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Uniqueness of positive periodic solutions with some peaks.

Genevieve Allain. Anne Beaulieu.

March 25, 2013

Abstract. This work deals with the semilinear equation —Au + v — uP = 0 in
RN, 2<p< % We consider the positive solutions which are 2?’T—periodic in z1 and
decreasing to 0 in the other variables, uniformly in z;. Let a periodic configuration of
points be given on the xq-axis, which repel each other as the period tends to infinity. If
there exists a solution which has these points as peaks, we prove that the points must
be asymptotically uniformly distributed on the xj-axis. Then, for € small enough, we
prove the uniqueness up to a translation of the positive solution with some peaks on the

r1-axis, for a given minimal period in x7.

1 Introduction.

We consider the equation

1
—Au—l—u—uﬁ:OinS—xRN*l (1.1)
€
where u4 = max(u,0).
By %1, we mean that
27
u(xy + —,2') = u(wy, )
€
and that 9 5 9
U T N _ ou ’
Orq (21 5 )= Oy (w1, 2).

We suppose that
u(xy,2’) — 0, as|z’'| — 0, uniformly in z;.

If w > 0, we know that w is radial and decreasing in 2’ ([7], [2]). We consider the
subcritical case

N +2
2<p<N+ for N >3, p>2 for N=2.

We assume that p > 2 instead of p > 1 for some technical reasons.
Let U be the groundstate solution in RY. It verifies

—AU+U—-UP=0 inR¥.

It is known that U is positive, radial and tending to 0 at infinity. Moreover the behavior
at infinity is
N-—1
2| 2 e®lU(z) = Ly as |z] = +o0



and ou
|x|%e|$|—($) — L1 as |$| — +00, 71 > 0,

for some positive limits Lo and L;. (see [9].)
Several recent articles deal with the construction of positive solutions for the equation

—Au+u—u”=0 in RV,

Let us refer to [5], [10], [6].
Let us call the Dancer solution the positive solution of (1.1) which is 2?“—periodic in x1,
tending to 0 as [#'| — 400, even in z; and decreasing in x; in [0, T]. This solution,
that we call up was constructed in [5] by a bifurcation from the ground-state solution in
RN, The Dancer solution exists when 0 < £ < €*, where £* is a known threshold. We
have
HUD — UHLOO(}_%7%[XRN—1) —0ase— 0. (1.2)

For all 2/ the fonction x1 — up(x1,2’) reaches its maximum value at the points l%”, leZ
and reaches its minimum value at the points %’r

Now, for any ¢ > 0, for any k > 2, let al, i = 1,...,k, be k points of [—, 7| which are
such that , A
az-‘,—l —qt
%—)—i—oo ase —0,9=0,..k+1. (1.3)
where we denote al = alg — 27 and af_f“ =a? + 2m.
Let us denote .

Ui(z1,2") = U(xy — %,m').

Let us give the following

Definition 1.1 The solution u of (1.1) admits the points %,...,% as peaks if %,...,%
are k points of [—Z, Z[ verifying (1.3) and if
k
|lu — Z UZ'HLoo(]_gé[XRNﬂ) —0 ase—0. (1.4)
i=1

Let us remark that by the Maximum Principle, any solution of (1.1) verifying (1.4) needs
to be positive.

We can ask whether for any configuration of points in a period which repel each other in
the sense of (1.3), there exists a solution having these points as peaks. We give a negative
answer. In particular it is not possible to consider peaks which repel each other with an
infinitely small speed wrt the period.

Our main result is the following uniqueness result for the small values of ¢.

. . R
Theorem 1.1 Let u be a solution of (1.1) that admits the points ==,...,== in [-Z,Z[ as

peaks in the sense of the definition 1.1. Then, for € small enough there exists a. — 0

such that
al

uw(zy,2") =up(r1 — = — a., 7))
€



where up is the Dancer solution of period %—7;
We can write up as
2lm
up(z) = gz: U(xy + k—e,x/) + () (1.5)

and if we define

) 2l
dll? = dl‘St(x’ UZEZ{(k—ﬁ, 0)})’

then for every 0 < 7' < min{2 —n,2(p — 1 —n)}, there exists C' independent of € such
that

n'm T _1-N

(WH!WJ\)(OC)SCe*"d””efﬁ(k_g) i (1.6)

The most involved part of the proof of Theorem 1.1 is to prove that the peaks are
asymptotically uniformly distributed. More precisely, we will begin by the proof of the
following

1 k
€

Proposition 1.1 Let u be a solution of (1.1) admetting the points ae—f,...,% in [T, 2]
as peaks.
Then we have necessarily
i+l _ g 9
Ge “% T 0 i=0,..k+1. (1.7)
€ ke

In [10], part 3, Malchiodi gives a construction of a periodic solution with one peak,
using a Lyapunov-Schmitt method.
Let us quote the following

Proposition 1.2 (Malchiodi, [10], Corollary 3.2.) For 1 < p < %, there exists a
solution of (1.1), even in x1, of the form

2T
v-ZU(ml—Fz?,x)—l—w (1.8)
€L
where
[@l 1 -z, 2 [xmv-1) = 0
and

w(z)| + |[Vw(z)| < Clo— = (1+&0) o —mo dist(z,Uiez{ (% ,0)}) (1.9)
for some & > 0 and ng > 0.

This solution is the Dancer solution, in consideration of the uniqueness of the even
2L _periodic solution which verifies (1.2) (see [4], p. 969). In that previous work, the
functions are assumed to be even in z1. In ours, we have to overcome some difficulties
arising from the lack of evenness. Finally, we prove that the solution is even.

In the course of the proof of Theorem 1.1, we will consider an approximate solution

of (1.1).



Let us denote

then

Let us define
k
v; = ZUM and U, = Zvi.
A =1

We will study the linearized operator about this approximate solution, namely
L=-A+1-—putt

We will prove that the linearized operator L has no zero eigenvalue and we will give an
estimate of the eigenvalues which tend to 0.

The operator (—A+ 1)~ 'L is an operator of Hl(%1 x RN=1) into itself of the form id — I,
where K is a compact operator. So (—A + I)~!L is a Fredholm operator of index 0.

We consider the eigenvalues of the operator L, in the following sense

there exists £ € Hl(s—1 x RN=1) ¢ £ 0, verifying L& = A(—A + 1)&.

