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Anisotropy of wood vibrational properties: dependence 
on grain angle and review of literature data

Iris Brémaud • Joseph Gril • Bernard Thibaut

Abstract The anisotropy of vibrational properties influences the acoustic behav-

iour of wooden pieces and their dependence on grain angle (GA). As most pieces of

wood include some GA, either for technological reasons or due to grain deviations

inside trunks, predicting its repercussions would be useful. This paper aims at

evaluating the variability in the anisotropy of wood vibrational properties and

analysing resulting trends as a function of orientation. GA dependence is described

by a model based on transformation formulas applied to complex compliances, and

literature data on anisotropic vibrational properties are reviewed. Ranges of vari-

ability, as well as representative sets of viscoelastic anisotropic parameters, are

defined for mean hardwoods and softwoods and for contrasted wood types. GA-

dependence calculations are in close agreement with published experimental results

and allow comparing the sensitivity of different woods to GA. Calculated trends in

damping coefficient (tand) and in specific modulus of elasticity (E0/q) allow

reconstructing the general tand-E0/q statistical relationships previously reported.

Trends for woods with different mechanical parameters merge into a single curve

if anisotropic ratios (both elastic and of damping) are correlated between them, and

with axial properties, as is indicated by the collected data. On the other hand,

varying damping coefficient independently results in parallel curves, which coincide
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with observations on chemically modified woods, either ‘‘artificially’’, or by natural 
extractives.

Introduction

Wood, with its cellular structure and its fibre-matrix composite cell-wall material, is 
highly anisotropic. As a result, the actual orientation of ‘‘grain’’ (usually defined as 
the orientation of all axial cellular elements) inside a wood piece will have strong 
repercussions on its apparent mechanical properties (e.g. Bodig and Jayne 1982). 
Although wood is most often used in longitudinal direction, most pieces of wood 
actually include some grain angle (GA). Even in straight-grained trees, GA occurs 
in sawn wood as a technical drawback of trunks not being truly cylindrical. 
Moreover, grain is seldom perfectly straight inside trees, and more often than not 
some grain deviations are present, either spiral grain which is common among 
softwoods and some hardwoods, or more complex patterns such as interlocked grain 
frequently found in tropical hardwoods, or wavy grain (e.g. Harris 1989).

In addition to GA dependence, the anisotropy of viscoelastic vibrational 
properties, i.e. of specific dynamic Young’s (E0/q) and shear (G0/q) moduli and 
damping coefficients (tand), also determines the vibration modes’ patterns of plates 
(Caldersmith and Freeman 1990; Haines 2000), and the frequency response in 
bending vibrations. The ratios between longitudinal and shear moduli and damping 
coefficients are in good part responsible for the apparent frequency dependence 
in the range of about 1–5–10 kHz, i.e. a diminution of E0/q and an augmentation of 
tand, which also plays a role in the ‘‘timbre’’ for application in musical instruments 
(Ono 1996; Aizawa 1998; Haines 2000; Obataya et al. 2000).

The variability in anisotropy of vibrational properties will thus influence both 
their GA dependence, and the ‘‘acoustical’’ response of wooden pieces. However, 
this variability is not very well known, and information is much scattered. Amongst 
possible sources of variation, the mean microfibril angle is recognised as the main 
factor affecting both axial E0/q and tand, and their axial-to-shear anisotropy 
(Norimoto et al. 1986; Obataya et al. 2000). The effect of microfibril angle on tand 
and E0/q results in this two properties being correlated, and the relation is similar to 
the case of GA effect (Ono and Norimoto 1983, 1984, 1985). The effect of cellular 
organisation on damping coefficients is not clear, as the above relationships are 
similar for softwoods and hardwoods with either diffuse- or ring-porous structure. 
Yet, radial tand depends on the percentage of rays (Yano and Yamada 1985), and 
the ratio between tangential and radial tand diminishes with increasing density, 
indicating some effect of porosity (Aoki and Yamada 1972). On the other hand, 
vibrational properties are very sensitive to chemical variations and/or modifications 
within the cell wall, which can also modulate their anisotropy (Obataya et al. 2000). 
Some extractives naturally present in wood can modify damping by as much as a 
factor of 2 and can have smaller but anisotropic effects on moduli (Brémaud et al. 
2010b; Minato et al. 2010; Yano et al. 1995).

