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Abstract. We consider the inverse problem of determining the potential
in the dynamical Schrödinger equation on the interval by the measurement

on the boundary. We use the Boundary Control method to recover the
spectrum of the problem from the observation at either left or right end
points. Using the specificity of the one-dimensional situation we recover
the spectral function, reducing the problem to the classical one which
could be treated by known methods. We apply the algorithm to the

situation when only the finite number of eigenvalues are known and prove
the convergence of the method.

1 Introduction

We consider the problem of determining the potential in a one dimensional
Schrödinger equation from two boundary measurements. More precisely,
given a real potential q ∈ L1(0, 1) and a ∈ H1

0 (0, 1), we consider the follow-
ing initial boundary value problem:





iut(x, t)− uxx(x, t) + q(x)u(x, t) = 0 t > 0, 0 < x < 1
u(0, t) = u(1, t) = 0 t > 0,
u(x, 0) = a(x) 0 < x < 1.

(1.1)

Assuming that the initial datum a is unknown, the inverse problem we are
interested in is to determine the potential q from the trace of the derivative
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of the solution u to (1.1) on the boundary:

{r0(t), r1(t)} := {ux(0, t), ux(1, t)}, t ∈ (0, 2T ),

where T > 0 is fixed (it may be arbitrary small). Once the potential has
been determined, one can use e.g. the method of iterative observers recently
proposed in [17] to recover the initial data.

The multidimensional inverse problems of determining the potential by
one measurement were considered in [5, 6, 9, 15]. Using techniques based on
Carleman estimates, the authors established global uniqueness and stability
results for different geometrical conditions on the domain in arbitrary small
time under certain restrictions on the initial source. No reconstruction pro-
cedure (even in 1-d case) has been provided. We also mention the approach
proposed by Boumenir and Tuan for the heat equation in [10, 11, 12]. Using
the boundary observation for t ∈ (0,∞), the authors were able to recover
the spectrum of the string provided the source is generic (see the definition
in the beginning of Section 2). Then choosing another boundary condi-
tion, they solved the inverse problem from the two recovered spectra by the
classical Levitan-Gasymov method [13, 14].

In this paper we propose a different approach. We introduce the un-
bounded operator A on L2(0, 1) defined by

Aφ = −φ′′ + qφ, D(A) := H2(0, 1) ∩H1
0 (0, 1). (1.2)

Using the Boundary Control (BC) method, see [2, 7], we first show that
the eigenvalues of A can be recovered from the data r0 (or r1) in arbitrary
small interval provided the source is generic. To achieve this, we derive a
generalized eigenvalue problem involving an integral operator (see (2.5)),
whose solution leads to the recovery of the eigenvalues of A. Then, using
the peculiarity of the one dimensional case, we recover the spectral function
associated with A, reducing the original inverse problem to the more “clas-
sical” one of recovering an unknown potential from spectral data. At this
step we use the observations at both boundary points. Thus we establish an
algorithm for recovering both potential and the initial data in a very natu-
ral setting: we use the observation on the whole boundary in the arbitrary
small time, which corresponds to the uniqueness results from [5, 6, 9]. We
do not use the observation in infinite time and do not change the boundary
conditions (cf. [10, 11, 12].)

In the last part of the paper we show how to adapt our algorithm to the
more realistic situation where not all but only a finite number of eigenvalues
of A are known. We answer a question how many eigenvalues one need to
recover in order to achieve prescribed accuracy.
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Remark 1.1. The method of solving the inverse problem presented in this
paper could be applied to the case of wave and parabolic equations on the
interval.

The paper is organized as follows. In Section 2, we detail the different
steps of our algorithm. In particular, we describe how to recover the spectral
data of A from the boundary data and point out two methods that can be
used to recover the potential. In Section 3 we provide the result on the
convergence of the method of recovering the potential by a finite number of
spectral data.

2 Inverse problem, application of the BC method

2.1 From boundary data to spectral data

It is well known that the selfadjoint operator A defined by (1.2) admits a
family of eigenfunctions {φk}∞k=1 forming a orthonormal basis in L2(0, 1),
and associated sequence of eigenvalues λk → +∞. Using the Fourier method,
we can represent the solution of (1.1) in the form

u(x, t) =
∞∑

1

ake
iλktφk(x), (2.1)

where ak are Fourier coefficients:

ak = (a, φk)L2(0,1; dx) .