£

The operator I has a countably infinite discrete set of eigenvalues, A;, i = 1,2.... If we
1

designate by V; the ei%enspace corresponding to \;, by H' the space Hl(s? x R¥=1) and

by L? the space L?(%- x RN=1) then

&

<L >
A= inf{ S TE 20 < s = 0,Y0 € Vi @ .. @ Vig), fori>2, (1.10)
<U,U>H1
and L
A = inf{w’u £ 0},
< Uu,u >p1

(see [8]). Let us quote the following result concerning the eigenvalues of the operator
—A + 1 — pUP~! (with the definition above, with R" instead of %1 x RN~1 and when
k=1and al =0)

Theorem 1.2 The first eigenvalue of —A +1 — pUP~! in RN is 1 —p. The eigenspace
associated with the eigenvalue 0 is spanned by the eigenvectors 92, j =1,...,N.

8m]~ 4
This theorem follows from [1].
Let us define ,
1. af: al )
op = 5dist(—=, Ujzig=o,.k+1{7}) =1,k (1.11)
€ €

and

k

o = min g;.
i=1

Let us summarize the properties of the eigenvalues and of the eigenvectors of L in the
following



Theorem 1.3 (i)The eigenvalues of L are less than 1. There exists a sequence (€m;)meN
such that each eigenvalue of L tends either to 1 or to an eigenvalue of —A 4+ 1 — pUP~!
as em — 0.

(ii) Let F be the vector space associated with the eigenvalues tending to 0. Then the
dimension of F is k and F' is spanned by k eigenvectors p;, i = 1,....;k such that there
exist k real numbers a; # 0, independent of €, verifying

< ©i, Pj >H1(S_1XRN—1): 0 i#j ; H(PzHoo =1 (1'12)
and 9 5
V; V;
llpi — a’ia—xleLq(S?lXRNfl) + [V(pi — Oéz‘—amll)HLq(s?lwafl) -0 (1.13)

forall1 < g < .

(ii3) If Ni(em) — 0, then \i(em) # 0 and

1-N

Ni(em)e 70,7 — H (1.14)
where H # 0.

The paper is organized as follows. In section 2, we study the eigenvalues of the
operator L. which tend to 0 and the associated eigenvectors. We give the proof of Theorem
1.3. In section 3, we use a Lyapunov-Schmitt method to give the proof of Proposition
1.1. In section 4, we conclude the proof of Theorem 1.1.

In sections 2 and 3, we will refer to some technical results, which are reported in the
appendix (section 5).

2 An analysis of the eigenvalues.

In this part, we prove the theorem 1.3.

Proof of (i).

Let ¢ be such that
Lo =A-Ap+¢p) in %1 x RN-1,
We suppose that there exists ¢ such that ¢(c) = 1 and that ||¢||oc = 1. We denote
¢(z) = p(z +c).

By standard elliptic estimates, there exists a subsequence such that ¢ — ¢ uniformly on
the compact sets of RYV. Let us suppose that A\ /4 1. First, if |c — (%, 0)] — +oo for all
i, then

“Ap+¢=0 mRY 5 [gllec =0(0) =1



This is in contradiction with the maximum principle, so this case does not occur. So
there exists ¢ and ¢ such that (¢ — (%é, 0)) — @ Then,

(A +1—-pUP Yz +72¢)p=A~-A¢d+¢) inRN (2.15)

and ¢ is non zero and even in 2’. Thus \ is an eigenvalue of —A 4+ 1 — pUP~ !,
By a diagonal process, we can construct a subsequence (g,,) such that any eigenvalue of
L which does not tend to 1 converges to an eigenvalue of —A + 1 — pUP~1,

Proof of (ii).
We divide the proof into three parts.

Firstly, let us prove that if ¢ € F\{0}, then there exists I C {1,...,k} and some real
numbers «; # 0 and independent of € such that

I — Zaz ||oo+Hv Zaz Hoo —0 (2.16)

We follow the proof of (i) to get (2.15) with A = 0. Then we can denote ¢ instead of
(¢,0) € R x RN¥~1 and there exists some real number a # 0 such that

— oUu
o(x) = aa—xl(xl +c,2').
We get
ou .
o(x+c)— aa—(ﬂv +7¢) — 0 uniformly on the compact sets,
231
that is

ou :
o(x+c) — aa—(ﬂv +c¢— —=) —= 0 uniformly on the compact sets,
I g

that leads to

({“)UZ ai .
o(x) — az- (r) = 0 uniformly for 2 such that (x; — =) is bounded.
1

Finally for each 4, either there exists «; # 0 such that

v i
(p— aia—;}i) — 0 uniformly for = such that (z; — %) is bounded

or ,
¢ — 0 uniformly for x such that (z; — %Zf) is bounded.

Moreover, the first case occurs for at least one i. By the beginning of the present proof,

px) =0 if [z — (%,0)] — +o0 Vi.



Thus there exists J C {1,...,k} and «; # 0 and independent of ¢ such that

8%’
HSD—Z%a—leoo — 0. (2.17)
i€
We deduce that
IV (¢ Za@ ||oo —~0 (2.18)
ieJ

by standard elliptic arguments. Since the functions g”l are linearly independent, we

deduce that
dimF < k.

Secondly, let us assume that ¢ € F' and @9 € F' are such that
<9192 > st gy = 0 and [lorle = [leaflec = 1.

We write

ov;
Zaz +o0(1) and ¢y = Zﬁi8—£+o(1)

1€J1 1€J2

in the sense of (2.17) and (2.18). Taking the scalar product in H! we obtain

ov; 0Ov; ov;
O:AZ aiﬁj<axl,8j>H1+<o ZO‘Z >H1+<o Zﬂz !
i€J1,j€J2 i€Jy i€Ja
+ <o(1),0(1) >g1 .

In view of Proposition 5.7, the Lebesgue Theorem leads to

0= Z azﬁl” HHI(RN) (2.19)

i€JiNJda

We deduce that J; N Jy = 0.

Thirdly, let us assume that F' # {0}. We define a finite set J and eigenvalues A;,
J € J such that \j(e,) — 0. Let ¢; be an eigenvector associated with A;. Let us assume
that

< @i >m-z mxry-1)=0 1 # 7  |@illpec(x 2xmy-1y = 1.

We write

8%

ch% +& 5 <&ypj>=0forjeld.

We have 9
(%
L¢ =L o =Y eiN(—Ap; + ¢;). (2.20)
J




In view of (5.61), we deduce that

1€lloc < ClILE oo
and consequently that

[1€lloc — 0.

We conclude that there exists at least one j such that ¢; /4 0 and such that ij((%, 0)) 4
0. By the second step, this j is unique. Let us call it ¢ and then we have that
(%Z-
8561

%
—cpi — 0 if |z — a;—m\ is bounded.
m

Now, since || 57 Jug “loo 7> 0, we deduce that F' # {0} and that dimF > k. Consequently

dimF =k
and we define (¢1, ..., px) a basis of F' verifying (1.12) and such that
ov; ov;

i1 = it o + 17 (61 = a5 oo =0
with «; # 0, independent of ¢.
Finally we write
8% .
chgoj—i—f i <& i >m=0forall j (2.21)

and ¢; 4 0 and ||€]|cc — 0. For each j # i we have, by our convention, gpj((ag’o)) # 0.

