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ABSTRACT 

Design patterns and architecture patterns have been considerably promoted by software engineering. The 

software oriented tools and methods have been adapted for Systems Engineering, conforming to the 

model driven engineering paradigm proposed by the Object Management Group. However, designers of 

complex socio-technical systems have specific concerns, which differ from those of software designers. 

We propose a method of pattern implementation for Systems Engineering, based on a functional approach 

and relying on formal conceptual foundations in the form of a meta-model, which can be used for the 

management, application, and cataloguing of patterns specific to the field of Systems Engineering. A 

pattern instance in the field of control systems is proposed as an example application.  
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1.  Introduction

Systems Engineering (SE) frames the design of systems characterized by a high degree of 

complexity, a hierarchical structure (consisting of subsystems), and strong interaction with their 

environment. Such systems, which meet stakeholders’ needs by transforming inputs and 

consuming resources, consist of several types of components, including technical and physical 

components (mechanical, electronic), informational (software), and human (operators, pilots).  

The design of such systems, even if they are very innovative, does not occur ex nihilo. The 

problem solving process carried out by the designers relies heavily on heuristic principles. 

Heuristics refers to experience-based techniques for problem solving, learning, and discovery. 

Heuristic methods are used to speed up the process of finding good solutions, when an exhaustive 

search would be impractical. In engineering, heuristics include leveraging design and 

architectural patterns, which are not reusable solutions as is, but must be adapted to the specific 

context of the problem. They are of value because they enable collective experience to be reused, 

and time to be saved in design processes. 

So, even if the whole system seems to be an innovative solution to a given problem, its functions 

and components are, at a given level of granularity, consistent with patterns of known and tested 

solutions in response to known and recurring problems. In this way, a system may also be seen as 

a set of standard solutions interpreted and adapted to a given context. This “pattern vision” is 

known in many scientific and academic fields (for example in the SE domain, in which we talk 

about SE Patterns), but it is not always made explicit or formalized. 

The questions we would like to address are: 1) What is an SE Pattern? 2) How is an SE Pattern 

different from other forms of patterns already known in other areas? 3) How can patterns for 

Systems Engineering be represented, capitalized upon, and reused? 4) Finally, how can they be 

identified and collected?  



In addition to requirement patterns and physical allocation patterns, we hypothesize that an 

approach based on functional architecture patterns is equally important for knowledge reuse in 

Systems Engineering. It is therefore necessary to express these functional patterns with a 

language used by system architects, and propose a meta-model that is compatible and 

interoperable with those implemented by major SE tools, such as Core [Vitech, 2009]. Other 

problems raised by pattern implementation in SE tools are methodological issues: at what stage 

of the design process should patterns be used? These methodological issues also address the 

question of SE pattern formalization. 

As described by Figure 1, a SE Pattern catalog requires a pattern language that formalizes 

problems, contexts, and solutions. When and if the language is available (first scientific obstacle 

indicated by Lock #1), a catalog must then be constituted. Using that language, system architects 

are able to translate their experience to form a catalog. Other non-formal or differently formalized 

catalogs, and technology watch, are potential sources for creating the catalog. Finally, SE Patterns 

may be embedded in existing models and should then be identified by pattern recognition 

mechanisms, which is the second scientific obstacle (Lock #2). 

This article presents and illustrates a meta-model for implementing patterns tailored to Systems 

Engineering, able to manage pattern formalization, collection, and application. Such a SE Pattern 

meta-model enables both formal and informal pattern representation. It should also help in 

applying SE Patterns on models being developed. These models must necessarily be expressed 

using a Systems Engineering meta-model, which is how this paper proposes to make a 

contribution to this field of knowledge. Finally, our proposition is illustrated by a use case. That 

contribution is presented in Section 3, after a review of the literature in Section 2. Pattern 

identification mechanisms are briefly discussed in Section 4. Finally, Section 5 includes the 

conclusion and points to future work. 

