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Abstract

Since its elaboration by Whitham, almost �fty years ago, modulation theory
has been known to be closely related to the stability of periodic traveling waves.
However, it is only recently that this relationship has been elucidated, and that
fully nonlinear results have been obtained. These only concern dissipative systems
though: reaction-di�usion systems were �rst considered by Doelman, Sandstede,
Scheel, and Schneider [Mem. Amer. Math. Soc. 2009], and viscous systems of con-
servation laws have been addressed by Johnson, Noble, Rodrigues, and Zumbrun
[preprint 2012]. Here, only nondissipative models are considered, and a most ba-
sic question is investigated, namely the expected link between the hyperbolicity of
modulated equations and the spectral stability of periodic traveling waves to side-
band perturbations. This is done �rst in an abstract Hamiltonian framework, which
encompasses a number of dispersive models, in particular the well-known (general-
ized) Korteweg{de Vries equation, and the less known Euler{Korteweg system, in
both Eulerian coordinates and Lagrangian coordinates. The latter is itself an ab-
stract framework for several models arising in water waves theory, super
uidity, and
quantum hydrodynamics. As regards its application to compressible capillary 
uids,
attention is paid here to untangle the interplay between traveling waves/modulation
equations in Eulerian coordinates and those in Lagrangian coordinates. In the most
general setting, it is proved that the hyperbolicity of modulated equations is indeed
necessary for the spectral stability of periodic traveling waves. This extends earlier
results by Serre [Comm. Partial Di�erential Equations 2005], Oh and Zumbrun
[Arch. Ration. Mech. Anal. 2003], and Johnson, Zumbrun and Bronski [Phys. D
2010]. In addition, reduced necessary conditions are obtained in the small amplitude
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limit. Then numerical investigations are carried out for the modulated equations of
the Euler{Korteweg system with two types of `pressure' laws, namely the quadratic
law of shallow water equations, and the nonmonotone van der Waals pressure law.
Both the evolutionarity and the hyperbolicity of the modulated equations are tested,
and regions of modulational instability are thus exhibited.

Keywords: Whitham modulated equations, traveling wave, spectral stability, modulational
instability, Lagrangian coordinates.

AMS Subject Classi�cations: 35B10; 35B35; 35Q35; 35Q51; 35Q53; 37K05; 37K45.

1 Introduction

This work is motivated by the nonlinear waves analysis of the so-called Euler{Korteweg
system, which arises in the modelling of capillary 
uids { these comprise liquid-vapor
mixtures (for instance highly pressurized and hot water in nuclear reactors cooling system,
in which the presence of vapor is actually dramatic), super
uids (Helium near absolute
zero), or even regular 
uids at su�ciently small scales (think of ripples on shallow water
or other thin �lms). In one space dimension, the most general form of the Euler{Korteweg
system we consider is

(1)

(
@t � + @x (�u ) = 0 ;

@tu + u@xu + @x (E� E) = 0 ;

in Eulerian coordinates, its counterpart in mass Lagrangian coordinates being

(2)

(
@tv = @yu ;

@tu = @y(Ev �e) ;

where � is the 
uid density, v = 1=� its speci�c volume, u its velocity, viewed either as
a function of (t; x ) or as a function of (t; y), where y is the mass Lagrangian coordinate
(by de�nition, d y = � dx � � u dt). The energy densityE in (1) and the speci�c energy�e
in (2) are related throughE = � �e, or equivalently �e= vE, and are regarded as functions
of (�; � x ) and (v; vy) respectively. In those systems, the notationE stands for the Euler
operator, that is

E� E =
@E
@�

� Dx

�
@E
@�x

�
; Ev �e=

@�e
@v

� Dy

�
@�e
@vy

�
;

where Dx and Dy mean total derivatives. A widely used class of energies, dating back to
Korteweg's theory of capillarity, read

(3) E(�; � x ) = F (� ) +
1
2

K (� ) ( � x )2 ;
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or equivalently

(4) �e(v; vy) = f (v) +
1
2

� (v) (vy)2 ;

with the relationships F = �f , � = � 5K , and with various choices ofK (as far as (2) is
concerned,� is often chosen to be constant, whereas quantum hydrodynamics equations
correspond to� K = constant).

Abstract framework Equations (1) and (2) fall into the class of abstract Hamiltonian
systems of evolution PDEs of the form

(5) @tU = J (EH [U ]) ;

whereJ = @xJ is a skew-symmetric di�erential operator,J being a symmetric, nonsin-
gular matrix with constant coe�cients, H is a functional involving �rst order derivatives
only, and E denotes again the Euler operator:

EH [U ]� =
@H
@U�

(U ; U x ) � Dx

�
@H
@U�;x

(U ; U x )
�

; � 2 f 1; : : : ; Ng

if U hasN components. Equation (5) being space-invariant, it admits a conserved quan-
tity called an impulse, say Q such that

J EQ [U ] = @xU ;

and sinceJ is nonsingular we can explicitly take forQ the quadratic quantity

Q (U ) := 1
2 U � J � 1U :

For further use, let us mention that associated withQ is the local conservation law

(6) @tQ (U ) = @x (S [U ])

satis�ed along any smooth solution of (5), where

(7) S [U ] := U � EH [U ] + LH [U ] ; LH [U ] := U�;x
@H
@U�;x

(U ; U x ) � H (U ; U x ) :

The dot � here above is just for the `canonical' inner productU � V = U� V� in RN , and
the letter L stands for the Legendre transform (even though it is considered in the original
variables (U ; U x )). In its de�nition we have used Einstein's convention of summation over
repeated indices, and we shall do so repeatedly in the sequel.
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Examples The Euler{Korteweg system (1) �ts into this framework with

U =
�

�
u

�
; H =

1
2

�u 2 + E(�; � x ) ; Q = �u ; S = � E� E + LE ;

as well as the system in Lagrangian coordinates (2), with

U =
�

v
u

�
; H =

1
2

u2 + �e(v; vy) ; Q = vu ; S = v Ev �e+ L�e:

An even simpler example is the scalar equation

(8) @tv = @x (EvH ) ;

with Q = 1
2 v2, comprising the generalized Korteweg{de Vries equation (gKdV),

(9) @tv + @xp(v) = � @3
x v ;

if we take
H = f (v) +

1
2

v2
x ; f 0 = � p :

In this case,S = � f � pv � vvxx + 1
2v2

x - and (6) is the well-known conservation law for
v2 when v is solution to (gKdV).

We will focus on the 'generic' situation in which the abstract system (5) admits a
family of periodic traveling wave solutions parametrized, up to translations, by their
speed andN + 1 constants of integration. This rather large number of degrees of freedom
makes the stability of periodic waves a di�cult problem. Furthermore, in the context of
Hamiltonian PDEs we can only hope for neutral stability, namely that the full spectrum
of linearized equations lies on the imaginary axis. On the one hand, this kind of spectral
stability makes the nonlinear stability analysis more delicate to tackle than in situations
involving dissipation processes that are likely to push the spectrum { except for the null
eigenvalue linked to translation invariance { into the left half plane. (Nonlinear results
have recently been obtained concerning reaction-di�usion systems [7], and viscous systems
of conservation laws [15].) On the other hand, the underlying variational framework can
be of great help to prove nonlinear stability results. This has been done for a wide
variety of solitary waves, see [1] and references therein. The literature on the stability of
periodic waves is much more limited, and nonlinear results are limited to stability under
perturbations of the same period [1]. Up to our knowledge, spectral stability has been
proved for periodic wave solutions to the (standard) Korteweg{de Vries equation by using
its integrability to compute explicitly the spectrum [4], and for small amplitude periodic
wave solutions to a limited number of dispersive equations, comprising the nonlinear
Schr•odinger equation and the generalized Korteweg{de Vries equation [10]. It is still a
wide open problem for large amplitude periodic wave solutions to more general, dispersive
PDEs.