Definition 2.1. We call the initial data a ∈ H1
0 (0, 1) generic if ak 6= 0 for

all k ≥ 1.

For the boundary data r0, r1, we have the representation

{r0(t), r1(t)} =

{ ∞∑

k=1

ake
iλktφ′k(0),

∞∑

k=1

ake
iλktφ′k(1)

}
. (2.2)

One can prove that r0, r1 ∈ L2(0, T ). This follows from:

(i) the estimates

0 < inf
k

∣∣∣∣
φ′k(0)

k

∣∣∣∣ 6 sup
k

∣∣∣∣
φ′k(0)

k

∣∣∣∣ < ∞, (2.3)

(see, e.g. [18]);



4

(ii) the equivalence of the inclusions {kak}∞k=1 ∈ l2 and a ∈ H1
0 (0, 1);

(iii) the fact that the family
{
eiλkt

}∞
k=1

forms a Riesz basis in the closure
of its linear span in L2(0, T ) (see, e.g. [3]).

Throughout the paper, we always assume that the source a is generic.
The reason for this requirement can be seen from (2.2): if we assume that
an = 0 for some n, then from the representation (2.2) it is easy to see
that the pair {r0(t), r1(t)} does not contain information about the triplet
{λn, φ′n(0), φ′n(1)}, and, consequently the potential which corresponds to
these data is not unique.

Using the method described in [2] we can recover the spectrum λk and
products akφ

′
k(0) and akφ

′
k(1) by the following procedure. We construct the

operator CT
0 : L2(0, T ) 7→ L2(0, T ) by the rule:

(CT
0 )f(t) =

∫ T

0
r0(2T − t− τ)f(τ) dτ, 0 6 t 6 T. (2.4)

and consider the following generalized eigenvalue problem : Find (µ, f) ∈
C×H1

0 (0, T ), CT
0 f 6= 0, such that

∫ T

0
ṙ0(2T − t− τ)f(τ) = µ

∫ T

0
r0(2T − t− τ)f(τ) dτ, 0 6 t 6 T. (2.5)

Then, one can prove [2] that the problem above admits a countable set of
solutions (µn, fn), n > 1. Moreover, for the eigenvalues we have µn = iλn,
where λn are the eigenvalues of A; the family {fn(t)}∞n=1 is biorthogonal to
{eiλk(T−t)}∞n=1.

A priori we do not suppose that ṙ0 ∈ L2(0, 2T ) and therefore, in general,
the integral

∫ T
0 ṙ0(2T − t− τ)f(τ) dτ should be understood as the action of

the functional ṙ0 ∈ H−1(0, 2T ) on f ∈ H1
0 (0, T ). For algorithmic purposes

it is convenient to rewrite the equation (2.5) in the form
∫ T

0
[r0(2T − t− τ)− µR(2T − t− τ)]h(τ) dτ = 0, 0 6 t 6 T. (2.6)

where R(t) =
∫ t
0 r(τ) dτ, and f(t) =

∫ t
0 h(τ) dτ.

Next, we consider the equation of the form (2.5) with r0(t) replaced by its
complex conjugate r0(t). This equation yields the sequence {−iλk, gk(t)}∞k=1,
(−iλn = µn). Let us normalize functions fk, gk by the rule:

δnk =
(
CT

0 fn, gk

)
=

∫ T

0

∫ T

0
r0(2T − t− τ)fn(τ)gk(t) dτ dt (2.7)
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and introduce constants γk, βk defined by:

γk =
∫ T

0
r0(T − τ)fk(τ) dτ, (2.8)

βk =
∫ T

0
r0(T − τ)gk(τ) dτ. (2.9)

It was proved in [2] (see formula (2.28)) that the product akφ
′
x(0) was given

by
akφ

′
k(0) = γkβk. (2.10)

Similarly we can introduce the integral operator CT
1 associated with the

response r1(t) at the right endpoint, and repeat the procedure described
above to find quantities akφ

′
k(1).