[Figure 1 here] 

Figure 1: Systems Engineering Pattern Catalog 

2.  Literature Review

The historical uses of design patterns, their variants, objectives, and formalisms must be 

examined to determine whether or not they can be reused in the SE field, and to identify some of 

their limitations. This review is composed of four subsections. The first examines the different 

design patterns used over time, and in different areas. The second identifies their goals. The third 



is about formal pattern representation using several tools and modeling environments, in 

particular UML and SysML. Finally, since the contribution described in this paper concerns 

functional modeling architecture, the fourth section reviews functional block languages, such as 

eFFBD. 

2.1 History of Design Pattern Use 

Design patterns in their current forms were proposed in the late seventies by architects and city 

planners, and adopted in the early nineties by software engineers. Ten years later, Systems 

Engineers began to promote their use. 

A well-known promoter of patterns is Christopher Alexander. He is an English architect and 

urban planner who was born in 1936, having completed numerous architectural complexes in 

North America and Japan. He questioned the possibility of making original creations in the field 

of design. In his view, every cultural, artistic, technical, scientific, and legal form is the result of a 

transhistorical process, which adapts an “ideal” archetypal model. He argues that all creation is 

simply an imitation of an original pattern [Alexander, C. et al. 1977]. C. Alexander based his 

theory on functional requirements on the one hand, and cultural models on the other. 

The design method promoted by Alexander has been adopted by software engineering [Gamma, 

E. et al., 1994] [Coplien and Schmidt, 1995] to optimize software architecture in terms of

organization of classes. The basic goal is to improve quality, and facilitate code writing by 

adopting good practices, which was formalized in a book entitled Design Patterns -- Elements of 

Reusable Object-Oriented Software.  

At that time, several communities began to manage pattern catalogs in various domains. For 

instance, in the field of software engineering, the Hillside Patterns Library started a collection of 

software patterns. These patterns are generally subject to a peer-review process through the PLoP 

(Pattern Languages of Programs) conference. The patterns submitted undergo a shepherding 

process [Harrison, N., B, 1999], in which they are analyzed and modified before being presented 

at the conference. The roles and procedures used to frame and make design patterns evolve are 

greatly influenced by the work of the Hillside Group. The PloP pattern language is essentially 

textual.  

PloP authors emphasize the literary quality of the pattern descriptions; for example, problem 

statements are carefully crafted into well-defined patterns; if the solution is the heart of the 

pattern, the problem is its soul [Meszaros and Doble, 1997]. Problem statements for many 

patterns are too vague, and sometimes the problem statement is solution-oriented. Pattern authors 



often begin by writing the solution, and the problem comes only as an afterthought. Alternatively, 

authors begin by writing the problem, and the way the problem is formulated tends to be vague 

and less precise. Pattern authors also emphasize the notion of forces. Breaking down the forces 

helps to formulate a clear and in-depth description of the problem solved by the pattern by 

decomposing that problem. In fact, the problem perceived is a symptom of something that is 

wrong. The forces at play give substance to the problem, and insight into what is behind the 

symptoms. The author should go back and forth between the forces and the problem statement to 

improve both of them.  

The purpose of PloP is to promote software patterns, but it is also seeking subjects in domains 

beyond software. Topics covered include for instance Telecommunications Distributed 

Processing Patterns and Design Patterns for Avionics Control Systems, which are close to System 

Patterns. 

Following Gamma and Coplien, Martin Fowler proposes analysis patterns [Fowler, 1996], which 

are not about how code is organized, but about the structure of models that represent real 

systems. In the area of workflow management [Van der Aalst, W. et al., 2003] identifies 21 

different patterns that describe the behavior of business processes. These patterns, which are 

described on a website, represent configurations encountered in business processes in general. 

They were originally expressed with a specific language (YAWL), but can be transformed into 

UML Activity diagrams [Bock, 2006] or BPML diagrams. [White, SA, 2004]. 

However, Van der Aalst patterns are abstract structure patterns (choice, sequence, parallelism, 

choice, interleaved parallel routing, milestone ...), but they are not as such reusable in concrete 

business cases or scenarios. These patterns describe generic transverse configurations.  

