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Uniqueness of positive periodic solutions with some peaks.

Geneviève Allain. Anne Beaulieu.

March 25, 2013

Abstract. This work deals with the semilinear equation −∆u + u − up = 0 in
R
N , 2 ≤ p < N+2

N−2 . We consider the positive solutions which are 2π
ε
-periodic in x1 and

decreasing to 0 in the other variables, uniformly in x1. Let a periodic configuration of
points be given on the x1-axis, which repel each other as the period tends to infinity. If
there exists a solution which has these points as peaks, we prove that the points must
be asymptotically uniformly distributed on the x1-axis. Then, for ε small enough, we
prove the uniqueness up to a translation of the positive solution with some peaks on the
x1-axis, for a given minimal period in x1.

1 Introduction.

We consider the equation

−∆u+ u− u
p
+ = 0 in

S1

ε
× R

N−1 (1.1)

where u+ = max(u, 0).

By S1

ε
, we mean that

u(x1 +
2π

ε
, x′) = u(x1, x

′)

and that
∂u

∂x1
(x1 +

2π

ε
, x′) =

∂u

∂x1
(x1, x

′).

We suppose that
u(x1, x

′) → 0, as |x′| → 0, uniformly in x1.

If u > 0, we know that u is radial and decreasing in x′ ([7], [2]). We consider the
subcritical case

2 ≤ p <
N + 2

N − 2
for N ≥ 3, p ≥ 2 for N = 2.

We assume that p ≥ 2 instead of p > 1 for some technical reasons.
Let U be the groundstate solution in R

N . It verifies

−∆U + U − Up = 0 in R
N .

It is known that U is positive, radial and tending to 0 at infinity. Moreover the behavior
at infinity is

|x|N−1
2 e|x|U(x) → L0 as |x| → +∞
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and

|x|N−1
2 e|x|

∂U

∂x1
(x) → L1 as |x| → +∞, x1 > 0,

for some positive limits L0 and L1. (see [9].)
Several recent articles deal with the construction of positive solutions for the equation

−∆u+ u− up = 0 in R
N .

Let us refer to [5], [10], [6].
Let us call the Dancer solution the positive solution of (1.1) which is 2π

ε
-periodic in x1,

tending to 0 as |x′| → +∞, even in x1 and decreasing in x1 in [0, π
ε
]. This solution,

that we call uD was constructed in [5] by a bifurcation from the ground-state solution in
R
N−1. The Dancer solution exists when 0 < ε < ε⋆, where ε⋆ is a known threshold. We

have
‖uD − U‖L∞(]−π

ε
,π
ε
[×RN−1) → 0 as ε→ 0. (1.2)

For all x′ the fonction x1 7→ uD(x1, x
′) reaches its maximum value at the points l2π

ε
, l ∈ Z

and reaches its minimum value at the points lπ
ε
.

Now, for any ε > 0, for any k ≥ 2, let aiε, i = 1,...,k, be k points of [−π, π[ which are
such that

ai+1
ε − aiε
ε

→ +∞ as ε→ 0, i = 0, ..., k + 1. (1.3)

where we denote a0ε = akε − 2π and ak+1
ε = a0ε + 2π.

Let us denote

Ui(x1, x
′) = U(x1 −

aiε
ε
, x′).

Let us give the following

Definition 1.1 The solution u of (1.1) admits the points a1ε
ε
,...,a

k
ε

ε
as peaks if a1ε

ε
,...,a

k
ε

ε

are k points of [−π
ε
, π
ε
[ verifying (1.3) and if

‖u−
k

∑

i=1

Ui‖L∞(]−π
ε
,π
ε
[×RN−1) → 0 as ε→ 0. (1.4)

Let us remark that by the Maximum Principle, any solution of (1.1) verifying (1.4) needs
to be positive.
We can ask whether for any configuration of points in a period which repel each other in
the sense of (1.3), there exists a solution having these points as peaks. We give a negative
answer. In particular it is not possible to consider peaks which repel each other with an
infinitely small speed wrt the period.
Our main result is the following uniqueness result for the small values of ε.

Theorem 1.1 Let u be a solution of (1.1) that admits the points a1ε
ε
,...,a

k
ε

ε
in [−π

ε
, π
ε
[ as

peaks in the sense of the definition 1.1. Then, for ε small enough there exists αε → 0
such that

u(x1, x
′) = uD(x1 −

a1ε
ε

− αε, x
′)
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where uD is the Dancer solution of period 2π
kε
.

We can write uD as

uD(x) =
∑

l∈Z

U(x1 +
2lπ

kε
, x′) + ψ(x) (1.5)

and if we define

dx = dist(x,∪l∈Z{(
2lπ

kε
, 0)}),

then for every 0 < η′ ≤ min{2 − η, 2(p − 1 − η)}, there exists C independent of ε such
that

(|ψ| + |∇ψ|)(x) ≤ Ce−ηdxe−
η′π
kε (

π

kε
)
1−N

2 . (1.6)

The most involved part of the proof of Theorem 1.1 is to prove that the peaks are
asymptotically uniformly distributed. More precisely, we will begin by the proof of the
following

Proposition 1.1 Let u be a solution of (1.1) admetting the points a1ε
ε
,...,a

k
ε

ε
in [−π

ε
, π
ε
[

as peaks.
Then we have necessarily

ai+1
ε − aiε
ε

− 2π

kε
→ 0, i = 0, ..., k + 1. (1.7)

In [10], part 3, Malchiodi gives a construction of a periodic solution with one peak,
using a Lyapunov-Schmitt method.

Let us quote the following

Proposition 1.2 (Malchiodi, [10], Corollary 3.2.) For 1 < p < N+2
N−2 , there exists a

solution of (1.1), even in x1, of the form

v =
∑

i∈Z

U(x1 + i
2π

ε
, x′) + w (1.8)

where
‖w‖H1(]−π

ε
,π
ε
[×RN−1) → 0

and
|w(x)|+ |∇w(x)| ≤ Ce−

π
ε
(1+ξ0)e−η0dist(x,∪l∈Z{(

2lπ
ε

,0)}) (1.9)

for some ξ0 > 0 and η0 > 0.

This solution is the Dancer solution, in consideration of the uniqueness of the even
2π
ε
-periodic solution which verifies (1.2) (see [4], p. 969). In that previous work, the

functions are assumed to be even in x1. In ours, we have to overcome some difficulties
arising from the lack of evenness. Finally, we prove that the solution is even.

In the course of the proof of Theorem 1.1, we will consider an approximate solution
of (1.1).

3



Let us denote

Ui,l = U(x1 −
aiε + 2πl

ε
, x′), i = 1, ..., k, l ∈ Z,

then
Ui,0 = Ui.

Let us define

vi =
∑

l∈Z

Ui,l and uε =
k

∑

i=1

vi.

We will study the linearized operator about this approximate solution, namely

L = −∆+ 1− pup−1
ε .

We will prove that the linearized operator L has no zero eigenvalue and we will give an
estimate of the eigenvalues which tend to 0.
The operator (−∆+I)−1

L is an operator of H1(S
1

ε
×R

N−1) into itself of the form id−K,
where K is a compact operator. So (−∆+ I)−1

L is a Fredholm operator of index 0.
We consider the eigenvalues of the operator L, in the following sense

there exists ξ ∈ H1(S
1

ε
× R

N−1), ξ 6= 0, verifying Lξ = λ(−∆+ 1)ξ.

The operator L has a countably infinite discrete set of eigenvalues, λi, i = 1, 2.... If we
designate by Vi the eigenspace corresponding to λi, by H

1 the space H1(S
1

ε
×R

N−1) and

by L2 the space L2(S
1

ε
× R

N−1), then

λi = inf{< Lu, u >L2

< u, u >H1

, u 6= 0, < u, v >H1= 0,∀v ∈ V1 ⊕ ...⊕ Vi−1}, for i ≥ 2, (1.10)

and

λ1 = inf{< Lu, u >L2

< u, u >H1

, u 6= 0},

(see [8]). Let us quote the following result concerning the eigenvalues of the operator

−∆ + 1 − pUp−1 (with the definition above, with R
N instead of S1

ε
× R

N−1 and when
k = 1 and a1ε = 0)

Theorem 1.2 The first eigenvalue of −∆+ 1 − pUp−1 in R
N is 1− p. The eigenspace

associated with the eigenvalue 0 is spanned by the eigenvectors ∂U
∂xj

, j = 1, ..., N .

This theorem follows from [1].
Let us define

σi =
1

2
dist(

aiε
ε
,∪j 6=i,j=0,...,k+1{

a
j
ε

ε
}) i = 1, ..., k. (1.11)

and

σ =
k

min
i=1

σi.

Let us summarize the properties of the eigenvalues and of the eigenvectors of L in the
following
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Theorem 1.3 (i)The eigenvalues of L are less than 1. There exists a sequence (εm)m∈N

such that each eigenvalue of L tends either to 1 or to an eigenvalue of −∆+ 1− pUp−1

as εm → 0.

