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Uniqueness of positive periodic solutions with some peaks

This work deals with the semilinear equation -∆u

N -2 . We consider the positive solutions which are 2π ε -periodic in x 1 and decreasing to 0 in the other variables, uniformly in x 1 . Let a periodic configuration of points be given on the x 1 -axis, which repel each other as the period tends to infinity. If there exists a solution which has these points as peaks, we prove that the points must be asymptotically uniformly distributed on the x 1 -axis. Then, for ε small enough, we prove the uniqueness up to a translation of the positive solution with some peaks on the x 1 -axis, for a given minimal period in x 1 .

1 Introduction.

We consider the equation

-∆u + u -u p + = 0 in S 1 ε × R N -1 (1.1) 
where u + = max(u, 0). By S 1 ε , we mean that u(x 1 + 2π ε , x ′ ) = u(x 1 , x ′ ) and that ∂u ∂x 1

(x 1 + 2π ε , x ′ ) = ∂u ∂x 1 (x 1 , x ′ ).
We suppose that u(x 1 , x ′ ) → 0, as |x ′ | → 0, uniformly in x 1 .

If u > 0, we know that u is radial and decreasing in x ′ ( [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R n , Mathematical Analysis and Applications Part A[END_REF], [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF]). We consider the subcritical case 2 ≤ p < N + 2 N -2 for N ≥ 3, p ≥ 2 for N = 2.

We assume that p ≥ 2 instead of p > 1 for some technical reasons.

Let U be the groundstate solution in R N . It verifies

-∆U + U -U p = 0 in R N .
It is known that U is positive, radial and tending to 0 at infinity. Moreover the behavior at infinity is |x| for some positive limits L 0 and L 1 . (see [START_REF] Kwong | Uniqueness of positive solutions of ∆uu + u p = 0 in R n[END_REF].) Several recent articles deal with the construction of positive solutions for the equation

-∆u + u -u p = 0 in R N .
Let us refer to [START_REF] Dancer | New solutions of equations on R n[END_REF], [START_REF] Malchiodi | Some new entire solutions of semilinear elliptic equations on R n[END_REF], [START_REF] Del Pino | The Toda system and multiple-end solutions of autonomous planar elliptic problems[END_REF].

Let us call the Dancer solution the positive solution of (1.1) which is 2π ε -periodic in x 1 , tending to 0 as |x ′ | → +∞, even in x 1 and decreasing in x 1 in [0, π ε ]. This solution, that we call u D was constructed in [START_REF] Dancer | New solutions of equations on R n[END_REF] by a bifurcation from the ground-state solution in R N -1 . The Dancer solution exists when 0 < ε < ε ⋆ , where ε ⋆ is a known threshold. We have

u D -U L ∞ (]-π ε , π ε [×R N-1 ) → 0 as ε → 0. (1.2)
For all x ′ the fonction x 1 → u D (x 1 , x ′ ) reaches its maximum value at the points l2π ε , l ∈ Z and reaches its minimum value at the points lπ ε . Now, for any ε > 0, for any k ≥ 2, let a i ε , i = 1,...,k, be k points of [-π, π[ which are such that a i+1 ε a i ε ε → +∞ as ε → 0, i = 0, ..., k + 1.

(1.3)

where we denote a 0 ε = a k ε -2π and a k+1 ε = a 0 ε + 2π. Let us denote

U i (x 1 , x ′ ) = U (x 1 - a i ε ε , x ′ ).
Let us give the following 

k i=1 U i L ∞ (]-π ε , π ε [×R N-1 ) → 0 as ε → 0. (1.4)
Let us remark that by the Maximum Principle, any solution of (1.1) verifying (1.4) needs to be positive. We can ask whether for any configuration of points in a period which repel each other in the sense of (1.3), there exists a solution having these points as peaks. We give a negative answer. In particular it is not possible to consider peaks which repel each other with an infinitely small speed wrt the period. Our main result is the following uniqueness result for the small values of ε.

Theorem 1.1 Let u be a solution of (1.1) that admits the points a 1 ε ε ,..., a k ε ε in [-π ε , π ε [ as peaks in the sense of the definition 1.1. Then, for ε small enough there exists α ε → 0 such that

u(x 1 , x ′ ) = u D (x 1 - a 1 ε ε -α ε , x ′ )
where u D is the Dancer solution of period 2π kε . We can write u D as

u D (x) = l∈Z U (x 1 + 2lπ kε , x ′ ) + ψ(x) (1.5)
and if we define

d x = dist(x, ∪ l∈Z {( 2lπ kε , 0)}),
then for every 0 < η ′ ≤ min{2η, 2(p -1η)}, there exists C independent of ε such that

(|ψ| + |∇ψ|)(x) ≤ Ce -ηdx e -η ′ π kε ( π kε ) 1-N 2 .
(1.6)

The most involved part of the proof of Theorem 1.1 is to prove that the peaks are asymptotically uniformly distributed. More precisely, we will begin by the proof of the following Proposition 1.1 Let u be a solution of (1.1) admetting the points

a 1 ε ε ,..., a k ε ε in [-π ε , π ε [ as peaks.
Then we have necessarily

a i+1 ε -a i ε ε - 2π kε → 0, i = 0, ..., k + 1. (1.7) 
In [START_REF] Malchiodi | Some new entire solutions of semilinear elliptic equations on R n[END_REF], part 3, Malchiodi gives a construction of a periodic solution with one peak, using a Lyapunov-Schmitt method.

Let us quote the following Proposition 1.2 (Malchiodi, [START_REF] Malchiodi | Some new entire solutions of semilinear elliptic equations on R n[END_REF], Corollary 3.2.) For 1 < p < N +2 N -2 , there exists a solution of (1.1), even in x 1 , of the form

v = i∈Z U (x 1 + i 2π ε , x ′ ) + w (1.8)
where

w H 1 (]-π ε , π ε [×R N-1 ) → 0 and |w(x)| + |∇w(x)| ≤ Ce -π ε (1+ξ 0 ) e -η 0 dist(x,∪ l∈Z {( 2lπ ε ,0)}) (1.9)
for some ξ 0 > 0 and η 0 > 0.

This solution is the Dancer solution, in consideration of the uniqueness of the even 2π ε -periodic solution which verifies (1.2) (see [START_REF] Dancer | On the uniqueness of the positive solution of a singularly perturbed problem[END_REF], p. 969). In that previous work, the functions are assumed to be even in x 1 . In ours, we have to overcome some difficulties arising from the lack of evenness. Finally, we prove that the solution is even.

In the course of the proof of Theorem 1.1, we will consider an approximate solution of (1.1).

Let us denote

U i,l = U (x 1 - a i ε + 2πl ε , x ′ ), i = 1, ..., k, l ∈ Z, then U i,0 = U i .
Let us define

v i = l∈Z U i,l and u ε = k i=1 v i .
We will study the linearized operator about this approximate solution, namely

L = -∆ + 1 -pu p-1 ε .
We will prove that the linearized operator L has no zero eigenvalue and we will give an estimate of the eigenvalues which tend to 0. The operator (-

∆ + I) -1 L is an operator of H 1 ( S 1 ε × R N -1
) into itself of the form id -K, where K is a compact operator. So (-∆ + I) -1 L is a Fredholm operator of index 0. We consider the eigenvalues of the operator L, in the following sense

there exists ξ ∈ H 1 ( S 1 ε × R N -1 ), ξ = 0, verifying Lξ = λ(-∆ + 1)ξ.
The operator L has a countably infinite discrete set of eigenvalues, λ i , i = 1, 2.... If we designate by V i the eigenspace corresponding to λ i , by

H 1 the space H 1 ( S 1 ε × R N -1 ) and by L 2 the space L 2 ( S 1 ε × R N -1
), then

λ i = inf{ < Lu, u > L 2 < u, u > H 1 , u = 0, < u, v > H 1 = 0, ∀v ∈ V 1 ⊕ ... ⊕ V i-1 }, for i ≥ 2, (1.10)
and

λ 1 = inf{ < Lu, u > L 2 < u, u > H 1 , u = 0},
(see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). Let us quote the following result concerning the eigenvalues of the operator -∆ + 1 -pU p-1 (with the definition above, with R N instead of S 1 ε × R N -1 and when k = 1 and a 1 ε = 0)

Theorem 1.2 The first eigenvalue of -∆ + 1 -pU p-1 in R N is 1 -p.
The eigenspace associated with the eigenvalue 0 is spanned by the eigenvectors ∂U ∂x j , j = 1, ..., N .