Meanwhile, other patterns, which reflect concrete processes in a particular domain, such as the 

PDCA pattern [Appleton, B., 1997] [Cloutier, R. & Verma, D., 2007], documents a pattern that 

can be implemented in the field of process management. 

In the field of Systems Engineering, patterns have been the subject of many publications within 

INCOSE. The first article on this subject [Barter, HR 1998] proposed a language of patterns for 

SE. A pattern language was subsequently proposed for writing [Haskins, C., 2003] a Systems 

Engineering manual: the Systems Engineering Book of Knowledge (SEBOK). Inter-pattern 

relations and the establishment of a pattern map have been proposed by the same author 

[Haskins, C., 2005]. A proposal for an engineering paradigm based on patterns (PBSE) [Schindel, 

WD, 2005] was followed by other studies [Cloutier, R., 2006] [Cloutier et al., 2010]. The degree 

of formalization of these proposals is not yet sufficient, which is what motivated our research and 



this paper in particular. 

2.2 Design Pattern Goals and Typology 

All these variants have similar objectives: a design pattern is a way practitioners can represent 

invariant knowledge and experience in design. It can help humans to identify and solve problems 

by drawing or imitating such knowledge and experience. The objectives are:  

• to improve performance (comprehensiveness, relevance), reliability (proven solutions,

justified and context-based), 

• to gain economic value (time savings) and,

• to facilitate collaborative work by sharing design pattern repositories.

These objectives can be achieved by leveraging and integrating knowledge and good practices.  

A design pattern is a simple and small artifact, rarely isolated and therefore correlated with other 

ones; not a creative method (by definition, it exists only if the solution it proposes is well known 

and frequently used in the field and, therefore, is not innovative). In the same manner, it is not a 

reusable component. It is destined to be imitated and adapted to a particular context. 

One characteristic of design patterns is that they do not alter the functionality of the models to 

which they apply. Indeed, a design pattern improves the quality of the current model of a system 

under design. A design pattern improves non functional features, quality of service and systemic 

properties. [Manola, F., 1999] names “-ilities” the operational and support requirements a system 

must address (availability, maintainability, vulnerability, reliability, supportability …). Often, 

gaining some “-ilities” is done at the expense of some others: e.g. The Spitfire was designed with 

an elliptical wing, giving greater speed and maneuverability (perhaps the most critical “-ility” of 

all for a warplane). But this came at a price: 13000 man-hours per airframe. Willy Messerschmitt 

had optimized the German Bf 109 for speed and manufacturability at only 4000 man-hours per 

frame, but the Bf 109 was no faster than the Spitfire and was consistently out-turned by it. The 

elliptical wing had been considered but ultimately rejected as too difficult to manufacture 

[Alexander, I., 2005]. 

Different categories are used to construct taxonomy of patterns:  

1. Idiomatic patterns. Describe low level elements that structure a model, govern associations

between these elements, and define aggregation and containment strategies (e.g. Composite 

Pattern). In the software engineering domain, GOF patterns [Gamma et al., 1994] could be 

classified as such. Workflow patterns, such as the ones proposed by [Van der Aalst, W. et al., 

2003], also belong to that family.  



2. Generic patterns. This category of high level patterns cuts across several areas. e.g.

command-control loop, active redundancy, event queuing, error detection and correction. The 

example described below illustrates generic patterns. 

3. Domain specific patterns. This category of patterns is specific to particular industrial or

organizational areas. These patterns, although related to particular technical fields, are however, 

at a high level, the responsibility of system designers. Many patterns coming from the Hillside 

repository, as well as Fowler analysis patterns, are domain specific patterns. 

Patterns may apply to the system of interest (SOI), or to systems engineering activities (SEA) 

themselves (which aim to produce a model of the system of interest). In the first case, we speak 

about SOI patterns, in the second about SEA patterns. Leveraging patterns is efficient for each of 

three main Systems Engineering activities - requirement engineering, functional architecture 

design, and physical architecture design. We argue that functional architecture patterns are key 

elements for knowledge reuse. 

 [Cloutier and Verma, 2007] proposed a system architecture taxonomy, in which patterns are 

broken down into:  

1. Structural patterns - provide a physical pattern to follow when designing a part of the

architecture.