(ii) Let F be the vector space associated with the eigenvalues tending to 0. Then the
dimension of F is k and F is spanned by k eigenvectors ϕi, i = 1, ..., k such that there
exist k real numbers αi 6= 0, independent of ε, verifying

< ϕi, ϕj >H1(S
1

ε
×RN−1)

= 0 i 6= j ; ‖ϕi‖∞ = 1 (1.12)

and

‖ϕi − αi
∂vi

∂x1
‖
Lq(S

1

ε
×RN−1)

+ ‖∇(ϕi − αi
∂vi

∂x1
)‖

Lq(S
1

ε
×RN−1)

→ 0 (1.13)

for all 1 ≤ q ≤ ∞.

(iii) If λi(εm) → 0, then λi(εm) 6= 0 and

λi(εm)e−2σiσ
1−N

2
i → H (1.14)

where H 6= 0.

The paper is organized as follows. In section 2, we study the eigenvalues of the
operator L which tend to 0 and the associated eigenvectors. We give the proof of Theorem
1.3. In section 3, we use a Lyapunov-Schmitt method to give the proof of Proposition
1.1. In section 4, we conclude the proof of Theorem 1.1.

In sections 2 and 3, we will refer to some technical results, which are reported in the
appendix (section 5).

2 An analysis of the eigenvalues.

In this part, we prove the theorem 1.3.

Proof of (i).

Let ϕ be such that

Lϕ = λ(−∆ϕ+ ϕ) in S1

ε
× RN−1.

We suppose that there exists c such that ϕ(c) = 1 and that ‖ϕ‖∞ = 1. We denote

φ(x) = ϕ(x+ c).

By standard elliptic estimates, there exists a subsequence such that φ→ φ uniformly on

the compact sets of RN . Let us suppose that λ 6→ 1. First, if |c − (a
i
ε

ε
, 0)| → +∞ for all

i, then
−∆φ+ φ = 0 in R

N ; ‖φ‖∞ = φ(0) = 1.
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This is in contradiction with the maximum principle, so this case does not occur. So

there exists c and i such that (c− (a
i
ε

ε
, 0)) → c. Then,

(−∆+ 1− pUp−1(x+ c))φ = λ(−∆φ+ φ) in R
N (2.15)

and φ is non zero and even in x′. Thus λ is an eigenvalue of −∆+ 1− pUp−1.
By a diagonal process, we can construct a subsequence (εm) such that any eigenvalue of
L which does not tend to 1 converges to an eigenvalue of −∆+ 1− pUp−1.

Proof of (ii).

We divide the proof into three parts.
Firstly, let us prove that if ϕ ∈ F\{0}, then there exists I ⊂ {1, ..., k} and some real
numbers αi 6= 0 and independent of ε such that

‖ϕ−
∑

i∈I

αi
∂vi

∂x1
‖∞ + ‖∇(ϕ−

∑

i∈I

αi
∂vi

∂x1
)‖∞ → 0 (2.16)

We follow the proof of (i) to get (2.15) with λ = 0. Then we can denote c instead of
(c, 0) ∈ R× R

N−1 and there exists some real number α 6= 0 such that

φ(x) = α
∂U

∂x1
(x1 + c, x′).

We get

ϕ(x+ c)− α
∂U

∂x1
(x+ c) → 0 uniformly on the compact sets,

that is

ϕ(x+ c)− α
∂U

∂x1
(x+ c− aiε

ε
) → 0 uniformly on the compact sets,

that leads to

ϕ(x) − α
∂Ui

∂x1
(x) → 0 uniformly for x such that (x1 − aiε

ε
) is bounded.

Finally for each i, either there exists αi 6= 0 such that

(ϕ− αi
∂vi

∂x1
) → 0 uniformly for x such that (x1 − aiε

ε
) is bounded

or
ϕ→ 0 uniformly for x such that (x1 − aiε

ε
) is bounded.

Moreover, the first case occurs for at least one i. By the beginning of the present proof,

ϕ(x) → 0 if |x− (a
i
ε

ε
, 0)| → +∞ ∀i.
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Thus there exists J ⊂ {1, ..., k} and αi 6= 0 and independent of ε such that

‖ϕ−
∑

i∈J

αi
∂vi

∂x1
‖∞ → 0. (2.17)

We deduce that

‖∇(ϕ−
∑

i∈J

αi
∂vi

∂x1
)‖∞ → 0 (2.18)

by standard elliptic arguments. Since the functions ∂vi
∂x1

are linearly independent, we
deduce that

dimF ≤ k.

Secondly, let us assume that ϕ1 ∈ F and ϕ2 ∈ F are such that

< ϕ1, ϕ2 >H1(S
1

ε
×RN−1)

= 0 and ‖ϕ1‖∞ = ‖ϕ2‖∞ = 1.

We write

ϕ1 =
∑

i∈J1

αi
∂vi

∂x1
+ o(1) and ϕ2 =

∑

i∈J2

βi
∂vi

∂x1
+ o(1)

in the sense of (2.17) and (2.18). Taking the scalar product in H1 we obtain

0 =
∑

i∈J1,j∈J2

αiβj <
∂vi

∂x1
,
∂vj

∂x1
>H1 + < o(1),

∑

i∈J1

αi
∂vi

∂x1
>H1 + < o(1),

∑

i∈J2

βi
∂vi

∂x1
>H1

+ < o(1), o(1) >H1 .

In view of Proposition 5.7, the Lebesgue Theorem leads to

0 =
∑

i∈J1∩J2

αiβi‖
∂U

∂x1
‖2H1(RN ). (2.19)

We deduce that J1 ∩ J2 = ∅.

Thirdly, let us assume that F 6= {0}. We define a finite set J and eigenvalues λj ,
j ∈ J such that λj(εm) → 0. Let ϕj be an eigenvector associated with λj . Let us assume
that

< ϕi, ϕj >H1([−π
ε
,π
ε
]×RN−1)= 0 i 6= j ; ‖ϕi‖L∞([−π

ε
,π
ε
]×RN−1) = 1.

We write
∂vi

∂x1
=

∑

j∈J

cjϕj + ξ ; < ξ,ϕj >= 0 for j ∈ J.

We have

Lξ = L
∂vi

∂x1
−

∑

j

cjλj(−∆ϕj + ϕj). (2.20)
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In view of (5.61), we deduce that

‖ξ‖∞ ≤ C‖Lξ‖∞

and consequently that
‖ξ‖∞ → 0.

We conclude that there exists at least one j such that cj 6→ 0 and such that ϕj((
aiε
ε
, 0)) 6→

0. By the second step, this j is unique. Let us call it i and then we have that

∂vi

∂x1
− ciϕi → 0 if |x1 − aiεm

εm
| is bounded.

Now, since ‖ ∂vi
∂x1

‖∞ 6→ 0, we deduce that F 6= {0} and that dimF ≥ k. Consequently

dimF = k

and we define (ϕ1, ..., ϕk) a basis of F verifying (1.12) and such that

‖ϕi − αi
∂vi

∂x1
‖∞ + ‖∇(ϕi − αi

∂vi

∂x1
)‖∞ → 0

with αi 6= 0, independent of ε.
Finally we write

∂vi

∂x1
=

k
∑

j=1

cjϕj + ξ ; < ξ,ϕj >H1= 0 for all j (2.21)

and ci 6→ 0 and ‖ξ‖∞ → 0. For each j 6= i we have, by our convention, ϕj((
a
j
ε,0
ε
)) 6→ 0.

Since ∂vi
∂x1

and ξ tend to 0 at a
j
ε

ε
, we infer that

cj → 0 for all j 6= i.

Moreover, by Proposition 5.7, ϕi is bounded in Lq and ‖ξ‖Lq → 0 for all q ≥ 1, that
gives (1.13).

Proof of (iii).

Let us adopt the case where k ≥ 2 and where |π
ε
−σi| → +∞. Otherwise, Proposition

1.1 is irrelevant, and the estimate of λi is true, but must be done for the period 4π
ε
instead

of 2π
ε
.

We have by (2.21)
∫

L
∂vi

∂x1
ϕidx = ciλi‖ϕi‖2H1

and 1
|ci|‖ϕi‖2

H1
is bounded from below, in view of (5.77). We write

∫

L
∂vi

∂x1
ϕidx =

1

ci

∫

L
∂vi

∂x1

∂vi

∂x1
dx−

∫

L
∂vi

∂x1
(
1

ci

∂vi

∂x1
− ϕi)dx
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Let us define, for j = 0, ..., k + 1

Ωj = {x ∈ [−π
ε
,
π

ε
]× R

N−1; dist(x,∪k+1
l=0 {(

alε
ε
, 0)} = |x− (

a
j
ε

ε
, 0)|}. (2.22)

We have

[−π
ε
,
π

ε
]× R

N−1 =
k+1
⋃

i=0

Ωi.

We write

< L
∂vi

∂x1
,
∂vi

∂x1
>L2= p

∑

l

∫

Ωi

(Up−1
i,l − up−1

ε )
∂vi

∂x1

∂Ui,l

∂x1
dx (2.23)

+

k+1
∑

j=0j 6=i

p
∑

l

∫

Ωj

(Up−1
i,l − up−1

ε )
∂vi

∂x1

∂Ui,l

∂x1
dx.