Summing up, using the method from [2] we are able to recover the eigen-
values λk of A and the products φ′k(0)ak and φ′k(1)ak. As a result, we can
say that we recovered the spectral data consisting of

D :=
{

λk,
φ′k(1)
φ′k(0)

}∞

k=1

. (2.11)

Precisely this data was used in [16], where the authors have shown the
uniqueness of the inverse spectral problem and provided the method of
recovering the potential. Instead of doing this, we recover the spectral
function associated to A and thus reduce the inverse source problem to the
classical one of determining an unknown potential from the spectral data.

Given λ ∈ C, we introduce the solution y(·, λ) of the following Cauchy
problem on (0, 1):

−y′′(x, λ) + q(x)y(x, λ) = λy(x, λ), 0 < x < 1, (2.12)

y(0, λ) = 0, y′(0, λ) = 1. (2.13)

Then the eigenvalues of the Dirichlet problem of A are exactly the zeroes
of the function y(1, λ), while a family of normalized corresponding eigen-

functions is given by φk(x) =
y(x, λk)
‖y(·, λk)‖ . Thus we can rewrite the second

components in D in the following way:

φ′k(1)
φ′k(0)

=
y′(1, λk)
y′(0, λk)

= y′(1, λk) =: Ak. (2.14)

Let us denote by dot the derivative with respect to λ. We use the following
fact (see [16, p. 30]):
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Lemma 2.2. If λn is an eigenvalue of A, then

‖y(·, λn)‖2
L2 = y′(1, λn)ẏ(1, λn).

The lemma below can be found in [16] for the case q ∈ L2(0, 1) holds true
for q ∈ L1(0, 1) as well. The meaning of it is that the function y(1, λ) is
completely determined by its zeroes, which are precisely the eigenvalues of
A.

Lemma 2.3. For q ∈ L1(0, 1) the following representations hold

y(1, λ) =
∏

k>1

λk − λ

k2π2

ẏ(1, λn) = − 1
n2π2

∏

k>1,k 6=n

λk − λn

k2π2
.

Lemma 2.2 and 2.3 imply that the data D we have recovered (see (2.11))
allow us to evaluate the norm

‖y(·, λn)‖2
L2 = AnBn =: α2

n, (2.15)

where we introduced the notation

Bn := − 1
n2π2

∏

k>1,k 6=n

λk − λn

k2π2
, (2.16)

2.2 Reconstructing the potential from the spectral data

The set of pairs
{λk, ‖y(·, λk)‖2

L2}∞k=1 is a “classical” spectral data. The potential can thus
be recovered by Gelfand-Levitan, Krein method or the BCM (see [4]). Below
we outline two possible methods of recovering the potential.

We introduce the spectral function associated with A:

ρ(λ) =





− ∑
λ6λk60

1
α2

k
λ 6 0,

∑
0<λk6λ

1
α2

k
λ > 0,

(2.17)

which is a monotone increasing function having jumps at the points of the
Dirichlet spectra. The regularized spectral function is introduced by

σ(λ) =
{

ρ(λ)− ρ0(λ) λ > 0,
ρ(λ) λ < 0,

ρ0(λ) =
∑

0<λ0
k6λ

1
(α0

k)
2

λ > 0, (2.18)
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where ρ0 is the spectral function associated with the operator A with q ≡ 0.
In the definition above eigenvalues and norming coefficients are λ0

k = π2k2,
(α0

k)
2 = 1

2π2k2 and the solution to (2.12)–(2.13) for q ≡ 0 is y0(x, λ) =
sin
√

λx√
λ

.

Let us fix τ ∈ (0, 1] and introduce the kernel cτ (t, s) by the rule (see also
[4]):

cτ (t, s) =
∫ ∞

−∞

sin
√

λ(τ − t) sin
√

λ(τ − s)
λ

dσ(λ), s, t ∈ [0, τ ], (2.19)

Then so-called connecting operator (see [7, 4]) Cτ : L2(0, τ) 7→ L2(0, τ) is
defined by the formula

(Cτf)(t) = (I + Kτ )f(t) = f(t) +
∫ τ

0
cτ (t, s)f(s) ds , 0 < t < τ , (2.20)

Using the BCM leads to the following: for the fixed τ ∈ (0, 1) one solves
the equation

(Cτf τ )(t) = τ − t, 0 < t < τ, (2.21)