2. System Requirements patterns - prescribe the format of a properly formed requirement, or

a collection of requirements that can be reused to describe desired functionality.

3. Systems Engineering Activities patterns - also described as systems engineering process

patterns, indicate how the process of architecting or systems engineering is performed.

4. Systems Engineering Roles patterns - help describe how the architecting/engineering role

is performed.

5. System Process patterns - capture how the system does what it does by using control

loops, algorithms, etc.

Cloutier's taxonomy seems to lack consistency due to a mixing of SOI patterns and SEA patterns: 

type 1 and type 2 are relevant to SOIs, type 3 and type 4 are relevant to SEAs, and type 5 is 

relevant to SOIs. 

This paper addresses only SOI patterns and focuses on functional architecture (Type 5 in 

Cloutier's taxonomy), whether generic or domain specific targets. 

2.3 Design pattern formalization 

Design patterns have been formalized to varying degrees. Often, this formalization is only a 



standard text template [Portland Pattern Repository]. In contrast, other software design tools 

based on UML have implemented design pattern catalogs equipped with a true meta-model 

[Galic, M. 2003]. 

Within models, design patterns apply a crystallization process [Jézéquel et al., 2005 in French]. 

Impacted entities fit together in a configuration to meet specific roles defined in the pattern. 

Design patterns are defined in UML or SysML as parameterized collaborations. They specify a 

set of classes and objects that have specific roles and interactions. Generally speaking, a 

parameterized collaboration is used when the actual classes work in the same way as the 

collaboration classes, but the classes and operations are named differently. Collaboration is a 

name given to the interaction among two or more classes. Typically this is an interaction as 

described in an interaction diagram [Larman, 2001]. Mechanisms such as inheritance, delegation, 

and implementation are used to give rise to these collaborations, which will be captured by use 

cases as well as through interaction diagrams. [Jacobson, 1997] [Sunyé 2000].  

Applying a design pattern amounts to generating or correcting part of a model by applying a 

prototype [Barcia 2006]. Transposed to SysML, a design pattern could be described as an internal 

block diagram, which comes with a sequence diagram. An activity diagram (functional view) and 

a state diagram (behavioral view) can be supplied. When an actual model is in the design phase, a 

part of it, revealing a design challenge, may require the application of a design pattern. Once the 

design pattern is chosen from a model repository by the domain expert who is currently working 

on this model, a pattern instance is parameterized with model entities involved (i.e. blocks, 

components, objects). As soon as the design pattern instance is applied to the model, the model 

entities are reconfigured to comply with the design pattern (their structure and composition may 

be amended, supplemented or renamed, constraints can be added). The process takes place as a 

local model modification: the latter mimics the design pattern applied. The design pattern 

instance persists within the model as a parameterized collaboration, and can be used at a later 

point (e.g. for the purposes of documentation). 

UML has achieved a good level of formalization for software and analysis design patterns, based 

on class diagrams and object interaction diagrams. This paper aims to build upon this work to 

apply a similar approach adapted to the functional design of non software systems. 

[Figure 2 here] 

Figure 2. A System Pattern Meta-model 



2.4 Function-block Languages 

One of the problems is to fit a pattern language to a Systems Engineering language: eFFBD is a 

widely used formalism in SE [Bock, 2003] [Vitech, 2009]. An eFFBD (Enhanced Functional 

Flow Block Diagram) is a functional flowchart. An eFFBD can be considered as a superposition 

of an FFBD (Functional Flow Block Diagram) and a DFD (Data Flow Diagram) [Long, J., 1995]. 

FFBD formalism has been used for a long time in Systems Engineering. It was developed in the 

1950s by TRW Incorporated, and applied in the 1960s in the fields of aeronautics and space 

[Blanchard, B. & Fabrycky, W., 1990]. It shows the functions of a system and their execution 

sequence, but does not mention data streams, whether single or triggering. 