As apparent behaviour will depend on both intrinsic wood properties and 
potential GA inside wood pieces, it would be useful to be able to predict it. Yet,



much less attempt has been made to describe viscoelastic dynamic properties, than

static, elastic ones. Schniewind and Barrett (1972) showed that creep at different

GA could be described by standard transformation formula and concluded that

wood could be considered as a linear orthotropic viscoelastic material. Such

formulas were also applied to GA dependence of dynamic modulus, but that of tand
was approached either by statistical means or simplified formulas (Ishihara et al.

1978; Ono 1983; Tonosaki et al. 1983; Yano et al. 1990).

This paper aims at gathering together the theory of GA dependence of vibrational

properties, and their range of variability on different woods. GA dependence is

described by a model based on transformation formula applied to complex

compliances, and literature data on vibrational anisotropy are reviewed. This serves

to predict the response of typical and contrasted wood types, and to interpret the

relationship between damping coefficient and specific modulus.

Effect of grain angle on rigidity and damping: theory

The anisotropic organisation of wood in a trunk can be described by two systems of

axis (Fig. 1): a global one aligned to the stem of the tree (and to ‘‘axial’’ samples

taken from it), which we call [R, T, L]; and a local one fitting the grain’s orientation,

here noted [1, 2, 3]. When the trunk is closely cylindrical and no source of fibre

deviation is considered, it can be assumed that both systems of axis, [1, 2, 3] and

[R, T, L], coincide. However, in a trunk exhibiting grain deviation (spiralled or

interlocked), or in pieces of wood sawn out of grain, directions 2 and 3 form an

angle—from a few degrees to up to 45� in extreme cases—to the directions T and L.

Fig. 1 Schematic view of the systems of axis related to the trunk = ‘‘global’’ [R, T, L] and related to the
grain direction = ‘‘local’’ [1, 2, 3]. a In the particular case of interlocked grain within a trunk; b within a
quarter-cut piece of wood cut along the stem axis: either a narrow (1–3 cm wide) board with interlocked
grain, or a wide ([10–20 cm) plank with spiral grain



Mechanical properties in the global system of axis can be calculated from those

in the local system, as a function of the angle (h) of grain with respect to the stem

axis, by applying the transformation formula for elastic solids (e.g. Bodig and Jayne

1982). This gives, for the compliance along the stem axis:

SLL ¼ S33 cos4 hþ S44 þ 2S32ð Þ cos2 h sin2 hþ S22 sin4 h

¼ S33 þ S44 þ 2S32ð Þ uþ S22u2

1þ uð Þ2
ð1Þ

where u = tan2h and the component Sij of the compliance matrix represent the

strain response in direction i to stress applied in direction j.
In the case of linear viscoelastic solids, Eq. 1 can also be applied to the complex

compliance, with each component of the compliance matrix written in the form

S�ij ¼ S0ij � iS00ij; where S0ij is the storage compliance and S00ij the loss compliance.