Setting
µ(τ) := f τ (+0), (2.22)

and then varying τ ∈ (0, 1), the potential at the point τ is recovered by

q(τ) =
µ′′(τ)
µ(τ)

. (2.23)

We can also make use of the Gelfand-Levitan theory. According to this
approach, for τ ≡ 1, the kernel cτ satisfies the following integral equation
with unknown V :

V (y, t) + cτ (y, t) +
∫ τ

y
cτ (t, s)V (y, s) ds = 0, 0 < y < t < 1. (2.24)

Solving the equation (2.24) for all y ∈ (0, 1) we can recover the potential
using

q(y) = 2
d

dy
V (τ − y, τ − y). (2.25)

Once the potential has been found, we can recover the eigenfunctions φk,
the traces φ′k(0) and using (2.10), the Fourier coefficients ak, k = 1, . . . ,∞.
Thus, the initial state can be recovered via its Fourier series. We can also
use the method of observers (see [17]).
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2.3 The algorithm

1) Take r0(t) := ux(0, t) and solve the generalized spectral problem (2.5).
Denote the solution by {µn, fn(t)}∞n=1 and note the connection with
the spectra of A: λn = −iµn.

2) Take the function r0(t) and repeat step one. This yields the sequence
{µn, gn(t)}∞n=1.

3) Define the operator CT
0 by (2.4) and normalize fn, gn according to

equation (2.7): (CT
0 fn, gn) = 1.

4) Find the quantities anφ′n(0) by (2.8), (2.9) and (2.10).

5) Repeat steps 1)–4) for the function r1(t) := ux(1, t) to find akφ
′
k(1).

6) Define the spectral data D by (2.11) and find the norming coefficients
αk by using (2.15) and (2.14), (2.16).

7) Introduce the spectral function ρ(λ), the regularized spectral function
σ(λ) and the kernel cτ respectively defined by (2.17), (2.18) and (2.19).

8) Solve the inverse problem by either BCM using (2.21), (2.22), (2.23)
or Gelfand-Levitan method using equations (2.24), (2.25).

9) Use the method of iterative observers described in [17] or Fourier series
to recover the initial data.

Our approach yields the following uniqueness result for the inverse prob-
lem for 1-d Schrödinger equation:

Theorem 2.4. Let the source a ∈ H1
0 (0, 1) be generic and T be an arbitrary

positive number. Then the potential q ∈ L1(0, 1) and the initial data are
uniquely determined by the observation {ux(0, t), ux(1, t)} for t ∈ (0, T ).

The method could be applied to the inverse problem for the wave and
parabolic equations with the potential on the interval as well. The details
of the recovering the spectrum λk and the quantities akφ

′
k(0), akφ

′
k(1) could

be found in [2]. The following important remark, connected with the types
of controllability of the corresponding systems, should be taken into the
consideration:

Remark 2.5. The time T of the observation can be arbitrary small for the
case of Schrödinger and parabolic equations and it is equal to the double
length of the space interval (i.e., T = 2 in our case) for the wave equation
with the potential.
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For the details see [2].

3 Stability of the scheme : the case of truncated
spectral data

In view of applications, in this section we consider the case where only a
finite number of eigenvalues of A are available. More precisely, let us assume
that we recovered the exact values of the first N eigenvalues λn and traces
An (see (2.14)), for n = 1, . . . , N . Then we can introduce the approximate
normalizing coefficients α̃n,N by the rule

α̃n, N = AnB̃n, N , where B̃n, N := − 1
n2π2

N∏

k>1,k 6=n

λk − λn

k2π2
. (3.1)

We can estimate

|αn − α̃n, N | 6 |An||B̃n, N |
∣∣∣∣∣∣
1−

∞∏

k>N+1

λk − λn

k2π2

∣∣∣∣∣∣
. (3.2)

Since the infinite product (2.16) converges, the right hand side of the above
inequality is small as soon as N is big enough, provided n is fixed. But
the following remark should be taken into the account. Let us remind the
following asymptotic formulas for the eigenvalues and norming coefficients:

λk = π2k2 +
∫ 1

0
q(s) ds + O

(
1
k2

)
, k →∞, (3.3)

α2
k =

1
2π2k2

+ O

(
1
k4

)
, k →∞, (3.4)