€
Since g;’l and £ tend to 0 at a_é’ we infer that
1 £

c; — 0 forall j # 1.

Moreover, by Proposition 5.7, ¢; is bounded in L? and ||{||« — 0 for all ¢ > 1, that
gives (1.13).

Proof of (iii).

Let us adopt the case where & > 2 and where |T —0;] — 4-00. Otherwise, Proposition

1.1 is irrelevant, and the estimate of ); is true, but must be done for the period =* AT instead
of 27r

We have by (2.21)

8%
Log, #ide = cidilleillfp
and W is bounded from below, in view of (5.77). We write
i il
ov; 81) ov; ov; , 1 Ov;
7 ,Ld - 7 (2 d _ L 7 - 7 _ i d
/ 3 Oy 1T 31‘1 31‘1 v 31‘1 C; 8.%'1 SD) v

8



Let us define, for j =0,...,k+ 1

J

T a
Qj={zre [—8 8] x RN—1. ; dist(z, UkH{( ,0)} =z — (f,O)|}. (2.22)
We have
- k+1
0 n RN 1 _ Q
S EEY
We write
ov; O, 1 1\ Ov; OU;
L2 9% — R 7/ L 2.2
axl’ 83:1 >2 p;/ﬂi(UzJ Ug )axl 8561 £ ( 3)
k+1
ov; 0U;
(UPTt Y 2
+JZO pZ/ Bl u )3361 O0xy ’
e

We are going to prove on one hand that

ov; OU; _ oU; =N
p—l _ gp—1y % —(1— p—2 —20; 2
J ot m g g = 0o [ 0T G e ool ) 2

and on the other hand that

k+1
_ 0v; 8Ul 1 ov; 8Ul
(UP Tt — Y 2 /U” W) "dz| (2.25
Z¢Z‘/ il ) 8561 ’+§‘ Q il Ue )axl 8561 ’ ( )
1-N
=o(e %%, 7 ).
Using Lemma 5.2, we write, if p > 2,
_ ov; dU; v; BU
Up 1 —p 7 1—])/ Up 2 _|_ Uzl YV
/Qz( ¢ e )Bm 0x1 = ) Q, ; I#ZO 01 le
ov; aU
—|—O/ vi + Uz mln{p 1,2} Y'Y
( QZ(; J #ZO 8561 63:1
while, if p = 2
_ ov; OU; av aU
urt — g == 1— /U“ i+ Ui
/m(l ) P oy = (1) 0, ! ; ; Doz e ™

Now, we use Proposition 5.9 to get, when p —1 > 1

/ ZUJ + Z U mln{p 1,2} YV avl aU _ O( —20; min{p—1 2}
Q; i 140 8.%'1 31‘1

(1—N) min{p—1,2}

Since £ — 0; — 400, we have



Using Proposition 5.9 again, we obtain for all p > 2

Ov; (9U 1N
Up 2 U@ 7 _ —20; " 2
/m ; l 8551 3331 0(6 % )

and

_ Ov; OU; _ oU; 1N
p—2 ) P A _ p2 —20; .~ 2
| v g e = [ 0FA (e (G e+ ofe 0, ),

J#i J#i
We have proved (2.24).

Let us turn now to the proof of (2.25).

We estimate, for [ # 0 and using Proposition 5.9

- ov; OU; 9o, SN
/Q (Uz{)l ' —ﬂ§*1)651 8Tl’ld$ =o(e g, 2 ).

Now, let 0 < 8 < 1 be given. We have for all [ and for j =0,....k+1, j #i

_ ov; 0U; _ ov; g, 0U; ov; 1
e g Gt < | @3 g e

Oxy Oxy te Oz, ' Ox; ”L°° Q;)

But

Choosing 3 such that p — 1+ 8 > 1, we get, using Proposition 5.9

_ ov;  5,0U; 1N
p—1 —p—1 ? 3,1 — —20; " 2
O RGP e = 00 )

Since
i 1-p

; —0
01" Lo (|a— (22 ,0)|<ary)

we deduce (2.25).

Now (2.24) and (2.25) give

ov; O 9 oU; o, =N
Z T = [ pr § , “V2dx + 20ig.2 ), 2.2
L&’cl’ e > /QZ 7 vj)(&’cl) dx + o(e o; %) (2.26)

Using Corollary 5.1, we get

g; 712+N - aUZ
ot [ G

where H; # 0 is a real number.

10



It remains now to prove that

ov; , 1 Ov; 1-N

7 (. ; dr = —20; T2 . 2927
Lt (= = gda = ofe 7, 7 ) (2.27)

We write
62}2 1 Ov; 2 1 0v;
; d (1-— b= P — — d
| Lt gl =0 -p)l | 0 > vy (i — = g
JF#i
1-N

ww%ﬁﬂ

—(e o (82 1 ov; o =N
< [ Sty - (g, - Ly o
i ji i

10 -N 1N
:O( 2010. 2 / "Pz UZ’d +0( 2020, 2 )20(672010'@-2 )

Z

For j # i, we write

31}, 1 Ov; 1 1,0U;; 1 Ov;
_ < P p— . _
’/ 8x1 ci 31'1 )| CZ/ I U” +U ) ox (i ci Bxl)‘dx

1-N 1 v 1-N
< C/ 672010'1- 2 g — — Yi |dx = 0(672‘”@ 2

C; 8561

We obtain (2.27) and consequently, we have proved (1.14).

3 The Lyapunov-Schmitt reduction.

In this part, we prove the proposition 1.1.

Let us define
M(u) = —Au+u—ull.

To begin with, we have

Lemma 3.1 .
HM(Ea)Hoo < Ce_QQQT- (3.28)

=S (S v (3.29)

il

Proof.

We have for all 4

‘_s_| 5 aé 1- N ‘x _a| .
> U+ > Uy <Ce \ = in Q.
jHiIED lez*

11



In Q;, we write by Lemma 5.2

M(u,) = —pUipil( Z Uji + Z Uii) + 0( Z Uji + Z Ui,l)Q + Z

jAGlED lez+ JALIET lez* GALIET

while p — 1 > 1. We easily deduce the proof of the Lemma.

