
HAL Id: hal-00804253
https://hal.science/hal-00804253

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The application of interoperability requirement
specification and verification to collaborative processes

in industry
Sihem Mallek, Nicolas Daclin, Vincent Chapurlat

To cite this version:
Sihem Mallek, Nicolas Daclin, Vincent Chapurlat. The application of interoperability requirement
specification and verification to collaborative processes in industry. Computers in Industry, 2012,
�10.1016/j.compind.2012.03.002�. �hal-00804253�

https://hal.science/hal-00804253
https://hal.archives-ouvertes.fr

The application of interoperability requirement specification and verification to

collaborative processes in industry

S. Mallek, N. Daclin *, V. Chapurlat

LGI2P – Laboratoire de Génie Informatique et d’Ingénierie de Production, Site de l’Ecole des Mines d’Alès, Parc Scientifique G. Besse, 30035 Nı̂mes cedex 1, France

Keywords:

Interoperability requirements

Verification

Collaborative process

A B S T R A C T

Interoperability is becoming a crucial issue for industry, and a lack of interoperability can be seen as an

important barrier to collaborative work, in both public (inter-enterprise) and private (intra-enterprise)

collaborative processes. Indeed, interoperability is generally defined as the ability of enterprises to

interact within a collaborative process. Prior to any effective collaboration, it is necessary to inform

enterprises, which aim to work together, whether or not they would be able to interoperate. Research on

interoperability has shown the benefits of measuring and evaluating interoperability, by using several

frameworks and maturity models. However, approaches for detecting and anticipating interoperability

problems do not seem to exist. Our research proposes to use formal verification techniques to detect

different types of interoperability problems. On the one hand, this means being able to define the

particular interoperability needs to be considered. On the other hand, it requires these needs to be

formalized as a set of unambiguous and, as formally stated as possible, requirements. Moreover,

interoperability requirements can have temporal or a-temporal features. To detect interoperability

problems in anticipative way, interoperability requirements must be checked by means of a target

process model. Three complementary verification techniques are used to verify interoperability

requirements in a collaborative process model. The verification technique used depends on the aspect

and the level of abstraction of the requirement to be verified. This paper focuses and illustrates the

detection of interoperability problems using verification techniques.
1. Introduction

In recent decades, enterprises have developed and applied
various principles and organizational systems to improve collabo-
ration with external partners (i.e., inter-enterprise collaboration),
and collaboration between internal teams (i.e., intra-enterprise
collaboration). These approaches have allowed them to meet the
challenges created by the globalization of markets, and especially
to be able to focus on their own domain of expertise with no loss of
performance, and to share experiences, processes, and tools with
internal or external partners confidently. In this context, it is
important to describe and formalize how different partners (e.g.,
an isolated player, team, department, or enterprise) can work with
others and through their interactions achieve a common objective.
This formalization is performed using the principles of collabora-
tive processes, which can be public (‘‘process activities belong to
different organizations’’ [2]) or private (‘‘set of activities ordered in
a set of procedural rules to achieve a specific goal within an
organization and carried out by a group of persons’’ [3]) [1]. The
* Corresponding author. Tel.: +33 466 387 066.

E-mail address: surname.name@mines-ales.fr (N. Daclin).
ability of partners to interact is one of the key factors to
characterize and assess, in order to measure the overall perfor-
mance of a collaborative process. This factor is related to the
concept of interoperability which can be defined as the ‘‘ability of
enterprises and entities within those enterprises to communicate
and interact effectively’’ [4]. Therefore, enterprises involved in
collaborative processes have to improve their interoperability. In
order to accomplish this goal, they must be able to detect,
anticipate, and solve their interoperability problems. Our research
addresses the issue of detection from an anticipative point of view
– i.e., before the implementation of the collaborative process –
attempting to detect problems of interoperability that can be
induced by the characteristics and behaviors of partners. In this
perspective, in order to anticipate problems, analysis of the
collaborative process model must first be performed. Second, the
anticipation of problems is performed according to the satisfaction
of interoperability needs by the collaborative process model. In this
way, to demonstrate that a need is satisfied, it must first be
formalized into a requirement and various verification techniques
must be applied to the collaborative process model. Based on these
considerations, our research aims, first, to define, structure, and
formalize interoperability requirements that partners must satisfy.
Second, it aims to enhance and implement a set of verification

mailto:surname.name@mines-ales.fr

Fig. 1. Comparative study of the different research work.

1 +++: best address the issue, ++: partly address the issue, +: relevant to the issue,

�: irrelevant to the issue.
techniques that can be used prior to implementing any steps in the
collaborative process.

This paper focuses on the specification and verification of
interoperability requirements within collaborative processes, and
is organized as follow. Section 2 reviews several research projects
focusing on the interoperability analysis. Section 3 presents the
different steps of the proposed approach to detect interoperability
problems. Section 4 explains how interoperability needs are
obtained. Section 5 proposes the definitions and a classification of
interoperability requirements. Section 6 presents the analysis of
interoperability requirements using complementary verification
techniques. The seventh section gives a case study in order to
illustrate the verification of interoperability requirements.

2. Interoperability analysis: existing research and discussion

The development of interoperability has become a crucial
question for enterprises that want to become more competitive in
a globalized environment. As a consequence, a large body of
research has been developed in recent years in order to analyze
interoperability (i.e., analysis that formalizes, evaluates, and
measures system interoperability). Concerning formalization,
interoperability frameworks (e.g., IDEAS, INTEROP, AIF. . .) [5–7]
structure interoperability requirements according to different
aspects such as interoperability problems that can occur or level at
which interoperability takes place. For instance, the INTEROP
framework considers two fundamental aspects: the ‘‘interopera-
bility barriers’’ (conceptual, organizational and technological) and
‘‘interoperability concerns’’ (data, services, processes and busi-
ness). The goal is to achieve efficient collaboration by overcoming
interoperability barriers relating to interoperability concerns.
Although these frameworks can be used to create a better
classification and structuring of the basic aspects of interoperabili-
ty, they cannot be used to evaluate interoperability. The evaluation
of interoperability is mostly performed with maturity models (LISI,
LCIM, OIM. . .) [8–10], which can be used to characterize the ability
of systems to interoperate at a given moment with regards to
different identified interoperability levels. Some of these models
give recommendations to go from one interoperability level to a
higher interoperability level. However, these maturity models
focus on the qualitative evaluation of interoperability, and do not
offer a quantitative measurement of interoperability. A methodol-
ogy has been proposed to measure interoperability of enterprises
in both intra- and inter-enterprise contexts [11]. This methodology
measures compatibility and interoperation performance (i.e., the
dynamic aspect of the collaboration) simultaneously. To measure
compatibility, a compatibility matrix is used to inform enterprises
as to whether or not) of interoperability problems are expected to
occur. To measure interoperation performance, some criteria such
as cost of interoperation, time of interoperation, and quality of
interoperation are measured. Similarly, the research proposed by
[12] is based on the development of several modes of interopera-
bility aiming to offer operational effectiveness. However, this
research does not formalize interoperability so as to measure it,
and cannot be used to detect and identify local interoperability
problems in a formal way. Fig. 1 provides a comparative overview
of the research presented above.1 It shows the six main
characteristics that have inspired our research work, which
include (1) the expression of interoperability needs, (2) the
measurement of interoperability, (3) the formalization of interop-
erability, (4) the use of verification techniques, (5) the local
detection of interoperability requirements, and finally (6), the
operational aspects of the collaborative process.