This theorem follows from [START_REF] Berestycki | Nonlinear scalar field equations I: Existence of a ground state[END_REF].

Let us define

σ i = 1 2 dist( a i ε ε , ∪ j =i,j=0,...,k+1 { a j ε ε }) i = 1, ..., k. (1.11) and σ = k min i=1 σ i .
Let us summarize the properties of the eigenvalues and of the eigenvectors of L in the following Theorem 1.3 (i)The eigenvalues of L are less than 1. There exists a sequence (ε m ) m∈N such that each eigenvalue of L tends either to 1 or to an eigenvalue of -∆ + 1 -pU p-1 as ε m → 0.

(ii) Let F be the vector space associated with the eigenvalues tending to 0. Then the dimension of F is k and F is spanned by k eigenvectors ϕ i , i = 1, ..., k such that there exist k real numbers α i = 0, independent of ε, verifying

< ϕ i , ϕ j > H 1 ( S 1 ε ×R N-1 ) = 0 i = j ; ϕ i ∞ = 1 (1.12) and ϕ i -α i ∂v i ∂x 1 L q ( S 1 ε ×R N-1 ) + ∇(ϕ i -α i ∂v i ∂x 1 ) L q ( S 1 ε ×R N-1 ) → 0 (1.13) for all 1 ≤ q ≤ ∞. (iii) If λ i (ε m ) → 0, then λ i (ε m ) = 0 and λ i (ε m )e -2σ i σ 1-N 2 i → H (1.14)
where H = 0.

The paper is organized as follows. In section 2, we study the eigenvalues of the operator L which tend to 0 and the associated eigenvectors. We give the proof of Theorem 1.3. In section 3, we use a Lyapunov-Schmitt method to give the proof of Proposition 1.1. In section 4, we conclude the proof of Theorem 1.1.

In sections 2 and 3, we will refer to some technical results, which are reported in the appendix (section 5).

2 An analysis of the eigenvalues.

In this part, we prove the theorem 1.3.

Proof of (i).

Let ϕ be such that

Lϕ = λ(-∆ϕ + ϕ) in S 1 ε × R N -1 .
We suppose that there exists c such that ϕ(c) = 1 and that ϕ ∞ = 1. We denote

φ(x) = ϕ(x + c).
By standard elliptic estimates, there exists a subsequence such that φ → φ uniformly on the compact sets of R N . Let us suppose that λ → 1. First, if |c -

( a i ε ε , 0)| → +∞ for all i, then -∆φ + φ = 0 in R N ; φ ∞ = φ(0) = 1.
This is in contradiction with the maximum principle, so this case does not occur. So there exists c and i such that (c -

( a i ε ε , 0)) → c. Then, (-∆ + 1 -pU p-1 (x + c))φ = λ(-∆φ + φ) in R N (2.15)
and φ is non zero and even in x ′ . Thus λ is an eigenvalue of -∆ + 1 -pU p-1 . By a diagonal process, we can construct a subsequence (ε m ) such that any eigenvalue of L which does not tend to 1 converges to an eigenvalue of -∆ + 1 -pU p-1 .

Proof of (ii).

We divide the proof into three parts. Firstly, let us prove that if ϕ ∈ F \{0}, then there exists I ⊂ {1, ..., k} and some real numbers α i = 0 and independent of ε such that

ϕ - i∈I α i ∂v i ∂x 1 ∞ + ∇(ϕ - i∈I α i ∂v i ∂x 1 ) ∞ → 0 (2.16)
We follow the proof of (i) to get (2.15) with λ = 0. Then we can denote c instead of (c, 0) ∈ R × R N -1 and there exists some real number α = 0 such that

φ(x) = α ∂U ∂x 1 (x 1 + c, x ′ ).
We get

ϕ(x + c) -α ∂U ∂x 1 (x + c) → 0 uniformly on the compact sets, that is ϕ(x + c) -α ∂U ∂x 1 (x + c - a i ε ε
) → 0 uniformly on the compact sets, that leads to

ϕ(x) -α ∂U i ∂x 1 (x) → 0 uniformly for x such that (x 1 -a i ε ε ) is bounded.
Finally for each i, either there exists

α i = 0 such that (ϕ -α i ∂v i ∂x 1 ) → 0 uniformly for x such that (x 1 -a i ε ε ) is bounded or ϕ → 0 uniformly for x such that (x 1 -a i ε ε
) is bounded. Moreover, the first case occurs for at least one i. By the beginning of the present proof,

ϕ(x) → 0 if |x -( a i ε ε , 0)| → +∞ ∀i.
Thus there exists J ⊂ {1, ..., k} and α i = 0 and independent of ε such that

ϕ - i∈J α i ∂v i ∂x 1 ∞ → 0.
(2.17)

We deduce that ∇(ϕ -

i∈J α i ∂v i ∂x 1 ) ∞ → 0 (2.18)
by standard elliptic arguments. Since the functions ∂v i ∂x 1 are linearly independent, we deduce that dimF ≤ k.

Secondly, let us assume that ϕ 1 ∈ F and ϕ 2 ∈ F are such that

< ϕ 1 , ϕ 2 > H 1 ( S 1 ε ×R N-1 ) = 0 and ϕ 1 ∞ = ϕ 2 ∞ = 1. We write ϕ 1 = i∈J 1 α i ∂v i ∂x 1 + o(1) and ϕ 2 = i∈J 2 β i ∂v i ∂x 1 + o(1)
in the sense of (2.17) and (2.18). Taking the scalar product in H 1 we obtain

0 = i∈J 1 ,j∈J 2 α i β j < ∂v i ∂x 1 , ∂v j ∂x 1 > H 1 + < o(1), i∈J 1 α i ∂v i ∂x 1 > H 1 + < o(1), i∈J 2 
β i ∂v i ∂x 1 > H 1 + < o(1), o(1) > H 1 .
In view of Proposition 5.7, the Lebesgue Theorem leads to

0 = i∈J 1 ∩J 2 α i β i ∂U ∂x 1 2 H 1 (R N ) . (2.19) 
We deduce that J 1 ∩ J 2 = ∅.

Thirdly, let us assume that F = {0}. We define a finite set J and eigenvalues λ j , j ∈ J such that λ j (ε m ) → 0. Let ϕ j be an eigenvector associated with λ j . Let us assume that

< ϕ i , ϕ j > H 1 ([-π ε , π ε ]×R N-1 ) = 0 i = j ; ϕ i L ∞ ([-π ε , π ε ]×R N-1 ) = 1. We write ∂v i ∂x 1 = j∈J c j ϕ j + ξ ; < ξ, ϕ j >= 0 for j ∈ J.
We have

Lξ = L ∂v i ∂x 1 - j c j λ j (-∆ϕ j + ϕ j ).
(2.20)

In view of (5.61), we deduce that

ξ ∞ ≤ C Lξ ∞
and consequently that ξ ∞ → 0.

We conclude that there exists at least one j such that c j → 0 and such that ϕ j (( a i ε ε , 0)) → 0. By the second step, this j is unique. Let us call it i and then we have that

∂v i ∂x 1 -c i ϕ i → 0 if |x 1 - a i εm εm | is bounded. Now, since ∂v i ∂x 1 ∞ → 0, we deduce that F = {0} and that dimF ≥ k. Consequently dimF = k
and we define (ϕ 1 , ..., ϕ k ) a basis of F verifying (1.12) and such that

ϕ i -α i ∂v i ∂x 1 ∞ + ∇(ϕ i -α i ∂v i ∂x 1 ) ∞ → 0 with α i = 0, independent of ε.
Finally we write

∂v i ∂x 1 = k j=1 c j ϕ j + ξ ; < ξ, ϕ j > H 1 = 0 for all j (2.21)
and c i → 0 and ξ ∞ → 0. For each j = i we have, by our convention, ϕ j (( a j ε ,0 ε )) → 0. Since ∂v i ∂x 1 and ξ tend to 0 at a j ε ε , we infer that c j → 0 for all j = i.