A DFD [DeMarco, T., 1979] represents system functions and the data flows processed by these 

functions, which absorb input data and produce output data after processing. The DFD does not 

represent the control structures that drive the activation and sequencing of the functions. An 

equivalent formalism is IDEF0 [Ross, DT & Brackett, JW, 1976], which refines the types of data 

streams by distinguishing inputs, outputs, mechanisms, and controls. 

[Figure 3 here] 

Figure 3. A Systems Engineering Meta-model 

An eFFBD represents functions, a control flow in the form of an FFBD, overlaid on a data flow 

in the form of a DFD. An eFFBD distinguishes triggering- and non-triggering data entries. 

Triggering data have control implications. Non triggering data are represented with a single 

arrow, while triggering data are designated with a double arrow. An eFFBD has an operational 

semantics allowing it to run as a discrete event model: a function must be validated (by the 

completion of the previous function execution in the control structure) and triggered (if a data 

entry is triggering data). The designer, therefore, has the ability to specify executing conditions of 

the functions, either by the use of control structures, or by triggering data, or a combination of the 

two semantics. The semantics of an eFFBD is completed by the notion of execution duration 

(min, max, average), as well as execution costs or resource constraints. [Seidner, C. et al, 2008] 

propose to translate eFFBD into Temporal Petri Nets [Petri, C., 1962].  

This review of the literature does not reveal any form of design pattern well suited to functional 

architecture in the area of Systems Engineering. Adapting design patterns to SE (SE Patterns) 

begins by developing a supporting meta-model. SE patterns must be function oriented, thus such 

a meta-model has to include function graph structures. In a Systems Engineering perspective, 



functions compose operational scenarios, are allocated to components, and related to 

requirements which are themselves related to needs. Thus a minimalist Systems Engineering 

meta-model comes as an infrastructure for the SE Pattern meta-model. 

3.  Contribution 

The goal of this section is to formalize patterns for Systems Engineering, going beyond the stage 

of textual documentation, by proposing a SE Pattern meta-model (Figure 2) extending a Systems 

Engineering meta-model (Figure 3). An example of a SE Pattern is then given as illustration 

(Figure 4). In the following subsections, terms in italics refer to entity names found in Figures 2, 

3, and 4. 

3.1 SE Pattern meta-model 

Our domain of interest is the representation of system engineering projects. A Project consists of 

several models each being a representation of the system under study and of a catalog which lists 

system patterns. A SystemPattern formally and informally identifies and documents a Solution 

addressing a Problem in a given Context that has been tested and deemed to be safe. These three 

concepts: Problem, Solution, Context, constitute a triangular pattern definition, which represents 

the core meaning of a SystemPattern. If any of the three elements is missing, this will result in a 

trivial pattern [Gaffar, A. & Moha, N., 2005]. A SystemPattern is defined by at least the following 

characteristics: a unique identifier, a short but evocative name, alternative names as aliases, a 

creation date, a textual description and an author. 

A Problem formally or informally describes the design problem motivating the SystemPattern. 

Each SystemPattern addresses one and only one Problem. A Problem is characterized by an 

informal description, a Feature to be optimized, a set of competing Forces, a use case Model 

showing a trivial or a poor functional and/or organic architecture. A Force is a competing 

constraint in a System: design problems arise from a conflict between those different interests or 

"Forces". The SystemPattern application decision depends on arbitration between the Forces. 

[Alexander, C. et al., 1977] gives the example of a conflict between the need for a sunny 

environment in a building, but not to be overheated in the summer. In this example, the Force is 

described by a challenge (the need for a sunny environment), a constraint (not to be overheated 

in the summer) and a ProblemType (Fluid, Field, Structure, Security...). A Feature is an extra 

functional characteristic, also named “-ilities” by [Manola, F., 1999]: availability, maintainability, 

vulnerability, reliability, supportability…).  