Let k real numbers 41,...,0; and v € Hl(%1 x RN=1) be given. Let us suppose that

k
u:ﬂ€+v+25m¢; <v,0; >m=0, i=1,...,k (3.30)
i=1
is a solution of (1.1) and that
k
[vllo + > 18] — 0.
i=1
We define
k k
h=-M@@+v+ Y b)) + L+ 5ipy). (3.31)

i=1 i=1
Then v and 47,...,0;, are such that

k
i=1
We denote

h=ht+n" | KT eVect{ps,..,or} , hte (Vect{gol, RCRSE

relatively to the Hilbert space H'([—Z, Z] x R¥~1). First, v is a Z=-periodic solution of
the equation

{ Lv=h- (3.32)

<v,p; >m=0, i=1,... k.
Then (41, ..., ) verifies

k
i=1
We have the following

Proposition 3.3 Let v be a solution of (3.32). Then there exists C independent of €
such that

ifp>2 |v|p <Cle 2oz +Z\5\ (3.33)

if p=2"n€l0,1, |lvm <Ol + Z )
i=1
and for all p

[0]lo0 + [ V0]loo < Ce 202 + Z 1:1%). (3.34)

12



Proof.
We write

h=AT U + (T + v+ Y 0o —pil " (v+ Y bipi)
and Lemma 5.2 gives
@ +v+ > Gie)i —T —pi v+ Gier)| < Clo+ ) digil .

We deduce that

b+ M@)| < Clo+ > dipil*, (3.35)
Since
"<h w; >
hl :h—27, 2 (—AQDZ—FSDZ),
=1 HSDZHHl
then

1h N2 < Cllhlle and  [|h* [l < Cllhlloc-

Now, we use (5.61) to obtain
lollso < ClIR™ o

Using (3.28), we deduce the estimate
1-N i
lolloe < Cle™*g 2"+ |6i[) (3.36)
i=1

and the estimate (3.34) follows in the standard way.
We have also by (5.64)
ol < CllR* |2

We write

hl72 < CUM@) 72 + Ilvllza + Y 16;1%).
j

Using (3.36), we deduce, for € small enough
ol < CUIM@) L2 + D 16;%).
J
Now we use (3.29) and Lemma 5.2 to obtain

k+1

ICATRED S TRl DI UIES SUN RSN I S /IED SIUDE
i=0 7 JAGIEL lez* Qi jtiter lez*
Proposition 5.9 gives
IM@@) |2 < Cle 22 ) ifp>2 (3.37)

13



and for all n €]0, 1]
IM@@)| 2 < Cle 29 2 ) ifp=2. (3.38)

We deduce (3.33).
We have proved the proposition.

Now let d; be defined by

We have the following

Proposition 3.4 Fori=1,...,k

di = [ oy ug
\mqu O

Proof. We have

)+o(e22g 2 ). (3.39)

1
Tl /R< %)

The coefficient ||¢;||z1 does not matter, thanks to (5.77). We deduce from (3.34) and
(3.35) that

(3.40)

k
/sl o 1(h + M(@.))pidz = O(e 175N 4 25]2) (3.41)
S RN-

J
Now let us estimate the second integral, for ¢ = 1, ..., k.
Without loss of generality, we let ¢ = 1. We write

oy
/ M(ﬂg)gpldaz:/ M(u:)(p1—ag — )dﬂ:—l—al/ M) —dz.
},g E[XRN 1 }*S,S[XRN” ox },g g[XRN 1 8561

The estimate (3.28) gives directly

/ M) (1 — al%)d:ﬂ = 0(672gg172N )s (3.42)
],, 7[><RN 1 63:1
since
lir — a1 g1 = 0
¥1 163:1 1 .
Now, as in the proof of Theorem 1.3, (iii), we write
k+1
ovy ovy / 8”1
M dr = M@ dr + + M(u.)=—dx
/};r g[ xRN-1 ( )8561 N ( 8)8 ]ZO 41 E 8561

14



We have
M(@e) = Ul = QUi
il il
By Lemma 5.2 we have, in {2,

M(ﬂe):—pril( Z U,‘71+ZUj71)+O( Z Ui,l—FZUjJ)Q

i), IET 140 i#5,IET 140
We get, for j # 1

) ) )
/QM(ﬂe)a—;id:c: (||ﬂ||m /|”1 FUP S U+ Uy O(e ¥V de

17,0 1#£0
(3.43)

1-N

_ —20; "3
=o(e JO'jQ)

by Proposition 5.9.

Now we write

ov 1-N
M) 5=~ Ly = o(e >0, )—p/ U v ZUH —d:c. (3.44)
h " 2 iz 0
Moreover, since k > 2, we have

T
— — 01 — +00
€

and consequently
—2r

e =o(e ).

So, we deduce from Proposition 5.9 that

oU 1y
/UplelzZ Lz = o(e 7o %)

! 140 1
and
p 1 aUll ,201 %

Z Z = o * ).

J#L1#£0
Finally
[ S S [ 07 S e o= T o

1

J#1 I#0
Now (3.40), (3.42), (3.43) and (3.44) give the proof of the proposition.

Proposition 3.5 Let u be given as in Proposition 1.1 and let 61,....,0, be defined in
1 k 1 k
(3.30). We can possibly replace the k given points ag—g,....,%& by k points b?f,....,b?f verifying

7 )
aE b€
———= =0 ase—0
€ €

in order to have



Proof. Let )
u:ﬂe—l—Z(Sjgpj—l—v
j=1
be the given solution of (1.1).
Let us give (a1, ..., o) depending on €, such that (a1, ...,ar) — 0. We can replace the

points a?é by the points a—f + «;. In other words, we write

where

and ¢;, j=1,..,k
are the eigenfunctions corresponding to the eigenvalues tending to 0, for the configuration

al

of points <

+ a;, and
<v,0; >=0, j=1,..,k

Soustraying the expressions of u and performing the scalar product in H! by ¢;, we get
5l |12 S e B 00 S T — T 0r > 480012 5 o
illeilln + Z(S] < @j = s pi >=<Te — Us, pi > +0ill@illgn+ <v—10,, >. (3.46)
J

First we remark that we have
<V =0, >=<0,p; — p; >
while by (3.33)
1-N ~
[l < Cle™a™s + 3 8),
J
with n =1, for p > 2, thus

| <v—B,p> | <O a7 +3 82, (3.47)
j

Moreover
‘ <ﬂ5_ﬁ5790i > ‘ < Cz‘a]’
J

and, as a consequence of (1.13)

165 — @il — 0.