These different research studies have evaluated or provided an
indication as to whether or not there are interoperability problems,
but they do not specifically describe these problems or give a
formal proof of their existence. In addition, many gaps exist, such
as (1) a lack of interoperability needs and requirements
formalization, (2) a lack of collaborative process analysis tools,
(3) a lack of detection principles for problems in collaborative
process models, which would enable them to be anticipated, and
finally (4) a lack of consideration of the operational aspects of the
collaborative process. These gaps are ultimately related to the level
of formalization, the problems to be detected, and the concepts
needed to detect these problems. They are also related to
techniques that can provide the irrefutable proof of the existence
of interoperability problems formally (not only qualitatively or
quantitatively).

3. Detection of interoperability problems: our approach

To detect interoperability problems in collaborative processes
in an anticipative way, we propose a model-based approach for
interoperability requirements checking. Our approach is inspired
by requirements engineering that can be used to describe and
structure interoperability requirements that are related to any
interoperability problem that may hinder a collaborative process.
Finally, this approach is based, on the one hand, on the use of
formalization, and on the other hand, on the use of various
verification techniques to ensure that the collaborative process
model complies with these interoperability requirements. Thus,
the local detection of interoperability problems is performed by
the use of modeling, formalization, and verification techniques.
This approach is implemented following the steps shown in Fig. 2.

First, interoperability needs are collected and expressed using a
language close to the one used by the stakeholders involved in the
implementation, execution, and control of a given intra- or inter-
enterprise collaborative process. The objective of this step is to
develop a repository of interoperability needs that is as compre-
hensive and generic as possible.

These needs are then clarified, structured, and formulated as
the so-called interoperability requirements described below, then
gathered into a repository of interoperability requirements.

Fig. 2. The proposed approach.
Formulating and structuring the requirements allow the user in
charge of the collaborative process model analysis to select the
appropriate interoperability requirements to be checked, accord-
ing to analysis objectives. This may include, for example, interest
in process performance or in the compatibility of the tools used in
the collaborative process. Once these interoperability require-
ments have been selected, they are formalized into properties
through the use of a formal language so that they can be checked
on the model with existing formal verification techniques. From
this perspective, the collaborative process model must first
consider the interoperability requirements. Thus, the collabora-
tive process is modeled with an enriched version of BPMN
(Business Process Modeling Notation) [14] in order to integrate
the concepts related to interoperability so as to make the
verification of interoperability requirements possible. Then, the
model must be translated into a formal structure supporting the
proposed verification technique, which requires model transfor-
mation mechanisms. Finally, the result of the verification
indicates whether or not a requirement is really satisfied by the
collaborative process model, which in turn points to the existence
of an interoperability problem. Thus, if all selected requirements
are satisfied by the collaborative process model, it can be
implemented. If not, (1) the collaborative process model can be
challenged to provide adequate solutions to the problems
detected, and (2) the user can select other requirements before
performing other verifications. These steps are explained in detail
in the following sections.

4. Establishing interoperability needs

The first step aims to create a list of interoperability needs. The
review of the state of the art presented in Section 2, which covers
the different work related to interoperability, identified several
interoperability needs. For example, the levels proposed in
maturity models, to achieve full interoperability, express many
interoperability needs. These maturity models cover the three
main aspects of interoperability (conceptual, organizational and
technological), and express needs related to these aspects such as:
� Need 1: ‘‘a communication protocol exists for exchanging data

between participating systems’’ (LCIM – level 1) [9].
� Need 2: ‘‘recognized frameworks are in place to support

interoperability and shared goals are recognized and roles and
responsibilities are allocated as part of on-going responsibilities,
however, the organizations are still distinct’’ (OIM – level 2) [10].
� Need 3: ‘‘The connection systems are identified by their ability to

provide an understanding of the data exchanged. The emails include

attachments and contribute to the success of trade’’ (LISI – level 2)
[8].
� Need 4: ‘‘The governance of the procurement process explicitly links

the business requirements to technical architecture through project

financing’’ (IMM – level 4) [15].

To consolidate this list of needs and to enrich it, an industrial
survey was conducted. The purpose of this survey was to give
partners the opportunity to describe problems they face in terms of
interoperability and to express them. This questionnaire focuses
on several aspects. The first aspect highlights the need for
collaboration within and between partners, which can be used
to differentiate between the needs in a private collaborative
process and a public collaborative process. The second aspect
focuses on interoperability problems (conceptual, organizational
and technological). Finally, the performance aspects are considered
using standard criteria: cost, time, and quality. The requirements
listed below are extracted from the answers provided by the
industrial survey:

� Need 5: ‘‘We need to send and receive exploitable data, and

be sure that they are received by the other partner during the

activity.’’
� Need 6: ‘‘Homogenize communication whatever the form, then have

a semantic understood and shared by both partners.’’
� Need 7: ‘‘Keep the performance as good as possible in terms of cost,

quality (product and service) and time spent, after the partnership is

over, as before it was started.’’
� Need 8: ‘‘A resource must be available when it is needed.’’

The needs collected in the bibliographic analysis and the needs
collected in the survey are both expressed in natural language.
They remain difficult to handle due to their nature and the
complexity of their expression. Therefore, repetition, ambiguity,
imprecision and incoherence must be removed. To address these
problems mainly related to the expressiveness of natural
language, these needs are formulated and structured in the form
of requirements as proposed by requirements engineering
[16,17].

5. Interoperability requirements: classification and structuring

A requirement is defined as: ‘‘a statement that specifies a

function, ability or a characteristic that a product or a system must

satisfy in a given context’’ [18]. Interoperability requirements are
formulated thanks to the repository of interoperability needs
described in the previous section. These requirements must be
clearly expressed, identifiable, traceable, verifiable, unambigu-
ous, and not contradict another requirement from the same
repository. All requirements obtained are placed in a repository of
interoperability requirements. This repository is used as a
reference repository to classify and structure interoperability
requirements.