Moreover, by Proposition 5.7, ϕ i is bounded in L q and ξ L q → 0 for all q ≥ 1, that gives (1.13).

Proof of (iii).

Let us adopt the case where k ≥ 2 and where | π εσ i | → +∞. Otherwise, Proposition 1.1 is irrelevant, and the estimate of λ i is true, but must be done for the period 4π ε instead of 2π ε .

We have by (2.21)

L ∂v i ∂x 1 ϕ i dx = c i λ i ϕ i 2 H 1
and

1 |c i | ϕ i 2 H 1
is bounded from below, in view of (5.77). We write

L ∂v i ∂x 1 ϕ i dx = 1 c i L ∂v i ∂x 1 ∂v i ∂x 1 dx -L ∂v i ∂x 1 ( 1 c i ∂v i ∂x 1 -ϕ i )dx
Let us define, for j = 0, ..., k + 1

Ω j = {x ∈ [- π ε , π ε ] × R N -1 ; dist(x, ∪ k+1 l=0 {( a l ε ε , 0)} = |x -( a j ε ε , 0)|}. (2.22)
We have

[- π ε , π ε ] × R N -1 = k+1 i=0 Ω i .
We write

< L ∂v i ∂x 1 , ∂v i ∂x 1 > L 2 = p l Ω i (U p-1 i,l -u p-1 ε ) ∂v i ∂x 1 ∂U i,l ∂x 1 dx (2.23) + k+1 j=0 j =i p l Ω j (U p-1 i,l -u p-1 ε ) ∂v i ∂x 1 ∂U i,l ∂x 1 dx.
We are going to prove on one hand that

Ω i (U p-1 i -u p-1 ε ) ∂v i ∂x 1 ∂U i ∂x 1 dx = (1 -p) Ω i U p-2 i ( j =i v j )( ∂U i ∂x 1 ) 2 dx + o(e -2σ i σ 1-N 2 i ) (2.24)
and on the other hand that

k+1 j=0 j =i l | Ω j (U p-1 i,l -u p-1 ε ) ∂v i ∂x 1 ∂U i,l ∂x 1 dx| + l =0 | Ω i (U p-1 i,l -u p-1 ε ) ∂v i ∂x 1 ∂U i,l ∂x 1 dx| (2.25) = o(e -2σ i σ 1-N 2 i
).

Using Lemma 5.2, we write, if p > 2,

Ω i (U p-1 i -u p-1 ε ) ∂v i ∂x 1 ∂U i ∂x 1 dx = (1 -p) Ω i U p-2 i ( j =i v j + l =0 U i,l ) ∂v i ∂x 1 ∂U i ∂x 1 dx +O( Ω i ( j =i v j + l =0 U i,l ) min{p-1,2} ∂v i ∂x 1 ∂U i ∂x 1 dx) while, if p = 2 Ω i (U p-1 i -u p-1 ε ) ∂v i ∂x 1 ∂U i ∂x 1 dx = (1 -p) Ω i U p-2 i ( j =i v j + l =0 U i,l ) ∂v i ∂x 1 ∂U i ∂x 1 dx.
Now, we use Proposition 5.9 to get, when p -1 > 1

Ω i ( j =i v j + l =0 U i,l ) min{p-1,2} ∂v i ∂x 1 ∂U i ∂x 1 dx = O(e -2σ i min{p-1,2} σ (1-N) min{p-1,2} 2 i ). Since π ε -σ i → +∞, we have e -2π ε = o(e -2σ i ).
Using Proposition 5.9 again, we obtain for all p ≥ 2

Ω i U p-2 i ( l =0 U i,l ) ∂v i ∂x 1 ∂U i ∂x 1 dx = o(e -2σ i σ 1-N 2 i )
and

Ω i U p-2 i ( j =i v j ) ∂v i ∂x 1 ∂U i ∂x 1 dx = Ω i U p-2 i ( j =i v j )( ∂U i ∂x 1 ) 2 dx + o(e -2σ i σ 1-N 2 i
).

We have proved (2.24).

Let us turn now to the proof of (2.25).

We estimate, for l = 0 and using Proposition 5.9

Ω i (U p-1 i,l -u p-1 ε ) ∂v i ∂x 1 ∂U i,l ∂x 1 dx = o(e -2σ i σ 1-N 2 i
).

Now, let 0 < β < 1 be given. We have for all l and for j = 0, ..., k

+ 1, j = i | Ω j (U p-1 i,l -u p-1 ε ) ∂v i ∂x 1 ∂U i,l ∂x 1 dx| ≤ Ω j (U p-1 i,l + u p-1 ε )| ∂v i ∂x 1 | β | ∂U i,l ∂x 1 |dx ∂v i ∂x 1 1-β L ∞ (Ω j ) . But | a i ε ε + 2πl ε - a j ε ε | ≥ 2σ i .
Choosing β such that p -1 + β > 1, we get, using Proposition 5.9

Ω j (U p-1 i,l + u p-1 ε ))| ∂v i ∂x 1 | β | ∂U i,l ∂x 1 |dx = O(e -2σ i σ 1-N 2 i
).

Since

∂v i ∂x 1 1-β L ∞ (|x-( a j ε ε ,0)|<σ j ) → 0
we deduce (2.25). Now (2.24) and (2.25) give

< L ∂v i ∂x 1 , ∂v i ∂x 1 > L 2 = Ω i U p-2 i ( j =i v j )( ∂U i ∂x 1 ) 2 dx + o(e -2σ i σ 1-N 2 i
).

(2.26) Using Corollary 5.1, we get

e 2σ i σ -1+N 2 i Ω i U p-2 i ( j =i v j )( ∂U i ∂x 1 ) 2 dx → H i
where H i = 0 is a real number.

It remains now to prove that

L ∂v i ∂x 1 ( 1 c i ∂v i ∂x 1 -ϕ i )dx = o(e -2σ i σ 1-N 2 i
).

(2.27)

We write

| Ω i L ∂v i ∂x 1 (ϕ i - 1 c i ∂v i ∂x 1 )dx| = (1 -p)| Ω i U p-2 i j =i v j ∂U i ∂x 1 (ϕ i - 1 c i ∂v i ∂x 1 )dx| +o(e -2σ i σ 1-N 2 i ) ≤ Ω i j =i e -|x-( a j ε ε ,0)| |x -( a j ε ε , 0)| 1-N 2 e -|x-( a i ε ε ,0)| |ϕ i - 1 c i ∂v i ∂x 1 |dx + o(e -2σ i σ 1-N 2 i ) = O(e -2σ i σ 1-N 2 i
)

Ω i |ϕ i - 1 c i ∂v i ∂x 1 |dx + o(e -2σ i σ 1-N 2 i ) = o(e -2σ i σ 1-N 2 i
).

For j = i, we write

| Ω j L ∂v i ∂x 1 (ϕ i - 1 c i ∂v i ∂x 1 )dx| ≤ C l Ω j |(U p-1 i,l + U p-1 j ) ∂U i,l ∂x 1 (ϕ i - 1 c i ∂v i ∂x 1 )|dx ≤ C Ω j e -2σ i σ 1-N 2 i |ϕ i - 1 c i ∂v i ∂x 1 |dx = o(e -2σ i σ 1-N 2 i )
We obtain (2.27) and consequently, we have proved (1.14).

3

The Lyapunov-Schmitt reduction.

In this part, we prove the proposition 1.1.

Let us define M(u) = -∆u + uu p + . To begin with, we have

Lemma 3.1 M(u ε ) ∞ ≤ Ce -2σ σ 1-N 2 . (3.28) Proof. M(u ε ) = i,l U p i,l -( i,l U i,l ) p . (3.29)
We have for all i j =i;l∈Z

U j,l + l∈Z ⋆ U i,l ≤ Ce -| a i ε -a j ε ε | | a i ε -a j ε 2ε | 1-N 2 e |x-a i ε ε | in Ω i .
In Ω i , we write by Lemma 5.2

M(u ε ) = -pU p-1 i ( j =i;l∈Z U j,l + l∈Z ⋆ U i,l ) + 0( j =i;l∈Z U j,l + l∈Z ⋆ U i,l ) 2 + j =i;l∈Z U p j,l
while p -1 ≥ 1. We easily deduce the proof of the Lemma.