Thanks to (3.46), we deduce that

S E <O 161+ ol +e g 5. (3.48)
J

i J

16



and consequently

[0l < Cle™2g = +Z\5 !2+Z!0@!

thus
| <v—1,¢;>| < C(e™” —+ZI6 |2+Zla]|

for some C' independent of ¢ .
Now let us prove that we can choose (a1, ..., ay) such that

<Ue — G, 05 > +0;|i P+ < v — T, 0 >=0.
We define
Flo, oy op) = (< Ue — U, @5 >)im1,.. k-
This definition gives, for i and j =1,..., k
oF; oU;, U-l
— d J
aOéj Z/[\ 7]><RN 1 aﬂfl (x Oéj, SDZ x"’Z/ ™ W]XRN 1 aﬂfl ('I

I€Z leZ

We deduce that, as ¢ — 0

OF; oU OF;
aai (O) — Ha HHl and

9o, (0) =0 for j #i.

Thus dF(0) is an isomorphism, for € small enough.
Let us define o = (v, ..., o). We have to solve

F(a) + Gillgill*+ < v — 0,9 >Y)iz1,..k = 0.
We define
Qo) = F(a) = F(0) — dF(0)(e)
and
G(a) = (=dF(0)) Q) + (§illil >+ < v = 0,01 >)i.._.x)-

Since we have together

Q(a)] = O(laf?)

(3.49)

Oéj,

2").Vi(z)dz.

and (3.49), we can use the Brouwer fixed point Theorem in a standard way. We find a

real number R,
R<O@E™ g s +3 |5
J
such that
(lol < R) = [G(a)] < R).

So we find a, |a| < R, such that G(«) = «, that is

< Ug — 77«57902‘ > +5iH<piH2+ <v - 177902‘ >=0.

17



Returning to (3.46), we deduce that ; =0, i =1,..., k.

Proof of Proposition 1.1. The points are asymptotically uniformly dis-
tributed.
From now on, we suppose that 9; =0, 7 =1, ..., k.
Let i € {1,...,k} be such that
oy —a —0

(we know that there exists at least one i such that o; = o). We have
L0191 + ... + ) = b,

that is
k

k
D 0di(=Api+ i) =Y di(—Ap; + ;)
i=1

=1
thus
(SZ)\Z == dl for all 7.

In particular

d;y = 0.

Since, by Theorem 1.3 we have

we deduce from (3.39) that

We deduce that

/Q 0l Zﬂ Zod

‘o’ J#i0

=— Up ! v; Zodm—i-o
/Q S oy + o)

J#i0

But let us suppose that ' '
20' = aéo—’—l — a—?
- € €

We use Corollary 5.1 to get a positive real number Dy such that

o / LUY ]8Ulodx—>Do
331>

Qo J#io

and

_,l0=1  4io ip—1
ag” —ag — Qa N-—1 1 @
el \,#,T / o, U™ E :Uj de_>D0
€ Qio§ml< _]752

18



and consequently

%0 i0—1
2o - (%)
£ 9

This property is valid for all exponent i such that o; — o — 0 instead of 3. Thus we have
(1.7).

4  The proof of Theorem 1.1 completed.

The uniqueness.
i 1 . i 1 .
a€—5 + f—g) — 0. Replacing the points %= by as—f + f—g, 1=1,...k,

al
Now, we have == — ( -

I3
we can write u as

1 k
a 2ml < - .
U= ZU(:cl - ?‘3 + E,x') +Z§igoi +0, <0,p;,>=0, i=1,..,k.
leZ =1
By the definition of ¢; given in section 2 (analogue to that of (,OZ) is ——perlodlc in x.
But now, the Correspondlng operator LL is of minimal perlod , since now u. is replaced

by > ez Ul — ?E + 2k—7;l, z’). So we have
2

Gi(r) = g1(w1 + E’x,)

and @ is 7--periodic. Let us denote 1 = @.
Now we recall that
Lv = h*

with h = —M (@) + O(v? + (32, 8:¢:)%). We can use the Banach fixed point theorem in
L™ to deduce that v is of minimal period i—’;
Consequently, u is %—g—periodic and in the space Hl(i—; x RN=1) we write

1

B a; 2wl 0 <. -
u—leZZU 1__+k3—6 )+ op+0v, <v,0>=0.

Thanks to Proposition 3.5, we can perform a translation in x; to get 6 =0. We get some
% — 0 such that

! 2l
u:ZU(:Ul—%—%%—i,x')%—v, <v,p(x; ——) >=0.
I€Z

Let up be the Dancer solution of period i—’; Then

1 1
a 27l ~
D(ml E ZU 1——€+E .%')+5LP+U
leZ

19



for some v such that < v, >= 0 and some § — 0.
Exactly as for u, we find some point bE—E — 0 such that

up(z1 — f,ﬂ:') = ZU($1 - ?& - —+ —€,$/) +wvp, <wvp,P(r1 — f) >=0.
leZ

Now we can prove that for € small enough,

b: —a. —al

6,3)/).

u=up(x +
€
The proof is the same as for the case of a solution which is even in x;. Let us write it
for the sake of completeness.
Without loss of generality, let al = 0.
We define

be — ac
;') and w=u—Tup.

ﬂD(m') = uD(acl +

Let us suppose that w # 0, at least for a sequence ¢ — 0. Then ||w||s is attained at a
point ¢ = (¢1,c’), with ¢ obviously bounded independently of £ and ¢; €] — 2= 7). Now
¢y is bounded. To see that, we write

—A 1- =0. 4.50
w1 - =) (4.50
If w(c) > 0, then
p _ 7P
D () < pur!
u—7uUp

thus
Aw(e) > w(e)(1 - pu?~(e)).

But if |¢1| — +o00, we have uP~!(c) — 0, thus
1—puP~(c) >0

for € small enough, that is in contradiction with the Maximum Principle. So we may
extract a subsequence such that ¢ — ¢ for some ¢.
Let us define
w
z(x) = ——.
[[w]]oo

It verifies (4.50). By standard arguments z — Z uniformly on the compact sets. Moreover

zZ(e) =1
and »
_ uP — )
piy < ——L <puP~! ifu>Tp
U—Up

and we have the reverse inequality if u < up. More,

limu =limup = U(x).

20



So

D _ P
o U
hmi_D:pU.
U —up

Thus
~AZ+2(1 - pUPh =0,

We deduce that z = ozg—gl, for some a # 0.

We have
~ Qs 1 be — ac N ag
<z,pxy ——,2") >pp=————— <v—uvp(x; + ,x'),p(xy — —,2') >p=0.
€ llu —up|loo € €
Moreover 5U
|Z| S 15 95 — 5
31‘1
and by Proposition 5.7,
_ S@)| < Cerll - .
VE@) + ()] < Cele i =T, T

We use the Lebesgue Theorem to infer that

_ a oUu 5
< z,¢(x1 - f7x/) >H1™ O‘”a—leHl(RN)'

So we are led to a contradiction. We conclude that u = up, for € small enough.
The proof of the estimate 1.6.