Then the infinite product in the right hand side of (3.2) can be rewritten as

∞∏

k>N+1

(
1− n2 + O

(
1
n2

)

k2
+ O

(
1
k4

))
(3.5)

We can see that if n is close to N , then the terms
n2+O

�
1

n2

�

k2 are close to
one, and consequently the first factors in (3.5) and the whole product are
small. This implies the infinite product in the right hand side in (3.2) is not
close to one. This simple observation yields that we can not guarantee the
good estimate in (3.2) when n is close to N .
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We set up the following question: how many eigenvalues (we call their
number by N) we need to know in order to recover first n approximate
normalizing coefficients with a good accuracy, using formula (3.1). In other
words, assuming the infinite product in (3.2) or in (3.5) to be close to one,
we need to find out the admissible relationship between N and n. Let the
parameter γ be such that |γ| < x, we notice that if 0 < (x + γ) < θ < 1
then | ln (1− x + γ)| < 2 | ln (1−θ)|

θ x. Using this observation, we can estimate
for n2

(N+1)2
6 θ:

∣∣∣∣∣∣
ln

∞∏

k>N+1

(
1− n2

k2
+

O
(

1
n2

)

k2
+ O

(
1
k4

))∣∣∣∣∣∣

6
∞∑

k>N+1

∣∣∣∣∣ln
(

1− n2

k2
+

O
(

1
n2

)

k2
+ O

(
1
k4

))∣∣∣∣∣

6 2
∞∑

k>N+1

| ln (1− θ)|
θ

n2

k2
= 2n2 | ln (1− θ)|

θ

(
π2

6
−

N∑

k=1

1
k2

)
(3.6)

We fix some ε > 0 and choose N and n such that the right hand side of
(3.6) is less than ε, then

e−ε <

∞∏

k>N+1

(
1− n2

k2

)
< 1.

Consequently, for such N and n we have (see (3.2)):

|αn − α̃n, N | 6 |An||B̃n, N |
∣∣1− e−ε

∣∣ . (3.7)

Notice that since An = 1 + o(1) and αn = 1√
2πn

+ o(1) as n → ∞, the

product |An||B̃n, N | is bounded by some positive C < 4. Using formula

π2

6
=

N∑

k=1

1
k
− 1

2k2
+ O

(
1

N3

)

from [19], we summarize all our observations in the lemma:

Lemma 3.1. Let 0 < ε < 1. If n and N satisfy

n2

N
6 ε

2 ln 2
, (3.8)

then there exists an absolute constant C > 0 such that

|αk − α̃k, N | 6 C
∣∣1− e−ε

∣∣ , ∀k = 1, . . . , n. (3.9)
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Let σ(λ) be the regularized spectral function [4]. We recall the repre-
sentations (see [4]) for the response function and the kernel cτ (in our case
τ = 1):

Lemma 3.2. Assume that q ∈ L1(0, 1). Then the following representation
for the response function r,

r(t) =
∫ ∞

−∞

sin
√

λt√
λ

dσ(λ), (3.10)

holds for almost all t ∈ (0, 2τ). The kernel cτ (t, s) admits the representa-
tion (2.19) with the integral in the right-hand side converging uniformly on
[0, τ ]× [0, τ ]. The function cτ (t, s) can also be represented as:

cτ (t, s) = p(2τ − t− s)− p(t− s) (3.11)

where p(t) is defined by

p(t) :=
1
2

∫ |t|

0
r (s) ds.

The next useful formula follows directly from (3.11):

cτ (t, t) =
1
2

∫ 2(τ−t)

0
r(τ) dτ. (3.12)

If the exact values of the first n eigenvalues λk and normalizing factors
α2

k, k = 1, . . . , n, were known, then one could construct the “restricted”
response functions and kernels defined by

rn(t) =
n∑

k=1


sin

√
λkt√

λk

sign λk

α2
k

−
sin

√
λ0

kt√
λ0

k

1
(α0

k)
2


 ,

cτ
n(t, s) =

n∑

k=1

sin
√

λk(τ − t) sin
√

λk(τ − s)
λk

signλk

α2
k

−
sin

√
λ0

k(τ − t) sin
√

λ0
k(τ − s)