We are going to prove on one hand that
∫

Ωi

(Up−1
i − up−1

ε )
∂vi

∂x1

∂Ui

∂x1
dx = (1− p)

∫

Ωi

U
p−2
i (

∑

j 6=i

vj)(
∂Ui

∂x1
)2dx+ o(e−2σiσ

1−N
2

i ) (2.24)

and on the other hand that

k+1
∑

j=0j 6=i

∑

l

|
∫

Ωj

(Up−1
i,l − up−1

ε )
∂vi

∂x1

∂Ui,l

∂x1
dx|+

∑

l 6=0

|
∫

Ωi

(Up−1
i,l − up−1

ε )
∂vi

∂x1

∂Ui,l

∂x1
dx| (2.25)

= o(e−2σiσ
1−N

2
i ).

Using Lemma 5.2, we write, if p > 2,
∫

Ωi

(Up−1
i − up−1

ε )
∂vi

∂x1

∂Ui

∂x1
dx = (1− p)

∫

Ωi

U
p−2
i (

∑

j 6=i

vj +
∑

l 6=0

Ui,l)
∂vi

∂x1

∂Ui

∂x1
dx

+O(

∫

Ωi

(
∑

j 6=i

vj +
∑

l 6=0

Ui,l)
min{p−1,2} ∂vi

∂x1

∂Ui

∂x1
dx)

while, if p = 2
∫

Ωi

(Up−1
i − up−1

ε )
∂vi

∂x1

∂Ui

∂x1
dx = (1− p)

∫

Ωi

U
p−2
i (

∑

j 6=i

vj +
∑

l 6=0

Ui,l)
∂vi

∂x1

∂Ui

∂x1
dx.

Now, we use Proposition 5.9 to get, when p− 1 > 1
∫

Ωi

(
∑

j 6=i

vj +
∑

l 6=0

Ui,l)
min{p−1,2} ∂vi

∂x1

∂Ui

∂x1
dx = O(e−2σi min{p−1,2}σ

(1−N) min{p−1,2}
2

i ).

Since π
ε
− σi → +∞, we have

e−
2π
ε = o(e−2σi).
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Using Proposition 5.9 again, we obtain for all p ≥ 2

∫

Ωi

U
p−2
i (

∑

l 6=0

Ui,l)
∂vi

∂x1

∂Ui

∂x1
dx = o(e−2σiσ

1−N
2

i )

and
∫

Ωi

U
p−2
i (

∑

j 6=i

vj)
∂vi

∂x1

∂Ui

∂x1
dx =

∫

Ωi

U
p−2
i (

∑

j 6=i

vj)(
∂Ui

∂x1
)2dx+ o(e−2σiσ

1−N
2

i ).

We have proved (2.24).

Let us turn now to the proof of (2.25).

We estimate, for l 6= 0 and using Proposition 5.9

∫

Ωi

(Up−1
i,l − up−1

ε )
∂vi

∂x1

∂Ui,l

∂x1
dx = o(e−2σiσ

1−N
2

i ).

Now, let 0 < β < 1 be given. We have for all l and for j = 0, ..., k + 1, j 6= i

|
∫

Ωj

(Up−1
i,l − up−1

ε )
∂vi

∂x1

∂Ui,l

∂x1
dx| ≤

∫

Ωj

(Up−1
i,l + up−1

ε )| ∂vi
∂x1

|β|∂Ui,l

∂x1
|dx‖ ∂vi

∂x1
‖1−β
L∞(Ωj)

.

But

|a
i
ε

ε
+

2πl

ε
− a

j
ε

ε
| ≥ 2σi.

Choosing β such that p− 1 + β > 1, we get, using Proposition 5.9

∫

Ωj

(Up−1
i,l + up−1

ε ))| ∂vi
∂x1

|β |∂Ui,l

∂x1
|dx = O(e−2σiσ

1−N
2

i ).

Since

‖ ∂vi
∂x1

‖1−β

L∞(|x−(
a
j
ε
ε
,0)|<σj)

→ 0

we deduce (2.25).

Now (2.24) and (2.25) give

< L
∂vi

∂x1
,
∂vi

∂x1
>L2=

∫

Ωi

U
p−2
i (

∑

j 6=i

vj)(
∂Ui

∂x1
)2dx+ o(e−2σiσ

1−N
2

i ). (2.26)

Using Corollary 5.1, we get

e2σiσ
−1+N

2
i

∫

Ωi

U
p−2
i (

∑

j 6=i

vj)(
∂Ui

∂x1
)2dx→ Hi

where Hi 6= 0 is a real number.
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It remains now to prove that

∫

L
∂vi

∂x1
(
1

ci

∂vi

∂x1
− ϕi)dx = o(e−2σiσ

1−N
2

i ). (2.27)

We write

|
∫

Ωi

L
∂vi

∂x1
(ϕi −

1

ci

∂vi

∂x1
)dx| = (1− p)|

∫

Ωi

U
p−2
i

∑

j 6=i

vj
∂Ui

∂x1
(ϕi −

1

ci

∂vi

∂x1
)dx|

+o(e−2σiσ
1−N

2
i )

≤
∫

Ωi

∑

j 6=i

e−|x−(
a
j
ε
ε
,0)||x− (

a
j
ε

ε
, 0)| 1−N

2 e−|x−(
aiε
ε
,0)||ϕi −

1

ci

∂vi

∂x1
|dx+ o(e−2σiσ

1−N
2

i )

= O(e−2σiσ
1−N

2
i )

∫

Ωi

|ϕi −
1

ci

∂vi

∂x1
|dx+ o(e−2σiσ

1−N
2

i ) = o(e−2σiσ
1−N

2
i ).

For j 6= i, we write

|
∫

Ωj

L
∂vi

∂x1
(ϕi −

1

ci

∂vi

∂x1
)dx| ≤ C

∑

l

∫

Ωj

|(Up−1
i,l + U

p−1
j )

∂Ui,l

∂x1
(ϕi −

1

ci

∂vi

∂x1
)|dx

≤ C

∫

Ωj

e−2σiσ
1−N

2
i |ϕi −

1

ci

∂vi

∂x1
|dx = o(e−2σiσ

1−N
2

i )

We obtain (2.27) and consequently, we have proved (1.14).

3 The Lyapunov-Schmitt reduction.

In this part, we prove the proposition 1.1.

Let us define
M(u) = −∆u+ u− u

p
+.

To begin with, we have

Lemma 3.1

‖M(uε)‖∞ ≤ Ce−2σσ
1−N

2 . (3.28)

Proof.

M(uε) =
∑

i,l

U
p
i,l − (

∑

i,l

Ui,l)
p. (3.29)

We have for all i

∑

j 6=i;l∈Z

Uj,l +
∑

l∈Z⋆

Ui,l ≤ Ce−|
aiε−a

j
ε

ε
||a

i
ε − a

j
ε

2ε
| 1−N

2 e|x−
aiε
ε
| in Ωi.

11



In Ωi, we write by Lemma 5.2

M(uε) = −pUp−1
i (

∑

j 6=i;l∈Z

Uj,l +
∑

l∈Z⋆

Ui,l) + 0(
∑

j 6=i;l∈Z

Uj,l +
∑

l∈Z⋆

Ui,l)
2 +

∑

j 6=i;l∈Z

U
p
j,l

while p− 1 ≥ 1. We easily deduce the proof of the Lemma.

Let k real numbers δ1,...,δk and v ∈ H1(S
1

ε
× R

N−1) be given. Let us suppose that

u = uε + v +

k
∑

i=1

δiϕi; < v,ϕi >H1= 0, i = 1, ..., k (3.30)

is a solution of (1.1) and that

‖v‖∞ +
k

∑

i=1

|δi| → 0.

We define

h = −M(uε + v +

k
∑

i=1

δiϕi) + L(v +

k
∑

i=1

δiϕi). (3.31)

Then v and δ1,...,δk are such that

L(v +
k

∑

i=1

δiϕi) = h.

We denote

h = h⊥ + h⊤ , h⊤ ∈ Vect{ϕ1, ..., ϕk} , h⊥ ∈ (Vect{ϕ1, ..., ϕk})⊥,
relatively to the Hilbert space H1([−π

ε
, π
ε
]× R

N−1). First, v is a 2π
ε
-periodic solution of

the equation
{

Lv = h⊥

< v,ϕi >H1= 0, i = 1, ..., k.
(3.32)

Then (δ1, ..., δk) verifies

L(
k

∑

i=1

δiϕi) = h⊤.

We have the following

Proposition 3.3 Let v be a solution of (3.32). Then there exists C independent of ε
such that

if p > 2 ‖v‖H1 ≤ C(e−2σσ
1−N

2 +

k
∑

i=1

|δi|2) (3.33)

if p = 2 ∀η ∈]0, 1[, ‖v‖H1 ≤ C(e−2ησ +
k

∑

i=1

|δi|2)

and for all p

‖v‖∞ + ‖∇v‖∞ ≤ C(e−2σσ
1−N

2 +

k
∑

i=1

|δi|2). (3.34)

12



Proof.