Separating the real and imaginary part of the expression leads to:

S0LL ¼
S033 þ S044 þ 2S032

� �
uþ S022u2

1þ uð Þ2
; S00LL ¼

S0033 þ S0044 þ 2S0032

� �
uþ S0022u2

1þ uð Þ2
ð2Þ

Each compliance coefficient Sij
* can be expressed by its inverse Qij

*:

Q�ij ¼
1

S�ij
¼ 1

S0ij � i S00ij
¼

S0ij þ i S00ij
S02ij þ S002ij

)
Q0ij ¼

S0ij
S02ij þ S002ij

¼ 1

1þ tan d2
ij

1

S0ij

Q00ij ¼
S00ij

S02ij þ S002ij

¼ 1

1þ tan d2
ij

S00ij
S02ij

8
>>>><

>>>>:

ð3Þ

where

tan dij ¼
S00ij
S0ij
¼

Q00ij
Q0ij

ð4Þ

are the damping coefficients, typically of the order of 1% in the time–temperature

domain considered here for wood, so that (tandij)
2 � 1 and:

S0ij � Sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S02ij þ S002ij

q
; Q0ij �

1

S0ij
� 1

Sij
; Q00ij �

S00ij
S02ij
� tan dij

Sij
ð5Þ

The Qij can be expressed using engineering notations:

QLL ¼ EL; Q33 ¼ E3; Q22 ¼ E2; Q44 ¼ G32; Q32 ¼ �E3=m32 ð6Þ

where EL, E3 and E2 are the Young’s moduli along the axial direction of the tree,

along the grain and across the grain (orthogonal to the radial direction),

respectively, G32 is the shear modulus in the tangential plane and m32 the Poisson’s

ratio relating the strain along 2 to the strain along 3 in the case of uniaxial loading

along 3.

Then, the evolution of ‘‘apparent’’, global-scale storage modulus E0L
0
(h) and loss

modulus EL

00
(h) can be derived as a function of grain angle and properties at local

scale:



E0LðhÞ � E3

1þ uð Þ2

1þ a0uþ b0u2
; E00LðhÞ � E3 tan d33

1þ uð Þ2 1þ a00uþ b00u2ð Þ
1þ a0uþ b0u2ð Þ2

ð7Þ

In order to make the reading easier, dimensionless terms a0, a00, b0 and b00 are

used:

a0 ¼ S044 þ 2S032

S033

b0 ¼ S022

S033

a00 ¼ S0044 þ 2S0032

S0033

b00 ¼ S0022

S0033

ð8Þ

From Eqs. 5 and 6:

a0 � E3=G32 � 2m32 b0 � E3=E2

a00 � E3=G32 tan d44 � 2m32 tan d32

tan d33

b00 � E3=E2ð Þtan d22

tan d33

ð9Þ

In the case of wood, E3/G32 is typically one order of magnitude higher than m32,

so that in the expression of a00 it will be convenient to isolate the contribution of

shear damping.

a00 � E3=G32 � 2m32ð Þ tan d44 þ 2m32 tan d44 � tan d32ð Þ
tan d33

ð10Þ

so that:

a00 � a0
tan d44

tan d33

ð1þ qÞ where q ¼ 2
tan d44 � tan d32

tan d44

m32

a0
; b00 � b0

tan d22

tan d33

ð11Þ

It is convenient to use the specific storage modulus (E0/q) and specific loss

modulus (E00/q), i.e. the moduli divided by specific gravity (q), given that, on one

hand the specific Young’s modulus corresponds to the actual measurements by

vibrational methods, on the other hand they are representative of the properties of

the cell walls (Norimoto et al. 1986; Obataya et al. 2000).

From these calculations of loss and storage moduli, the grain angle dependence

of their ratio, the loss (or damping) coefficient tand can be obtained.

tan dLðhÞ ¼
E00LðhÞ
E0LðhÞ

¼
E00LðhÞ=q
� �

E0LðhÞ=q
� � ð12Þ

In the case of a beam made of wood layers with varying GA, it is possible to

evaluate the global modulus of the beam by the application of the laminate theory,

separately to the storage and loss moduli of each layer. In another paper by the authors

(Brémaud et al. 2010b), this has been applied to a configuration with interlocked grain.

Anisotropy of moduli and loss coefficients of woods

In order to overcome the fact that data are relatively scarce, or in any case much

scattered, concerning the anisotropy of dynamic moduli and of damping coefficients,
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the orders of magnitude for these anisotropic ratios are summarised in Table 1, based

on different samples and references. It can reasonably be assumed that values found

in the literature had been obtained on straight-grained specimens where the global-

scale system of axis [R, T, L] and the fibre-related one [1, 2, 3] can be superimposed.