5.1. Classification of interoperability requirements

In general, interoperability is related to the concept of
compatibility. Compatibility means to harmonize enterprises in

terms of method, organization, and tools, so that the heteroge-
neous information exchanged can be understood and exploited by
each of them with no extra interfacing efforts. However,
compatibility is not sufficient to describe interoperability. In fact,
during a collaborative process, various other sources of problems can
be distinguished. For instance, two enterprises use the same language
to code their data, but one of them is unable to send its data. In this
case, ‘‘two interoperable systems are compatible, but two compatible

systems are not necessarily interoperable’’ [19]. This statement leads to
the notion that interoperability is related to interoperation during
collaboration. Interoperation focuses on real interactions between
enterprises during collaboration (i.e., it concerns the ability of
enterprises to work efficiently together throughout the interactive
process and take into account various events that may occur).
Furthermore, interoperability is related to the preservation of
autonomy during collaboration, which means that partners can
work together (e.g., exchange services) while continuing to follow
their own logic of operation [6]. Moreover, when collaboration stops,
enterprises wish to return to their previous performance level while
remaining efficient. For instance, one partner may note a loss of
performance with regards to its performance before the collabora-
tion. In this case, it is question of being sure that a given partner will
be able to recover his or her own performance level after the end of
the collaboration. Thus, interoperability is related to another concept
called reversibility [6]. Reversibility means that partners can return to
their original state at the end of collaboration with regards to their
performance and including positive and/or negative variation
accepted prior to any real collaboration.

In consideration of the aforementioned, an interoperability
requirement is defined as: ‘‘a statement that specifies a function,

ability or characteristic, related to the ability of a partner to ensure its

partnership in terms of compatibility, interoperation, autonomy, and
reversibility, that it must satisfy’’. Thus, four categories of
interoperability requirements are defined: compatibility, inter-
operation, autonomy, and reversibility.

A compatibility requirement is defined as ‘‘a statement that
specifies a function, ability, or characteristic, considered to be
invariable throughout the collaboration and related to interoperabili-
ty barriers (conceptual, organizational, and technological) for each
interoperability concern (data, services, processes, and business), and
which partners must satisfy before collaboration is effective’’.

Compatibility requirements focus on the interface between the
partners involved. All of these requirements must be checked and
are invariable throughout the duration of the collaboration. For
instance, three compatibility requirements can be formulated from
the fifth need presented in Section 4.

� CDTTranslation
2: ‘‘The receiving partner has the necessary means to

translate the data exchanged’’. This CR is related to technological
aspects of interoperability at the level of data. It reflects the
needs of the receiving partner in terms of the translation of
homogeneous or heterogeneous data, and subsequently their
exploitation.
� CDOAuthorization: ‘‘The sending partner has the required permissions

to carry out exchanges with the receiving partner’’. This CR is
related to organizational issues and reflects the needs of partners
to exchange their data safely.
� CSOManager: ‘‘Each service has a clearly defined manager with

authority over the rest of the team’’. This CR is expressed at the
level of services and is related to the organizational aspect. The
2 Interoperability requirements are expressed with the following conventions:

� First letter: class of interoperability

� Second letter: interoperability concern

� Third letter: interoperability barrier

� Index: name of the requirement.
objective of the implementation of this requirement is to avoid,
for example, loss of time which may be harmful to the process
during its execution.

An interoperation requirement is defined as ‘‘a statement that
specifies a function, ability or characteristic, considered to be

variable during the collaboration, related to the performance of the
interaction, and which each partner must satisfy’’.

Interoperation requirements are related to the execution phase
of the collaborative process. In addition, their veracity can be
considered to be variable during the collaboration with regards to
the interactions themselves. For example, some interoperation
requirements can be expressed from the first and eighth need.

� ISOReceipt: ‘‘The receiver sends a receipt to the sender’’. Formulated
from need number 1, this IR is related to the organizational
aspect at the level of services.
� ISOAvailabilityTime: ‘‘Resource is available when an activity needs it’’.

Formulated from need number 8, this IR focuses on the
availability of the resource at the moment it is requested by
and for an activity.
� ISOExecutionTime: ‘‘Resource is active throughout the duration of

execution of the activity’’. This IR is formulated to ensure that a
resource can really be exploited while a given activity is being
executed. The goal is to ensure that this resource will not be
allocated to another activity for the duration of the first activity
that uses it.

An autonomy requirement is defined as ‘‘a statement that
specifies a function, ability or characteristic related to the ability of

partners to perform their own governance and maintain their own

operational capacity during collaboration, and which each partner
must satisfy’’.

Autonomy requirements are related to the ability of partners to
maintain their independence while they are involved in a collabora-
tive process. This is characterized by self-governance and operational
autonomy. Self-governance is necessary for the partners to keep their
freedom in their decision without conflict and disagreementsthat can
hinder the collaboration. Operational autonomy is necessary so the
partners can maintain a certain degree of freedom in their actions to
achieve their own goals. Both types of autonomy must be present at
the business, process, and service level of the enterprise and for each
interoperability barrier (conceptual, technological, and organization-
al). For instance, from need number 4 expressed above, three
autonomy requirements can be formulated.

� ABOGovernance: ‘‘Partner involved in a collaborative process is

responsible for selecting its suppliers’’ and ABOGovernanceCost:
‘‘Partner control costs related to the choice of suppliers’’. These
two requirements are expressed at the business level and for the
organizational barrier. They ensure that each partner has the
choice of its suppliers and associated costs.
� APTOperational: ‘‘A process must keep required physical flow of

supply’’. This AR concerns the particular operational autonomy in
a process and the technological barriers.

A reversibility requirement is defined as ‘‘a statement that
specifies a function, ability or characteristic, related to the capacity
of a partner to go back to its original state (in terms of
performance) after collaboration, and which each partner must
satisfy’’.

Reversibility requirements are related to the capacity of a given
system to return to its initial state even if the implementation of
the collaborative process leads to various adaptations and/or
changes (e.g. organization, working method, new tool, etc.). In fact,

Fig. 3. Decomposition relationship between requirements in the GRADEI model.
at the end of the collaboration, each partner must be able to
continue to further its own purpose, its mission, and achieve its
objectives. This mainly concerns the impact on the integrity,
stability, and performance of the system. With regard to
integrity, the system must return to a known operating mode.
Regarding stability, the system must be able to maintain its
viability. Regarding performance, the system must recover the
level of performance that characterized it before the collabora-
tion including variations (i.e., the system may have to accept a
loss of performance that is known and defined in advance. To
give an example, it is possible to extract three reversibility
requirements from need number 7, which focus on performance
criteria.

� RSTPerformanceCost: ‘‘The cost of an activity after the collaboration
corresponds to the cost before the collaboration including
variations’’. This requirement concerns the cost criterion.
� RSTPerformanceTime: ‘‘The execution time of an activity after the

collaboration corresponds to the execution time before the
collaboration including variations’’. This requirement is related
to the time criterion.
� RSTPerformanceQuality: ‘‘The number of products that are provided by

an activity after collaboration matches – including tolerances – the

number of products provided before the collaboration’’. This
requirement concerns the performance quality criterion.