We write

h = ∆uε − uε + (uε + v +
∑

δiϕi)
p
+ − pup−1

ε (v +
∑

δiϕi)

and Lemma 5.2 gives

|(uε + v +
∑

δiϕi)
p
+ − upε − pup−1

ε (v +
∑

δiϕi)| ≤ C|v +
∑

δiϕi|2.

We deduce that
|h+M(uε)| ≤ C|v +

∑

δiϕi|2. (3.35)

Since

h⊥ = h−
k

∑

i=1

< h,ϕi >

‖ϕi‖2H1

(−∆ϕi + ϕi),

then
‖h⊥‖L2 ≤ C‖h‖L2 and ‖h⊥‖∞ ≤ C‖h‖∞.

Now, we use (5.61) to obtain
‖v‖∞ ≤ C‖h⊥‖∞.

Using (3.28), we deduce the estimate

‖v‖∞ ≤ C(e−2σσ
1−N

2 +

k
∑

i=1

|δi|2) (3.36)

and the estimate (3.34) follows in the standard way.
We have also by (5.64)

‖v‖H1 ≤ C‖h⊥‖L2 .

We write

‖h‖2L2 ≤ C(‖M(uε)‖2L2 + ‖v‖4L4 +
∑

j

|δj |4).

Using (3.36), we deduce, for ε small enough

‖v‖H1 ≤ C(‖M(uε)‖L2 +
∑

j

|δj |2).

Now we use (3.29) and Lemma 5.2 to obtain

‖M(uε)‖2L2 ≤
k+1
∑

i=0

∫

Ωi

pU
2(p−1)
i (

∑

j 6=i;l∈Z

Uj,l +
∑

l∈Z⋆

Ui,l)
2 + C

∫

Ωi

(
∑

j 6=i;l∈Z

Uj,l +
∑

l∈Z⋆

Ui,l)
4.

Proposition 5.9 gives

‖M(uε)‖L2 ≤ C(e−2σσ
1−N

2 ) if p > 2 (3.37)
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and for all η ∈]0, 1[
‖M(uε)‖L2 ≤ C(e−2ησσ

1−N
2 ) if p = 2. (3.38)

We deduce (3.33).
We have proved the proposition.

Now let di be defined by

h⊤ =

k
∑

i=1

di(−∆ϕi + ϕi).

We have the following

Proposition 3.4 For i = 1, ..., k

di =
p

‖ϕi‖2H1

∫

Ωi

U
p−1
i

∑

j 6=i

vj
∂Ui

∂x1
dx+O(

k
∑

j=1

δ2j ) + o(e−2σσ
1−N

2 ). (3.39)

Proof. We have

di =
1

‖ϕi‖2H1

∫

S1

ε
×RN−1

(hϕi)dx.

di = (

∫

S1

ε
×RN−1

(h+M(uε))ϕidx−
∫

S1

ε
×RN−1

M(uε)ϕidx)
1

‖ϕi‖2H1

(3.40)

The coefficient ‖ϕi‖H1 does not matter, thanks to (5.77). We deduce from (3.34) and
(3.35) that

∫

S1

ε
×RN−1

(h+M(uε))ϕidx = O(e−4ησσ1−N +
k

∑

j

δ2j ). (3.41)

Now let us estimate the second integral, for i = 1, ..., k.
Without loss of generality, we let i = 1. We write

∫

]−π
ε
,π
ε
[×RN−1

M(uε)ϕ1dx =

∫

]−π
ε
,π
ε
[×RN−1

M(uε)(ϕ1−α1
∂v1

∂x1
)dx+α1

∫

]−π
ε
,π
ε
[×RN−1

M(uε)
∂v1

∂x1
dx.

The estimate (3.28) gives directly

∫

]−π
ε
,π
ε
[×RN−1

M(uε)(ϕ1 − α1
∂v1

∂x1
)dx = o(e−2σσ

1−N
2 ), (3.42)

since

‖ϕ1 − α1
∂v1

∂x1
‖L1 → 0.

Now, as in the proof of Theorem 1.3, (iii), we write

∫

]−π
ε
,π
ε
[×RN−1

M(uε)
∂v1

∂x1
dx =

∫

Ω1

M(uε)
∂v1

∂x1
dx++

k+1
∑

j=0j 6=1

p

∫

Ωj

M(uε)
∂v1

∂x1
dx

14



We have
M(uε) =

∑

i,l

U
p
i,l − (

∑

i,l

Ui,l)
p.

By Lemma 5.2 we have, in Ωj,

M(uε) = −pUp−1
j (

∑

i 6=j,l∈Z

Ui,l +
∑

l 6=0

Uj,l) +O(
∑

i 6=j,l∈Z

Ui,l +
∑

l 6=0

Uj,l)
2

We get, for j 6= 1
∫

Ωj

M(uε)
∂v1

∂x1
dx = O(‖∂v1

∂x1
‖

1
2

L∞(Ωj)
)

∫

Ωj

|∂v1
∂x1

| 12Up−1
j (

∑

i 6=j,l

Ui,l+
∑

l 6=0

Uj,l+O(e−2σjσ1−N
j ))dx

(3.43)

= o(e−2σjσ
1−N

2
j )

by Proposition 5.9.

Now we write
∫

Ω1

M(uε)
∂v1

∂x1
dx = o(e−2σ1σ

1−N
2

1 )− p

∫

Ω1

U
p−1
1 (

∑

j 6=1

vj +
∑

l 6=0

U1,l)
∂v1

∂x1
dx. (3.44)

Moreover, since k ≥ 2, we have
π

ε
− σ1 → +∞

and consequently

e
−2π
ε = o(e−2σ1).

So, we deduce from Proposition 5.9 that
∫

Ω1

U
p−1
1

∑

l 6=0

U1,l

∑

l

∂U1,l

∂x1
dx = o(e−2σ1σ

1−N
2

1 )

and
∫

Ω1

U
p−1
1

∑

j 6=1

vj
∑

l 6=0

∂U1,l

∂x1
dx = o(e−2σ1σ

1−N
2

1 ).

Finally
∫

Ω1

U
p−1
1 (

∑

j 6=1

vj +
∑

l 6=0

U1,l)
∂v1

∂x1
dx =

∫

Ω1

U
p−1
1

∑

j 6=1

vj
∂U1

∂x1
dx+ o(e−2σσ

1−N
2 ). (3.45)

Now (3.40), (3.42), (3.43) and (3.44) give the proof of the proposition.

Proposition 3.5 Let u be given as in Proposition 1.1 and let δ1,....,δk be defined in

(3.30). We can possibly replace the k given points a1ε
ε
,....,a

k
ε

ε
by k points b1ε

ε
,...., b

k
ε

ε
verifying

aiε
ε

− biε
ε

→ 0 as ε→ 0

in order to have
δi = 0, i = 1, ..., k.
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Proof. Let

u = uε +
k

∑

j=1

δjϕj + v

be the given solution of (1.1).
Let us give (α1, ..., αk) depending on ε, such that (α1, ..., αk) → 0. We can replace the

points aiε
ε

by the points aiε
ε
+ αi. In other words, we write

u = ũε +

k
∑

j=1

δ̃jϕ̃j + ṽ

where

ũε(x) =

k
∑

j=1

∑

l∈Z

Uj,l(x1 − αj , x
′)

and ϕ̃j , j = 1, ..., k

are the eigenfunctions corresponding to the eigenvalues tending to 0, for the configuration

of points a
j
ε

ε
+ αj, and

< ṽ, ϕ̃j >= 0, j = 1, ..., k.

Soustraying the expressions of u and performing the scalar product in H1 by ϕi, we get

δ̃i‖ϕi‖2H1 +
∑

j

δ̃j < ϕ̃j − ϕj , ϕi >=< uε − ũε, ϕi > +δi‖ϕi‖2H1+ < v − ṽ, ϕi > . (3.46)

First we remark that we have

< v − ṽ, ϕi >=< ṽ, ϕ̃i − ϕi >

while by (3.33)

‖ṽ‖H1 ≤ C(e−2ησσ
1−N

2 +
∑

j

δ̃2j ),

with η = 1, for p > 2, thus

| < v − ṽ, ϕi > | ≤ C(e−2ησσ
1−N

2 +
∑

j

δ̃2j ). (3.47)

Moreover
| < uε − ũε, ϕi > | ≤ C

∑

j

|αj|

and, as a consequence of (1.13)

‖ϕ̃j − ϕj‖H1 → 0.

Thanks to (3.46), we deduce that

∑

i

|δ̃i| ≤ C(
∑

j

|δj |+
∑

j

|αj |+ e−2ησσ
1−N

2 ). (3.48)
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and consequently

‖ṽ‖H1 ≤ C(e−2ησσ
1−N

2 +
∑

j

|δj |2 +
∑

j

|αj |2),

thus
| < v − ṽ, ϕi > | ≤ C(e−2ησσ

1−N
2 +

∑

j

|δj |2 +
∑

j

|αj |2) (3.49)

for some C independent of ε .
Now let us prove that we can choose (α1, ..., αk) such that

< uε − ũε, ϕi > +δi‖ϕi‖2+ < v − ṽ, ϕi >= 0.