Axial-to-shear anisotropy

For storage moduli, mean anisotropic ratios are proposed by Guitard and El Amri

(1987) for ‘‘standard hardwoods’’ and ‘‘standard softwoods’’ (1st and 2nd row of

Table 1, with actual ranges of variation shown in the 3rd and 4th row). Regarding

the differences between radial and tangential planes, EL/GTL and EL/GRL are

strongly correlated (R2 of 0.76 for both hardwoods and softwoods). The ratio

between tangential-longitudinal and radial-longitudinal shear moduli (GTL/GRL)

ranges from 0.50 to 0.98 (median 0.74) for hardwoods, and from 0.72 to 1.33

(median 0.95) for softwoods (Guitard and El Amri 1987; Green et al. 1999).

Data on the axial-to-shear anisotropy of damping coefficients originate mostly

from experiments both in flexural and in torsional vibration. They cover a wider

range of species for the axial-tangential plane (tandGTL/tandL for 75 hardwood and

25 softwood species, 5th, 6th and 7th rows of Table 1) than for the axial-radial one

(rows 8, 9 and 10 in Table 1). Data on both tandGRL and tandGLT obtained on a

single sampling are not known; however, comparison on the same species across

different studies suggests that they are not very different (average tandGLT/tandGRL

of 1.04 on 6 hardwoods, of 0.95 on 5 softwoods).

Axial-to-shear anisotropic ratios are very weakly (for storage moduli) or not (for

tand) related to specific gravity (Table 2 for data in the L–T plane, similar

observations can be made for the L–R plane). But they are strongly related to

mechanical properties along the grain, which denotes that axial-to-shear anisotropy

is primarily determined by cell-wall properties, notably by the mean microfibril angle

(Obataya et al. 2000). However, cellular structure can also have an effect, as tandGRL

depends on the percentage of rays for hardwoods (Yano and Yamada 1985). The

axial-to-shear anisotropy ratio in damping coefficients is strongly correlated to that in

storage moduli, as reported by Aizawa et al. (1998), Obataya (1999) and Obataya

et al. (2000). The relationship between tandGTL/tandL and E0L/G0TL is nearly the same

for softwoods and hardwoods, although there is more dispersion for the latter.

Table 2 Pearson’s correlation

coefficients between specific

gravity (q), axial properties, and

axial-to-shear (L–T plane)

anisotropy ratios

Upper diagonal: softwoods,

lower diagonal: hardwoods.

Based on the data from

references a,b,c,e,m in Table 1
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Such correlations between the anisotropy in moduli and that in damping should 
be taken into account for further analysis. Thus, in order to get a general view, mean 
values of all parameters will be used, but for woods with very different elastic 
anisotropy (correlated to E0L/q values), loss anisotropic ratios will have to be 
adjusted, for example for ‘‘resonance’’ spruce wood (mostly Picea abies and 
P. sitchensis), which is highly anisotropic (Obataya et al. 2000).

Axial-to-transverse anisotropy

As for shear, average axial-to-transverse (radial and tangential) anisotropic ratios of 
elastic (storage) moduli were proposed for ‘‘standard’’ hardwoods and softwoods 
(1st and 2nd rows of Table 1 with ranges of variations in 3rd and 4th rows) 
according to Guitard and El Amri (1987) and Green et al. (1999). Anisotropy covers 
a wide range of hardwoods, from the lowest values of ‘‘curly maple’’ (due to 
systematic grain deviation and radial reinforcement by rays, Bucur 2006) to the 
highest ratios for balsa. In the case of hardwoods, there is a strong correlation 
(R = 0.90) between E0L/E0R and E0L/E0T and both ratios diminish with increasing 
specific gravity, whereas for softwoods they are nearly independent of density and 
more weakly linked between them.