Finally, a Graph of Decomposition of Interoperability Require-
ments (GRADEI) is proposed in order to facilitate the description,
handling, and decomposition of an interoperability requirement.

5.2. The GRADEI model: structure and propagation

The GRADEI model is a graph used to formally represent the
requirements repository. It is based on (1) the principle of a
decomposition relationship between requirements, (2) the
previously proposed classification of interoperability require-
ments, and (3) the interoperability framework developed within
the INTEROP Network of Excellence [6]. It helps the user to
organize, reuse, and select the appropriate interoperability
requirements with regards to a given collaborative process for
the purpose of checking. GRADEI is an oriented graph as presented
in Fig. 3.

A node represents a requirement at a given level of detail. An arc
linking a node at one level of detail to other nodes at a lower level of
detail represents the decomposition relationship. This relation-
ship, which links a target node (i.e., representing an abstract
requirement at level k) to its source nodes (i.e., representing more
precise requirements at level k + 1) is constrained by a logical
function. This function expresses the influence of the satisfaction of
requirements represented by the source nodes on the requirement
represented by the target node. The following notations are used to
formalize the GRADEI model:

� p = number of levels of detail, p 2 N :

� m = number of nodes of the graph, m 2 N :

� n = number of arcs of the graph, n 2 N :

� P: set of moments (times).
� String:: = (‘a’. . .‘z’j‘A’. . .‘Z’) (‘a’. . .‘z’j‘A’. . .‘Z’j‘1’. . .‘9’j‘_’j‘-’)}
� Fact = {factjfact 2 VM [PM [Pr} where:

� VM = {variables extracted from the process model}
� PM = {parameters extracted from the process model}
� Pr = {predicates extracted from the meta model of enriched

BPMN}

GRADEI is formalized with a graph G:: = (A, N, N0) where:
� A represents the set of arcs linking nodes: A = {Aj/j 2 [0,n];
Aj:: = (SourceN, TargetN) with (SourceN, TargetN) 2 N � N, Sour-

ceN 6¼ TargetN and level(SourceN) > level(TargetN)}
� N represents nodes of the graph: N = {Ni/i 2 [0,m]; Ni:: = (namei,

descriptioni, relationshipi, facti, leveli, valuei)} where:

� (namei, descriptioni) 2 string � string
� relationi:: = (T, ue, uc) with:

� T � P
� ue: facti [T ! {0, 1} is the logical function that describes the

necessary but not sufficient condition in which the node Ni is
verified. This condition is expressed only in the modeling
variables, parameters, and modeling predicates taken from the
collaborative process model.
� uc: NNi! {0,1}, i.e. {value(N1),. . ., value (Nk)} ! {0,1} is the

logical function that describes the necessary but not sufficient
condition where the requirement represented by the node Ni is
verified. This condition can be used to interpret the results
(values) of nodes sources. NNi is the set of node Ni sources defined
as follows:
� NNi = {Nj/9Ak(Nj, Ni), k 2 [0,n], j 2 [0,m] with i 6¼ j}

� facti 2 Fact.
� leveli 2 [0; p[indicates the level of detail of the requirement. By

definition, the root element has level = 0, i.e. interoperability in
this context and level(Ni) returns the leveli of node Ni.
� valuei 2 {0,1} shows the verification result, in absentia 0 (false)

and where valuei = ue ^ uc.

� 9! N0 = (name0, description0, relation0, fact0, level0 = 0, value0) 2 N

is the root node of the graph G representing the most abstract
interoperability requirement.

It is worth noting that a requirement can be characterized by a
temporal aspect. It can be a-temporal, that is to say independent of
time. In this case, it is verifiable at all times (the set T is empty). It
can be temporal, in other words, verifiable only at certain stages in
the collaboration life cycle. The temporal aspect of a requirement is
an important element for choosing the appropriate verification
technique. Furthermore, the choice of the logical function (uc) used
to link an abstract requirement to more precise requirements is left
to the user’s discretion. Thus, the requirements of each level can be
analyzed separately. In this case, some of the requirements that are
not satisfied, can be considered to be negligible or as representing
an acceptable risk for the user. The interoperability requirements
reference repository obtained is illustrated in Fig. 4.

As an example, for the GRADEI model presented Fig. 5,
propagation of interoperability requirements analysis is

Fig. 4. Interoperability requirements represented on the GRADEI model (partial view).
performed using these few equations:

Interoperability ¼ Compatibility ^ Interoperation

^ Reversibility ^ Autonomy
(1)

Compatibility ¼ BusinessC ^ ProcessC ^ ServicesC ^ DataC (2)

ServicesC ¼ ConceptualCS ^ TechnologicalCS ^ OrganizationalCS

(3)

ConceptualCS ¼ SyntaxCDS _ SemanticCDS (4)

In other words, by hypothesis, the overall interoperability of an
enterprise requires each compatibility, interoperation, autonomy,
and reversibility requirement to be respected as expressed in
Eq. (1). In the same way, compatibility is respected if and only if
each requirement related to the interoperability concerns (busi-
ness, process, services, and data) are themselves respected as
expressed in Eq. (2). Then, interoperability concerns are respected
if and only if interoperability barriers are respected as expressed in
Eq. (3) at the services level. Finally, conceptual requirements are
respected if the syntax or the semantic requirement is respected as
expressed in Eq. (4). However, if interoperability is required for
only one concern (e.g., process interoperability), the user can select
and check only equations related to this concern.
6. Verification of interoperability requirements

The objective of verification is to demonstrate that a set of
selected interoperability requirements is satisfied. Indeed, the
GRADEI model presented above allows users to select relevant
requirements to be checked. In order to be able to perform this
verification before the runtime of the collaborative process, this
one is done on a model of the collaborative process. Several
verification techniques exist in the literature such as informal
verification techniques (test, simulation, and expertise) [20], and
formal verification techniques (model checking and theorem
proving) [21–23].

The simulation is done on a theoretical model whose behavior is
considered to be similar to the behavior of the system concerned. It
is done before the implementation of the system. However,
simulation is unable to assume all of the system’s behavioral
scenarios. It requires human expertise to analyze results and
formulate the demonstration. Nevertheless, simulation is now a
well-known technique, which is increasingly developed and used
in enterprises. The test is performed directly on an existing system.
It can check, for example, capacity and relevance to detect errors
before system implementation. Informal methods do not neces-
sarily require the use of a model, but can be used directly on the
real system to make the verification. These techniques can be used
when a model of the system to analyze is not given or the

By using knowledge
extracted from model:
contextualised and provable

By using knowledge coming
from the experts: cannot be

‘formally’ proven

Interop erabilit y
requirements

Mod el
checker

are verified by

Conc eptual
Graphs

temporala-temporal

Techn ica l
expertise

Fig. 6. Proposed verification techniques.