A Solution contains a pattern Model, which is a parameterized system architecture. It represents a 

design solution as a response to a Problem considering the given Context. There is only one 

solution for one pattern, but one Problem may have many solutions through several patterns by 

using equivalent-patterns and/or related-pattern relations. A Solution is illustrated by a use case 

showing a better architecture, resulting from the pattern application. The solution has an Impact 

that characterizes the influence of a SystemPattern on a model to which it applies. Impact(s) are 

quantified with a VariationSense (increase, decrease, equals) and a value on a scale. They are 

similar to post conditions, after a pattern is applied. The impact is measured on a feature. The 

Feature to optimize is often gained at the expense of another. For example, security may be 

improved (in this case the attribute variationSense of feature F1 is set to “increase”) at the 

expense of manageability (the attribute variationSense of feature F2 is set to “decrease”). 

The Context expresses the core meaning of the pattern i.e. may be interpreted as a (set) of pre-

condition(s). It indicates the situation to which the Solution may be applied, and the required 

conditions that must be checked before the pattern can be applied (informally, in the description 

attribute).  

The other main relations between a SystemPattern and other concepts from the meta-model are:  

• Since a SystemPattern is a parameterized architecture, each of its Parameters associates

one of its own ModelElements to a ModelElement belonging to the model under work, e.g. 

Function, Component, Item, Interface, DataFlowConnection, Need, Scenario or Requirement. 

• A SystemPattern is legitimated when mined in several well known applications (defined as

knownUses). 

• A requestedPattern is a SystemPattern required when applying a given SystemPattern. All

requestedPatterns are also relatedPatterns. 

• A relatedPattern is a SystemPattern, often present when a given pattern is applied. Within a

triangular association Problem Context Solution, related patterns often have the same context, but 

relatedPatterns exclude antiPatterns.  

• An antiPattern is in opposition with the SystemPattern of interest in a given case. Within a

triangular association Problem Context Solution, anti patterns have the same problem and the 

same context.  

• Equivalent patterns are patterns that have the same problem and the same context. In this

case, the textual description may be more formalized in the solution/model/needs/description. 

The Domain identifies a specific area in which a SystemPattern can be applied or is relevant e.g. 



mechanics, electronics, software, civil engineering, organization & service, security, pedagogy... 

The Rationale justifies the SystemPattern by an explicit description and the associated 

argumentation that justifies applying the pattern. It is different from knownUses in several 

Application, which are statistical observations. 

Problem, Solution, Context, Application and Rationale are Indexable objects, described by 

keywords. 

[Figure 4 here] 

Figure 4. Application of a System Pattern to an Incompletely Designed Model 

3.2 Example of how an SE Pattern is Applied 

The example in Figure 4 aims to show the SystemPattern instantiation and application 

mechanisms (however it is a simplified example and is no a reference in the field of regulation). 

The example shows a SystemPattern that is applied in three phases: 

• The model under work in which there is the problem (A)

• The SE Pattern chosen to be applied (B)

• The model under work after the SE Pattern has been applied (C).

The three models are represented using eFFBD notation, which is supported by the meta-model 

shown in Figure 2 and Figure 3. These models could be transformed into SysML activity 

diagrams using the eFFBD profile, the two notations are isomorphic. 

The Fx titled rectangles are system functions (Function meta-class), connected by a control flow 

(solid line) (ControlFlowConnection meta-class). The rounded rectangles represent the nature of 

the processed data flow (dashed line) (Item meta-class). The graph formed by the control flow 

and the functions is structured by control nodes (ControlFlowConnection and ConnectionType 

meta-classes). 

The model containing the problem (A) is an instance of the Model meta-class, associated with the 

Project meta-class by the modelUnderWork meta-association.  

When applying the pattern on the model (A) to produce the model (C), the original version (A) is 

preserved and remains accessible by the priorVersion meta-association. The SystemPattern model 

(B) is an instance of the Model meta-class, associated with the Solution meta-class by the

patternModel meta-association. 



Model containing the problem (A) 

The example of Figure 4 (A) shows a fragment of an industrial food process. Raw materials are 

placed in a container where a given environment is maintained, with parameters such as 

temperature and hygrometry. An air flow is provided by blowing air. The material to be processed 

is subjected to lactic fermentation, and also desiccation. The lactic fermentation is intended to 

provide the final product organoleptic qualities and to lower the pH to improve conservation. 