We define
F(α1, ..., αk) = (< uε − ũε, ϕi >)i=1,...,k.

This definition gives, for i and j = 1, ..., k

∂Fi

∂αj
=

∑

l∈Z

∫

[−π
ε
,π
ε
]×RN−1

∂Uj,l

∂x1
(x1−αj, x

′)ϕi(x)dx+
∑

l∈Z

∫

[−π
ε
,π
ε
]×RN−1

∇∂Uj,l

∂x1
(x1−αj , x

′).∇ϕi(x)dx.

We deduce that, as ε→ 0

∂Fi

∂αi
(0) → ‖ ∂U

∂x1
‖2H1 and

∂Fi

∂αj
(0) → 0 for j 6= i.

Thus dF(0) is an isomorphism, for ε small enough.
Let us define α = (α1, ..., αk). We have to solve

F(α) + (δi‖ϕi‖2+ < v − ṽ, ϕi >)i=1,...,k = 0.

We define
Q(α) = F(α)−F(0) − dF(0)(α)

and
G(α) = (−dF(0))−1(Q(α) + (δi‖ϕi‖2+ < v − ṽ, ϕi >)i,...,k).

Since we have together
|Q(α)| = O(|α|2)

and (3.49), we can use the Brouwer fixed point Theorem in a standard way. We find a
real number R,

R ≤ C(e−2ησσ
1−N

2 +
∑

j

|δj |)

such that
(|α| ≤ R) ⇒ |G(α)| ≤ R).

So we find α, |α| ≤ R, such that G(α) = α, that is

< uε − ũε, ϕi > +δi‖ϕi‖2+ < v − ṽ, ϕi >= 0.
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Returning to (3.46), we deduce that δ̃i = 0, i = 1, ..., k.

Proof of Proposition 1.1. The points are asymptotically uniformly dis-

tributed.

From now on, we suppose that δi = 0, i = 1, ..., k.
Let i0 ∈ {1, ..., k} be such that

σi0 − σ → 0

(we know that there exists at least one i such that σi = σ). We have

L(δ1ϕ1 + ...+ δkϕk) = h⊤,

that is
k

∑

i=1

δiλi(−∆ϕi + ϕi) =
k

∑

i=1

di(−∆ϕi + ϕi)

thus
δiλi = di for all i.

In particular
di0 = 0.

Since, by Theorem 1.3 we have

|λi0 | ≥ He−2σσ
1−N

2

we deduce from (3.39) that

∫

Ωi0

U
p−1
i0

∑

j 6=i0

vj
∂Ui0

∂x1
dx = o(λi0).

We deduce that

∫

Ωi0
;x1>

a
i0
ε
ε

U
p−1
i0

∑

j 6=i0

vj
∂Ui0

∂x1
dx

= −
∫

Ωi0
;x1<

a
i0
ε
ε

U
p−1
i0

∑

j 6=i0

vj
∂Ui0

∂x1
dx+ o(λi0).

But let us suppose that

2σ =
ai0+1
ε

ε
− ai0ε

ε
.

We use Corollary 5.1 to get a positive real number D0 such that

e2σσ
N−1

2

∫

Ωi0
;x1>

a
i0
ε
ε

U
p−1
i0

∑

j 6=i0

vj
∂Ui0

∂x1
dx→ D0

and

−e|
a
i0
ε −a

i0−1
ε

ε
||a

i0
ε − ai0−1

ε

ε
|N−1

2

∫

Ωi0
;x1<

a
i0
ε
ε

U
p−1
i0

∑

j 6=i0

vj
∂Ui0

∂x1
dx→ D0.
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and consequently

2σ − (
ai0ε
ε

− ai0−1
ε

ε
) → 0.

This property is valid for all exponent i such that σi−σ → 0 instead of i0. Thus we have
(1.7).

4 The proof of Theorem 1.1 completed.

The uniqueness.

Now, we have aiε
ε
− (a

1
ε

ε
+ i2π

kε
) → 0. Replacing the points aiε

ε
by a1ε

ε
+ i2π

kε
, i = 1, ..., k,

we can write u as

u =
∑

l∈Z

U(x1 −
a1ε
ε

+
2πl

kε
, x′) +

k
∑

i=1

δ̃iϕ̃i + ṽ, < ṽ, ϕ̃i >= 0, i = 1, ..., k.

By the definition of ϕ̃i given in section 2 (analogue to that of ϕi), ϕ̃i is
2π
ε
-periodic in x1.

But now, the corresponding operator L is of minimal period 2π
kε
, since now uε is replaced

by
∑

l∈Z U(x1 − a1ε
ε
+ 2πl

kε
, x′). So we have

ϕ̃i(x) = ϕ̃1(x1 +
2iπ

kε
, x′)

and ϕ̃1 is 2π
kε
-periodic. Let us denote ϕ1 = ϕ̃.

Now we recall that
Lv = h⊥

with h = −M(uε) +O(v2 + (
∑

i δ̃iϕ̃i)
2). We can use the Banach fixed point theorem in

L∞ to deduce that v is of minimal period 2π
kε
.

Consequently, u is 2π
kε
-periodic and in the space H1(S

1

kε
× R

N−1) we write

u =
∑

l∈Z

U(x1 −
a1ε
ε

+
2πl

kε
, x′) + δ̃ϕ̃+ ṽ, < ṽ, ϕ̃ >= 0.

Thanks to Proposition 3.5, we can perform a translation in x1 to get δ̃ = 0. We get some
aε
ε
→ 0 such that

u =
∑

l∈Z

U(x1 −
a1ε
ε

− aε

ε
+

2πl

kε
, x′) + v, < v, ϕ̃(x1 −

aε

ε
) >= 0.

Let uD be the Dancer solution of period 2π
kε
. Then

uD(x1 −
a1ε
ε
, x′) =

∑

l∈Z

U(x1 −
a1ε
ε

+
2πl

kε
, x′) + δϕ̃ + v
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for some v such that < v, ϕ̃ >= 0 and some δ → 0.
Exactly as for u, we find some point bε

ε
→ 0 such that

uD(x1 −
a1ε
ε
, x′) =

∑

l∈Z

U(x1 −
a1ε
ε

− bε

ε
+

2πl

kε
, x′) + vD, < vD, ϕ̃(x1 −

bε

ε
) >= 0.

Now we can prove that for ε small enough,

u = uD(x1 +
bε − aε − a1ε

ε
, x′).

The proof is the same as for the case of a solution which is even in x1. Let us write it
for the sake of completeness.
Without loss of generality, let a1ε = 0.
We define

uD(x) = uD(x1 +
bε − aε

ε
, x′) and w = u− uD.

Let us suppose that w 6= 0, at least for a sequence ε → 0. Then ‖w‖∞ is attained at a
point c = (c1, c

′), with c′ obviously bounded independently of ε and c1 ∈]− π
kε
, π
kε
]. Now

c1 is bounded. To see that, we write

−∆w +w(1 − up − vp

u− v
) = 0. (4.50)

If w(c) > 0, then
up − u

p
D

u− uD
(c) ≤ pup−1

thus
∆w(c) ≥ w(c)(1 − pup−1(c)).

But if |c1| → +∞, we have up−1(c) → 0, thus

1− pup−1(c) > 0

for ε small enough, that is in contradiction with the Maximum Principle. So we may
extract a subsequence such that c→ c for some c.
Let us define

z(x) =
w

‖w‖∞
.

It verifies (4.50). By standard arguments z → z uniformly on the compact sets. Moreover

z(c) = 1

and

pu
p−1
D ≤ up − u

p
D

u− uD
≤ pup−1 if u > uD

and we have the reverse inequality if u < uD. More,

limu = lim uD = U(x).
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So

lim
up − u

p
D

u− uD
= pU.

Thus
−∆z + z(1− pUp−1) = 0.

We deduce that z = α ∂U
∂x1

, for some α 6= 0.
We have

< z, ϕ̃(x1 −
aε

ε
, x′) >H1=

1

‖u− uD‖∞
< v− vD(x1 +

bε − aε

ε
, x′), ϕ̃(x1 −

aε

ε
, x′) >H1= 0.

Moreover

|z| ≤ 1, ϕ̃→ ∂U

∂x1
,

and by Proposition 5.7,

|∇ϕ̃(x)| + |ϕ̃(x)| ≤ Ce−η|x| in [− π

kε
,
π

kε
].

We use the Lebesgue Theorem to infer that

< z, ϕ̃(x1 −
aε

ε
, x′) >H1→ α‖ ∂U

∂x1
‖2H1(RN ).

So we are led to a contradiction. We conclude that u = uD, for ε small enough.

The proof of the estimate 1.6.