Fig. 5. Propagation of interoperability requirements analysis results using the GRADEI model.
description of the requirement to formalize is complex. However,
these methods require human skills and can be, obviously, subject
to human error.

On the other hand, formal verification techniques can be used to
explore a formal model exhaustively (i.e., a model obtained with a
modeling language using a formal semantics). In this case, it is
possible to provide a formal proof of whether or not a requirement
is respected independently of any human interpretation. Formal
verification techniques can be used to analyze the behavioral
aspect of the collaboration, which offers a dynamic vision of the
system. However, these methods can be difficult to implement
(e.g., need for greater formalization) and are difficult to apply in
some fields such as enterprise modeling (difficult to formalize
models).

Other tools do exist, such as conceptual graphs, and can be used
as verification techniques [24]. For instance, verification using
conceptual graphs is based on mathematical mechanisms, such as
projection, to ensure the veracity or simply the presence of
knowledge in a given graph. However, conceptual graphs do not
represent the behavior of a system, so they offer a static view of it.

Given the advantages and disadvantages of each method of
verification, we have proposed to use two formal verification
techniques in a complementary manner, and to also make use of
technical expertise as summarized in Fig. 6.

The first verification technique is based on conceptual graphs
[25] to verify a-temporal requirements. The advantage of using
conceptual graphs is (1) to describe the collaborative process and
interoperability requirements with the same language, (2) to have
a convenient graphical form to handle, and (3) to have a
mathematical foundation and mechanism (projection, rules, and
constraints).

The second technique is based on model checking [23] for the
temporal requirements. The advantage of using a model checker is
(1) to include temporal aspects of the collaboration (i.e., behavioral
model of collaborative process), (2) to consider all states in the
collaborative process throughout the collaboration, and (3) to give
formal proof of the problems that exist.

The final technique is based on expertise. This technique is
deployed when interoperability requirements highlight particular
points of view of the process, and cannot be described due to a
limitation imposed by the modeling language. This aspect is not
considered in this work.

Applying these techniques requires us to assume that the BPMN
modeling language used to build the process model can be used to
describe interoperability requirements. BPMN provides standard-
ized notation that is readily understandable by all stakeholders
involved in the design, development, and monitoring of a
collaborative process. However, it is necessary to enrich this
modeling language to embed the interoperability requirements
model. The proposed conceptual enrichments described in [26]
include interoperability concepts such as the nature of the flow
exchanged (information, energy, material, or person), the avail-
ability of resources and their aptitudes. Furthermore, operational
enrichments are made to study the behavior of all relevant BPMN
elements.

The use of these verification techniques requires the collabora-
tive process modeled with enriched BPMN to be translated – using
model transformation rules – into an equivalent model upon which
the formal verification techniques can be applied as shown in
Fig. 7. Indeed, the proposed enriched version of BPMN suffers from
a lack of formalization, and verification techniques cannot be
applied directly with regards to interoperability. The first
equivalent model was obtained using conceptual graphs. It
enabled us to produce a-temporal requirements proof, which is
presented in [26]. In this case, verification was performed with the
COGITANT tool [27]. The second equivalent model was obtained

Fig. 7. Verification process for interoperability requirements.

[Ac�vity: *] (Begin) [Date: BeginningDate]

Fig. 8. Example of a conceptual graph.
using a behavioral modeling language named Networks of Timed
Automata for temporal requirements proof. In this case, the
UPPAAL model checker is used for various reasons: the richness of
TCTL temporal logic, it is an open source, user friendly, and stand
alone tool [23]. In both cases of target models, the required rules
for model transformation were developed with ATL (Atlas
Transformation Language) [28] in order to re-write the collabora-
tive process model into Conceptual Graphs and Networks of Timed
Automata. In the case of the Conceptual Graphs, the objective is
therefore to assume the coherence of the process model, that is to
say to prove that each BPMN modeling entity used, and then
instantiated in the process model, is well and completely defined.
In the case of Networks of Timed Automata, the transformation
rules have been established respecting an equivalence between
BPMN entity behavior and state model entity behavior. Therefore,
interoperability requirements were formalized to make their
verification possible. Thus, a-temporal requirements are formal-
ized with conceptual graphs and temporal requirements are
formalized with TCTL. In addition, a non-formal verification
technique was used to verify, by expertise, interoperability
requirements that cannot be formally proven. Finally, the results
of the three verification techniques are shown in the collaborative
process model (modeled with enriched BPMN). These results were
Fig. 9. Example of transformation from e
further exploited with the GRADEI model to verify abstract
interoperability requirements using the principle of propagation.

6.1. Verification process for a-temporal requirements

A conceptual graph is defined as a graph with two kinds of
nodes: concepts and oriented relations as shown in Fig. 8 with a
conceptual graph that can be read as: ‘‘Any activities (concept)
begin (relation) at a beginning date (concept)’’. Concepts and
relations are described in hierarchical structures called concept
and relation lattices. Individual markers are added to specify the
model (‘‘*’’ means generic concept).

The COGITANT tool can be used to handle conceptual graphs
upon which the verification process of a-temporal requirements is
based. The verification with conceptual graphs is based on the use
of (1) a graph operation named projection, (2) a graph that
represents a requirement (also named constraint graph) and, (3) a
graph that describes the collaborative process model. The principle
is to check to see if a constraint graph can be projected on the graph
model of the process. If projection fails, the requirement is not
verified and the causes can be highlighted by analyzing the
resulting conceptual graph. To make verification with COGITANT,
three types of files are necessary, which are called the support, fact,
and constraint graphs.

The ‘‘support’’ graph represents all the concepts and relations
from the enriched BPMN meta model and markers representing all
the instances of these concepts and relations defined in the process
nriched BPMN to conceptual graph.

Fig. 10. Transformation from enriched version of BPMN to support in COGITANT.

Fig. 11. Positive constraint representing a compatibility requirement.
model. The ‘‘fact’’ contains the equivalent conceptual graph of the
model obtained by applying ATL transformation rules and
respecting the support. Finally, the ‘‘requirement’’ to verify is
modeled in another conceptual graph called the ‘‘constraint’’ graph.
Verification is performed using the projection of a positive or a
negative constraint on the conceptual graph that represents the
model of the process studied. A positive constraint is described
with a cause and a conclusion and its projection is performed
according to the following interpretation: ‘‘If the cause is true, then

the conclusion must be true as well’’. A negative constraint is a single
conceptual graph and its projection is interpreted as: ‘‘If a negative

constraint is not projected on the fact model, it is verified’’. The
projection mechanism is the projection of a given requirement
translated in the conceptual graph on the obtained conceptual
graph that represents the translation of the model.

For the purpose of verification, we propose to transform each
enriched BPMN element (UML class in the meta model) into a
concept. Then, we propose to convert each attribute of each
element (i.e., attributes of each class) as a concept also. Finally,
relations between classes (in the enriched BPMN meta-model) are
transformed into relations in the conceptual graph as shown in the
Fig. 9.