As regards spectral stability, it is more tractable if sideband perturbations only are
considered. There are indeed several analytical tools { like for instance Evans functions
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and associated winding numbers { to look for possible spectrum in the vicinity of zero.
A related topic is modulational stability, in connection with Whitham's approach of slow
modulations to periodic waves (the most famous modulational instability being the one
shown by Benjamin and Feir for Stokes water waves).

By { at least formal { asymptotic analysis, we can see that slow modulations to
periodic waves are governed by a system of averaged equations. Its size is the dimension
of the periodic orbits' manifold, hereN +2. This will be made more precise in Section 2, of
which the main purpose is to extend to our abstract framework a result previously known
for (gKdV) [14] and for viscous systems of conservation laws [17, 18, 19]. This result gives
a quantitative relationship between the sideband stability of periodic traveling waves and
the spectral properties of modulated equations. In particular, it shows that a necessary
condition for the stability of a given periodic traveling wave is the (weak) hyperbolicity
of modulated equations at the corresponding point in parameters' space. In other words,
we give a rigorous proof that modulational stability is necessary for spectral stability, a
result that is often taken for granted in the physics literature { back to 1970, Whitham
himself was indeed saying that `the relation of the stability of the periodic wave with the
type of the [modulated equations is] given in the previous papers' [20]. In addition, we
investigate in some detail how the modulated equations degenerate in the small amplitude
limit, and receive a reduced system coupled with a 2� 2 system for the wavenumber and
the amplitude of the wave. This extends to our abstract framework observations that
were made by Whitham [21]. Unsurprisingly, when applied for instance to the Euler-
Korteweg system, that limit gives as a reduced system the lower-order, Euler equations.
Hence a stability condition for small amplitude periodic waves: the Euler system must be
hyperbolic at the mean value of the wave. This rather natural condition does not seem
to have been pointed out earlier. A reason is certainly that modulated equations have
mostly been considered forscalar models, like KdV or the Klein-Gordon equation in [21],
for which the hyperbolicity of the reduced model - the inviscid Burgers equation for KdV,
the wave equation for Klein-Gordon - is trivial.

In Section 3, we concentrate on the Euler{Korteweg system. We derive modulated
equations in both kinds of coordinate systems, namely the Eulerian one (1), and the mass
Lagrangian one (2). In addition, we point out a nice { if not surprising | relationship
between them. To be precise we show that, away from vacuum, the modulated system
for (2) is equivalent to the modulated system for (1) through a mass Lagrangian change
of coordinates, hence the following commutative diagram.

mass Lagrangian
change of coordinates

(1) �! (2)
Whitham's
averaging

# #

h1i �! h 2i

Then in Section 4 we go further into specialized cases and investigate in more details
the periodic orbits' manifold when the energy is of Korteweg type (3). In this case, the
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nature of the phase portrait associated with pro�le equations for traveling waves highly
depends on the monotonicity and convexity properties of pressure in terms of volume [3].
We have considered two types of pressure laws, each one being motivated by a speci�c
physical application. At �rst, we have taken a quadratic pressure with respect to density,
which corresponds to shallow water equations { the Korteweg part of the energy then
taking into account surface tension on the water surface. A more involved case arises
with van der Waals type pressure laws, typically corresponding to liquid-vapor mixtures
(with capillarity e�ects). In both cases { shallow water and van der Waals { , we have
investigated numerically the hyperbolicity of Whitham's equations associated with various
families of periodic waves. We have found rather large regions of hyperbolicity. Failure of
hyperbolicity occurs for waves `close to' unstable constant states/solitary waves or/and
with su�ciently large periods.

2 Periodic waves and modulated equations

2.1 General material

Traveling wave solutions A traveling wave solution to (5) of speedc is characterized
by the pro�le equations

(10) E(H + cQ )[U ] = � ;

where the components� � of � 2 RN are merely constants of integration. As was observed
by Benjamin [2], the impulse 
ux S is involved in the Hamiltonian associated with the
Euler{Lagrange equations (10), which turns out to beS + cQ . In other words, solutions
of (10) must satisfy

(11) S [U ] + cQ (U ) = �

for some new (scalar) parameter� . The pro�le U may be viewed as astationary solution
of the abstract Hamiltonian system (5) rewritten in a frame moving with speedc, that is

(12) @tU = J (E(H + cQ )[U ]) :

We may also note that in this moving frame the additional conservation law (6) reads

@tQ (U ) = @x ((S + cQ )[U ]) ;

which obviously admits the pro�le U as a stationary solution, according to (11).

Linearized problem In order to investigate the stability of U as a solution of (12), we
start by linearizing this system aboutU , which yields

(13) @tU = A U ; A := J A ; A := Hess(H + cQ )[U ] :
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The Hessians here above are given by

HessQ [U ] = J � 1

whatever U , and

(HessH [U ]U )� =
@2H

@U� @U�
U� +

@2H
@U� @U�;x

U�;x � Dx

�
@2H

@U�;x @U�
U� +

@2H
@U�;x @U�;x

U�;x

�
;

where all second order derivatives ofH are evaluated at (U ; U x ). By di�erentiating the
pro�le equations (10) with respect to x we observe as usual with translation-invariant
problems that AU x = 0, hence alsoA U x = 0. Furthermore, we have several parameters,
namely the speedc, and the constants of integration� � , � . If they are all independent,
as is typically the case with periodic traveling waves, we receive remarkable identities by
di�erentiating the pro�le equations (10) with respect to those parameters. This yields

AU c = � EQ [U ] ; hence A U c = � U x ;

AU � = 0 ; hence A U � = 0 ;

AU � �
= e � ; hence A U � �

= 0 :

(Here above we have denoted by e� the � -th vector of the `canonical' basis in theU -space,
and the subscriptsc, � , � � stand for partial derivatives with respect to those parameters.)
When U is periodic, say of period �, this period of course depends on the parametersc,
� � , � , and thus the derivativesU c, U � , U � �

have no reason to be periodic. However, as
pointed out in [6], we can set up the generalized kernel ofA in the space of �-periodic
functions with linear combinations of those derivatives. As a matter of fact,U x and
� � := � � � U � � � � U � �

are all in the �-periodic kernel of A , while

	 � := f � ; hU ig � � ;c U � + f � ; hU ig c;� U � �
+ f � ; hU ig �;� � U c

is also �-periodic, and such that

A 	 � = �f � ; hU ig �;� � U x 2 kerA :

Here above we have used the same convenient notation as in [6]

f f; g ga;b = f agg � f bga ;

and the bracketsh�i stand for mean values on a period. The periodicity of the linear
combinations mentioned above follows from the identity

U a(�) � U a(0) = � a U x (0) ;

which holds true whatever the parametera. Note that we �nd in this way at most N + 2
independent elements of the generalized kernel ofA in the space of �-periodic functions
if N is the dimension of theU -space, even though we have usedN + 3 candidates.
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Modulated equations Following Whitham's `two-timing method' [20], we search for
solutions of (5) having an asymptotic expansion of the form