This process fragment is connected to a global process, which is not shown, by the maturation 

start entry link as well as by the maturation finished output link. It consists of four 

simultaneously active functions (and nodes before and after their parallel activity). 

To achieve a goal of raw product maturation, four functions must work together:  

• Contain: the raw product must be contained. The Contain function is fed by raw product 

and air stream. At the end of the process (refinement finished), the Contain function ends, and the 

processed raw product is outputted (refined product). 

• The input flow (raw product) and the output flow (refined product) are discrete flow (path 

in the Figure 3 meta-model: DataFlowConnection, carries, Item, flow_type, discrete). 

• Flows as air stream, residual air stream, calorific energy, and residual heat are continuous 

flows (path in the Figure 3 meta-model: DataFlowConnection, carries, Item, flow_type, 

continuous). 

• Blow: This function converts electrical energy into an air stream. This outputted air stream 

is absorbed by the Contain function. The latter retransmits it as a residual air stream which is the 

input of the Blow function, and this is a closed circuit. 

• Heat: This function absorbs electrical energy to provide calorific energy. The latter is 

provided as input to the Contain function. The Heat function also consumes a given heating 

command. The latter is used by the function to modulate its calorific energy output. 

• Control Temperature: this function produces the heating command which will be absorbed 

by the Heat function. It absorbs a Contain output: residual heat, to compute, given the 

temperature profile and cycle mode inputs, the heating command output. This function also 

determines the end of the process. 

When all parameters are met (for example time * temperature * mass), this function ends and 

forces termination of the three remaining functions in the and parallel branch. 

The problem in this model is one of incompleteness. To finalize this model, the Control 

Temperature function has to be decomposed. This function delivers a control data proportional to 



the difference between the residual heat output and the temperature profile setpoint so that the 

residual heat temperature reaches the setpoint. 

Pattern solution (B): control-Command pattern semantics 

The Control-Command pattern describes a regulation process in which an Actuate function 

delivers an effect output which is directed to an external function. This effect output modifies the 

external environment, of which, in return, one dimension is reinjected into the Measure function 

as the position Item. 

Until the process represented by the model is not ended, Actuate and Measure functions are 

repeated in loop structures.  

Another cycle in this model consists of three sequential functions: Acquire Measure, Compute 

Command, Drive Actuator. The Acquire Measure function absorbs measured value data to 

transmit it after conversion as acquired measure to the Compute Command function. The 

Compute Command function compares a set point with acquired measure to issue a command 

output; command is fed into the Drive actuator function, together with a given energy, to produce 

a command to apply output. The latter is fed into the Actuate function that produces the effect as 

an output. 

This pattern is a high level pattern, independent of the food processing area. It implements a 

control loop based on the feedback of the difference between a setpoint and a position, and the 

resulting action is proportional to that difference. This pattern (which is here a simplified version) 

is proven and recognized by all regulation experts (Bennett, S. 1986) in various fields.  

Pattern parameterization and application 

A, B, and C models are described in Figure 4. The application of SystemPattern (B) to source 

model (A) containing the problem results in a transformation from the model (A) into a target 

model (C) containing the SystemPattern solution.  

The target model mimics the SystemPattern model. It is a parameterized collaboration of 

ModelElement. Some ModelElement belonging to model (A) will play given roles in the 

SystemPattern model (B). 

A model transformation taking as input model (A) to be corrected, model (B) to imitate, and the 

parameter list given in Table 1, will produce the target model (C). Some elements of the 

SystemPattern model are renamed in the resulting target model. ModelElement related to 

Parameter has the names assigned to the concreteRole. Additional elements are renamed 

according to Table 2. Elements whose names are unchanged are shown in Table 3. Finally, one 



element, the ControlTemperature function, is removed after the SystemPattern is applied. 

Model containing the solution (C).  

Model (C) containing the solution provided by the SystemPattern (B) imitation is a reformulation 

of model (A) in which there is the problem. The overall function of model (C) is identical to that 

of model (A), but non-functional features are improved; namely, temperature control is 

optimized. 