Three ATL transformations must be performed to complete the
transformation from process model to COGITANT. Hereafter,
Fig. 10 represents the principle of the first transformation to get
the support model (the two others transformations – fact and
constraint – are based on the same principles and are not described
here).

The first transformation procedure to obtain the support file
(level M1) starts with the consideration of the meta models (level
M2) of the enriched BPMN language and COGITANT, which
conform, as well, to the e-core model (level M3). Thus, each class
(including its attributes) is translated into a concept and each
relationship in the meta-model is translated into a relationship in
the support file. This transformation is made in order to provide all
the needed concepts and relationships used and subsequently
deployed in the fact file.

The second transformation is used to obtain a representation of
the collaborative process model (fact) as a conceptual graph.
Finally, the last transformation is performed to obtain constraints
(representing the requirements) that have to be projected onto the
equivalent graph model of the process. In this case, the
requirement is translated into a positive or negative conceptual
graph constraint depending on the user’s intention.

For example, the compatibility requirement CSOManager previ-
ously presented and described as: ‘‘Each service has a clearly defined

manager who has authority over the rest of the team’’ can be
formalized into a positive constraint as shown in Fig. 11.

The verification of this constraint using projection is performed
with the projection of the cause onto the facts model. If the cause
can be successfully projected, the conclusion must be projected too
in order to respect the requirement.

6.2. Verification process for temporal requirements

The principle of a model checker is to verify properties
exhaustively with temporized and possibly constrained autom-
ata that describe the behavior of a system. Obviously, here the
system is the collaborative process model. Verification with
model checkers requires two phases. The first phase consists in
defining a set of equivalent behavioral models in the collabora-
tive process model and in defining the collaborative process

Fig. 12. Transformation from enriched version of BPMN to networks of timed automata.

Fig. 13. Existing model and model we developed.

Fig. 14. Task template and resource template.
model transformation rules to apply. The second phase consists
in reformulating the temporal requirements under the form of
properties respecting the formal language adopted by the chosen
model checker (in this study, a temporal logic) [29].

The UPPAAL tool can then be used to handle a behavioral model
defined as a set of templates, which communicates with
synchronization (either in the form Expression! for sending or
Expression? for receiving synchronization), using channels and
syntax like sent/receive. Each template has locations and transi-
tions to link a location source to a target source [23].

The enriched BPMN model must be transformed into Networks
of Timed Automata to perform verification of temporal require-
ments. In Fig. 12, the model transformation procedure (level M1)
starts with the consideration of the meta models (level M2) of the
enriched BPMN language and UPPAAL which conform, as well, to
the e-e-e-core model (level M3).

This transformation is made in order to provide all the
necessary concepts that are used and deployed in the Networks
of Timed Automata. In this way, it is mandatory to consider all the
modeling entities which will be used in the checking task. Thus,
each class (including its attributes) in the meta-model is translated
into templates. Respecting this consideration, each BPMN element
can be extracted from the collaborative process model in order to
produce the corresponding template representing Networks of

Fig. 15. Behavior of a gateway data based inclusive and many (in/out) flows.
Timed Automata. Thus, these templates gather all the knowledge
described in the model, and represent the collaborative process
behavioral model.

Some behavioral models of BPMN elements, which use
Networks of Timed Automata, can be found in the literature. For
instance, [30] propose the behavioral model of the BPMN elements
such as: start and end event, ‘‘gateway data based parallel’’ (AND),
the ‘‘gateway data based exclusive’’ (XOR), and the native model of
Task. For instance, the behavior of a task is represented by four
locations and two synchronizations as presented in Fig. 13. In this
case, transformation rules are defined directly. Other behavioral
Fig. 16. Model of the collaborative process
models that do not exist, but that are considered to be fundamental
in collaborative processes, are being developed. Likewise, in this
research work, we develop other behavioral models corresponding
to (1) the task when a resource is involved, (2) the resource, (3) the
‘‘gateway data based inclusive’’ (OR) and (4) consideration of many
in/out flow (including sequence and/or message flows) on a task.
Then, for each enriched BPMN element, a transformation using ATL
is defined and performed to obtain the behavioral model in the
form of Networks of Timed Automata.

For instance, the translation of a task when it uses a resource
and the translation of a resource are presented Fig. 14. Initially, the
with enriched BPMN (simplified view).

task is waiting to start. Then after starting, it uses the resource
which is available at the beginning by sending it a synchronization
such as ‘‘in_resource!’’. Subsequently, the resource returns to its
initial state by receiving a synchronization ‘‘out_resource?’’ when
the task has finished using it. Finally, the task stops.

Furthermore, based on the templates given by [30] for the
gateway data based parallel (AND) and the ‘‘gateway data based

exclusive’’ (XOR), the behavior of the ‘‘gateway data based inclusive’’
(OR) and the consideration of many (in/out) flows is proposed as
shown in Fig. 15. As a consequence, we propose to represent the
behavior of the ‘‘gateway data based inclusive’’ by the use of a
‘‘gateway data based exclusive’’ and ‘‘gateway data based parallel’’.
Then, we propose to simulate the existence of a ‘‘gateway data

based parallel’’ to represent the in/out of many flows (sequence
flow and/or message flow) of a task.

To enable the implementation of formal verification techniques,
the temporal requirements are formalized into TCTL properties
(Timed Computation Tree Logic, i.e., the UPPAAL property
Fig. 17. Formalization of com
specification language) [23]. TCTL is an extension of CTL
(Computational Tree Logic) which can be used to consider several
possible futures based on the state of a system. The UPPAAL model
checker has four TCTL quantifiers (A: for all paths, E: a path exists,
[]: all states in a path, < >: some states in a path), which can be
used to write a property p:

- E< > p: reachability (i.e., it is possible to reach a state in which p

is satisfied).
- A[] p: invariantly p (i.e., p is true in all reachable states).
- A< > p: inevitable p (i.e., p will inevitably become true).
- E[] p: potentially Always p (i.e., p is potentially always true).
- P ! q: p leads to q (i.e., if p becomes true, q will inevitably become

true).

According to the UPPAAL property specification language
defined above, the temporal requirements written in natural
language are manually re-written into properties using TCTL. Then
patibility requirements.

Fig. 18. Formalization of CSOManaager with three negative constraints.
the UPPAAL model checker exhaustively verifies properties in TCTL
through all the execution paths of the behavioral models that are
reachable.

For instance, the ISOExecutionTime requirement described as:
‘‘Resource is active throughout the duration of execution of

the activity (5 < T < 10)’’ can be formalized into a property using
TCTL as:

‘‘E< > Resource.Active and Task.Working and T > 5 and T < 10’’
This property indicates that a path can exist, where the

resource is active and the task is in the state Working between
5 < T < 10. This property can be verified with the templates
represented Fig. 14. The next part presents an application case
study.