λ0
k

1
(α0

k)
2
.
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from the representation it follows that every rn ∈ C∞(0, 2τ) and Lemma
3.2 yields

rn(t) → r(t), for almost all t ∈ (0, 2τ), (3.13)
cτ
n(t, s) → cτ (t, s), uniformly on (0, τ)2, (3.14)

cτ
n(t, t) → cτ (t, t), uniformly. (3.15)

As we only have access to approximate values of the normalizing factors in
practice, we can only compute the approximate restricted kernel defined by

c̃τ
n, N (t, s) =

n∑

k=1

sin
√

λk(τ − t) sin
√

λk(τ − s)
λk

signλk

α̃2
k, N

−
sin

√
λ0

k(τ − t) sin
√

λ0
k(τ − s)

λ0
k

1
(α0

k)
2
. (3.16)

We can estimate the difference

‖cτ
n − c̃τ

n, N‖∞ 6
n∑

k=1

|α̃2
k, N − α2

k|
λkα̃

2
k, Nα2

k

=
n∑

k=1

|α̃k + αk||α̃k − αk|
λkα̃

2
k, Nα2

k

. (3.17)

Using (3.9) and the asymptotic expansions for the eigenvalues and norming
coefficients (3.3) (3.4), we deduce from (3.17) that (below, C denotes an
absolute constant that might change from line to line):

‖cτ
n − c̃τ

n, N‖∞ 6 C

n∑

k=1

|α̃2
k, N − α2

k|
λkα̃

2
k, Nα2

k

6 C

n∑

k=1

k|α̃k, N − αk|.

Let us fix some ε > 0 and n ∈ N. Applying Lemma 3.2 and choosing N
such that estimate (3.9) holds, we finally get

‖cτ
n − c̃τ

n, N‖∞ 6 C
n(n + 1)

2

∣∣1− e−ε
∣∣ . (3.18)

We fix now some δ > 0. According to (3.14) we can take n ∈ N such that

‖cτ
n − cτ‖∞ 6 δ

2
. (3.19)

We estimate the difference

‖c̃τ
n, N − cτ‖∞ 6 ‖c̃τ

n, N − cτ
n‖∞ + ‖cτ

n − cτ‖∞.
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Assuming that n is chosen such that (3.18) and (3.19) holds simultaneously,
we obtain the existence of a constant C∗ > 0 such that

‖c̃τ
n, N − cτ‖∞ 6 C∗n2

∣∣1− e−ε
∣∣ +

δ

2
. (3.20)

Then by choosing an appropriate ε in (3.20) (which results in possible in-
creasing of N , see (3.8)), we achieve

‖c̃τ
n, N − cτ‖∞ 6 δ.

We summarize the above observations in the following statement.

Proposition 3.3. Let δ > 0 be fixed. Let n be chosen such that

‖cτ
n − cτ‖∞ 6 δ

2
,

(this is possible thanks to (3.14)). Next, take ε > 0 such that

n2
∣∣1− e−ε

∣∣ 6 δ

2
,

Finally, choose N such that

n2

N
6 ε

2 ln 2
.

Then, there exists an absolute constant C > 0 such that the following esti-
mate holds true:

‖c̃τ
n, N − cτ‖∞ 6 Cδ,

where the approximate restricted kernel c̃τ
n, N and the approximate normal-

izing coefficients α̃k, N , k = 1, . . . , n are defined respectively by (3.16) and
(3.1).

In particular, c̃τ
n, N converges uniformly to cτ when n tends to infinity and

N is chosen as above.

Along with the equation (2.24) we consider the equation for the approx-
imate restricted kernel c̃τ

n, N :

Ṽn, N (y, t) + c̃τ
n, N (y, t) +

∫ τ

y
c̃τ
n, N (t, s)Ṽn, N (y, s) ds = 0, 0 < y < t < τ.

(3.21)
Picking δ > 0 we can use Proposition 3.3 to find n and N such that ‖c̃τ

n, N −
cτ‖∞ 6 δ. From now on, we always assume that n and N are chosen
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according to Proposition 3.3. Note that in particular we have N → +∞ as
n → +∞.