Without loss of generality, we let k = 1. We write

uD =
∑

l

Ul + v

where v is even in x1 and verifies
Lv = h

and uε is replaced by
∑

l Ul in the definition of L. The restriction of L to the even
functions has no eigenvalue tending to 0. The same proof as for (5.61) gives

‖v‖∞ + ‖∇v‖∞ ≤ C‖h‖∞

and consequently the same proof as for (3.34) gives

∀η ∈]0, 1[ ‖v‖∞ + ‖∇v‖∞ ≤ Ce−
2π
ε (
π

ε
)
1−N

2 . (4.51)

Let R0 > 0 be given. It remains to estimate, for all η ∈]0, 1[

(|v(y)| + |∇v(y)|)eηdy

when dy > R0.
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Let β be a positive real number, independent of ε, which will be chosen later. Let
y ∈] − π

ε
+ β, π

ε
− β[×R

N−1. We follow the course of the proof of Proposition 5.6 from
(5.65), ξ being replaced by v. With the notations of that proof, we perform the truncation
around 0, using the truncature function θ. So we drop the index i. By (5.67), we have

(θv)(y) =

∫

RN

G(y − x)(pθup−1
ε v + θh−∆θv − 2∇θ.∇v)(x)dx

Now
h = −M(uε) +O(v2).

We have

|v(y)| ≤ C(

∫

RN

vG(y−x)pθe(−p+1)|x|dx+

∫

RN

G(y−x)θ|M(uε)|dx+
∫

RN

G(y−x)θv2dx

+

∫

RN ;π
ε
−β<x1<

π
ε

G(y − x)(|v| + |∇v|)dx).

Now In Suppθ,

dx = |x| and U ≤ Ce−|x||x| 1−N
2 .

Let us recall that
M(uε) = pUp−1(

∑

l 6=0

Ul) +O((
∑

l 6=0

Ul)
2,

We deduce that for all η ∈]0, 1[

∫

RN

G(y−x)θ|M(uε)|dx ≤ C
∑

l∈Z⋆

∫

[−π
ε
,π
ε
[×RN−1

e−η|y|eη|x−y|G(y−x)eη|x|(Up−1Ul+U
2
l )θdx.

(4.52)
Using Proposition 5.9, we obtain for all η′ such that 0 < η′ < p− 1− η

∑

l∈Z⋆

∫

[−π
ε
,π
ε
[×RN−1

e−η|y|eη|x−y|G(y − x)eη|x|Up−1Ulθdx ≤ Ce−ηdye−η′ 2π
ε (
π

ε
)
1−N

2 .

Moreover

∑

l∈Z⋆

∫

[−π
ε
,π
ε
[×RN−1

e−η|y|eη|x−y|G(y − x)eη|x|U2
l θdx ≤ Ce−ηdye(−2+η)π

ε (
π

ε
)
1−N

2 .

Now Proposition 5.9 gives also, since p− 1 + η > 1
∫

RN

|v|G(y − x)pθe(−p+1)|x|dx ≤ ‖veηdx‖∞
∫

RN

G(y − x)pθe(−p+1−η)|x|dx (4.53)

≤ ‖veηdx‖∞e−|y||y| 1−N
2 ≤ ‖veηdx‖∞e−ηdye−η1R0 ,

where we define η1 = 1− η, and

∫

RN

G(y − x)v2θdx ≤ ‖veηdx‖2∞
∫

RN

G(y − x)θe−2η|x|dx (4.54)
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≤ C‖veηdx‖2∞e−ηdy

∫

RN

G(y − x)θeη|x−y|e−η|x|dx ≤ C‖veηdx‖2∞e−ηdy .

Now
∫

RN ;π
ε
−β<x1<

π
ε

G(y−x)(|v|+|∇v|)dx ≤ (‖veηdx‖∞+‖(∇v)eηdx‖∞)e−ηdy

∫

RN

eη|x−y|G(y−x)dx.

(4.55)
Finally, we obtain, for y ∈]−π

ε
+β, π

ε
−β[×R

N−1 and for all 0 < η′ ≤ min{2−η, 2(p−1−η)}

|v(y)eη|y|| ≤ C1e
− η′π

ε (
π

ε
)
1−N

2 +
C2

β
(‖veηdx‖∞+‖(∇v)eηdx‖∞)+C1(‖veηdx‖2∞+‖veηdx‖∞e−η1R0)

where the constants are independent of β and of R0.
We obtain the same estimate for |(∇v)(y)eη|y||, using the proof of (5.73).
We terminate by a barrier function argument, as in the proof of (5.62). Let us define

φ = C1e
− η′π

ε (
π

ε
)
1−N

2 +
C2

β
(‖veηdx‖∞ + ‖(∇v)eηdx‖∞)+C1(‖veηdx‖2∞ + ‖veηdx‖∞e−η1R0).

We have

−∆(v − φ) + (1− pup−1
ε )(v − φ) = −(1− pup−1

ε )φ+ h

If x ∈ [π
ε
− β, π

ε
]× R

N−1

|h+M(uε)| ≤ Cv2 ≤ C‖veηdx‖2∞e−2η(π
ε
−β)

and

|M(uε)| ≤ Ce−(p−1)|x|e−|x−( 2π
ε
,0)||x− (

2π

ε
, 0)| 1−N

2 ≤ C(
π

ε
)
1−N

2 e−
2π
ε e(−p+2)|x| .

Choosing if necessary C1 large enough, we deduce that

−(1− pup−1
ε )φ+ h < 0 for y ∈ [π

ε
− β, π

ε
]× R

N−1.

The same proof gives

−(1− pup−1
ε )φ+ h < 0 for y ∈ [0, π

ε
+ β]× R

N−1.

Finally, the Maximum Principle gives

|v(y)| − φ ≤ 0 for y ∈ [π
ε
− β, π

ε
+ β]× R

N−1.

Thus, in [−π
ε
, π
ε
]× R

N−1, we have when dy ≥ R0

(|∇v(y)|+ |v(y)|)eηdy ≤ Ce−
η′π
ε (

π

ε
)
1−N

2 +
C

β
(‖veηdx‖∞ + ‖(∇v)eηdx‖∞) + C‖veηdx‖2∞

+C‖veηdx‖∞e−η1R0

and when dy ≤ R0

(|∇v(y)| + |v(y)|)eηdy ≤ Ce−
η′π
ε (

π

ε
)
1−N

2 eηR0 .

We choose β and R0 large enough to obtain (1.6).
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5 Appendix.

Let η > 0 be given. Let h be a function, defined on [−π
ε
, π
ε
] × R

N−1, which has the
property

the fonction heηdist(x,∪
k+1
j=0{(

a
j
ε
ε
,0)}) is bounded in L∞([−π

ε
, π
ε
]× R

N−1) (5.56)

independently of ε.

Then h belongs to H−1([−π
ε
, π
ε
] × R

N−1)(the dual space of H1([−π
ε
, π
ε
] × R

N−1)) in
the following sense

< h,ψ >H−1,H1=

∫

[−π
ε
,π
ε
]×RN−1

hψdx for ψ ∈ H1.

We will denote H1 in place of H1([−π
ε
, π
ε
]× R

N−1).
By the Lax-Milgram Theorem, there exists u ∈ H1 such that

−∆u+ u = h. (5.57)

It is classical that u ∈ L∞ (see [8], Theorem 9.13 and use the Sobolev embedding Theo-
rem).

As a consequence of the maximum principle,

‖u‖L∞ ≤ ‖h‖L∞ . (5.58)

More we have the following

Proposition 5.6 Let h ∈ H−1([−π
ε
, π
ε
]×R

N−1). There exists a unique ξ ∈ H1([−π
ε
, π
ε
]×

R
N−1) which verifies

Lξ = h. (5.59)

Let us suppose that h ∈ L∞([−π
ε
, π
ε
]×R

N−1) and that

< h,ϕi >H−1,H1= 0, i = 1, ..., k. (5.60)

Then
‖ξ‖∞ + ‖∇ξ‖∞ ≤ C‖h‖∞ (5.61)

where C is independent of ε.
Let η ∈]0, 1[ be given. Let us suppose that h verifies (5.60) and has the additional property
(5.56) for all η ∈]0, 1[.
Then for all η ∈]0, 1[ there exists C independent of ε and dependent of η such that

‖ξeηdist(x,∪
k+1
j=0{(

a
j
ε
ε
,0)})‖∞ + ‖∇ξeηdist(x,∪

k+1
j=0{(

a
j
ε
ε
,0)})‖∞ (5.62)

≤ C‖heηdist(x,∪
k+1
j=0{(

a
j
ε
ε
,0)})‖∞.
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Proof Let ξ ∈ H1(S
1

ε
×R

N−1). First, we deduce from (1.14) that

(Lξ = 0) ⇒ (ξ = 0).

Moreover, the operator L is a Fredholm operator, so we have the existence of a unique
solution ξ of (5.59) when h ∈ H−1. The property (5.60) for h implies the existence of ξ,
without knowing the property (1.14). In this case, ξ verifies

∫

S1

ε
×RN−1

ξ(−∆+ 1)(ϕi)dx = 0, i=1,...,k. (5.63)

Moreover we have in this case
‖ξ‖H1 ≤ C‖u‖H1 (5.64)

where u is defined in (5.57) and C is independent of ε. Indeed, this can be proved using
the expansion of ξ on a basis of eigenvectors of the operator (−∆+ 1)−1

L.
Now, let h ∈ L∞ verifying (5.56) and (5.60). Let us prove (5.61).
Let us assume that ‖h‖∞ → 0 and that ‖ξ‖∞ = 1. There exists c such that ξ(c) = 1.
Let ξ̃(x) = ξ(x + c). By the standard elliptic estimates, ξ̃ tends to a limit ξ, uniformly
on the compact sets of RN and we have either

(−∆+ 1)ξ = 0 in R
N if |c− aiε

ε
| → +∞ for all i

or

(−∆+ 1− pUp−1(x+ c))ξ = 0 in R
N if there exists i and c such that (c− aiε

ε
) → c.