Without loss of generality, we let k = 1. We write

uD:ZUl—H}
l

where v is even in z; and verifies

Lv=h

and T, is replaced by >, U; in the definition of L. The restriction of L to the even
functions has no eigenvalue tending to 0. The same proof as for (5.61) gives

[0]lc0 + [VOlloo < ClP]loo

and consequently the same proof as for (3.34) gives

2 7T 1—-N

Vi €0, 1] [vllee + [[Volloo < Ce™e (2) 72 (4.51)

Let Ry > 0 be given. It remains to estimate, for all n €]0, 1]

([o(m)] + [Vo(y)|)e™

when d, > Ry.
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Let B be a positive real number, independent of e, which will be chosen later. Let
yeEl-IT+8,I— B[xRN~1. We follow the course of the proof of Proposition 5.6 from
(5.65), & being replaced by v. With the notations of that proof, we perform the truncation
around 0, using the truncature function 6. So we drop the index i. By (5.67), we have

Ov)(y) = | Gy —z)(pda " v+ 0h — Abv — 2V6.Vv)(z)dx
RN
Now
h=-M(u.) + O(v2).
We have
lu(y)| < C(/ vG(y — ac)pé?e(_p“)‘x‘dx +/ Gy — x)0|M(u.)|dz +/ Gy — x)@dem
RN RN RN

+/ Gy — x)(|v] + |Vv|)dz).
RN;gfﬁ<m1<g

Now In Supp#,
1-N
dy = x| and U < Ce |z,

Let us recall that

M(@.) =pUP ' (> U) + 0 Uh)?,
140 1£0

We deduce that for all n €]0,1]

/ G(y—z)0|M(T.)|dx < C Z / e~ Mlene=vG(y—z)e" (UP~ U +-U2 )0 du.
RN [-Z,T[xRN-L

lez*
(4.52)
Using Proposition 5.9, we obtain for all ' such that 0 <7’ <p—1—1n
Z / el vG(y — x)e™ UP~1U,0da < Ce*"dye*"/%ﬂ(i)%.
lezx Y -5 F[XRN ! €
Moreover
Z e Ml enle=v Gy — 2)e"™ 1 U20dz < Ce 2t (D)5,
lezx ? -5 E [XRN ! 5

Now Proposition 5.9 gives also, since p—1+1n > 1
/RN [v|G(y — 2)phePTIIl g < [lue= || o /RN Gy — z)phelPri=mlel gy (4.53)

< [Jve™= |ope Wy 2 < [Juem || oe M e R0,

where we define n; =1 — 7, and

Gy — z)v?0dz < |Jve™de ||go/ Gy — z)he= 211l gy (4.54)
RN RN
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< C|jve=||2 e~y / Gy — z)0e™ Vel 4y < C|jve™e |2 e~
RN
Now
/ Gly=2) (ol +[Ve)ds < (oe™ o [(Te)er o)e ™ [ el IGy—a)da.
RN;Z—B<mi<t RN
(4.55)
Finally, we obtain, for y €]—Z+4, Z—B[xRY ! and for all 0 < 7' < min{2—7,2(p—1-n)}

Yy
o' T 1=N 2 _
E (2) +?(|lv€"d’” oo+ 1 (V)€™ [|oo)+Cr ([oe™ |3+ [0e™ || oe ™™ 0)
where the constants are independent of 5 and of R.

We obtain the same estimate for |(Vv)(y)e™Y!|, using the proof of (5.73).

We terminate by a barrier function argument, as in the proof of (5.62). Let us define

[o(y)e™| < Cre

2

p=0Cre = (2) 7+ —([ve" [l + [I(V0)e™ [lo) + Cu([|ve |2, + [[ve™= [l oge™™ ).

n'r M 1-N
g

=|Q

We have
AW =)+ (1 —p@? (v —@) = —(1—put g +h
Ifre[f—-3,1] « RN-1
|h + M(@.)| < Cv? < C|jve™=||2 e~ 21(==H)
and
M(@.)] < eVl G20l — (2 ) 'F* < 0(D)'F e Felri2ll
€ €

Choosing if necessary C large enough, we deduce that

—1—p@® Np+h<0 forye[Z—p I xRVNL
The same proof gives

—(1 —pﬂgfl)a—i— h<0 foryel0,Z+p]x RN-1
Finally, the Maximum Principle gives

‘U(y)‘ _ago forye [g —57§+5] XRNfll

Thus, in [_27 %] x RV~1 we have when dy > Ry
()

C
+ B(Hve"d“ oo + 1(V0)e™ [loo) + Cllve™ 1%,

+C’||ve77d”” ||Ooe*n1Ro

(IVo()] + [o(y))e™ < Ce

and when d, < Ry
_n'x T 1=-N

(Vo) + [o(y))e™ < Cem e (Z) 7 e,

We choose 5 and Ry large enough to obtain (1.6).
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5 Appendix.

Let > 0 be given. Let h be a function, defined on [—Z, Z] x RN~ which has the
property

the fonction he"iSt@ UHI{( 0D 4 is bounded in L>®([-Z, 2] x RN~ 1) (5.56)

independently of e.

Then h belongs to H~!([—Z, Z] x R¥~!)(the dual space of H'([-Z,Z] x R¥"1)) in
the following sense

< h,¢ >H17H1:/ hypdx  for ¢p € H'.

-2, ZIxRN -1

We will denote H' in place of H!([—Z,Z] x RV=1).
By the Lax-Milgram Theorem, there ex1st5 u € H' such that

—Au+u=h. (5.57)

It is classical that u € L™ (see [8], Theorem 9.13 and use the Sobolev embedding Theo-
rem).
As a consequence of the maximum principle,

[ullee < [P oo (5.58)
More we have the following

Proposition 5.6 Leth € H '([-Z, Z]xRN~1). There exists a unique £ € H'([—Z, %] x
RN=1) which verifies
LE = h. (5.59)

Let us suppose that h € L®([—Z,Z] x RN"1) and that
< h, p; >H-1 1= 0, 1=1,...,k. (5.60)

Then
[€]loo + IVE]loo < Clh]loo (5.61)

where C' is independent of .

Let n €]0, 1] be given. Let us suppose that h verifies (5.60) and has the additional property

(5.56) for all n €]0,1].

Then for all n €]0, 1] there exists C' independent of € and dependent of n such that
ngnd’ist(x,uﬁié{( ,00H) H + ||V£ ndist(z UJ O{(?é Hoo (562)

< CHhendlSt(m Uk+1{ ol 0)})H
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Proof Let ¢ € H' (5 x RNV=1). First, we deduce from (1.14) that

(L =0) = (£=0).