Let k real numbers δ 1 ,...,δ k and v ∈ H 1 ( S 1 ε × R N -1 ) be given. Let us suppose that

u = u ε + v + k i=1 δ i ϕ i ; < v, ϕ i > H 1 = 0, i = 1, ..., k (3.30)
is a solution of (1.1) and that

v ∞ + k i=1 |δ i | → 0.
We define

h = -M(u ε + v + k i=1 δ i ϕ i ) + L(v + k i=1 δ i ϕ i ). (3.31)
Then v and δ 1 ,...,δ k are such that

L(v + k i=1 δ i ϕ i ) = h.
We denote

h = h ⊥ + h ⊤ , h ⊤ ∈ Vect{ϕ 1 , ..., ϕ k } , h ⊥ ∈ (Vect{ϕ 1 , ..., ϕ k }) ⊥ , relatively to the Hilbert space H 1 ([-π ε , π ε ] × R N -1 ). First, v is a 2π ε -periodic solution of the equation Lv = h ⊥ < v, ϕ i > H 1 = 0, i = 1, ..., k. (3.32) Then (δ 1 , ..., δ k ) verifies L( k i=1 δ i ϕ i ) = h ⊤ .
We have the following Proposition 3.3 Let v be a solution of (3.32). Then there exists

C independent of ε such that if p > 2 v H 1 ≤ C(e -2σ σ 1-N 2 + k i=1 |δ i | 2 ) (3.33) if p = 2 ∀η ∈]0, 1[, v H 1 ≤ C(e -2ησ + k i=1 |δ i | 2 )
and for all p

v ∞ + ∇v ∞ ≤ C(e -2σ σ 1-N 2 + k i=1 |δ i | 2 ). (3.34)
Proof.

We write

h = ∆u ε -u ε + (u ε + v + δ i ϕ i ) p + -pu p-1 ε (v + δ i ϕ i )
and Lemma 5.2 gives

|(u ε + v + δ i ϕ i ) p + -u p ε -pu p-1 ε (v + δ i ϕ i )| ≤ C|v + δ i ϕ i | 2 .
We deduce that

|h + M(u ε )| ≤ C|v + δ i ϕ i | 2 . (3.35) Since h ⊥ = h - k i=1 < h, ϕ i > ϕ i 2 H 1 (-∆ϕ i + ϕ i ), then h ⊥ L 2 ≤ C h L 2 and h ⊥ ∞ ≤ C h ∞ . Now, we use (5.61) to obtain v ∞ ≤ C h ⊥ ∞ . Using (3.28), we deduce the estimate v ∞ ≤ C(e -2σ σ 1-N 2 + k i=1 |δ i | 2 ) (3.36)
and the estimate (3.34) follows in the standard way.

We have also by (5.64)

v H 1 ≤ C h ⊥ L 2 . We write h 2 L 2 ≤ C( M(u ε ) 2 L 2 + v 4 L 4 + j |δ j | 4 ).
Using (3.36), we deduce, for ε small enough

v H 1 ≤ C( M(u ε ) L 2 + j |δ j | 2 ).
Now we use (3.29) and Lemma 5.2 to obtain

M(u ε ) 2 L 2 ≤ k+1 i=0 Ω i pU 2(p-1) i ( j =i;l∈Z U j,l + l∈Z ⋆ U i,l ) 2 + C Ω i ( j =i;l∈Z U j,l + l∈Z ⋆ U i,l ) 4 .
Proposition 5.9 gives

M(u ε ) L 2 ≤ C(e -2σ σ 1-N 2 ) if p > 2 (3.37)
and for all η ∈]0, 1[

M(u ε ) L 2 ≤ C(e -2ησ σ 1-N 2 ) if p = 2. (3.38)
We deduce (3.33).

We have proved the proposition. Now let d i be defined by

h ⊤ = k i=1 d i (-∆ϕ i + ϕ i ).
We have the following Proposition 3.4 For i = 1, ..., k

d i = p ϕ i 2 H 1 Ω i U p-1 i j =i v j ∂U i ∂x 1 dx + O( k j=1 δ 2 j ) + o(e -2σ σ 1-N 2 ). (3.39)
Proof. We have

d i = 1 ϕ i 2 H 1 S 1 ε ×R N-1
(hϕ i )dx.

d i = ( S 1 ε ×R N-1 (h + M(u ε ))ϕ i dx - S 1 ε ×R N-1 M(u ε )ϕ i dx) 1 ϕ i 2 H 1 (3.40)
The coefficient ϕ i H 1 does not matter, thanks to (5.77). We deduce from (3.34) and (3.35) that

S 1 ε ×R N-1 (h + M(u ε ))ϕ i dx = O(e -4ησ σ 1-N + k j δ 2 j ). ( 3 

.41)

Now let us estimate the second integral, for i = 1, ..., k.

Without loss of generality, we let i = 1. We write

]-π ε , π ε [×R N-1 M(u ε )ϕ 1 dx = ]-π ε , π ε [×R N-1 M(u ε )(ϕ 1 -α 1 ∂v 1 ∂x 1 )dx+α 1 ]-π ε , π ε [×R N-1 M(u ε ) ∂v 1 ∂x 1 dx.
The estimate (3.28) gives directly

]-π ε , π ε [×R N-1 M(u ε )(ϕ 1 -α 1 ∂v 1 ∂x 1 )dx = o(e -2σ σ 1-N 2 ), (3.42) since ϕ 1 -α 1 ∂v 1 ∂x 1 L 1 → 0.
Now, as in the proof of Theorem 1.3, (iii), we write

]-π ε , π ε [×R N-1 M(u ε ) ∂v 1 ∂x 1 dx = Ω 1 M(u ε ) ∂v 1 ∂x 1 dx + + k+1 j=0 j =1 p Ω j M(u ε ) ∂v 1 ∂x 1 dx
We have

M(u ε ) = i,l U p i,l -( i,l U i,l ) p .
By Lemma 5.2 we have, in Ω j ,

M(u ε ) = -pU p-1 j ( i =j,l∈Z U i,l + l =0 U j,l ) + O( i =j,l∈Z U i,l + l =0 U j,l ) 2
We get, for j = 1

Ω j M(u ε ) ∂v 1 ∂x 1 dx = O( ∂v 1 ∂x 1 1 2 L ∞ (Ω j ) ) Ω j | ∂v 1 ∂x 1 | 1 2 U p-1 j ( i =j,l U i,l + l =0 U j,l +O(e -2σ j σ 1-N j ))dx (3.43) = o(e -2σ j σ 1-N 2 j
) by Proposition 5.9.

Now we write

Ω 1 M(u ε ) ∂v 1 ∂x 1 dx = o(e -2σ 1 σ 1-N 2 1 
)p

Ω 1 U p-1 1 ( j =1 v j + l =0 U 1,l ) ∂v 1 ∂x 1 dx. (3.44) Moreover, since k ≥ 2, we have π ε -σ 1 → +∞
and consequently e -2π ε

= o(e -2σ 1 ).

So, we deduce from Proposition 5.9 that

Ω 1 U p-1 1 l =0 U 1,l l ∂U 1,l ∂x 1 dx = o(e -2σ 1 σ 1-N 2 
1
)

and

Ω 1 U p-1 1 j =1 v j l =0 ∂U 1,l ∂x 1 dx = o(e -2σ 1 σ 1-N 2 1 
).

Finally Proposition 3.5 Let u be given as in Proposition 1.1 and let δ 1 ,....,δ k be defined in (3.30). We can possibly replace the k given points

Ω 1 U p-1 1 ( j =1 v j + l =0 U 1,l ) ∂v 1 ∂x 1 dx = Ω 1 U p-1 1 j =1 v j ∂U 1 ∂x 1 dx + o(e -2σ σ 1-N 2 ). ( 3 
a 1 ε ε ,...., a k ε ε by k points b 1 ε ε ,...., b k ε ε verifying a i ε ε - b i ε ε → 0 as ε → 0 in order to have δ i = 0, i = 1, ..., k. Proof. Let u = u ε + k j=1 δ j ϕ j + v
be the given solution of (1.1). Let us give (α 1 , ..., α k ) depending on ε, such that (α 1 , ..., α k ) → 0. We can replace the points a i ε ε by the points a i ε ε + α i . In other words, we write

u = ũε + k j=1 δj φj + ṽ where ũε (x) = k j=1 l∈Z U j,l (x 1 -α j , x ′ )
and φj , j = 1, ..., k are the eigenfunctions corresponding to the eigenvalues tending to 0, for the configuration of points a j ε ε + α j , and < ṽ, φj >= 0, j = 1, ..., k.