U (t; x ) = U 0("t; "x; � ("t; "x )=") + " U 1("t; "x; � ("t; "x )="; " ) + o(") ;

where U 0 and U 1 are 1-periodic in their third variable (subsequently denoted by� ).
Denoting by X = "x , T = "t the rescaled space variable and time respectively,

k := � X ; ! := � T ; c := � !=k ;

the very existence of a twice di�erentiable phase� requires that

(14) @T k + @X (ck) = 0 :

Plugging the asymptotic expansion in (5) and using that@t = "@T + !@� , @x = "@X + k@� ,
we formally receive the following equations

(15) @� (G0 + cV 0) = 0 ;

(16) @T U 0 = J@X G0 + J k@� (G1 + cV 1)

where the componentsG0;1
� , V 0;1

� of G0;1 and V 0;1 are given by

G0
� :=

@H
@U�

� kD�

�
@H
@U�;x

�
;

V 0
� :=

@Q
@U�

; or equivalently V 0 = J � 1U 0 ;

G1
� :=

@2H
@U� @U�

U1
� +

@2H
@U� @U�;x

k@� U1
� � kD�

�
@2H

@U�;x @U�
U1

� +
@2H

@U�;x @U�;x
k@� U1

�

�

+
@2H

@U� @U�;x
@X U0

� � DX

�
@H
@U�;x

�
� kD�

�
@2H

@U�;x @U�;x
@X U0

�

�
;

V 1
� :=

@2Q
@U� U�

U1
� ; or equivalently V 1 = J � 1U 1 ;

all derivatives of H being evaluated at (U 0; k@� U 0), and those ofQ at U 0. The zeroth
order equation in (15) yields (G0 + cV 0) = constant, which just amounts to the traveling
wave pro�le equation (10). More precisely, (G0 + cV 0) = � requires that, at �xed (T; X ),
U (x) := U 0(T; X; kx ) solves (10). The �rst order equation in (16) yields the averaged
equation over� 2 [0; 1]

(17) @T hU 0i = J@X hG0i :
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Together with the compatibility equation (14), this is the main set of modulated equations.
There is an additional one associated with translation invariance of the original system.
The fastest way to obtain it is to use the conservation law in (6), which yields

(18) @T hQ0i = @X hS0i ;

where

Q0 := 1
2 V 0 � U 0 ; S0 := U 0 � G0 � H (U 0; k@� U 0) +

@H
@U�;x

k@� U0
� ;

the derivative of H being again evaluated at (U 0; k@� U 0). The other way is the main
reason why we have written downG1 in details. As a matter of fact, Equation (18) can be
obtained by averaging the inner product of (16) withV 0. The �rst term in this operation
is simply

hV 0 � @T U 0i = @T hQ0i :

On the right-hand side ofhV 0 � (18)i , we �rst have

hV 0 � J@X G0i = hU 0 � @X G0i :

In order to deal with the other term, we can splitG1 + cV 1 into

G1 + cV 1 = A (k@� ) U 1 + C(k@� ) @X U 0

whereA (k@� ) and C(k@� ) are both linear di�erential operators with coe�cients that are
functions of (U 0; k@� U 0), and moreover Equation (15) means that

A (k@� ) @� U 0 = 0 :

This implies that

hV 0 � Jk@� (A (k@� ) U 1)i = � h U 1 � A (k@� ) k@� U 0i = 0 ;

hence
hV 0 � Jk@� (G1 + cV 1)i = � h k@� U 0 � C(k@� ) @X U 0i :

Therefore, it remains to check that

hU 0 � @X G0i � h k@� U 0 � C(k@� ) @X U 0i = @X hS0i ;

or equivalently,

hG0 � @X U 0i + @X hk@� U 0 � r U x H � H i + hk@� U 0 � C(k@� ) @X U 0i = 0 :

Now, recalling the de�nition of G0 and making an integration by parts we get

hG0�@X U 0i = h(@X U 0)�r U H + ( @� @X U 0)�r U x H i = @X hH i � h (@X k)(@� U 0)�r U x H i

= @X hH � k@� U 0 � r U x H i + k @X h(@� U 0) � r U x H i :
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Finally, recalling the de�nition of C and making an integration by parts, we have

h@� U 0 � C(k@� ) @X U 0i =
�

(@� U0
� )

@2H
@U� @U�;x

@X U0
� � (@� U0

� ) DX

�
@H
@U�;x

�
+ k(@2

� U0
� )

@2H
@U�;x @U�;x

@X U0
�

�

=
�

D�

�
@H
@U�;x

�
@X U0

� � (@� U0
� ) DX

�
@H
@U�;x

��

= � @X h(@� U 0) � r U x H i

thanks to another integration by parts.

Low frequency analysis We assume thatU is a given periodic traveling wave pro�le
of period � = 1 =k, and that the set of nearby periodic traveling wave pro�les is aN + 2
dimensional manifold if N the dimension of theU -space. As explained above, natural
parameters for this manifold are the speedc of waves, the constants of integration� �

for � 2 f 1; : : : ; Ng as well as� showing up in the pro�le equations (10)-(11). In fact,
we shall prefer a parametrization that is more natural in connection with Whitham's
modulated equations, and assume that the manifold of periodic traveling wave pro�les is
parametrized by their wave numberk (inverse of period), and the mean values

(19) M = hU i ; P = hQ (U )i :

For a discussion of this assumption, see Appendix B.2. In addition, we rescale all periodic
pro�les into 1-periodic ones, in such a way thatk appears explicitly in the pro�le equations.
For simplicity we still denote by U the pro�le now viewed as a function of� = kx, and
similarly any nearby pro�le U is viewed as a function of� = kx. The latter must therefore
satisfy

(20) @�

�
@H
@U�

(U ; k@� U ) � k@�

�
@H
@U�;x

(U ; k@� U )
�

+ c
@Q
@U�

(U )
�

= 0 ; � 2 f 1; : : : ; Ng:

Our previous assumption means that for all (k; M ; P) close to (k; M ; P) there is a unique
speedc = c(k; M ; P) and a unique pro�le up to translations U = U (� ; k; M ; P) that is
1-periodic, close1 to U , and solution to (19)-(20). For simplicity again, we just denote by
A the di�erential operator A (k@� ) considered in the previous paragraph withU 0 replaced
by U (which amounts to Hess(H + cQ )[U ] where@x is replaced byk@� ), and by A the
operator

A (k@� ) = k@� JA (k@� ) :

More explicitly, we have

(AV )� =
@2H

@U� @U�
V� +

@2H
@U� @U�;x

k@� V� � kD�

�
@2H

@U�;x @U�
V� +

@2H
@U�;x @U�;x

k@� V�

�
:

1We say that two 1-periodic functions are close to each other if their distance with respect to the sup
norm up to translations is small.
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Equation (20) equivalently readsA @� U = 0. Besides, this equation implies that

@� (AU a + ca J � 1U ) = 0 ; hence A U a = � ca k@� U ;

where the subscripta stands for a partial derivative with respect to any parameter among
M � and P. According to our assumption on the parametrization of periodic pro�les, this
makes at leastN + 1 independent elements of the generalized kernel ofA in the space
of 1-periodic functions, and in factN + 2 counting @� U . Let us mention straightforward
identities for the formal adjoint

A � = � AJ k@� :

We clearly have indeed
A � e� = 0 ; A � J � 1U = 0 :

(Recall that e� is just a constant vector in theU -space.) Now, we are not only interested
in the spectrum of A in the space of 1-periodic functions but in the whole space of
bounded functions. This is why we introduce the Bloch operators

A � := A (k(@� + i� )) ; � 2 R=2� Z ;

of which the spectra in the space of 1-periodic functions give the one ofA on L1 :

� (A ) =
[

� 2 R=2� Z

� (A � ) :

2.2 Modulational stability vs spectral stability

Given the material introduced inx2.1, we can show the following.