For transverse damping coefficients, the majority of existing data concerns the 
radial direction, while there is little information on the tangential one. However, 
tandT is quite strongly correlated to tandR (R = 0.87 on 14 hardwoods), which may 
be useful to get approximations of tandT. The tandT/tandR ratio diminishes with 
increasing specific gravity, and ranges from 1.01 to 1.36 (mean 1.14) on 14 
hardwoods. This range is comparable to the one on 4 softwoods, and the mean 
tandT/tandR is about 1.05 for spruces. These relations are based on a moderate 
number of species, but are consistent over three different studies (Aoki and Yamada 
1972; Barducci and Pasqualini 1948; Ono and Norimoto 1985) and they sound 
realistic, as the corresponding ratio E0R/E0T is comparable with the average on more 
numerous species: 1.66 and 1.51 for hardwoods and softwoods, respectively.

Actual data on axial-to-tangential anisotropy of tand are listed in Table 1 (11th 
and 12th rows for 5 hardwoods and 2 spruces). The axial-to-radial ratio (tandR/

tandL) ranges from 1.49 to 4.12 (median 2.47) over 39 hardwoods species and from 
1.78 to 4.19 (median 2.74) over 14 softwood species (Table 1 from row 11 to the 
end).

The axial-radial anisotropy in damping coefficient is correlated to that in storage 
moduli and to axial properties (Table 3). However, most relations are less strong 
than in the case of shear anisotropy, which may denote a bigger importance of 
cellular organisation when compared to cell-wall properties.

Poisson’s ratio

Elastic/storage Poisson’s ratio t0LT ranges from 0.31 to 0.73 on hardwoods, and from 
0.36 to 0.6 on softwoods, with respective ‘‘standard’’ values of 0.46 and 0.43 
(Guitard and El Amri 1987; Green et al. 1999).



Experimental values of Poisson’s loss factor for wood in a time–temperature

domain close to audible frequencies and c.20�C are not known. For isotropic

materials, it would be about one decade smaller than shear-loss coefficient (Pritz

2007), but this is not necessarily true for anisotropic cellular materials. According to

Eq. 11, the term q would tend towards zero if tand32 (Poisson’s loss factor) was

close to tand44 (in shear). If tand32 was negligible compared to tand44, the term

q would contribute about up to 10% to the term a00 used for calculations.

Variability and relative influence of axial-to-shear

and axial-to-transverse parameters

Over all the collected data on both hardwoods and softwoods species, the axial-to-

shear anisotropy ranged from 4 to 30 (mean 14) for E03/G023 and from 1.3 to 3.9

(mean 2.25) for tand44/tand33 (from now on, it is admitted that values that are listed

in Table 1 in the [R, T, L] system of axis are equivalent to those in the [1, 2, 3]

system of axis). The axial-to-tangential anisotropy ranged from 5 to 40 (mean 18)

for E03/E02 and from 1.6 to 4.4 (mean 2.9) for tand22/tand33 (based on both actual

tangential data and estimates from radial ones). Ranges for hardwoods and

softwoods are resumed in Table 4.

For moderate GA (up to 20–25�), the total variability in shear anisotropy

accounted for most of the differences in GA dependence of storage modulus

(Fig. 2a), while the full variability in tangential anisotropy also contributed

significantly to damping coefficient (Fig. 2b). Over the whole range of GA, L/GTL

anisotropy still contributed the most important (quantitatively) to the variability in

GA dependence for E0, while L/T anisotropy contributed at least as much to the GA

dependence of tand.

Grain angle dependence of vibrational properties for different types of woods

In order to illustrate (Fig. 3) the grain angle dependence of dynamic mechanical

properties for different wood types, average values for hardwoods and softwoods

were defined (Table 4). Mechanical parameters are also summarised for the

highly anisotropic ‘‘resonance’’ spruces and for a species (African padauk) with

Table 3 Pearson’s correlation

coefficients between specific

gravity, axial properties, and

axial-to-radial anisotropy ratios

Upper diagonal: softwoods,

lower diagonal: hardwoods.