Soustraying the expressions of u and performing the scalar product in H 1 by ϕ i , we get δi ϕ i 2

H 1 + j δj < φj -ϕ j , ϕ i >=< u ε -ũε , ϕ i > +δ i ϕ i 2 H 1 + < v -ṽ, ϕ i > . (3.46)
First we remark that we have < vṽ, ϕ i >=< ṽ, φiϕ i > while by (3.33) ṽ

H 1 ≤ C(e -2ησ σ 1-N 2 + j δ2 j ), with η = 1, for p > 2, thus | < v -ṽ, ϕ i > | ≤ C(e -2ησ σ 1-N 2 + j δ2 j ). (3.47) Moreover | < u ε -ũε , ϕ i > | ≤ C j |α j |
and, as a consequence of (1.13) φjϕ j H 1 → 0.

Thanks to (3.46), we deduce that

i | δi | ≤ C( j |δ j | + j |α j | + e -2ησ σ 1-N 2 ). (3.48)
and consequently

ṽ H 1 ≤ C(e -2ησ σ 1-N 2 + j |δ j | 2 + j |α j | 2 ), thus | < v -ṽ, ϕ i > | ≤ C(e -2ησ σ 1-N 2 + j |δ j | 2 + j |α j | 2 ) (3.49)
for some C independent of ε . Now let us prove that we can choose (α 1 , ..., α k ) such that

< u ε -ũε , ϕ i > +δ i ϕ i 2 + < v -ṽ, ϕ i >= 0.
We define

F(α 1 , ..., α k ) = (< u ε -ũε , ϕ i >) i=1,...,k .
This definition gives, for i and j = 1, ..., k

∂F i ∂α j = l∈Z [-π ε , π ε ]×R N-1 ∂U j,l ∂x 1 (x 1 -α j , x ′ )ϕ i (x)dx+ l∈Z [-π ε , π ε ]×R N-1 ∇ ∂U j,l ∂x 1 (x 1 -α j , x ′ ).∇ϕ i (x)dx.
We deduce that, as ε → 0

∂F i ∂α i (0) → ∂U ∂x 1 2 H 1 and ∂F i ∂α j (0) → 0 for j = i.
Thus dF(0) is an isomorphism, for ε small enough. Let us define α = (α 1 , ..., α k ). We have to solve

F(α) + (δ i ϕ i 2 + < v -ṽ, ϕ i >) i=1,...,k = 0.
We define

Q(α) = F(α) -F(0) -dF(0)(α) and G(α) = (-dF(0)) -1 (Q(α) + (δ i ϕ i 2 + < v -ṽ, ϕ i >) i,...,k ).
Since we have together

|Q(α)| = O(|α| 2 )
and (3.49), we can use the Brouwer fixed point Theorem in a standard way. We find a real number R, R ≤ C(e -2ησ σ

1-N 2 + j |δ j |) such that (|α| ≤ R) ⇒ |G(α)| ≤ R). So we find α, |α| ≤ R, such that G(α) = α, that is < u ε -ũε , ϕ i > +δ i ϕ i 2 + < v -ṽ, ϕ i >= 0.
Returning to (3.46), we deduce that δi = 0, i = 1, ..., k.

Proof of Proposition 1.1. The points are asymptotically uniformly distributed.

From now on, we suppose that δ i = 0, i = 1, ..., k. Let i 0 ∈ {1, ..., k} be such that σ i 0σ → 0 (we know that there exists at least one i such that σ i = σ). We have

L(δ 1 ϕ 1 + ... + δ k ϕ k ) = h ⊤ , that is k i=1 δ i λ i (-∆ϕ i + ϕ i ) = k i=1 d i (-∆ϕ i + ϕ i ) thus δ i λ i = d i for all i.
In particular

d i 0 = 0.
Since, by Theorem 1.3 we have

|λ i 0 | ≥ He -2σ σ 1-N 2
we deduce from (3.39) that

Ω i 0 U p-1 i 0 j =i 0 v j ∂U i 0 ∂x 1 dx = o(λ i 0 ).
We deduce that

Ω i 0 ;x 1 > a i 0 ε ε U p-1 i 0 j =i 0 v j ∂U i 0 ∂x 1 dx = - Ω i 0 ;x 1 < a i 0 ε ε U p-1 i 0 j =i 0 v j ∂U i 0 ∂x 1 dx + o(λ i 0 ). But let us suppose that 2σ = a i 0 +1 ε ε - a i 0 ε ε .
We use Corollary 5.1 to get a positive real number D 0 such that

e 2σ σ N-1 2 
Ω i 0 ;x 1 > a i 0 ε ε U p-1 i 0 j =i 0 v j ∂U i 0 ∂x 1 dx → D 0 and -e | a i 0 ε -a i 0 -1 ε ε | | a i 0 ε -a i 0 -1 ε ε | N-1 2 
Ω i 0 ;x 1 < a i 0 ε ε U p-1 i 0 j =i 0 v j ∂U i 0 ∂x 1 dx → D 0 .
and consequently 2σ -(

a i 0 ε ε - a i 0 -1 ε ε ) → 0.
This property is valid for all exponent i such that σ iσ → 0 instead of i 0 . Thus we have (1.7).

4

The proof of Theorem 1.1 completed.

The uniqueness. Now, we have

a i ε ε -( a 1 ε ε + i2π kε ) → 0. Replacing the points a i ε ε by a 1 ε ε + i2π kε , i = 1, ..., k, we can write u as u = l∈Z U (x 1 - a 1 ε ε + 2πl kε , x ′ ) + k i=1
δi φi + ṽ, < ṽ, φi >= 0, i = 1, ..., k.

By the definition of φi given in section 2 (analogue to that of ϕ i ), φi is 2π ε -periodic in x 1 . But now, the corresponding operator L is of minimal period 2π kε , since now u ε is replaced by

l∈Z U (x 1 -a 1 ε ε + 2πl kε , x ′ ). So we have φi (x) = φ1 (x 1 + 2iπ kε , x ′ )
and φ1 is 2π kε -periodic. Let us denote ϕ 1 = φ. Now we recall that

Lv = h ⊥ with h = -M(u ε ) + O(v 2 + ( i δi φi ) 2
). We can use the Banach fixed point theorem in L ∞ to deduce that v is of minimal period 2π kε . Consequently, u is 2π kε -periodic and in the space H 1 ( S 1 kε × R N -1 ) we write

u = l∈Z U (x 1 - a 1 ε ε + 2πl kε , x ′ ) + δ φ + ṽ, < ṽ, φ >= 0.
Thanks to Proposition 3.5, we can perform a translation in x 1 to get δ = 0. We get some

aε ε → 0 such that u = l∈Z U (x 1 - a 1 ε ε - a ε ε + 2πl kε , x ′ ) + v, < v, φ(x 1 - a ε ε ) >= 0.
Let u D be the Dancer solution of period 2π kε . Then

u D (x 1 - a 1 ε ε , x ′ ) = l∈Z U (x 1 - a 1 ε ε + 2πl kε , x ′ ) + δ φ + v
for some v such that < v, φ >= 0 and some δ → 0. Exactly as for u, we find some point bε ε → 0 such that

u D (x 1 - a 1 ε ε , x ′ ) = l∈Z U (x 1 - a 1 ε ε - b ε ε + 2πl kε , x ′ ) + v D , < v D , φ(x 1 - b ε ε ) >= 0.
Now we can prove that for ε small enough,

u = u D (x 1 + b ε -a ε -a 1 ε ε , x ′ ).
The proof is the same as for the case of a solution which is even in x 1 . Let us write it for the sake of completeness. Without loss of generality, let a 1 ε = 0. We define

u D (x) = u D (x 1 + b ε -a ε ε , x ′ ) and w = u -u D .
Let us suppose that w = 0, at least for a sequence ε → 0. Then w ∞ is attained at a point c = (c 1 , c ′ ), with c ′ obviously bounded independently of ε and c 1 ∈] -π kε , π kε ]. Now c 1 is bounded. To see that, we write

-∆w + w(1 - u p -v p u -v ) = 0. (4.50) If w(c) > 0, then u p -u p D u -u D (c) ≤ pu p-1 thus ∆w(c) ≥ w(c)(1 -pu p-1 (c)).
But if |c 1 | → +∞, we have u p-1 (c) → 0, thus 1pu p-1 (c) > 0 for ε small enough, that is in contradiction with the Maximum Principle. So we may extract a subsequence such that c → c for some c. Let us define z(x) = w w ∞ .