Theorem 1. Let us assume thatU is the pro�le of a periodic traveling wave solution to(5)
of period 1=k and speedc, and that the set of nearby periodic traveling wave pro�lesU of
speedc close toc is a N +2 dimensional manifold parametrized by(k; M = hU i ; P = hQi ),
where1=k is their period and

Q := 1
2 U � J � 1U :

Let us consider the modulated system

(21)

8
><

>:

@T k + @X (ck) = 0 ;

@T hU i = J @X hGi ;

@T hQi = @X hSi ;

where

G� :=
@H
@U�

(U ; k@� U ) � k@�

�
@H
@U�;x

(U ; k@� U )
�

;

S := U � G � H (U ; k@� U ) + ( k@� U� )
@H
@U�;x

(U ; k@� U ) :
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We also assume that the generalized kernel ofA in the space of1-periodic functions is of
dimension N + 2. Then a necessary condition forU to be stable is that the system(21)
be `weakly hyperbolic' at(k; M ; P), in the sense that all its characteristic speeds must be
real.

Proof. It is based on a perturbation calculation, which relates the matrix of (21) at
(k; M ; P) to the one of A � restricted by spectral projection to a (N + 2) dimensional
invariant subspace. We �rst introduce the expansion

A � = A (0) + i k� A (1) � k2� 2 A (2) � i k 3� 3 A (3) ;

where A (0) = A 0 = Jk@� A(0) is just A viewed as an operator acting on 1-periodic
functions, as well asA(0) is just A acting on 1-periodic functions,

A (1) := J(A(0) + k@� A(1) ) ; A (2) := J(A(1) + k@� A(2) ) ; A (3) := JA (2) ;

(A(1) V )� :=
@2H

@U� @U�;x
V� �

@2H
@U�;x @U�

V� � kD�

�
@2H

@U�;x @U�;x
V�

�
�

@2H
@U�;x @U�;x

k@� V� ;

(A(2) V )� := �
@2H

@U�;x @U�;x
V� :

Di�erentiating (20) with respect to k we �nd that

(22) A (0) U k + A (1) @� U = � ck k@� U :

Indeed, we �nd at once that for all � 2 f 1; : : : ; Ng,

@�

�
(A(0) U k + ck J � 1U )� +

@2H
@U� @U�;x

@� U� � D�

�
@H
@U�;x

�
� kD�

�
@2H

@U�;x @U�;x
@� U�

��
= 0 ;

hence
A (0) U k + ck k@� U + Jk@� A(1) @� U = 0 ;

which is equivalent to (22) sinceA @� U = 0.
As already mentioned,

� 0
0 := @� U ; � 0

� := U M � ; � 0
N +1 := U P

all belong to { and span { the generalized kernel ofA , while

	 0
� := e � ; � 2 f 1; : : : ; Ng; 	 0

N +1 := J � 1U

belong to { and span { the kernel ofA � . By de�nition of the mean valuesM � and P in
(19), those functions are such that

h	 0
� � � 0

� i = � �;� :

12



Therefore, we can add in a function	 0
0 such that (	 0

0; 	 0
1; : : : ; 	 0

N ; 	 0
N +1 ) be dual to the

basis (� 0
0; � 0

1; : : : ; � 0
N ; � 0

N +1 ) of the generalized kernel ofA , and span the generalized
kernel of A � . Recall that by our main assumption, 0 is an isolated eigenvalue ofA (0)

of algebraic multiplicity equal to N + 2. Therefore, since our structural assumptions
ensure thatA � is a relatively compact perturbation ofA (0) depending analytically on�
(see Appendix B.1), there exist an analytic mapping� 7! �( � ) where �( � ) is a spectral
projector for A � of �nite rank N + 2, and coincides with the orthogonal projector onto
span(� 0

0; � 0
1; : : : ; � 0

N ; � 0
N +1 ) at � = 0. By Kato's perturbation method [16, pp. 99-100],

we thus construct dual bases (� �
0; � �

1; : : : ; � �
N ; � �

N +1 ) and (	 �
0; 	 �

1; : : : ; 	 �
N ; 	 �

N +1 ) of,
respectively,R(�( � )) and R(�( � )� ), which depend analytically on� in a real neighborhood
of zero. The part ofA � on the �nite dimensional subspaceR(�( � )) is determined by the
matrix

D � :=
�
h	 �

� � A � � �
� i

�
0� �;� � N +1

:

Similarly as A � , this matrix has an expansion

D � = D (0) + i k� D (1) � k2� 2 D (2) + o(� 2) :

By using that

A (0) � 0
0 = 0 ; A (0) � 0

� = � cM � k � 0
0 ; 1 � � � N ; A (0) � 0

N +1 = � cP k � 0
0 ;

(A (0) )� 	 0
� = 0 ; 1 � � � N ; (A (0) )� 	 0

N +1 = 0 ;

and h	 0
0; � 0

0i = 1, we get that

D (0) =

0

B
@

0 � kcM 1 : : : � kcM N � kcP
... 0
0

1

C
A :

Using in addition Eq. (22), which equivalently reads

(23) A (0) U k + A (1) � 0
0 = � ck k � 0

0 ;

we see that for all� 2 f 1; : : : ; Ng,

h	 0
� � A (1) � 0

0i = 0 ;

hence

D (1) =

0

B
B
B
@

� � : : : �
0
... �
0

1

C
C
C
A

:

(Here above, we have also used that@� 	 �
� � A (0) � 0

0 = 0 for all � , and 	 0
� � A (0) @� � � = 0

for all � � 1.) Moreover, we claim that the upper-left entry ofD (1) is

h	 0
0 � A (1) � 0

0i = � k ck :

13



Indeed, this equality comes from (23), and the only other nontrivial term in the upper-left
entry of D (1) is

1
ik

h	 0
0 � A (0) @� (� �

0) j � =0 i :

Since (A (0) )� (	 0
0) belongs to span(	 0

1; : : : ; 	 0
N ; 	 0

N +1 ), that term will cancel out provided
that for all � 2 f 1; : : : ; N + 1g,

(24) h	 0
� � @� (� �

0) j � =0 i = 0 :

This we can arrange, up to a harmless modi�cation of ��0. Let us explain how. Using
that A � � 0

0 = 0, we see by expanding

�( � ) A � � �
0 = A � � �

0

that

�(0) ( A (1) � 0
0 +

1
ik

A (0) @� (� �
0) j � =0 ) = A (1) � 0

0 +
1
ik

A (0) @� (� �
0) j � =0 ;

or, using again (23) and that � 0
0 2 R(�(0)),

�(0) ( � A (0) U k +
1
ik

A (0) @� (� �
0) j � =0 ) = � A (0) U k +

1
ik

A (0) @� (� �
0) j � =0 :

This shows that

A (0) (@� (� �
0) j � =0 � ik U k) 2 R(�(0)) = ker(( A (0) )2) = ker(( A (0) )3) ;

hence
@� (� �

0) j � =0 � ik U k 2 R(�(0)) :

This means that there exist numbersz� such that

@� (� �
0) j � =0 � ik U k = z� � 0

� :

If we substitute
e�

�
0 := � �

0 � � z � � �
�

for � �
0, we thus have that

@� ( e�
�
0) j � =0 = ik U k :