We introduce the operator K̃n, N
τ given by the integral part of (2.20) with

the kernel cτ substituted by c̃τ
n, N :

(
K̃n, N

τ f
)

(t) =
∫ τ
0 c̃τ

n, N (t, s)f(s) ds. The

closeness of cτ and c̃τ
n, N implies the operator I+K̃n, N

τ to be invertible along
with I + Kτ . The latter in turn implies the existence of the potential q̃n, N

that produces the response function

r̃n, N (t) =
n∑

k=1


sin

√
λkt√

λk

signλk

α̃2
k, N

−
sin

√
λ0

kt√
λ0

k

1
(α0

k)
2


 ,

and the unique solvability of (3.21) (see [4], [8], [1]).

We define M := ‖(I + Kτ )−1‖. The invertibility of I + Kτ and I +
K̃n, N

τ implies the norms of the solutions ‖V (y, ·)‖L2 and ‖Ṽn, N (y, ·)‖L2 to
be bounded.

Let us write down the difference (2.24) and (3.21) in the form
[
V (y, t)− Ṽn, N (y, t)

]
(3.22)

+
∫ τ
y cτ (t, s)

[
V (y, s)− Ṽn, N (y, s)

]
ds = c̃τ

n, N (y, t)− cτ (y, t)

+
∫ τ
y

[
cτ (t, s)− c̃τ

n, N (t, s)
]
Ṽn, N (y, s) ds, 0 < y < t < τ.

The equality above and the invertibility of I + Kτ implies the estimate:

‖V (y, ·)− Ṽn, N (y, ·)‖L2(y,τ) (3.23)

6 M

(
1 + max

06y6τ
‖Ṽn, N (y, ·)‖L2

)
‖cτ − c̃τ

n, N‖∞.

To estimate the L∞ norm, we write down (3.22) in the form
[
V (y, t)− Ṽn, N (y, t)

]
(3.24)

=
∫ τ
y cτ (t, s)

[
Ṽn, N (y, s)− V (y, s)

]
ds + c̃τ

n, N (y, t)− cτ (y, t)

+
∫ τ
y

[
cτ (t, s)− c̃τ

n, N (t, s)
]
Vn, N (y, s) ds, 0 < y < t < τ.

This leads to the following inequality:

‖V (y, t)− Ṽn, N (y, t)‖∞ (3.25)

6 ‖cτ‖∞max06y6τ

∫ τ
y

∣∣∣Ṽn, N (y, s)− V (y, s)
∣∣∣ ds + ‖c̃τ

n, N − cτ‖∞
+‖cτ − c̃τ

n, N‖∞max06y6τ

∫ τ
y |Ṽn, N (y, s)| ds.
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Using (3.23) and (3.25) we finally get

‖V − Ṽn, N‖∞ 6 ‖cτ − c̃τ
n, N‖∞ (M‖cτ‖∞ + 1)

(
1 + max

06y6τ
‖Ṽn, N (y, ·)‖L2

)
.

The last equality in particular implies the uniform convergence of Ṽn, N (y, y)
to V (y, y). Using (2.25), we conclude that the potentials qn, N and q corre-
sponding respectively to Ṽn, N and V satisfy

∫ t

0
q̃n, N (s) ds ⇒n→∞

∫ t

0
q(s) ds, uniformly in t. (3.26)

The latter in turn, implies that

q̃n, N −→ q, in H−1(0, 1).

In fact, (3.26) yields more than that: we have the following

Theorem 3.4. If n, N satisfy conditions from Proposition 3.3, then

1
ε

∫ t+ε

t
q̃n, N (s) ds −→n→∞

1
ε

∫ t+ε

t
q(s) ds, uniformly in t, ε. (3.27)

We remark that (3.27) is still not enough to guarantee the convergence
q̃n, N to q almost everywhere on (0, 1).

On the other hand let us restrict (2.24) to the diagonal y = t:

V (y, y) + cT (y, y) +
∫ T

y
cT (y, s)V (y, s) ds = 0, 0 < y < 1, (3.28)

and recalling (2.25), (3.12), we see that the best possible result one can
expect is a convergence q̃n,N to q almost everywhere on (0, 1).

Remark 3.5. The stability of the scheme crucially depends on the type of
the convergence rn → r. For now we know (see [4]) that the convergence is
pointwise almost everywhere on the interval. The significant progress in the
proving of the stability could be achieved by the improvement of this result.
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