It verifies (4.50). By standard arguments z → z uniformly on the compact sets. Moreover

z(c) = 1 and pu p-1 D ≤ u p -u p D u -u D ≤ pu p-1 if u > u D
and we have the reverse inequality if u < u D . More,

lim u = lim u D = U (x). 20 So lim u p -u p D u -u D = pU. Thus -∆z + z(1 -pU p-1 ) = 0.
We deduce that z = α ∂U ∂x 1 , for some α = 0. We have

< z, φ(x 1 - a ε ε , x ′ ) > H 1 = 1 u -u D ∞ < v -v D (x 1 + b ε -a ε ε , x ′ ), φ(x 1 - a ε ε , x ′ ) > H 1 = 0. Moreover |z| ≤ 1, φ → ∂U ∂x 1 ,
and by Proposition 5.7,

|∇ φ(x)| + | φ(x)| ≤ Ce -η|x| in [- π kε , π kε ].
We use the Lebesgue Theorem to infer that

< z, φ(x 1 - a ε ε , x ′ ) > H 1 → α ∂U ∂x 1 2 H 1 (R N ) .
So we are led to a contradiction. We conclude that u = u D , for ε small enough.

The proof of the estimate 1.6.

Without loss of generality, we let k = 1. We write

u D = l U l + v
where v is even in x 1 and verifies Lv = h and u ε is replaced by l U l in the definition of L. The restriction of L to the even functions has no eigenvalue tending to 0. The same proof as for (5.61) gives

v ∞ + ∇v ∞ ≤ C h ∞
and consequently the same proof as for (3.34) gives Let β be a positive real number, independent of ε, which will be chosen later. Let

∀η ∈]0, 1[ v ∞ + ∇v ∞ ≤ Ce -2π ε ( π ε ) 1-N 2 . ( 4 
y ∈] -π ε + β, π ε -β[×R N -1 .
We follow the course of the proof of Proposition 5.6 from (5.65), ξ being replaced by v. With the notations of that proof, we perform the truncation around 0, using the truncature function θ. So we drop the index i. By (5.67), we have

(θv)(y) = R N G(y -x)(pθu p-1 ε v + θh -∆θv -2∇θ.∇v)(x)dx Now h = -M(u ε ) + O(v 2 ).
We have

|v(y)| ≤ C( R N vG(y -x)pθe (-p+1)|x| dx + R N G(y -x)θ|M(u ε )|dx + R N G(y -x)θv 2 dx + R N ; π ε -β<x 1 < π ε G(y -x)(|v| + |∇v|)dx). Now In Suppθ, d x = |x| and U ≤ Ce -|x| |x| 1-N 2 .
Let us recall that

M(u ε ) = pU p-1 ( l =0 U l ) + O(( l =0 U l ) 2 ,
We deduce that for all η ∈]0, 1[

R N G(y-x)θ|M(u ε )|dx ≤ C l∈Z ⋆ [-π ε , π ε [×R N-1
e -η|y| e η|x-y| G(y-x)e η|x| (U p-1 U l +U 2 l )θdx.

(4.52) Using Proposition 5.9, we obtain for all η ′ such that 0

< η ′ < p -1 -η l∈Z ⋆ [-π ε , π ε [×R N-1 e -η|y| e η|x-y| G(y -x)e η|x| U p-1 U l θdx ≤ Ce -ηdy e -η ′ 2π ε ( π ε ) 1-N 2 . Moreover l∈Z ⋆ [-π ε , π ε [×R N-1 e -η|y| e η|x-y| G(y -x)e η|x| U 2 l θdx ≤ Ce -ηdy e (-2+η) π ε ( π ε ) 1-N 2 .
Now Proposition 5.9 gives also, since p -

1 + η > 1 R N |v|G(y -x)pθe (-p+1)|x| dx ≤ ve ηdx ∞ R N G(y -x)pθe (-p+1-η)|x| dx (4.53) ≤ ve ηdx ∞ e -|y| |y| 1-N 2
≤ ve ηdx ∞ e -ηdy e -η 1 R 0 , where we define η 1 = 1η, and

R N G(y -x)v 2 θdx ≤ ve ηdx 2 ∞ R N G(y -x)θe -2η|x| dx (4.54) ≤ C ve ηdx 2 ∞ e -ηdy R N G(y -x)θe η|x-y| e -η|x| dx ≤ C ve ηdx 2 ∞ e -ηdy . Now R N ; π ε -β<x 1 < π ε G(y-x)(|v|+|∇v|)dx ≤ ( ve ηdx ∞ + (∇v)e ηdx ∞ )e -ηdy
R N e η|x-y| G(y-x)dx.

(4.55) Finally, we obtain, for y ∈]-π ε +β, π ε -β[×R N -1 and for all 0

< η ′ ≤ min{2-η, 2(p-1-η)} |v(y)e η|y| | ≤ C 1 e -η ′ π ε ( π ε ) 1-N 2 + C 2 β ( ve ηdx ∞ + (∇v)e ηdx ∞ )+C 1 ( ve ηdx 2 ∞ + ve ηdx ∞ e -η 1 R 0 )
where the constants are independent of β and of R 0 . We obtain the same estimate for |(∇v)(y)e η|y| |, using the proof of (5.73). We terminate by a barrier function argument, as in the proof of (5.62). Let us define

φ = C 1 e -η ′ π ε ( π ε ) 1-N 2 + C 2 β ( ve ηdx ∞ + (∇v)e ηdx ∞ ) + C 1 ( ve ηdx 2 ∞ + ve ηdx ∞ e -η 1 R 0 ).
We have

-∆(v -φ) + (1 -pu p-1 ε )(v -φ) = -(1 -pu p-1 ε )φ + h If x ∈ [ π ε -β, π ε ] × R N -1 |h + M(u ε )| ≤ Cv 2 ≤ C ve ηdx 2 ∞ e -2η( π ε -β)
and

|M(u ε )| ≤ Ce -(p-1)|x| e -|x-( 2π ε ,0)| |x -( 2π ε , 0)| 1-N 2 ≤ C( π ε ) 1-N 2 e -2π ε e (-p+2)|x| .
Choosing if necessary C 1 large enough, we deduce that

-(1 -pu p-1 ε )φ + h < 0 for y ∈ [ π ε -β, π ε ] × R N -1 . The same proof gives -(1 -pu p-1 ε )φ + h < 0 for y ∈ [0, π ε + β] × R N -1 . Finally, the Maximum Principle gives |v(y)| -φ ≤ 0 for y ∈ [ π ε -β, π ε + β] × R N -1 . Thus, in [-π ε , π ε ] × R N -1 , we have when d y ≥ R 0 (|∇v(y)| + |v(y)|)e ηdy ≤ Ce -η ′ π ε ( π ε ) 1-N 2 + C β ( ve ηdx ∞ + (∇v)e ηdx ∞ ) + C ve ηdx 2 ∞ +C ve ηdx ∞ e -η 1 R 0 and when d y ≤ R 0 (|∇v(y)| + |v(y)|)e ηdy ≤ Ce -η ′ π ε ( π ε ) 1-N 2 e ηR 0 .
We choose β and R 0 large enough to obtain (1.6).

5 Appendix.

Let η > 0 be given. Let h be a function, defined on [-π ε , π ε ] × R N -1 , which has the property the fonction he ηdist(x,∪ k+1 j=0 {(

a j ε ε ,0)}) is bounded in L ∞ ([-π ε , π ε ] × R N -1 ) (5.56) independently of ε.
Then h belongs to

H -1 ([-π ε , π ε ] × R N -1 )(the dual space of H 1 ([-π ε , π ε ] × R N -1 )) in the following sense < h, ψ > H -1 ,H 1 = [-π ε , π ε ]×R N-1 hψdx for ψ ∈ H 1 .
We will denote

H 1 in place of H 1 ([-π ε , π ε ] × R N -1
). By the Lax-Milgram Theorem, there exists u ∈ H 1 such that

-∆u + u = h.
(5.57)

It is classical that u ∈ L ∞ (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], Theorem 9.13 and use the Sobolev embedding Theorem).