(In order to keep duality we also substitute

e	 �
� = 	 �

� + �z � 	 �
0

for 	 �
� with � 2 f 1; : : : ; N + 1g.) Forgetting the tilda, this implies (24) for all � 2

f 1; : : : ; N + 1g because
h	 0

� � U k i = 0 :
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As to the other diagonal block inD (1) , it reduces to

(h	 0
� � A (1) � 0

� i )1� �;� � N +1

because (A (0) )� 	 0
� = 0 for � � 1. It remains to compute the �rst column, starting from

second row, inD (2) . At � -th row we �nd

1
ik

h	 0
� �A (1) @� (� �

0) j � =0 i +
1
ik

h@� (	 �
� ) j � =0 �(A (1) � 0

0 +
1
ik

A (0) @� (� �
0) j � =0 )i + h	 0

� �A (2) � 0
0i

= h	 0
� � A (1) U k i �

ck

i
h@� (	 �

� ) j � =0 � � 0
0i + h	 0

� � A (2) � 0
0i ;

where in fact the middle term is zero because of (24) and the fact that

h@� (	 �
� ) j � =0 � � 0

0i = � h 	 0
� � @� (� �

0) j � =0 i

by duality. Collecting together the results of the above computations, we get that

eD � :=

0

B
B
B
@

1
ik� h	 �

0 � A � � �
0i

�
h	 �

0 � A � � �
� i

�
1� � � N +1

�
1

(ik� )2 h	 �
� � A � � �

0i
�

1� � � N +1

�
1

ik� h	 �
� � A � � �

� i
�

1� �;� � N +1

1

C
C
C
A

tends to eD (0) :=
0

B
B
B
B
B
@

� k ck � kcM 1 : : : � kcM N � kcP

h(A (1) U k + A (2) @� U )1i h(A (1) U P )1i
... (h(A (1) U M � )� i )1� �;� � N

...
h(A (1) U k + A (2) @� U )N i h(A (1) U P )N i

h(J � 1U ) � (A (1) U k + A (2) @� U )i h(J � 1U ) � A (1) U M � i )1� � � N h(J � 1U ) � A (1) U P i

1

C
C
C
C
C
A

when � goes to zero. We are now going to check that the matrix of the modulated system
(21) linearized about (k; M = hU i ; P = h1

2 U � J � 1U i ) is nothing but eD (0) � cI N +2 . Since

D � =
1

ik�
�( � )� 1 eD � �( � )

with

�( � ) =

0

B
B
B
@

1 0 : : : 0
0
... 1

ik� I N +1

0

1

C
C
C
A

;

the existence of a non-real eigenvalue ofeD (0) � cI N +2 would imply the existence of an
eigenvalue ofD � bifurcating from zero into the right-half plane. Before linearizing it, let
write (21) in the simplest abstract form

(25)

8
><

>:

@T k = � @X (ck) ;

@T M = @X hJEH (k) [U ]i ;

@T P = @X hU � EH (k) [U ] + LH (k) [U ]i ;
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where
H (k)(U ; @� U ) := H (U ; k@� U ) :

In quasilinear form, (25) reads
(26)8
>>>><

>>>>:

@T k = � c @X k � k ck @X k � k cM � @X M � � k cP @X P ;

@T M = hJEH (k) [U ]i k @X k + hJEH (k) [U ]i M � @X M � + hJEH (k) [U ]i P @X P ;

@T P = hU � EH (k) [U ] + LH (k) [U ]i k @X k + hU � EH (k) [U ] + LH (k) [U ]i M � @X M �

+ hU � EH (k) [U ] + LH (k) [U ]i P @X P :

The right-hand side in the �rst row here above is indeed the �rst component of

( eD (0) � cI N +2 ) @X (k; M 1; : : : ; MN ; P)T :

It remains to identify the other rows. If a denotes any one of the variablesM � or P, we
have

hJEH (k) [U ]i a = hJHessH (k) [U ]U ai :

Recalling that
A (1) = J(A(0) + k@� A(1) )

and observing that
A(0) = HessH (k) + cJ � 1 ;

we thus �nd that
hJEH (k) [U ]i a = hA (1) U ai � chU i a :

Besides, we have

hJEH (k) [U ]i k = hJHessH (k) [U ]U k i + hJA (1) @� U i = hA (1) U k i + hA (2) @� U i

where we have also used that

A (2) = J(A(1) + k@� A(2) ) :

This shows that the second row in (25) equivalently reads in quasilinear form

@T M = � c @X M + hA (1) U k + A (2) @� U i @X k + hA (1) U M � i @X M � + hA (1) U P i @X P ;

in which the right-hand side clearly coincides with the� -th components,� 2 f 1; : : : ; Ng,
of

( eD (0) � cI N +2 ) @X (k; M 1; : : : ; MN ; P)T :
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In order to check the last component, we �rst compute that

hU �EH (k) [U ] + LH (k) [U ]i a = hU a � EH (k) [U ] + U � HessH (k) [U ]U ai

+
�

@2H
@U�;x @U�;x

(k@� U� ) (k@� U� )a

�

+
�

@2H
@U�;x @U�

(k@� U� ) (U� )a

�
�

�
@H
@U�

(U� )a

�

= hU � (J � 1A (1) U a)i � chU � J � 1U ai � h U � k@� (A(1) U a)i

+
�

@2H
@U�;x @U�;x

(k@� U� ) (k@� U� )a

�

+
�

@2H
@U�;x @U�

(k@� U� ) (U� )a

�
�

�
(U� )a � kD�

�
@H
@U�;x

��
;

where again all derivatives ofH are evaluated at (U ; k@� U ), and in fact the last four
terms cancel out by de�nition of A(1) . Therefore, using the symmetry ofJ, we obtain that

hU � EH (k) [U ] + LH (k) [U ]i M � = h(J � 1U ) � A (1) U M � i

and
hU � EH (k) [U ] + LH (k) [U ]i P = � c + h(J � 1U ) � A (1) U P i :

Concerning the derivativehU � EH (k) [U ] + LH (k) [U ]i k , the computation is similar, with
a few more terms:

hU � EH (k) [U ] + LH (k) [U ]i k = h(J � 1U ) � A (1) U k i + hU � A(1) @� U i

+
�

@2H
@U�;x @U�;x

(k@� U� ) (@� U� )
�

= h(J � 1U ) � (A (1) U k + A (2) @� U )i

after another integration by parts and by de�nition of A (2) (plus the symmetry ofJ).

2.3 Small amplitude wave trains

A natural question is whether at least small amplitude waves are stable. Our main purpose
here is to extend to our general, abstract framework, the necessary stability conditions that
were exhibited by Whitham [21, pp. 489-491,512-513], basically for scalar problems. Small
amplitude wave trains correspond to a near-linear situation. More precisely, solutions to
(5) involving only small oscillations (with bounded wavenumber) around a mean valueM
are expected to be well approximated by solutions to the linearized system

(27) @tU = J (HessH [M ]U ) ;
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with

(HessH [M ]U )� =
@2H

@U� @U�
U� +

@2H
@U� @U�;x

U�;x � Dx

�
@2H

@U�;x @U�
U� +

@2H
@U�;x @U�;x

U�;x

�
;

where all second order derivatives ofH are evaluated at (M ; 0).
Let us concentrate for a while onperiodic wave solutions to (5) of small amplitude,

that is of the form U (x; t ) = U (kx + !t ) with U being a 1-periodic function,hU i = M ,
and kU � M kL 1 small. If in addition we assume thatH is an even function ofU x (which
is always the case when the contribution ofU x to H comes from a kinetic energy), the
equations governingU