Moreover, the operator L is a Fredholm operator, so we have the existence of a unique
solution ¢ of (5.59) when h € H~!. The property (5.60) for h implies the existence of &,
without knowing the property (1.14). In this case, & verifies

/ S(—A+1)(p)dz =0, i=1,..k. (5.63)
St RN-1
Moreover we have in this case

€]l < Cllufl g (5.64)

where u is defined in (5.57) and C is independent of €. Indeed, this can be proved using
the expansion of ¢ on a basis of eigenvectors of the operator (—A + 1)~!L.

Now, let h € L verifying (5.56) and (5.60). Let us prove (5.61).

Let us assume that ||h|lcc — 0 and that [|{]|cc = 1. There exists ¢ such that &(c) = 1.
Let &(x) = &(x + ¢). By the standard elliptic estimates, ¢ tends to a limit £, uniformly
on the compact sets of RV and we have either

(~A+1)E=0 inRNif|c—%é|—>—|—oof0ralli
or
(~A+1—pUPHz+7¢)E=0 in RY if there exists i and  such that (¢ — %é) — C.

The first case is in contradiction with the maximum principle, so it does not occur. In
the second case, we have that

U
E(x+c)— 8—(1‘1 +7¢,2') uniformly on the compact sets.
1

We use (5.63). Since (1 — X;)(—=A + 1)¢; = pi ‘i, we use the Lebesgue Theorem to
get a contradiction.

We have proved that
[€lloe < CllA|co-

The inequality for |V&|s follows from standard elliptic estimates ([8],Theorem 9.13).
So we have proved (5.61).

In what follows, we denote

J
dy, = dist(x,U?ié (%,0)})-

We define
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Let 8 be a positive real number, independent of . Let ¢ = 1, ..., k and let us consider
the domain D defined by

s al .
D:{y;—Uz‘—H-ﬁS?h—f <& — B}
The number 8 will be chosen later.

Let Ry > 0 be given. We are going to estimate

[E@)e™ | + [VE(y)e™™ |
when y € D is such that d, > Ry.

For i = 1,...,k, let 6; be a function which is ZZ-periodic in z; and which verifies in

€
[_27 g] X RN?I

01(1') =1 for —6G;1+8< 21— < o;—pf (5.65)

o |8

KA
0;(z) =0 for T — >g; or x1— f < —G;_1.

Moreover, we suppose that ; is C? in ;. More precisely, we build 6; from the function
0 defined in [0, 5], O(x1) = —%x? + %x‘f - %m‘z’ + 1, by 05(x) = 0(xy — %= — 6, + f), if

gi—B < — % < g; and 0;(x) = é(% — 01+ —x), if =551 < a1 — % < —Gi—1+ 0.
Thus we have for all  and for M independent of 7, of 8 and of ¢

M M
0:i(x)| < M, |VOi(z)| < —, [Abi(z)] < .
B B
Let G be the Green function of the operator
~A+1 onRY.
We have a
e 1* N3
We write
690 = [ | Gly—o)ohT e+ 0h - A0E—WOTY @, (56T
RN

Let y € D, we have (0;£)(y) = £(y).
We consider (5.67). Firstly, we have for all n €]0, 1]

| / Gly — o) (0 € + 0ih) (@) da| < Cllhe™ ||, / Gly — 2)0s(x)e ™= dz (5.68)
RN RN
O™ o / Gy — 2)fi(x)e ™ T (2)der
RN
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For x in Suppf; we write

while
Vn €]0,1[FegVe < g9 u(z) < Ce e,

So we have
| | Gy — z)0i(x)e " da|
RN

< | Gy —=z)e"=0;(x)|e " dz < Ce
RN

and, for any i’ such that n <7’ <1

[ Gl = i) )

< Ce M Gy — z)e e ¥le=(p=Vmtn=n")de g ()| do: < Ce™ '

RN

Secondly, we get for all  €]0,1]

| / G(y — x)(—Abi§ — 2V0;.VE)(z)dx| < Q(H&ndz o
RN B

Ve ) / Gly — x)e ™= du.
xeSuppe;

But, as above

\ Gy — x)e ™Mo dx| < Ce M,
zeSuppé;

(5.69)

(5.70)

(5.71)

Then (5.67)-(5.71) give for all n €]0,1] and for a constant C' independent of 5 and for

some n; > 0

1
[E(y)en™| < C(Hhend’”HooJrg(IIV&"dzHoo+||£6”dz||oo)+067"1R°||£6"dzHoo for all y € D.

We have to prove that

(5.72)

1
[VE(y)e™™| < C(Hher’d’”llo&rg\lvée"d’”||oo+\|£€"d’”||oo)+06_"1R°H£€"d’”||oo for all y € D.

Let u = e~ (F:01 When d, = |z — (a—é,O)] > Ry, u satisfies the equation

€

—Au+u(l—n* —pa 1) + 2nV|z — (-£,0)[.Vu = " h.

o |8

(5.73)

Without loss of generality, we suppose that there exists C' independent of ¢ such that

oM =

for all x such that |z —y| <1, |d, —|x—(—=,0)|| <C.

€
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We use Theorem 9.13 of [8], with Q' = {z, |z —y| < 3} and Q = {z, |z —y| < 1}. We get
IVullpoo ) < C(l[ull e (o) + 1€7 hl| oo o)

that gives
V(&™) (y)] < CI|€™™ |0 + [[hE"™ |o0)- (5.74)

Then (5.72) and (5.74) lead to (5.73). Now (5.73) and (5.72) give

C _
(EW)+IVEW) e < CthedzHoo+ﬁ(|!§€d””Hoo+|!V§€d””Hoo)+C€ mHogems o for y € D.

(5.75)
It remains to prove (5.75) for y in Q;\D. Let us denote
B ai qit!
D:{Z/;f+5z’—5<y1 < 2 —0;+ B}

By (5.75), we have on dD

£(y)] < Cre TP e | 4 %(ngdfuoo T [[VEe™||oo) + Ce~m o e | .
Let us denote

My) = Cre7 " P he | + %(Hﬁed’\\oo + [ VEe [lo) + Cem Mo o

We can suppose that C; > 1.
We have

“A( =)+ (€ =) —pu™") = —p(1 —pul~!) + h.
In D, we have d, > &; — 3, thus

|h| < e MR |||, in D,

We deduce that for € small enough, we have together

—p(1—p@?@ H4+h<0 and 1—p@?'>0 in D.
€ €

Then the Maximum Principle gives

and the same proof gives
Moreover, we have

Finally

C o
()€™ | < Cre||he o + E(Héed" oo + [ VEe™ [loo) + Ce™mH0||¢eM= || in D,

28



The same proof as for (5.73) gives

[VE@)em | < Cre [he™[|oo + %(\\Sedw oo + V€™ [lo0) + Ce™™ 0 lge™ [log i D.