Based on data from references
a,b,j,k,l,m,n,o,p,q in Table 1
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abnormally low damping coefficient and reduced anisotropy (Brémaud et al.

2010b).

The relationship between elastic anisotropy and specific Young’s modulus along

the grain is clearly visible in the grain angle dependence of E0/q for different wood

types (Fig. 3a): for a small GA of 5�, E0/q decreases of 11% (when compared to 0�
GA) for spruce, but only of 5% for padauk. This has non-negligible practical

repercussions, as GA of a few degrees are common in sawn pieces of wood; 5–10�
can quite easily occur in softwood planks, and about 10–15� are not uncommon in

hardwoods with grain deviations. For a GA of only 7�, ‘‘resonance’’ qualities of

spruce become equivalent to the average softwoods along the grain. The GA

dependence curves of spruce and mean softwoods join up for an angle C15�, those

of mean hardwoods and of padauk for GA C 10�. For angles bigger than 20�, the

tendencies are comparable for all wood types represented.

The scheme of GA dependence is quite different for specific loss modulus E00/q
which remains quite stable for moderate GA of up to 10–15�, or even slightly

increases (Fig. 3b). This denotes the fact that, over small angles, the damping

coefficient increases a bit faster than Young’s modulus decreases. Wood types

compare differently than in the case of E0/q: GA dependence of mean hardwoods

and softwoods is very similar, and ‘‘resonance’’ spruce is less different in terms of

specific loss modulus, while padauk wood is here the most atypical one. The latter is

also noticeable for its systematically lower damping coefficient tand over varying

GA (Fig. 3c). The damping coefficient of mean hardwoods and softwoods increases

according to grain angle in a nearly parallel way, and the trend for ‘‘resonance’’

spruce starts to be dissociated from that for mean softwoods for GA C 10�.

The calculated trends in GA dependence for tand and E0/q result in relationships

between these properties (Fig. 3d) quite similar to those reported by Ono and

Norimoto (1983, 1984, 1985); this will be discussed below. Such relationships are

Fig. 2 Relative influence of the anisotropy ratios (longitudinal to shear, and longitudinal to tangential)
on the grain-angle dependence of (a) dynamic Young’s modulus and (b) loss factor. Plain curves: full
range of variation in axial-to-shear anisotropy ratios with axial–tangential ones fixed at their mean values;
dashed curves: full range of variation in 3–2 ratios with 3-G23 ratios fixed at their mean values



Fig. 3 Dependence of dynamic mechanical properties on grain angle (L–T plane) calculated using the 
sets of parameters from Table 4 for different types of woods. Trends in specific storage modulus (a), 
specific loss modulus (b) and damping coefficient (c) at the global scale, as a function of grain angle. 
d Calculated evolution of tand plotted against that of E0/q

very comparable for mean hardwoods and softwoods and for ‘‘resonance’’ spruce, 
while that for padauk systematically remains ‘‘shifted’’ downwards low tand values.

Calculations of GA dependences of vibrational properties are in quite good 
agreement with published experimental values, as illustrated in Fig. 4 for two 
contrasted wood types: (1) ‘‘resonance’’ spruce with a high E03/q, cut every 10� or 
15� in L–R plane (Ono 1983; Tonosaki et al. 1983). (2) Rio rosewood (Dalbergia 
nigra) cut every 10� in L–TR plane (Yano et al. 1995) is compared with calculations 
based on padauk parameters from Table 4, as both these medium-heavy Legumi-

nosae species have a reduced anisotropy, and abnormally low damping coefficients 
(due to their particular extractives). The calculations of the authors (using Eqs. 7 
and 12) provide good predictions for both ‘‘extreme’’ types of woods, including loss 
parameters which GA dependence had been hitherto approached either by statistical 
means or by simplified formulas.