(28) @�

�
@H
@U�

(U ; k@� U ) � k@�

�
@H
@U�;x

(U ; k@� U )
�

+ c
@Q
@U�

(U )
�

= 0 ; � 2 f 1; : : : ; Ng;

with c = � !=k , are obviously symmetric under� 7! � � . In this case, we may assume
without loss of generality that U is an even function of� . Then, denoting by a =
2khU cos(2� �)ik an approximate amplitude of the wave, successive Lyapunov-Schmidt
reduction arguments show thatU can be expanded for small values ofa as

(29) U (k; M ; a; � ) = M + aU 1(k; M ; � ) + a2U 2(k; M ; � ) + a3U 3(k; M ; � ) + o(a3)

with hU m i = 0 for all m = 1; 2; 3, hU 1 � KU m i = 0 for m = 2; 3, hU 2 � KU 3i = 0 whatever
the N � N matrix K (in fact, sinceU is even,U 1(k; M ; � ) = 2 cos(2�� )hU 1(k; M ; �) cos(2� �)i ,
and U 2(k; M ; � ) = 2 cos(4�� )hU 2(k; M ; �) cos(4� �)i ), and the frequency! can also be ex-
panded as

(30) ! (k; M ; a) = ! 0(k; M ) + a2! 2(k; M ) + o(a2);

where ! 0(k; M ) is the frequency of periodic wave solutions to (27), determined by the
(linear) dispersion relation

det(kA (2i�k ) � ! 0(k; M )J � 1) = 0 ;

(A (2i�k )) �� :=
@2H

@U� @U�
+ i (2�k )

�
@2H

@U� @U�;x
�

@2H
@U�;x @U�

�
+ (2 �k )2 @2H

@U�;x @U�;x
;

all derivatives of H being evaluated at (M ; 0). Furthermore, ! 2(k; M ) can be expressed
in terms of mean values involvingU 1 and U 2 as

(31) ! 2(k; M ) := � k
h@� U 1 � @� (� 3H (k) [M ](U 1; U 2) + 1

6 � 4H (k) [M ](U 1; U 1; U 1)) i
h@� U 1 � J � 1@� U 1i

;

where� 3H (k) and � 4H (k) denote respectively the third and fourth order variational deriva-
tives of H (k) : U 7! H (U ; k@� U ) (up to this point, we have preferred the notationEH
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for the �rst derivative � H , and HessH for the second order one� 2H ). The actual deriva-
tion of (31) follows the lines of computations made by Whitham in [21, pp. 472{475]2,
�rst for KdV and then for water waves in arbitrary depth, except that here we have no
explicit formula for ! 0. The reader may check that (31) is consistent with values found by
Whitham, namely 2� ! 2(k; M ) = � 3c2

0=[32 (2�k )] for (gKdV) with f (v) = c0( 1
2v2 + 1

4v3)
(see [21, pp. 463,473]), and also 2� ! 2(k; M ) = � 3� (2�k ) + 24� 2M 2=(2�k ) for (gKdV)
with f (v) = 1

2v2 + �v 4, the zero-mean periodic solutions of which are basically governed
by the same equation as periodic solutions to the Klein-Gordon equation considered in
[21, pp. 486{487].

Derivation of (31). By plugging (29) and (30) in (28), we get successively, by increasing
order in powers ofa,

(kA (k@� ) � ! 0(k; M )J � 1) @� U 1 = 0 ;

(kA (k@� ) � ! 0(k; M )J � 1) @� U 2 = @�
�

1
2 k � 3H (k) [M ](U 1; U 1)

�
;

(kA (k@� ) � ! 0(k; M )J � 1) @� U 3 = @�
�
k � 3H (k) [M ](U 1; U 2) + 1

6 k � 4H (k) [M ](U 1; U 1; U 1))
�

+ ! 2(k; M ) J � 1 @� U 1 :

By taking the inner product of the last equation with @� U 1, we see that the left hand
side vanishes because of the �rst equation and of the self-adjointness of the operator
(kA (k@� ) � ! 0(k; M )J � 1), hence (31). Note that for the very same reason, one can draw
information on ! 0;k (k; M ) from the �rst equation. Indeed, by di�erentiating it with respect
to k and taking the inner product with @� U 1, the term involving @� U 1;k vanishes, and we
�nd that

(32) ! 0;k (k; M ) =
h@� U 1 � (kA (k@� ))k @� U 1i

h@� U 1 � J � 1@� U 1i
:

More explicitly, the numerator here above reduces to

hr 2
U H (M ; 0)(@� U 1; @� U 1)i � 3k2 hr 2

U x
H (M ; 0)(@� U 1; @3

� U 1)i :

Returning to a more general small amplitude modulated wave train, the previous
remarks show that we can expand its lower order termU 0, which we merely denote byU
in what follows, as

U (T; X; � ) = hU i (T; X ) + a(T; X ) U 1(k(T; X ); hU i (T; X ); � )
+ a(T; X )2 U 2(k(T; X ); hU i (T; X ); � )
+ a(T; X )3 U 3(k(T; X ); hU i (T; X ); � ) + o(a(T; X )3) :

Our aim is to show that, for small a, the modulated system (21) associated withU
decouples into the lower order system

(33) @T hU i = J @X (r U H (hU i ; 0)) ;

2We warn the reader that we have taken the opposite sign for! compared to the one chosen by
Whitham and normalized periods of pro�les to one instead of 2� .
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and the 2� 2 system (pointed out in [21, p. 490] whenhU i � M )
(34)(

@T k � ! 0;k (k; hU i ) @X k � ! 2(k; hU i ) @X (a2) = ! 0;M (k; hU i ) @X hU i ;

@T (a2) � ! 0;kk (k; hU i )a2 @X k � ! 0;k (k; hU i )@X (a2) = O(a2) @X hU i :

As a consequence, a necessary condition for (21) to be hyperbolic in the small ampli-
tude limit is that both (33) and the lef-hand side of (34) with frozen mean be hyper-
bolic. Regarding the latter, this requires that ! 2(k; hU i )! 0;kk (k; hU i ) be positive, in
which case the characteristic velocities of (34) areO(a) perturbations (� ! 0;k (k; hU i ) �
a
p

! 2(k; hU i )! 0;kk (k; hU i )) of � ! 0;k (k; hU i ). As to the former system (33), it is for in-
stance nothing but the �rst order conservation law

(35) @thvi + @X p(hvi ) = 0

if the original equation is (gKdV), that is Eq. (9). Of course (35) is always hyperbolic, as
any (real) �rst order conservation law. However, the hyperbolicity of the reduced system
(33) is not automatic in general. In particular, when we start from the Euler{Korteweg
system, we receive as (33) the Euler system. Therefore, a necessary condition for the
modulated system to be hyperbolic in the small amplitude limit is that the mean value
of the wave train be a stable state of the Euler system. According to Theorem 1, this
implies that small amplitude periodic solutions whose mean value is an unstable state of
the Euler system are themselves (spectrally) unstable.