7. Application case study

The collaborative process we propose is shown in Fig. 16. It aims
to design and produce vehicles. Various geographically distributed
partners in the European territory wish to anticipate potential
defects inherent in their interoperability.

The compatibility requirements to be verified are related to the
organizational barrier at the level of services and are expressed as
follow:

� CSOManager: ‘‘Each service has a clearly identified manager.’’
� CSOAbility: ‘‘A resource has the ability to do activity requested.’’
� CSOAuthorization: ‘‘The sender has the necessary authorizations to

interact with the receiver.’’

These compatibility requirements are a-temporal. They must be
verified with conceptual graphs. As a result, they must be
formalized into conceptual graphs as shown in Fig. 17.

The compatibility requirement CSOManager is formalized using a
positive constraint. This constraint expresses the fact that each
service has a manager. However, it does not indicate if this
manager has been identified. Therefore, this requirement can be
decomposed into three compatibility requirements described as
follow:

� CSOManagerName: ‘‘The manager of a service has a name.’’
� CSOManagerPhone: ‘‘The manager of a service has a phone number.’’
� CSOManager: ‘‘The manager of a service has an’’
Fig. 19. Formalization of inter
These compatibility requirements give more information about
the manager’s name, phone number, and they can be formalized
with three negative constraints as shown in Fig. 18.

The compatibility requirement CSOAptitude is formalized using a
positive constraint. This constraint is expressed as follows: for each
service (task), the resources used by this service must have the
required skills.

The compatibility requirement CSOAuthorization is formalized
using a positive constraint. This constraint reflects the fact that
each task interacting with another task requires the resources
involved to have the relevant authorizations to perform the
exchanges.

The interoperation requirements to verify are related to the
organizational barrier at the services level, and are expressed as
follow:

� ISOTimeExecution: ‘‘Resource is active throughout the duration of

execution of the activity.’’
operation requirements.

Fig. 20. Results of the interoperability requirements verification.
� ISOExchangeTime: ‘‘The time for exchange between services is strictly

less than n time units (TU).’’
� ISOReceipt: ‘‘The receiver sends a receipt to the sender.’’

The first and second interoperation requirements have tempo-
ral aspects and must be formalized with TCTL to make their
verification possible with the UPPAAL model checker. The final
interoperation requirement has an a-temporal aspect and must be
formalized with conceptual graphs to verify it using the COGITANT
tool. The first interoperation requirement ISOTimeExecution is used to
verify if the activities ‘‘motor assembly’’ and ‘‘chassis assembly’’ can
use the same resource. As a consequence, this requirement has
temporal aspects and is formalized using the two properties shown
in Fig. 19.

The second requirement ISOExchangeTime is chosen to be verified
to inform interacting enterprises if the exchange time between
their activities is respected and less than the desired exchange time
limit. This temporal requirement is formalized by a property using
TCTL. The final interoperation requirement ISOReceipt is used to
ensure that the receiver has received stocks. This requirement has
an a-temporal aspect and is formalized by a constraint with a
Conceptual Graph.

Furthermore, we propose to verify an autonomy requirement
and a reversibility requirement. These requirements are expressed
at the service level for the organizational barrier and are expressed
as follows:

� ASOResource: ‘‘A service can replace a resource used by another

service in the public collaborative process.’’
� RSOPerformanceResource: ‘‘The resources used in the collaborative

process have the same performance level – including tolerances – as

before the collaboration.’’

ASOResource expresses the fact that a service is able to replace its
resource if it is used by another one. RSOPerformanceResource

represents the ability of a resource to retrieve its past perfor-
mances. These requirements cannot be verified using formal
verification techniques; however, they can be verified using the
expertise technique. Finally, the result of the verification using the
UPPAAL and COGITANT tool for the verification of compatibility
and interoperation requirements is shown Fig. 20.

The results of a-temporal requirements verification are shown on
the left side of Fig. 20. The requirements CSOManagerName, CSOMana-

gerPhone and CSOManagerare satisfied by all tasks (no errors are
reported). This means that the manager is known and identified. The
CSOAptitude requirement was not satisfied by all tasks. Indeed, we can
note that the ‘‘Motor assembly’’ and the ‘‘Chassis assembly’’ tasks use
the same resource. The first task requires the ‘‘Motor component

assembly’’ ability while the second task requires the ‘‘Component

assembly’’ ability. However, the resource only has the ‘‘Motor

component assembly’’ ability. As a result, the task should change the
resource. Through the detection of this problem using the approach,
the change of the resource can be made before the execution of the
process. If this change is not made before running the collaborative
process, this problem can hinder the collaborative process in terms
of execution time to make this change after it has been detected. The
verification of the CSOAuthorization requirement indicates that it has
been satisfied by all activities that require authorizations.

Fig. 21. Propagation using the GRADEI model.
Finally, verification of the ISOReceipt interoperation requirement
indicates that the ‘‘Chassis reception and storage’’, ‘‘Supply reception

and storage’’, and ‘‘Motor reception and storage’’ tasks do not return a
receipt for the tasks that provided them supplies. The partner that
is in charge of delivering the components for the other partners
must ensure that the delivery of each component is completed
successfully to avoid possible costs for re-delivery and related
delays.

The verification of temporal requirements is shown on the
right of Fig. 20. The two properties representing the ISOTimeEx-

ecution requirement for the ‘‘Motor assembly’’ and ‘‘Chassis

assembly’’ tasks are satisfied. Indeed, one resource is used by
the two tasks at different periods. However, it is important to
keep in mind that this resource does not have the skills required
by one task. As a result, the ability of the two tasks to use the
same resource does not mean that it can be used. In conclusion,
it is important to take all the interoperability requirements into
consideration because the verifications with both tools are
complementary. Finally, the verification of the ISOExchangeTime

requirement can be used to conclude quickly on the exchange
time between all tasks. The result indicates that one of tasks
does not respect the mandatory exchange time. The verification
of these interoperability requirements provides local detection,
which can be used subsequently to solve the problems detected.
However, this local detection is not sufficient. Indeed, these
problems can impact the collaboration at a global level. As a
result, we propose to use propagation mechanisms with the
GRADEI model as shown in Fig. 21.