As a consequence of the maximum principle,

u L ∞ ≤ h L ∞ .
(5.58)

More we have the following

Proposition 5.6 Let h ∈ H -1 ([-π ε , π ε ]×R N -1
). There exists a unique ξ ∈ H 1 ([-π ε , π ε ]× R N -1 ) which verifies Lξ = h.

(5.59)

Let us suppose that h ∈ L ∞ ([-π ε , π ε ] × R N -1
) and that < h, ϕ i > H -1 ,H 1 = 0, i = 1, ..., k.

(5.60)

Then ξ ∞ + ∇ξ ∞ ≤ C h ∞ (5.61)
where C is independent of ε. Let η ∈]0, 1[ be given. Let us suppose that h verifies (5.60) and has the additional property (5.56) for all η ∈]0, 1[. Then for all η ∈]0, 1[ there exists C independent of ε and dependent of η such that

ξe ηdist(x,∪ k+1 j=0 {( a j ε ε ,0)}) ∞ + ∇ξe ηdist(x,∪ k+1 j=0 {( a j ε ε ,0)}) ∞ (5.62) ≤ C he ηdist(x,∪ k+1 j=0 {( a j ε ε ,0)}) ∞ . Proof Let ξ ∈ H 1 ( S 1 ε × R N -1
). First, we deduce from (1.14) that (Lξ = 0) ⇒ (ξ = 0).

Moreover, the operator L is a Fredholm operator, so we have the existence of a unique solution ξ of (5.59) when h ∈ H -1 . The property (5.60) for h implies the existence of ξ, without knowing the property (1.14). In this case, ξ verifies

S 1 ε ×R N-1
ξ(-∆ + 1)(ϕ i )dx = 0, i=1,...,k.

(5.63)

Moreover we have in this case

ξ H 1 ≤ C u H 1 (5.64)
where u is defined in (5.57) and C is independent of ε. Indeed, this can be proved using the expansion of ξ on a basis of eigenvectors of the operator (-∆ + 1) -1 L. Now, let h ∈ L ∞ verifying (5.56) and (5.60). Let us prove (5.61).

Let us assume that h ∞ → 0 and that ξ ∞ = 1. There exists c such that ξ(c) = 1. Let ξ(x) = ξ(x + c). By the standard elliptic estimates, ξ tends to a limit ξ, uniformly on the compact sets of R N and we have either

(-∆ + 1)ξ = 0 in R N if |c -a i ε ε | → +∞ for all i or (-∆ + 1 -pU p-1 (x + c))ξ = 0 in R N if there exists i and c such that (c -a i ε ε ) → c.
The first case is in contradiction with the maximum principle, so it does not occur. In the second case, we have that ξ(x + c) → ∂U ∂x 1 (x 1 + c, x ′ ) uniformly on the compact sets.

We use (5.63). Since (1λ i )(-∆ + 1)ϕ i = pu p-1 ε ϕ i , we use the Lebesgue Theorem to get a contradiction.

We have proved that

ξ ∞ ≤ C h ∞ .
The inequality for ∇ξ ∞ follows from standard elliptic estimates ([8],Theorem 9.13). So we have proved (5.61).

In what follows, we denote

d x = dist(x, ∪ k+1 j=0 {( a j ε ε , 0)}).
We define σi = a i+1 ε a i ε 2ε for i = 0, ..., k.

Let β be a positive real number, independent of ε. Let i = 1, ..., k and let us consider the domain D defined by

D = {y; -σ i-1 + β ≤ y 1 - a i ε ε ≤ σi -β}.
The number β will be chosen later.

Let R 0 > 0 be given. We are going to estimate For i = 1, ..., k, let θ i be a function which is 2π ε -periodic in x 1 and which verifies in

[-π ε , π ε ] × R N -1 θ i (x) = 1 for -σi-1 + β ≤ x 1 - a i ε ε ≤ σi -β (5.65) θ i (x) = 0 for x 1 - a i ε ε ≥ σi or x 1 - a i ε ε ≤ -σ i-1 .
Moreover, we suppose that θ i is C 2 in x 1 . More precisely, we build θ i from the function θ defined in [0, β], θ(x 1 ) = -6

β 5 x 5 1 + 15 β 4 x 4 1 -10 β 3 x 3 1 + 1, by θ i (x) = θ(x 1 -a i ε ε -σi + β), if σi -β ≤ x 1 -a i ε ε ≤ σi and θ i (x) = θ( a i ε ε -σi-1 + β -x 1 ), if -σ i-1 ≤ x 1 -a i ε ε ≤ -σ i-1 + β.
Thus we have for all x and for M independent of i, of β and of ε

|θ i (x)| ≤ M, |∇θ i (x)| ≤ M β , |∆θ i (x)| ≤ M β 2 .
Let G be the Green function of the operator

-∆ + 1 on R N .
We have

0 < G(x) ≤ C e -|x| |x| N -2 (1 + |x|) N-3 2 if N ≥ 2.
(5.66)

We write

(θ i ξ)(y) = R N G(y -x)(pθ i u p-1 ε ξ + θ i h -∆θ i ξ -2∇θ i .∇ξ)(x)dx, (5.67) 
Let y ∈ D, we have (θ i ξ)(y) = ξ(y). We consider (5.67). Firstly, we have for all

η ∈]0, 1[ | R N G(y -x)(pθ i u p-1 ε ξ + θ i h)(x)dx| ≤ C he ηdx ∞ R N G(y -x)θ i (x)e -ηdx dx (5.68) +C ξe ηdx ∞ R N G(y -x)θ i (x)e -ηdx u p-1 ε (x)dx.
We use Theorem 9.13 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], with Ω ′ = {x, |x -y| ≤ 1 2 } and Ω = {x, |x -y| < 1}. We get 

∇u L ∞ (Ω ′ ) ≤ C( u L ∞ (Ω) + e ηdx h L ∞ (Ω) that gives |∇(ξe ηdy )(y)| ≤ C( ξe ηdx ∞ + he ηdx ∞ ). ( 5 
i ε ε + σi -β < y 1 < a i+1 ε ε -σi + β} By (5.75), we have on ∂ D |ξ(y)| ≤ C 1 e -η(σ i -β) he ηdx ∞ + C β ( ξe dx ∞ + ∇ξe dx ∞ ) + Ce -η 1 R 0 ξe ηdx ∞ .
Let us denote

φ(y) = C 1 e -η(σ i -β) he ηdx ∞ + C β ( ξe dx ∞ + ∇ξe dx ∞ ) + Ce -η 1 R 0 ξe ηdx ∞ .
We can suppose that C 1 > 1.

We have

-∆(ξ -φ) + (ξ -φ)(1 -pu p-1 ε ) = -φ(1 -pu p-1 ε ) + h. In D, we have d x ≥ σi -β, thus |h| ≤ e -η(σ i -β) he ηdx ∞ in D.
We deduce that for ε small enough, we have together

-φ(1 -pu p-1 ε ) + h ≤ 0 and 1 -pu p-1 ε > 0 in D.
Then the Maximum Principle gives

ξ -φ ≤ 0 in D.
and the same proof gives -ξφ ≤ 0 in D.