Derivation of (33) and (34). There is not much to do about the �rst equation in
(34). Indeed, the �rst equation @T k + @X (ck) = 0 in (21) together with the fact that
ck = � ! 0(k; hU i ) � a2! 2(k; hU i ) + o(a2) yield

@T k � (! 0;k + a2 ! 2;k )@X k � ! 2 @X (a2) = ( ! 0;M + a2 ! 2;M )@X hU i + o(a2) ;

and the terms a2 ! 2;k and a2 ! 2;M are negligible compared to theO(a) perturbation of
� ! 0;k we are expecting (this was already pointed out in [21, p. 490]). So the main points
consist in showing that the middle equations@T hU i = J @X hGi in (21) do reduce to (33)
when a goes to zero, and that together with the last equation@T hQi = @X hSi in (21)
they simplify into an equation for a2 whose principal part amounts to

@T (a2) � @X (! 0;k (k; hU i )a2) = O(a2) @X hU i :

Let us start by expandingG in powers ofa. Note that we shall need an expansion not
only for hGi but also for hU � Gi , which arises inS. Recall indeed that

G = � H (k) [U ] ; S = U � G � H (U ; k@� U ) + ( k@� U� )
@H
@U�;x

(U ; k@� U ) :

We thus see that

G = � H (k) [hU i ] + a � 2H (k) [hU i ](U 1) + a2
�
� 2H (k) [hU i ](U 2) + 1

2 � 3H (k) [hU i ](U 1; U 1)
�

+ o(a2) ;
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with
� H (k) [hU i ] = r U H (hU i ; 0) ;

and
h� 2H (k) [hU i ](U 1)i = 0 ; h� 2H (k) [hU i ](U 1)i = 0 ;

since � 2H (k) [hU i ] is a constant-coe�cient di�erential operator, and U 1, U 2, as well of
course as their derivatives, have zero mean values. Therefore, it just remains

hGi = r U H (hU i ; 0) + 1
2 a2 h� 3H (k) [hU i ](U 1; U 1)i + o(a2) :

By neglecting all the O(a2) in @T hU i = J @X hGi , we thus receive (33). Let us turn to
the expansions ofhQi and hSi . The expansion ofhQi is readily seen to be given by

hQi = 1
2hU i � J � 1hU i + 1

2 a2 hU 1 � J � 1U 1i + o(a2) ;

and we also �nd that

hU � Gi = hU i � hGi + a2 hU 1 � � 2H (k) [hU i ](U 1)i + o(a2) :

(We have used again thatU 1 and U 2 have zero mean values.) Furthermore, we have

hH (k) [U ]i = H (k) [hU i ] + 1
2 a2 h� 2H (k) [hU i ](U 1; U 1)i + o(a2) ;

and �nally

(k@� U� )
@H
@U�;x

(U ; k@� U ) = a(k@� U1� )
@H
@U�;x

(hU i ; 0) + a2 (k@� U2� )
@H
@U�;x

(hU i ; 0)

+ a2 (k@� U1� )
�

U1�
@2H

@U�;x @U�
(hU i ; 0) + ( k@� U1� )

@2H
@U�;x @U�;x

(hU i ; 0)
�

+ o(a2) ;

hence
�

(k@� U� )
@H
@U�;x

(U ; k@� U )
�

= a2 k2 hr 2
U x

H (hU i ; 0)(@� U 1; @� U 1)i + o(a2) :

Now, taking the inner product with hU i of J � 1 @T hU i = @X hGi and subtracting to
@T hQi = @X hSi we see that

@T
�

1
2 a2 hU 1 � J � 1U 1i

�
= @X

�
hU � Gi � h H (k) [U ]i +

�
(k@� U� )

@H
@U�;x

(U ; k@� U )
��

� h U i � @X hGi + o(a2) :

As expected, the zeroth order terms in the right-hand side cancel out, and we receive after
several simplifying operations

@T
�
a2 hU 1 � J � 1U 1i

�
= @X

�
a2hr 2

U H (hU i ; 0)(U 1; U 1)

+ 3 k2 r 2
U x

H (hU i ; 0)(@� U 1; @� U 1)i
�

+ a2 h� 3H (k) [hU i ](U 1; U 1)i @X hU i + o(a2) :

21



In order to conclude, let us recall (32) hence, since the dependency ofU 1 is a cosine
function,

! 0;k (k; M ) =
hr 2

U H (hU i ; 0)(U 1; U 1) + 3 k2 r 2
U x

H (hU i ; 0)(@� U 1; @� U 1)i
h@� U 1 � J � 1@� U 1i

:

Therefore, the equation above reads

@T
�
a2 hU 1 � J � 1U 1i

�
+ @X

�
! 0;k (k; M ) a2hU 1 � J � 1U 1i

�
= O(a2) @X hU i + o(a2) :

The factor hU 1 � J � 1U 1i can now be eliminated by using the equation onk.

3 Application to the Euler{Korteweg system

In this section, we concentrate on the Euler{Korteweg equations, (1) in Eulerian co-
ordinates, and (2) in mass Lagrangian coordinates. We derive Whitham's modulation
equations for both systems, and show that away from vacuum, the modulated systems
are equivalent through a mass Lagrangian change of coordinates. Thus, it is su�cient to
check the hyperbolicity of modulation equations for either one of these systems in order
to determine whether our necessary condition for the spectral stability of periodic waves
under small wave number perturbations is satis�ed.

3.1 Periodic traveling waves

Periodic traveling wave solutions to (1) and (2) are respectively of the form (�; u ) =
(R; U)(x � �t ) and (v; u) = ( V; W)(y + jt ), with a one-to-one correspondance between the
two frameworks encoded by

R(� )V(Z (� )) = 1 ; U(� ) = W(Z(� )) ;
dZ
d�

= R =
1

V(Z)
:

Up to translations, these periodic traveling waves generically arise as four-parameter fam-
ilies. Natural parameters are

� their speed, that is� in Eulerian coordinates, and� j in Lagrangian coordinates,

� a �rst constant of integration, which turns out to be j in Eulerian coordinates, and
� in Lagrangian coordinates.

� two other constants of integration/Lagrange multipliers, which we denote by� and
� , in the pro�le equations.

To be more precise, the pro�le equations read

(36)
�

R ( U � � ) � j ;
(L� L )(R; R� ) � � �

�
W � j V � � ;
(Lv`)(V; V� ) = � � ;
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where the LagrangiansL and ` are de�ned by

(37) L : = E �
j 2

2�
� �� ; ` := �e�

j 2 v2

2
� � v ;

and

L� L := � x
@L
@�x

� L ; Lv` := vy
@`
@vy

� ` ;

are (obvious) �rst integrals of the Euler{Lagrange equationsE� L = 0 and Ev` = 0
respectively. In addition, there is a simple relationship between the mean values of Eule-
rian pro�les and of Lagrangian pro�les. Indeed, if � is the period of a traveling wave in
Eulerian coordinates, the period of its counterpart in Lagrangian coordinates isZ (�) (if
Z is chosen so thatZ (0) = 0), and we have

hRi :=
1
�

Z �

0
R(� ) d� =

Z (�)
�

; hV i :=
1

Z(�)

Z Z (�)

0
V(� ) d� =

�
Z (�)

;

hUi :=
1
�

Z �

0
U(� ) d� =

Z (�)
�

hV Wi ; hWi :=
1

Z(�)

Z Z (�)

0
W(� ) d� =

�
Z (�)

hR Ui ;

hence the remarkable identities

hRi =
1

hVi
; hUi =

hV Wi
hVi

; hWi =
hR Ui
hRi

:

Note that these relations are of course compatible with the pro�le equationsR ( U � � ) �
j , W � j V � � . We warn the reader that for convenience we denote by the same brackets
h�i the mean values with respect to� and those with respect to� . This should not be
too much confusing since we use di�erent notations for the Eulerian and the Lagrangian
dependent variables.