The results of the verification with the UPPAAL and COGITANT
tools for the temporal and a-temporal requirements are used by
the GRADEI model (requirements represented on the far left).
Requirements modeled in green (satisfied) and red (not satisfied)
represent the result of the expertise. The expert can validate or not
validate a requirement directly in the GRADEI model. The logical
function that links the abstract requirements to more specific
requirements is the logical ‘AND’ operator. The result of the
propagation indicates that even if a resource is available to perform
a task, if it does not have the required skills, the collaborative
process has interoperability problems. In addition, the non-
verification of these requirements means that the more abstract
requirement ‘‘interoperability’’ is not satisfied.
8. Conclusion

In a collaborative context, interoperability is becoming
increasingly important. A partner involved in collaboration with
other partners aims to detect and solve interoperability problems
as quickly as possible. The approach we propose aims to formulate,
formalize, and check interoperability requirements in order to
detect locally and globally interoperability problems in an
anticipative way that uses verification techniques. The formulation
of interoperability leads to define four categories related to the
compatibility, interoperation autonomy and reversibility. These
categories are then split up and structured using the GRADEI
model. The analysis of interoperability requirements in a
collaborative process model uses model transformation techni-
ques, formal verification techniques for local verification and
propagation mechanism for global verification. Local verification is
performed using complementary verification techniques. The first
verification technique uses conceptual graphs to verify a-temporal
interoperability requirements. The second verification technique is
a formal verification technique using model checking to verify
temporal interoperability requirements. Finally, a non formal
verification technique such as expertise is applied to verify
requirements that cannot be formally verified. The local detection
of interoperability requirements is insufficient. Indeed, the result
of the verification of a requirement can influence the interpretation
of the result of another requirement. So the global verification is
based on the propagation of the results of the local verification by
interpreting some parts of the GRADEI model. Future research
must first analyze the verification of reversibility and autonomy
requirements. This verification can be done with a complementary
simulation approach based on distributed multi-agent systems
[31] to improve interoperability problem detection. Finally, our
research work aims to find solutions for the interoperability
problems detected.

References

[1] J. Touzi, «Aide à la conception de Système d’Information Collaboratif: support de
l’interopérabilité des entreprises», PhD Thesis, Institut National Polytechnique de
Toulouse, November 2007 (in French).

[2] B. Aubert, A. Dussart, Système d’Information Inter-Organizationnel, Rapport Bour-
gogne, Groupe CIRANO, March 2002 (in French).

[3] A. Esper, «Intégration des approches SOA et orientée objet pour modéliser une
orchestration cohérente de services», PhD Thesis, Institut National des Sciences
Appliqués de Lyon, September 2010 (in French).

[4] ISO/DIS 11345-1, Advanced automation technologies and their applications, Part
1: Framework for enterprise interoperability, 2009.

[5] IDEAS Project Deliverables, «WP1-WP7», Public reports, 2003.
[6] INTEROP: Enterprise Interoperability-Framework and knowledge corpus – Final

report, INTEROP NoE, FP6 – Contract no. 508011, Deliverable DI.3, May 21st 2007.
[7] ATHENA Integrated Project, «Guidelines and best practices for applying the

ATHENA interoperability framework to support SME participation in digital
ecosystems», ATHENA deliverable A8.2, 2007.

[8] C4ISR Architecture Working Group Levels of Information Systems Interoperability
(LISI), United States of America Department of Defense, Washington DC, USA, 30
March, 1998.

[9] A. Tolk, J.A. Muguira, The Levels of Conceptual Interoperability Model, Proceed-
ings of Fall Simulation Interoperability Workshop (SIW), Orlando, USA, 2003.

[10] T. Clark, R. Jones, Organizational Interoperability Maturity Model for C2, Proc. of
Command and Control Research & Techn. Symposium, Newport, USA, 1999.

[11] N. Daclin, D. Chen, B. Vallespir, Methodology for enterprise interoperability, in:
17th IFAC World Congress (IFAC’08), Seoul, Korea, 2008.

[12] C.T. Ford, «Interoperability measurement», PhD Thesis, Department of the Air
Force Air University, Air Force Institute of Technology, 2008.

[14] BPMN, Business Process Modeling Notation, V1.2, http://www.bpmn.org/, 2009.
[15] NEHTA, «Interoperability maturity model», Version 1.0, 26 March 2007.
[16] INCOSE, «System Engineering (SE) Handbook Working Group, System Engineering

Handbook, A «How To»», Version 3.1, Guide For All Engineers, http://www.incose.
org, 2007.

[17] ISO/IEC 15288:2008(E), «IEEE Standards 15288.2008 – Systems engineering –
System life cycle processes (2nd edition)», 2008.

[18] S.J. Scucanec, J.R. Van Gaasbeek, A day in the life of a verification requirement, in:
U.S. Air Force T&E Days, Los Angeles, California, February, 2008, 2008.

[19] M. Kasunic, W. Anderson, Measuring systems interoperability: challenges and
opportunities, Software engineering measurement and analysis initiative, Tech-
nical note CMU/SUE-2004-TN-003, 2004.

[20] O. Balci, W. Ornwsby, Expanding our horizons in verification, validation and
accreditation research and practice, in: E. Yücesan, C.-H. Chen, J.L. Snowdon, J.M.
Charnes (Eds.), 2002 Winter Simulation Conference, 2002.

[21] M. Edmund, Clarke Jr., O. Grumbereg, A.P. Doron, Model Checking, The MIT Press,
1999.

[22] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph Schnoebelen, P.
McKenzie, Systems and Software verification: Model Checking Techniques and
Tools, Springer, 2001.

[23] G. Behrmann, A. David, K.G. Larsen, A Tutorial on Uppaal, Department of
Computer Science, Aalborg University, Denmark, 2004.

[24] V. Chapurlat, B. Kamsu-Foguem, F. Prunet, «Enterprise model verification and
validation: an approach», Annual Review in Control, vol. 27, no. 2, pp. 185–197,
2003.

[25] J.F. Sowa, Conceptual graphs, IBM Journal of Research and Development (1976).
[26] M. Roque, V. Chapurlat, Interoperability in collaborative processes: requirements

characterisation and proof approach, in: PRO-VE’09, 10th IFIP Working Confer-
ence on VIRTUAL ENTERPRISES, Thessaloniki, Greece, 7–9 October, 2009, 2009.

[27] Cogitant CoGITaNT Version 5.2.0, Reference Manual, http://cogitant.sourceforge.
net, 2009.

[28] ATLAS Groupe INA & INRIA Nantes ATL Atlas Transformation Language, Specifi-
cation of the ATL Virtual Machine, Version 0.1, 2005.

[29] R. Alur, C. Courcoubetis, D. Dill, Model-checking in dense real-time, Information
and Computation 104 (1) (1993) 2–34.
[30] V. Gruhn, R. Laue, Using timed model checking for verifying workflows, Computer
Supported Activity Coordination 7 (2005) 5–88.

[31] A.S. Rebai, V. Chapurlat, System interoperability analysis by mixing system
modeling and MAS: an approach, agent-based, technologies and applications
for enterprise interoperability (ATOP), in: Eighth International Joint Conference
on Autonomous Agents & Multi-Agent Systems (AAMAS 2009), Budapest,
Hungary, May, 2009, 2009.

http://www.bpmn.org/
http://www.incose.org,/
http://www.incose.org,/
http://cogitant.sourceforge.net/
http://cogitant.sourceforge.net/