The first case is in contradiction with the maximum principle, so it does not occur. In
the second case, we have that

ξ(x+ c) → ∂U

∂x1
(x1 + c, x′) uniformly on the compact sets.

We use (5.63). Since (1 − λi)(−∆ + 1)ϕi = pu
p−1
ε ϕi, we use the Lebesgue Theorem to

get a contradiction.

We have proved that
‖ξ‖∞ ≤ C‖h‖∞.

The inequality for ‖∇ξ‖∞ follows from standard elliptic estimates ([8],Theorem 9.13).
So we have proved (5.61).

In what follows, we denote

dx = dist(x,∪k+1
j=0{(

a
j
ε

ε
, 0)}).

We define

σ̃i =
ai+1
ε − aiε
2ε

for i = 0, ..., k.

25



Let β be a positive real number, independent of ε. Let i = 1, ..., k and let us consider
the domain D defined by

D = {y;−σ̃i−1 + β ≤ y1 −
aiε
ε

≤ σ̃i − β}.

The number β will be chosen later.

Let R0 > 0 be given. We are going to estimate

|ξ(y)eηdy |+ |∇ξ(y)eηdy |

when y ∈ D is such that dy > R0.

For i = 1, ..., k, let θi be a function which is 2π
ε
-periodic in x1 and which verifies in

[−π
ε
, π
ε
]× R

N−1

θi(x) = 1 for − σ̃i−1 + β ≤ x1 −
aiε
ε

≤ σ̃i − β (5.65)

θi(x) = 0 for x1 −
aiε
ε

≥ σ̃i or x1 −
aiε
ε

≤ −σ̃i−1.

Moreover, we suppose that θi is C2 in x1. More precisely, we build θi from the function

θ̃ defined in [0, β], θ̃(x1) = − 6
β5x

5
1 +

15
β4x

4
1 − 10

β3x
3
1 + 1, by θi(x) = θ̃(x1 − aiε

ε
− σ̃i + β), if

σ̃i−β ≤ x1− aiε
ε
≤ σ̃i and θi(x) = θ̃(a

i
ε

ε
− σ̃i−1+β−x1), if −σ̃i−1 ≤ x1− aiε

ε
≤ −σ̃i−1+β.

Thus we have for all x and for M independent of i, of β and of ε

|θi(x)| ≤M, |∇θi(x)| ≤
M

β
, |∆θi(x)| ≤

M

β2
.

Let G be the Green function of the operator

−∆+ 1 on R
N .

We have

0 < G(x) ≤ C
e−|x|

|x|N−2
(1 + |x|)N−3

2 if N ≥ 2. (5.66)

We write

(θiξ)(y) =

∫

RN

G(y − x)(pθiu
p−1
ε ξ + θih−∆θiξ − 2∇θi.∇ξ)(x)dx, (5.67)

Let y ∈ D, we have (θiξ)(y) = ξ(y).
We consider (5.67). Firstly, we have for all η ∈]0, 1[

|
∫

RN

G(y − x)(pθiu
p−1
ε ξ + θih)(x)dx| ≤ C‖heηdx‖∞

∫

RN

G(y − x)θi(x)e
−ηdxdx (5.68)

+C‖ξeηdx‖∞
∫

RN

G(y − x)θi(x)e
−ηdxup−1

ε (x)dx.
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For x in Suppθi we write
dx ≥ dy − |x− y|

while
∀η ∈]0, 1[∃ε0∀ε < ε0 uε(x) ≤ Ce−ηdx .

So we have

|
∫

RN

G(y − x)θi(x)e
−ηdxdx| (5.69)

≤
∫

RN

G(y − x)eη|y−x||θi(x)|e−ηdydx ≤ Ce−ηdy

and, for any η′ such that η < η′ < 1

|
∫

RN

G(y − x)θi(x)e
−ηdxup−1

ε (x)dx| (5.70)

≤ Ce−η′dy

∫

RN

G(y − x)eη
′|x−y|e−((p−1)η+η−η′)dx |θi(x)|dx ≤ Ce−η′dy .

Secondly, we get for all η ∈]0, 1[

|
∫

RN

G(y − x)(−∆θiξ − 2∇θi.∇ξ)(x)dx| ≤
C

β
(‖ξeηdx‖∞ (5.71)

+‖∇ξeηdx‖∞)

∫

x∈Suppθi
G(y − x)e−ηdxdx.

But, as above

|
∫

x∈Suppθi
G(y − x)e−ηdxdx| ≤ Ce−ηdy .

Then (5.67)-(5.71) give for all η ∈]0, 1[ and for a constant C independent of β and for
some η1 > 0

|ξ(y)eηdy | ≤ C(‖heηdx‖∞+
1

β
(‖∇ξeηdx‖∞+‖ξeηdx‖∞)+Ce−η1R0‖ξeηdx‖∞ for all y ∈ D.

(5.72)
We have to prove that

|∇ξ(y)eηdy | ≤ C(‖heηdx‖∞+
1

β
‖∇ξeηdx‖∞+‖ξeηdx‖∞)+Ce−η1R0‖ξeηdx‖∞ for all y ∈ D.

(5.73)

Let u = ξeη|x−(
aiε
ε
,0)|. When dx = |x− (a

i
ε

ε
, 0)| ≥ R0, u satisfies the equation

−∆u+ u(1− η2 − pup−1
ε ) + 2η∇|x− (

aiε
ε
, 0)|.∇u = eηdxh.

Without loss of generality, we suppose that there exists C independent of ε such that

for all x such that |x− y| ≤ 1, |dx − |x− (
aiε
ε
, 0)|| ≤ C.
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We use Theorem 9.13 of [8], with Ω′ = {x, |x− y| ≤ 1
2} and Ω = {x, |x− y| < 1}. We get

‖∇u‖L∞(Ω′) ≤ C(‖u‖L∞(Ω) + ‖eηdxh‖L∞(Ω)

that gives
|∇(ξeηdy )(y)| ≤ C(‖ξeηdx‖∞ + ‖heηdx‖∞). (5.74)

Then (5.72) and (5.74) lead to (5.73). Now (5.73) and (5.72) give

(|ξ(y)|+|∇ξ(y)|)eηdy ≤ C1‖hedx‖∞+
C

β
(‖ξedx‖∞+‖∇ξedx‖∞)+Ce−η1R0‖ξeηdx‖∞ for y ∈ D.

(5.75)
It remains to prove (5.75) for y in Ωi\D. Let us denote

D̃ = {y; a
i
ε

ε
+ σ̃i − β < y1 <

ai+1
ε

ε
− σ̃i + β}

By (5.75), we have on ∂D̃

|ξ(y)| ≤ C1e
−η(σ̃i−β)‖heηdx‖∞ +

C

β
(‖ξedx‖∞ + ‖∇ξedx‖∞) + Ce−η1R0‖ξeηdx‖∞.

Let us denote

φ(y) = C1e
−η(σ̃i−β)‖heηdx‖∞ +

C

β
(‖ξedx‖∞ + ‖∇ξedx‖∞) + Ce−η1R0‖ξeηdx‖∞.

We can suppose that C1 > 1.
We have

−∆(ξ − φ) + (ξ − φ)(1 − pup−1
ε ) = −φ(1− pup−1

ε ) + h.

In D̃, we have dx ≥ σ̃i − β, thus

|h| ≤ e−η(σ̃i−β)‖heηdx‖∞ in D̃.

We deduce that for ε small enough, we have together

−φ(1− pup−1
ε ) + h ≤ 0 and 1− pup−1

ε > 0 in D̃.

Then the Maximum Principle gives

ξ − φ ≤ 0 in D̃.

and the same proof gives
−ξ − φ ≤ 0 in D̃.

Moreover, we have
dx ≤ σ̃i in D̃.

Finally

|ξ(x)eηdx | ≤ C1e
ηβ‖heηdx‖∞ +

C

β
(‖ξedx‖∞ + ‖∇ξedx‖∞) + Ce−η1R0‖ξeηdx‖∞ in D̃.
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The same proof as for (5.73) gives

|∇ξ(x)eηdx | ≤ C1e
ηβ‖heηdx‖∞ +

C

β
(‖ξedx‖∞ + ‖∇ξedx‖∞) + Ce−η1R0‖ξeηdx‖∞ in D̃.

We have proved

|ξ(x)eηdx |+|∇ξ(x)eηdx | ≤ C1e
ηβ‖heηdx‖∞+

C

β
(‖ξedx‖∞+‖∇ξedx‖∞)+Ce−η1R0‖ξeηdx‖∞ in Ωi,

when dx ≥ R0,
and

|ξ(x)eηdx |+ |∇ξ(x)eηdx | ≤ C1e
ηβ‖heηdx‖∞e−ηR0 in Ωi, when dx ≤ R0,

for all i.
Now we choose β and R0 large enough to get (5.62). We have proved the proposition.