Relationship between damping coefficient and specific storage modulus
along with varying grain angle

In Fig. 3d, it can be noted that calculated GA dependence trends for tand and E0/q
are related in a way very similar to the relationships proposed by Ono and Norimoto

(1983, 1984, 1985). Calculated relations are compared to these statistical

regressions (in the form of tand = A9[E0/q]-B) in Fig. 5, where curves (a) and

(b) are observed as a function of grain angle, and curves (c) and (d) on wood along

the grain, i.e. as a function of microfibril angle. These four regression curves are

rather close to each other, suggesting that microfibril- and grain-angle have similar

consequences. The calculated curves of this study (for mean hardwoods and

softwoods and spruce) are also quite close to each other, and they are in quite good

agreement with the regressions over the extreme ranges of GA and of properties, but

they are of a less concave form. This is partly because of the concavity of a power

curve fitting in itself, but variations in mechanical properties and anisotropic ratios

should also modulate the shape of the tand-E0/q relation.

If all anisotropic parameters (axial-shear and axial-transverse, for storage moduli

and loss coefficients) are made to vary from their minimum to maximum values,

while keeping axial properties constant, the tand-E0/q relationship increases slower

or faster and of course maximum tand values are different, yet the shape of the

relation remains comparable (Fig. 6a). Moreover, as introduced above, anisotropic

ratios are correlated to axial mechanical properties (Tables 2 and 3). If axial

properties are roughly adjusted to anisotropic ratios, calculations for low- and high-

anisotropy woods join up into a common trend (Fig. 6b).

This latter analysis implied that all anisotropic ratios tend to increase or decrease

together. However, there is little experimental data (obtained on the same samples)

concerning the relations between shear- and transverse-anisotropy of damping

coefficients. tand44/tand33 should be primarily affected by cell-wall properties

(Aizawa et al. 1998; Obataya et al. 2000) while tand22/tand33 could presumably be

Fig. 4 Comparison of calculated (using Eqs. 7 and 12) and experimentally determined grain-angle
dependence for contrasted types of wood. Curves: calculated with L–R anisotropic parameters for spruce
(axial E0/q adjusted to 32GPa) and padauk (Table 4). Triangles: Sitka spruce cut at angles in L–R plane
(Ono 1983; Tonosaki et al. 1983). Circles: Rio rosewood (Dalbergia nigra) cut at angles in L–TR plane
(Yano et al. 1995)



Fig. 5 Comparison of the trends in the damping coefficient—specific modulus relationship: calculated as
a function of GA with Eqs. 7–12 and mean anisotropic coefficients (listed in Table 4, symbols: see
Fig. 3), and regression curves (thick patterned lines a, b, c, d) from the literature. (a): 5 hardwoods tested
along the 3 axes R, T, L at frequencies of 4–20 kHz (Ono and Norimoto 1985); (b): Sitka spruce with
varying GA in L–R plane (Ono and Norimoto 1983); (c) 25 softwood species along the grain (Ono and
Norimoto 1983); (d) 30 hardwood species along the grain (Ono and Norimoto 1984)

Fig. 6 Variations in the calculated tand–E0/q (0�–90� in L–T plane) curve, when varying all anisotropic 
ratios from their maximum to their minimum. Storage and loss anisotropic ratios are considered as

correlated. (a) Properties along the grain are kept constant; (b) E03/q and tand3 are adjusted, i.e. they are 
considered as correlated to anisotropic ratios

more affected by cellular organisation. Varying them separately (Fig. 7) describes

as much or even more variability in the tand-E0/q relation as total variations in

anisotropy do. If tand44 comes close to tand22, the shape of the relation tends

towards a linear one. On the contrary, the smaller tand44/tand22, the more concave 
the tand-E0/q curve. Altogether, variations in damping anisotropic ratios define a 
plausible range of variation centred on the mean relationship.