ModelElement 
Parameter 

patternRole 

Parameter 

concreteRole 

ControlFlowConnection process start maturation start 

ControlFlowConnection process end maturation finished 

Function Actuate Heat 

Item effect calorific energy 

Item position residual heat 

Item operational mode cycle mode 

Item command heating command 

Item set point temperature profile 

Item energy electrical energy 

Table 1. System Pattern Parameters 

ModelElement 
Name in 

SystemPattern 

Name in model after 

pattern application 

Function Acquire measure Acquire temperature 

Function Compute command Compute heating 

Function Drive actuator Drive heating 

Function Measure Measure temperature 

Item acquired measure acquired temperature 

Item command to apply heating power 

Item measured value measured temperature 

Table 2. ModelElements added to Model (A) after Application of SystemPattern (B) 



ModelElement Name 

Function Contain 

Item air stream 

Item raw product 

Item refined product 

Item residual air stream 

Table 3. ModelElements Unchanged in Model (A) after Application of SystemPattern (B) 

4.  Pattern identification

This section is a brief discussion of pattern identification. This point is the second lock identified 

earlier in this article; it will be developed in a subsequent paper.  

To be listed in catalogs, patterns must first be identified (mined) within models or systems in 

which they were applied, and where they are buried. Reverse engineering can also motivate the 

need for pattern identification. In order to identify buried patterns, models can be searched for 

within occurrences of particular identified patterns, in order to verify whether or not these 

patterns were applied. One can also look for any recurring structures, assuming they are patterns. 

But then there is no evidence that they are not anti-patterns. 

The difficulty lies, first of all, in the heterogeneity of notations and languages. In addition, MBSE 

techniques that facilitate model analysis are relatively recent and formal SE models have only 

been available for a few years. 

Pattern mining techniques differ depending on whether the models to investigate are formal 

models (eFFBD, SysML, UML), for which there is a meta-model, or on the contrary textual or 

graphical unparsable models. 

Product models, which are not SE models, but technical models, such as schematic diagrams or 

mechanical models produced by different computer aided design (CAD) tools, can also be 

analyzed to identify standard architectures. 

In the case of older and less formal models, pattern recognition is done by experienced 

practitioners, who identify recurrent structures using reverse engineering processes. These 

patterns are then formally added to catalogs. 

In the case of formal models, underpinned by meta-models, mining relies on techniques of 

subgraph recognition. 

The matches are not exact: there will be similarities that will be measured. The techniques are 



those of model alignment [Euzenat and Valtchev, 2004], [Melnik et al., 2002]. Models to be 

aligned are, on one hand, models in which patterns are supposed to be buried, and on the other 

hand, pattern models from existing catalogs. 

The alignment algorithms seek to match the entities of each model based on semantic similarities 

(names), obtained directly or indirectly through the use of glossaries or dictionaries, and also on 

structural similarities, seeking similar paths between similar nodes within two graphs under study 

[Noy and Musen, 2001]. 

In the case of patterns based on functional notation such as SysML Activity Diagram or eFFBD, 

it will be necessary to construct graphs by transforming the functions or activities into nodes, and 

the control flow and data flow into edges. It will then be possible to apply the appropriate 

efficient alignment methods developed by the knowledge engineering community. 

5.  Conclusion

Systems Engineering conforms to the Model Based initiative [Estefan, J., 2008], and adopts 

languages and tools derived from those used by software engineering. However, design patterns, 

as understood in software engineering, are not adapted to the field of Systems Engineering. 

Indeed, the SE approach should be a functional approach, and such patterns should be modeled as 

parameterized functional micro-architectures. This paper proposes to develop a specific approach 

for Systems Engineering, based on the eFFBD formalism which is widely used in this area. A 

meta-model that is interoperable with the main tools used by system architects has been designed. 

Future work will consist in the following tasks: first, we will create an editor through which a 

catalog of System Patterns can be built, and develop mechanisms (based on model 

transformations) for applying patterns. Then, the presented approach will be developed to extend 

these System Patterns to allocation patterns that may help experts design better physical 

architectures. Finally, pattern detecting mechanisms based on model alignment will be 

implemented to complete the project.  
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