Moreover, we have

d x ≤ σi in D. Finally |ξ(x)e ηdx | ≤ C 1 e ηβ he ηdx ∞ + C β ( ξe dx ∞ + ∇ξe dx ∞ ) + Ce -η 1 R 0 ξe ηdx ∞ in D.
The same proof as for (5.73) gives

|∇ξ(x)e ηdx | ≤ C 1 e ηβ he ηdx ∞ + C β ( ξe dx ∞ + ∇ξe dx ∞ ) + Ce -η 1 R 0 ξe ηdx ∞ in D.
We have proved

|ξ(x)e ηdx |+|∇ξ(x)e ηdx | ≤ C 1 e ηβ he ηdx ∞ + C β ( ξe dx ∞ + ∇ξe dx ∞ )+Ce -η 1 R 0 ξe ηdx ∞ in Ω i , when d x ≥ R 0 , and |ξ(x)e ηdx | + |∇ξ(x)e ηdx | ≤ C 1 e ηβ he ηdx ∞ e -ηR 0 in Ω i , when d x ≤ R 0 , for all i.
Now we choose β and R 0 large enough to get (5.62). We have proved the proposition. Proposition 5.7 Let ϕ be an eigenfunction of L, associated with an eigenvalue λ which does not tend to 1. Let us suppose that ϕ

L ∞ (]-π ε , π ε [×R N-1 ) = 1. Then for all η ∈]0, 1[ there exists C > 0, independent of ε, such that |ϕ(x)| + |∇ϕ(x)| ≤ Ce -ηdist(x,∪ k+1 i=0 {( a i ε ε ,0)}) , (5.76) 
where we use the notation :

a 0 ε = a k ε -2π and a k+1 ε = a 1 ε + 2π. Moreover C 1 ≤ ϕ H 1 ≤ C 2 (5.77)
where C 1 and C 2 are some positive real numbers independent of ε.

Let ξ be defined in (2.21). Then

|ξ(x)| + |∇ξ(x)| ≤ Ce -σ e -ηdist(x,∪ k+1 i=0 {( a i ε ε ,0)}) . ( 5 

.78)

Proof To prove (5.76), we follow the proof of (5.62) in Proposition 5.6, with h = 0 We find, for y

∈ Ω i such that d y ≥ R 0 |ϕ(y)e ηdy | + |∇ϕ(y)e ηdy | ≤ C β ( ϕe dx ∞ + ∇ϕe dx ∞ ) + Ce -η 1 R 0 ϕe ηdx ∞ while for y ∈ Ω i such that d y ≤ R 0 |ϕ(y)e ηdy | + |∇ϕ(y)e ηdy | ≤ Ce ηR 0
where the constant C is independent of β and of R 0 . We choose R 0 and β large enough to obtain(5.76).

Let us prove (5.77). We have

(1 -λ) ϕ 2 H 1 = p S 1 ε ×R N-1 u p-1 ε ϕ 2 dx.
In view of (5.76) and of (2.16), we may use the Lebesgue Theorem to obtain that ϕ H 1 → 0, i = 0, ..., k.

Now we have

Lξ = L ∂v i ∂x 1 - k j=1 c j λ j (-∆ϕ j + ϕ j ) = l∈Z (u p-1 ε -U i,l ) ∂U i,l ∂x 1 + p k j=1 c j λ j 1 -λ j u p-1 ε ϕ j .
If we write Lξ = h, then, for all η ∈]0, 1[

|h(x)| ≤ C η e -σ e -ηdx .
We use Proposition 5.6 to obtain (5.78).

We have proved the proposition. Let us define The estimate (5.80) holds true if we replace Ω i by the set

Ω i = {x ∈ [- π ε , π ε ] × R N -1 ; dist(x, ∪ k+1 l=0 {(
Ω + i = {x ∈ Ω i ; x 1 > a i ε ε } while C 0 is replaced by R N ,x 1 >0
f a (x)dx. 

N- 1 22

 1 e |x| U (x) → L 0 as |x| → e |x| ∂U ∂x 1 (x) → L 1 as |x| → +∞, x 1 > 0,

Definition 1 . 1

 11 The solution u of (1.1) admits the pointsa 1 ε ε ,..., a k ε ε as peaks if a 1 ε ε ,..., a k ε ε are k points of [-π ε , π ε [ verifying (1.3) and ifu -

  .45) Now (3.40), (3.42), (3.43) and (3.44) give the proof of the proposition.

  .51) Let R 0 > 0 be given. It remains to estimate, for all η ∈]0, 1[ (|v(y)| + |∇v(y)|)e ηdy when d y > R 0 .

  |ξ(y)e ηdy | + |∇ξ(y)e ηdy | when y ∈ D is such that d y > R 0 .

Proposition 5 . 8 N 2 . 1 2 2 α 1 2 1 S N- 1 e 2 i≤ C|y 0 | b 1 - 1 S N- 1 e -ar e -b √ r 2 -2rz 1 y 0 +y 2 0- 1 S N- 1 eProposition 5 . 9 N 2 ≤

 5821211121112211592 Let C and A be positive real numbers. Let f and g be functions which verify the following property, for |x| > A|f (x)| ≤ Ce -|x| , |g(x)| ≤ Ce -|x| |x| 1-Let a > b > 0. Let y 0 be such that |y 0 | → +∞ and α = |y 0 | 2 . Then | α <|x|<α f a (x)g b (x -(y 0 , 0))dx| = o(|y 0 | b 1-N 2 e -b|y 0 | ). (5.79) Proof We easily see that if |x| < α, |x -(y 0 , 0)| = |y 0 || x a (x)g b (x -(y 0 , 0))dx| ≤ C|y 0 | b 1-N <|x|<α e -a|x|-b|x-(y 0 ,0)| dx ≤ C|y 0 | b 1-ar e -b (rz 1 -y 0 ) 2 +r 2 N i=2 z drdµ(z) -ar e -b|y 0 -r| drdµ(z) ≤ C|y 0 | b 1-N 2 e -b|y 0 | e (b-a)α Let f and g be smooth functions and C, C 1 , C 2 and A be positive real numbers which verify, for |x| > A 0 ≤ f (x) ≤ Ce -|x| ; C 1 e -|x| |x| 1g(x) ≤ C 2 e -|x| |x|

  Let a > b > 0. Let i = j and let y 0 = a j ε -a i ε ε . If f (x) ≥ 0 and f = 0, then there exist positive real numbers C 1 and C 2 such that, for i = 0, ..., k + 1(1+o(1))C b 1 C 0 e -b|y 0 | |y 0 | b 1)dx ≤ C b 2 C 0 e -b|y 0 | |y 0 | b 1-N 2 (1+o(1)), (5.80) where C 0 = R N f a (x)dx.

Proof. Let α = |y 0 | 2 . 1 2 2 C 2 e 2 e 2 C 2 =Lemma 5 . 2

 212222252 For x such that |x -( a i ε ε , 0)| < α , we have|y 0 | -|x -( | ≤ |y 0 | + |x -( 0 (1 + o(1))|y 0 | b (1-N) -b|y 0 | .Moreover, in view of Proposition 5.8, we havex∈Ω i )dx = o(1)|y 0 | b (1-N) -b|y 0 | .Last, we havex∈Ω i ;|x-( a e -b|y 0 | |y 0 | b 1-N 2 x∈Ω i ;|x-( a i ε ε ,0)|>α e b|x-( a i ε ε ,0)| f a (x -( a i ε ε , 0))dx = o(e -b|y 0 | |y 0 | b 1-N 2 ),since a > b. We have proved the proposition. )dxe b|y 0 | |y 0 | b N-1 LC 0 where C 0 is defined in Proposition 5.9. Moreover, we can replace Ω i by Ω + i . Let k be a positive integer. Let a and b be real numbers, with a > 0. If p > 1 is given and k = [p]. There exists C independent of a and b such that | -(a + b) p + + a p + ... + p....(pk + 1) k! a p-k b k | ≤ C|b| p . Proof First, let us suppose that b < 0. If a + 2b < 0, then a < 2|b|, and the claim is true. If a + 2b > 0, then a + b > 0 and we write | -(a + b) p + a p + ... + p....(pk + 1) k! a p-k b k | = p....(pk) (k + 1)! (a + αb) p-k-1 b k+1 (5.81) where α ∈]0, 1[. But a + αb > -2b + αb, thus | -(a + b) p + a p + ... + p....(pk + 1) k! a p-k b k | ≤ p....(pk) (k + 1)! (2α) p-k-1 |b| p

For x in Suppθ i we write

and, for any

Secondly, we get for all η ∈]0,

But, as above

Then (5.67)-(5.71) give for all η ∈]0, 1[ and for a constant C independent of β and for some η 1 > 0

(5.72) We have to prove that

Without loss of generality, we suppose that there exists C independent of ε such that for all x such that |x -y| ≤ 1,

that gives the claim. Secondly, let us suppose that b > 0. If a < b, the claim is true. If a > b, we use (5.81) again and we obtain the claim.