Finally, if anisotropic parameters are kept constant, and only the axial specific

modulus varies, a deviation (from the curve calculated with all mean parameters) is

observed over small GA, but trends merge again for increasing grain angles (Fig. 8).

Fig. 7 Variations in the calculated tand–E0/q (0�–90� in L–T plane) curve, when varying loss anisotropic
ratios (axial-to-shear and axial-tangential) from their maximum to their minimum, while keeping elastic
anisotropic ratios and axial properties at their mean values

Fig. 8 Variations in the calculated tand–E0/q (0�–90� in L–T plane) curve, when varying individually
either tand or E0/q along the grain, while keeping all anisotropic parameters at their mean values



While variations in axial damping coefficient alone, all else being equal, result in

tand-E0/q curves that remain shifted towards lower- or higher-tand values, over the

whole range of grain angle. This can describe the case of chemical modifications

affecting mostly tand, such as for some extractives: parallel but shifted curves are

observed either between different species, as was illustrated above for padauk and

rosewood, or between sapwood and heartwood of the same species (Brémaud et al.

2010a; Matsunaga et al. 1996; Yano 1994; Yano et al. 1990). Analyses on this topic

should however be a bit more detailed, as chemical modifications can also have a

smaller but non-negligible effect on E0/q and elastic anisotropy (Minato et al. 2010;

Obataya et al. 2000; Yano et al. 1995).

Conclusion

This article aimed at evaluating the variability in the anisotropy of wood vibrational

properties, and its consequences on their grain angle dependence. The combination

of a theoretical mechanical analysis and a review of literature data on anisotropy of

dynamic properties has allowed to summarise the following points:

• Axial-to-shear anisotropy in damping (or loss) coefficients (tand) ranges from

1.3 to 3.9 for hardwoods and from 1.4 to 3.3 for softwoods. Axial-to-transverse

ratios range from 1.5 to 4.4 and from 2.2 to 4.4, respectively.

• The anisotropy in tand is correlated to that in specific elastic moduli. Anisotropic

ratios are also positively correlated to axial E0/q.

• Calculations based on transformation formula applied to complex compliances

are in good agreement with published experimental data. They efficiently

represent the GA dependence both for storage modulus and loss properties, and

allow predicting the practical repercussions of GA occurrence in pieces of

different types of wood.

• Calculated trends in tand and in E0/q allow reconstructing the general relation

between these two properties that had been previously reported by statistical

means. However, they lead to a less concave curve than the reported power fit.

The more or less concave shape of this tand-E0/q relation mainly depends on the

ratio between shear and transverse damping coefficients.

• The tand-E0/q relation for woods with different mechanical parameters is

distributed along a unique curve if all anisotropic ratios evolve in conjunction

together and with axial E0/q and tand. On the contrary, variations in tand33

independently of E03/q result in parallel curves whatever the orientation be,

which coincide with experimental observations on chemically modified woods

(artificially or by natural extractives).

The theoretical GA dependence of vibrational properties that was applied here in

the simpler case of constant, homogeneous GA, could also serve as the basis for 
studying more complex phenomena, such as the repercussions of interlocked or 
wavy grain. In addition, compiled data on anisotropy of dynamic mechanical 
properties could also be useful for other types of analysis, such as for modelling the 
vibrational behaviour of beams and plates.



References

Aizawa H (1998) Frequency dependence of vibrational properties of wood in longitudinal direction.

Master Thesis. Kyoto University (in Japanese)

Aizawa H, Obataya E, Ono T, Norimoto M (1998) Acoutic converting efficiency and anisotropic nature

of wood. Wood Res 85:81–83

Aoki T, Yamada T (1972) The viscoelastic properties of wood used for the musical instruments I. Wood

Res 52:13–42

Barducci I, Pasqualini G (1948) Measurement of internal friction and elastic constants of wood

(in Italian). Il Nuovo Cimento 5:416–466

Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold Company,

New York
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