We have proved

€ ()™ |+ VE (x)e™| < Clenﬁ\lhend’||oo+%(\|£€dzHoo+||V£6d””Hoo)+C€mROHEG"d””Iloo in €,

when d, > Ry,
and
|€(x)e™e | + |VE(z)e| < CreP||he™e || e ™0 in Q;, when d, < Ry,

for all 7.
Now we choose 8 and Ry large enough to get (5.62). We have proved the proposition.

Proposition 5.7 Let ¢ be an eigenfunction of L, associated with an eigenvalue A\ which
does mot tend to 1. Let us suppose that ||¢||pec =z zjxgn-1y = 1. Then for all n €]0,1]
there exists C > 0, independent of €, such that

lo(z)] + |Vp(z)] < Cendist@Zo{(Z.0)) (5.76)
where we use the notation : a2 = a¥ — 2w and a**! = al + 2r.
Moreover
Ci < el < Co (5.77)

where C and Cy are some positive real numbers independent of €.
Let € be defined in (2.21). Then

IE(2)| + |VE(2)| < CegendistauiZy (=00, (5.78)

Proof To prove (5.76), we follow the proof of (5.62) in Proposition 5.6, with A =0
We find, for y € €; such that d, > Ry

C _
e(y)e™ | + | Vip(y)e"™| < ﬁ(Hsﬁed”Hoo + Ve ||oo) + Ce™ M0 [ pem= |
while for y € €; such that d, < Ry

lp(y)e"™ | + [Vip(y)es | < Cen

where the constant C' is independent of 5 and of Ry. We choose Ry and 8 large enough
to obtain(5.76).

Let us prove (5.77).
We have

A=Mlelln = [, w7l
X

-1
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In view of (5.76) and of (2.16), we may use the Lebesgue Theorem to obtain that

lellgr 40, i=0,..,k.
Now we have

k
({91)2‘ —p—
L = Laxl — E Cj)\j(—AQDj + ng) = g (Ug 1 ULZ)

j=1 IeZ

k
aUZJ )\] —p—l
({91'1 +pjzlc.]1_)\ju6 Pj-
If we write L = h, then, for all n €]0,1]

|h(z)] < Cpe=Ze M=,

We use Proposition 5.6 to obtain (5.78).
We have proved the proposition.

Proposition 5.8 Let C and A be positive real numbers. Let f and g be functions which
verify the following property, for |x| > A

@< e g < o) 5
Let a > b > 0. Let yo be such that |yo| — +00 and o = ol Then
=N
|/1 2| F(@)g"(x = (y0,0))dz| = o(lyol* = "), (5.79)
a2 J|z|<a
Proof We easily see that if |z| < a,

x 1
[ = (90,01 = lyoll-— = (1,0)] = Z Iyl
Yo

Thus
1-N _ —blp—
[, @ 0. 0)el < CluP'F [ el 0l
a2 <|z|<a a2 <|z|<a
bz N-1 —ar fb\/(rzryo)QnLTQZN z2
<Ol [, e o= drdp(z)
a2 <r<a SN—1
aZ <r<a SN-1
< C|y0|b#/1 T‘N_l/ e~ e ol drdy ()
a2 <r<a SN-1
bI=N byl (b—a)a? N
and e(b*“)a%aN — 0.
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Proposition 5.9 Let f and g be smooth functions and C, C1, Cy and A be positive real

numbers which verify, for |z| > A
0< fla)<Cell o Cre el 3 < (o) < Coe lfaf 5

Let us define

Q,={ze [— Z] x RN~ dist(x, UkJrl{( : ,0)} =z — (%é 0)|}.

. . aé—aé
Leta>b>0. Let i # j and let yo = =—=.

If f(x) > 0 and f # 0, then there exist positive real numbers C1 and Csy such that, for

i=0,.. k+1

- i j
(Lo )CECoe o T < [ go(e—(E, ) @ (Z, 0o < CYCoe M0l l? 5 (14o(1)),

€

where

Cop = fUz)dx
RN
The estimate (5.80) holds true if we replace €; by the set

i

Qf ={ze€Qy; x1>%}

while Cy is replaced by

/ f4z)dx.
RN ,21>0
Proof. Let
_ |yol
o= .
2

For x such that |z — (%;,O)| < a2, we have

i

ai aj a
[vol = |z = (Z,0) < & = (=, 0)] < Jyol + |z = (Z, 0)],

thus '
al
|z — (;,O)I = (1 +0(1))[yol-
We write

[ gy o= CE 0N = (0t

(1-N

L —blyol , e (

> CH{1+ of1)) ol ) a
lz—(=£,0)[<a2 €

(
> CYCo(1 + o(1))yo|
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and

/ e - (0 - (Z,0))da
lz—(%2,0)|<a2 € €
b b=y a at
< CY(1+ o(1)) g T e L - (% 0)da
lz—(%2,0)|<a2 €

(A=N)

SC;’Co(l-i-O(l))‘yQ’b 2 eib|y0‘.

Moreover, in view of Proposition 5.8, we have

? 1-N
[ e (R0)g - (0 = od)ge e
2€Qis02 <o —(%,0)|<a € ¢
Last, we have
at ag
/ L = (5 0)g e — (£, 0))de
2€Qslz— (% ,0)|>a € €

< cheeetnlpy 5 [ BB fo( — (%, 0))d

i
xeﬂi;\x—(a?f,O)ba
_ 1-N
= o(e” "0y [*7=7),

since a > b.
We have proved the proposition.

Corollary 5.1 If

|z| =400
then )
7 J 3
lim [ = (F,0)g(x — (,0)dae ™y 7 = LCy
|z]—+00 Jq, € 15

where Cy is defined in Proposition 5.9. Moreover, we can replace €; by Q;r

Lemma 5.2 Let k be a positive integer. Let a and b be real numbers, with a > 0. If
p > 1 is given and k = [p]. There exists C' independent of a and b such that

wlp—k+1)

|—(a+b)f +a + ..+ L - aP ok < CbPP.

Proof First, let us suppose that b < 0. If a+2b < 0, then a < 2|b|, and the claim is true.
If a+2b >0, then a + b > 0 and we write

p..p—k+1) p...(p — k) o
’ — (a + b)p + ap + ...+ Tap kbk‘ = W(a + Oéb)p k 1bk+1 (581)
where « €]0,1[. But a + ab > —2b + ab, thus

(p—k+1 (p—k
!—(a+b)p+ap+...+p—(p o ki )apkb’“\gpi(k(i 1)!)(2_a)pk1\b\p
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that gives the claim.
Secondly, let us suppose that b > 0. If a < b, the claim is true. If a > b, we use (5.81)
again and we obtain the claim.
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