Proposition 5.7 Let ϕ be an eigenfunction of L, associated with an eigenvalue λ which
does not tend to 1. Let us suppose that ‖ϕ‖L∞(]−π

ε
,π
ε
[×RN−1) = 1. Then for all η ∈]0, 1[

there exists C > 0, independent of ε, such that

|ϕ(x)| + |∇ϕ(x)| ≤ Ce−ηdist(x,∪k+1
i=0 {(

aiε
ε
,0)}), (5.76)

where we use the notation : a0ε = akε − 2π and ak+1
ε = a1ε + 2π.

Moreover
C1 ≤ ‖ϕ‖H1 ≤ C2 (5.77)

where C1 and C2 are some positive real numbers independent of ε.
Let ξ be defined in (2.21). Then

|ξ(x)| + |∇ξ(x)| ≤ Ce−σe−ηdist(x,∪k+1
i=0 {(

aiε
ε
,0)}). (5.78)

Proof To prove (5.76), we follow the proof of (5.62) in Proposition 5.6, with h = 0
We find, for y ∈ Ωi such that dy ≥ R0

|ϕ(y)eηdy |+ |∇ϕ(y)eηdy | ≤ C

β
(‖ϕedx‖∞ + ‖∇ϕedx‖∞) + Ce−η1R0‖ϕeηdx‖∞

while for y ∈ Ωi such that dy ≤ R0

|ϕ(y)eηdy |+ |∇ϕ(y)eηdy | ≤ CeηR0

where the constant C is independent of β and of R0. We choose R0 and β large enough
to obtain(5.76).

Let us prove (5.77).
We have

(1− λ)‖ϕ‖2H1 = p

∫

S1

ε
×RN−1

up−1
ε ϕ2dx.
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In view of (5.76) and of (2.16), we may use the Lebesgue Theorem to obtain that

‖ϕ‖H1 6→ 0, i = 0, ..., k.

Now we have

Lξ = L
∂vi

∂x1
−

k
∑

j=1

cjλj(−∆ϕj + ϕj) =
∑

l∈Z

(up−1
ε − Ui,l)

∂Ui,l

∂x1
+ p

k
∑

j=1

cj
λj

1− λj
up−1
ε ϕj .

If we write Lξ = h, then, for all η ∈]0, 1[

|h(x)| ≤ Cηe
−σe−ηdx .

We use Proposition 5.6 to obtain (5.78).
We have proved the proposition.

Proposition 5.8 Let C and A be positive real numbers. Let f and g be functions which
verify the following property, for |x| > A

|f(x)| ≤ Ce−|x| , |g(x)| ≤ Ce−|x||x| 1−N
2 .

Let a > b > 0. Let y0 be such that |y0| → +∞ and α = |y0|
2 . Then

|
∫

α
1
2 <|x|<α

fa(x)gb(x− (y0, 0))dx| = o(|y0|b
1−N

2 e−b|y0|). (5.79)

Proof We easily see that if |x| < α,

|x− (y0, 0)| = |y0||
x

y0
− (1, 0)| ≥ 1

2
|y0|.

Thus

|
∫

α
1
2 <|x|<α

fa(x)gb(x− (y0, 0))dx| ≤ C|y0|b
1−N

2

∫

α
1
2 <|x|<α

e−a|x|−b|x−(y0,0)|dx

≤ C|y0|b
1−N

2

∫

α
1
2<r<α

rN−1

∫

SN−1

e−are
−b

√

(rz1−y0)2+r2
∑N

i=2 z
2
i drdµ(z)

≤ C|y0|b
1−N

2

∫

α
1
2 <r<α

rN−1

∫

SN−1

e−are−b
√

r2−2rz1y0+y20drdµ(z)

≤ C|y0|b
1−N

2

∫

α
1
2 <r<α

rN−1

∫

SN−1

e−are−b|y0−r|drdµ(z)

≤ C|y0|b
1−N

2 e−b|y0|e(b−a)α
1
2
αN

and e(b−a)α
1
2 αN → 0.
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Proposition 5.9 Let f and g be smooth functions and C, C1, C2 and A be positive real
numbers which verify, for |x| > A

0 ≤ f(x) ≤ Ce−|x| ; C1e
−|x||x| 1−N

2 ≤ g(x) ≤ C2e
−|x||x| 1−N

2 .

Let us define

Ωi = {x ∈ [−π
ε
,
π

ε
]× R

N−1; dist(x,∪k+1
l=0 {(

alε
ε
, 0)} = |x− (

aiε
ε
, 0)|}.

Let a > b > 0. Let i 6= j and let y0 =
a
j
ε−aiε
ε

.
If f(x) ≥ 0 and f 6= 0, then there exist positive real numbers C1 and C2 such that, for
i = 0, ..., k + 1

(1+o(1))Cb
1C0e

−b|y0||y0|b
1−N

2 ≤
∫

Ωi

fa(x−(
aiε
ε
, 0))gb(x−(

a
j
ε

ε
, 0))dx ≤ Cb

2C0e
−b|y0||y0|b

1−N
2 (1+o(1)),

(5.80)
where

C0 =

∫

RN

fa(x)dx.

The estimate (5.80) holds true if we replace Ωi by the set

Ω+
i = {x ∈ Ωi; x1 >

aiε
ε
}

while C0 is replaced by
∫

RN ,x1>0
fa(x)dx.

Proof. Let

α =
|y0|
2
.

For x such that |x− (a
i
ε

ε
, 0)| < α

1
2 , we have

|y0| − |x− (
aiε
ε
, 0)| ≤ |x− (

a
j
ε

ε
, 0)| ≤ |y0|+ |x− (

aiε
ε
, 0)|,

thus

|x− (
a
j
ε

ε
, 0)| = (1 + o(1))|y0|.

We write
∫

|x−(
aiε
ε
,0)|<α

1
2

fa(x− (
aiε
ε
, 0))gb(x− (

a
j
ε

ε
, 0))dx

≥ Cb
1(1 + o(1))|y0|b

(1−N)
2 e−b|y0|

∫

|x−(
aiε
ε
,0)|<α

1
2

fa(x− (
aiε
ε
, 0))dx

≥ Cb
1C0(1 + o(1))|y0|b

(1−N)
2 e−b|y0|
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and
∫

|x−(
aiε
ε
,0)|<α

1
2

fa(x− (
aiε
ε
, 0))gb(x− (

a
j
ε

ε
, 0))dx

≤ Cb
2(1 + o(1))|y0|b

(1−N)
2 e−b|y0|

∫

|x−(
aiε
ε
,0)|<α

1
2

fa(x− (
aiε
ε
, 0))dx

≤ Cb
2C0(1 + o(1))|y0|b

(1−N)
2 e−b|y0|.

Moreover, in view of Proposition 5.8, we have

∫

x∈Ωi;α
1
2 ≤|x−(

aiε
ε
,0)|<α

fa(x− (
aiε
ε
, 0))gb(x− (

a
j
ε

ε
, 0))dx = o(1)|y0|b

(1−N)
2 e−b|y0|.

Last, we have
∫

x∈Ωi;|x−(
aiε
ε
,0)|>α

fa(x− (
aiε
ε
, 0))gb(x− (

a
j
ε

ε
, 0))dx

≤ Cb
2C

ae−b|y0||y0|b
1−N

2

∫

x∈Ωi;|x−(
aiε
ε
,0)|>α

eb|x−(
aiε
ε
,0)|fa(x− (

aiε
ε
, 0))dx

= o(e−b|y0||y0|b
1−N

2 ),

since a > b.
We have proved the proposition.

Corollary 5.1 If

lim
|x|→+∞

g(x)e|x||x|N−1
2 = L

then

lim
|x|→+∞

∫

Ωi

fa(x− (
aiε
ε
, 0))gb(x− (

a
j
ε

ε
, 0))dxeb|y0 ||y0|b

N−1
2 = LC0

where C0 is defined in Proposition 5.9. Moreover, we can replace Ωi by Ω+
i .

Lemma 5.2 Let k be a positive integer. Let a and b be real numbers, with a > 0. If
p > 1 is given and k = [p]. There exists C independent of a and b such that

| − (a+ b)p+ + ap + ...+
p....(p − k + 1)

k!
ap−kbk| ≤ C|b|p.

Proof First, let us suppose that b < 0. If a+2b < 0, then a < 2|b|, and the claim is true.
If a+ 2b > 0, then a+ b > 0 and we write

| − (a+ b)p + ap + ...+
p....(p − k + 1)

k!
ap−kbk| = p....(p − k)

(k + 1)!
(a+ αb)p−k−1bk+1 (5.81)

where α ∈]0, 1[. But a+ αb > −2b+ αb, thus

| − (a+ b)p + ap + ...+
p....(p − k + 1)

k!
ap−kbk| ≤ p....(p − k)

(k + 1)!
(2− α)p−k−1|b|p
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that gives the claim.
Secondly, let us suppose that b > 0. If a < b, the claim is true. If a > b, we use (5.81)
again and we obtain the claim.
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