requirements engimpeis one of the most
important step and precisely in writing requirenserihdeed, before any conception
of a system, it is necessary to dispose of requrgsnthat are (1) well written, (2)
good and relevant to the studied domain and (3ifialele. In our research work,
these characteristics are applied in the fieldodfaborative process analysis to verify
interoperability requirements.

One of the most challenges is to allow the userhe do not necessarily have
knowledge about the language used by the formafication techniques - to write
interoperability requirements correctly. The useadnguage such as SBVR should
help and guide these users in writing their requéets and overcome the problems
of ambiguity, redundancy and inconsistency ... plesented approach, in its present
development, provides a set of interoperabilityesuthat are consistent with a
vocabulary which currently includes approximatehedundredterms and “verbs.
This approach also allows (1) to instantiate theroperability rules according to the
studied collaborative process model and (2) to migevthem - using mapping rules
established and demonstrated in this communicatioto properties in order to make
their verification possible using UPPAAL. Currentlthe audit coverage of
verification using formal verification techniquess i20% of all identified
interoperability requirements.

Although the proposition of a set of interoperapiliules (with SBVR), that the
user can choose, facilitates the expression ofjainement and its verification, in the
future, the goal is to enable the user to writedly its own interoperability rules
with SBVR using the defined vocabulary. Furthermduéure works are related to the
proposition of mapping rules to re-write interogelity requirements expressed with
SBVR into Conceptual Graphs to make the verificatid a-temporal requirements
possible using the tool COGITANT.

References

1. Guide to the Systems Engineering Body of Knowled§&BRoK), version 1.0, see
http://www.sebokwiki.org/index.php/Main_Pafast visited 16/11/2012)

2. ANS/EIA 632 Standard: Processes for Engineeringsae® (1998)

3. ISO/IEC 15288:2008(E) / IEEE Standards 15288.2088stems engineering — System life
cycle processes (2nd edition), February (2008)

4. Estefan, J. A.: Survey of model-based systems ergimg (MBSE) methodologies. Incose
MBSE Focus Group, 25, 1-70 (2007)

5. Grady, J.O.: System Verification: proving the desgplutions satisfies the requirements,
Academic Press, Elsevier editor, ISBN: 978-0-12-3740 (2007)

6. Dasgupta, P.: A roadmap for formal property vesifion, Springer, ISBN: 978-90-481-
7185-9 (2010)

7. Mallek, S., Daclin, N., Chapurlat, V.. The applicat of interoperability requirement
specification and verification to collaborative pesses in industry. International Journal
Computers in Industry, COMIND, May (2012)

8. Van lamsweerde, A., Dardenne, A., Delcourt, B., BybiF.: The KAOS Project:
Knowledge Acquisition in Automated SpecificationQdftware, AAAI Spring Symposium
Series, American Association for Artificial Intgjénce, (1991)

9. Fanmuy, G., Llorens, J., Fraga, A.: Requirement#ieation in the industry, CSDM 2011
10. Use Case Map (UCMm) notation, available at:
http://jucmnav.softwareengineering.ca/ucm/bin/vig@M/AboutUseCaseMaps (last

visited 16/11/2012)

11. REGAL: Requirements Engineering Guide for All, bupligable to Systems Engineering,
2008 (access granted to any INCOSE membbtta/www.incose.org/REGAL/

12. Open Management Group (OMG): Semantics of Businexsabulary and Business Rules
(SBVR) — version 1.0, available online Jattp://www.omg.org/spec/SBVR/1.0/PDfast
visited, November 12 2012), January (2008)

13.1tu-T Z.151 - Telecommunication Standardizationt8e©f Itu: Series Z: Languages And
General Software Aspects For Telecommunication eéByst - Formal description
techniques (FDT) - User Requirements Notation (URManguage, Definition
Recommendation (2008)

14. Goal-oriented Requirement Language, available lattp://www.cs.toronto.edu/km/GRL/
(last visited 16/11/2012)

15. Open Management Group (OMG): Business Process Madél Notation (BPMN) -
version 2.0, available online athttp://www.omg.org/spec/BPMN/2.0(last visited
16/11/2012), January®32011)

16. Edmund, M., Clarke, Jr., Grumbereg, O., Doron ANadel checking. The MIT Press
(1999)

17.Behrmann, G., David, A., Larsen, K. G.: A tutorial bippaal. Department of Computer
Science, Aalborg University, Denmark (2004)

18.

19.

20.

21.

22.

23.

Mallek, S., Daclin, N., Chapurlat., V.: Formalisati@and Verification of Interoperation
Requirements on Collaborative Procesd@ IFAC World Congress (IFAC'11Milano,
Italy, (2011)

Chen, D., Dassisti, M., Elveaeter, B.: Enterpriserioperability framework and knowledge
corpus — final report. Interop deliverable DI.3,yna007)

Mannion, M., Keepence, B.: SMART Requirements. SafevEngineering Notes Vol 20
N2. April (1995)

Zalta, E., N.: Basic Concepts in Modal Logic, Center the Study of Language and
Information, Stanford University (1995)

Cogitant: CoGITaNT Version 5.2.0, Reference Manuatp(//cogitant.sourceforge.net
(2009)

Sowa, J.F.: Conceptual Graphs. IBM Journal of ReseardiDevelopment, (1976)