3.2 Whitham's modulated equations

As done previously in the abstract case, we look for solutions of (1) and (2) having
asymptotic expansions of the form

(�; u )(t; x ) = ( � 0; u0)("t; "x; �( "t; "x )=") + " (� 1; u1)("t; "x; �( "t; "x )="; " ) + o(") ;

(v; u)(s; y) = ( v0; w0)("s; "y; � ("s; "y )=") + " (v1; w1)("s; "y; � ("s; "y )="; " ) + o(") ;

where the pro�les (� 0; u0), ( � 1; u1), (v0; w0), and (v1; w1) are 1-periodic in their third
variable � . Denoting by T, X , S, and Y the rescaled variables ("t , "x , "s, and "y), we
introduce the further notations

K := � X ; 
 := � T ; � := �


K

;
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k := � Y ; ! := � S ; j :=
!
k

:

The existence of smooth phases � and� requires the standard compatibility conditions

(38) @T K + @X (�K ) = 0 ; @Sk � @Y (jk ) = 0 :

We obtain equations for the leading pro�les in both Eulerian and Lagrangian coordinates
by plugging the asymptotic expansions in (1) and (2), using that

@t = "@T + 
 @� ; @x = "@X + K @� ; @s = "@S + ! @� ; @y = "@Y + k @� ;

and retaining only the leading order terms. As expected, we recover the traveling pro�le
equations (36)-(37), up to the rescaling that makes their period equal to one. In Eulerian
coordinates, this gives

(39) @� (� 0 u0) � � @� � 0 = 0 ; (u0 � � ) @� u0 + @� g0 = 0 ;

where

g0 :=
@E
@�

(� 0; K@� � 0) � K D�

�
@E
@�x

(� 0; K@� � 0)
�

;

while in Lagrangian coordinates,

(40) @� w0 � j @� v0 = 0 ; j @� w0 + @� p0 = 0 ;

where

p0 := �
@�e
@v

(v0; k@� v0) + k D�

�
@�e
@vy

(v0; k@� v0)
�

:

The next order leads to Whitham's modulated equations. Indeed, collecting all the
terms of order one in (1) and (2) we get
(41)(

� � K @� � 1 + K @� (� 0 u1 + � 1 u0) + @T � 0 + @X (� 0u0) = 0 ;

� � K @� u1 + K @� (u0 u1) + K @� (A0� 1 + B0) + @T u0 + u0@X u0 + @X g0 = 0 ;

(42)

(
j k @� v1 � k@� w1 + @Sv0 � @Y w0 = 0 ;

j k @� w1 � k@� (a0 v1 + b0) + @Su0 + @Y p0 = 0 ;

where

A0 := � K D� K 0K D� + � 0 ; K 0 :=
@2E
@�2x

(� 0; K@� � 0) ;

� 0 :=
@2E
@�2

(� 0; K@� � 0) � K D�

�
@2E

@�@�x
(� 0; K@� � 0)

�
;

B0 :=
@2E

@�@�x
(� 0; K@� � 0) @X � 0 � @X

�
@E
@�x

(� 0; K@� � 0)
�

� K D� (K 0 @X � 0) ;
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a0 := � kD� � 0kD� + 
 0 ; � 0 :=
@2�e
@v2y

(v0; k@� v0) ;


 0 :=
@2�e
@v2

(v0; k@� v0) � k D�

�
@2�e

@v@vy
(v0; k@� v0)

�
;

b0 :=
@2�e

@v@vy
(v0; k@� v0) @Y v0 � @Y

�
@�e
@vy

(v0; k@� v0)
�

� k D� (� 0 @Y v0) :

Integrating (41) and (42) with respect to� over [0; 1], we get the modulated equations

(43)

(
@T h� 0i + @X h� 0u0i = 0 ;

@T hu0i + @X h1
2u2

0i + @X hg0i = 0 ;

(44)

(
@Shv0i � @Y hw0i = 0 ;

@Shw0i + @Y hp0i = 0 :

(Observe that the termsB0 and b0, the only ones involving cross derivatives of the leading
pro�les, play no role at this level.) Now, taking into account the compatibility condi-
tions in (38), we only need to �nd a fourth averaged equation to have a complete set of
modulated equations. We can proceed in two ways.

As mentioned in the abstract case, the fastest way consists in averaging additional
conservation laws satis�ed (at least formally) by solutions of (1) and (2). Two possible
choices are the conservation law of total energy (associated with invariance with respect
to time translations, via Noether's theorem), and the (local) conservation law ofBen-
jamin 's impulse (associated with invariance with respect to spatial translations). These
conservation laws read

(45) @t ( 1
2 � u 2 + E) + @x

�
1
2 � u 3 + � u E� E + @x (� u )

@E
@�x

�
= 0 ;

(46) @t (� u ) + @x
�
� u 2 + � E� E + L� E

�
= 0 :

in the Eulerian framework, and

(47) @s( 1
2 u2 + �e) � @y

�
u Ev �e+ ( @yu)

@�e
@vy

�
= 0 ;

(48) @s(v u) � @y
�

1
2 u2 + v Ev �e+ Lv �e

�
= 0 :

in the Lagrangian framework. Upon plugging the asymptotic expansions and averaging
we get

(49) @T h1
2 � 0 u2

0 + E0i + @X

�
1
2 � 0 u3

0 + � 0 u0 g0 + K @� (� 0 u0)
@E
@�x

(� 0; K@� � 0)
�

= 0 ;
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(50) @T h� 0 u0i + @X

�
� 0 u2

0 + � 0 g0 + K (@� � 0)
@E
@�x

(� 0; K@� � 0) � E(� 0; K@� � 0)
�

= 0

in the Eulerian framework, and

(51) @Sh1
2 w2

0 + �e0i + @Y

�
w0 p0 � k (@� w0)

@�e
@vy

(v0; k@� v0)
�

= 0 ;

(52) @Shv0 w0i + @Y

�
� 1

2 w2
0 + v0 p0 + �e(v0; k@� v0) � k (@� v0)

@�e
@vy

(v0; k@� v0)
�

= 0

in the Lagrangian one. For simplicity, we have denoted byE0 and �e0 the energies evaluated
at (� 0; K@� � 0) and (v0; k@� v0) respectively. At �rst glance it may look like we have �ve
modulated equations in each framework, namely the compatibility condition in (38), the
two equations in either (43) or (44), as well as (49)-(50) or (51)-(52). In fact, the pro�le
equations in (39) imply that the averaged energy equation (49) is a consequence of (38)
and (43) (50), and similarly (40)-(44)-(52) imply (51).

A more indirect way to derive a fourth modulated equation consists in taking the inner
product of (41) and (42) with (u0; � 0) and (w0; v0) respectively. Accordingly with the
abstract case considered in Section 2, those choices are dictated by Benjamin's impulses
�u and vu, of which the variational derivatives are respectively (u; � )t and (u; v)t , see
Appendix A for more details.

To summarize, we have the following.

Proposition 1. Whitham's modulated equations associated with(1) and (2) read, respec-
tively,

� in the Eulerian framework

(53)

8
>>>>>><

>>>>>>:

@T K + @X (�K ) = 0 ;

@T h� 0i + @X h� 0u0i = 0 ;

@T hu0i + @X h1
2u2

0i + @X hg0i = 0 ;

@T h� 0 u0i + @X

�
� 0 u2

0 + � 0 g0 + K (@� � 0)
@E
@�x

(� 0; K@� � 0) � E0

�
= 0 ;

which is endowed with the additional conservation law
(54)

@T h1
2 � 0 u2

0 + E0i + @X

�
1
2 � 0 u3

0 + � 0 u0 g0 + K @� (� 0 u0)
@E
@�x

(� 0; K@� � 0)
�

= 0 ;

� and in the Lagrangian framework

(55)

8
>>>>>><

>>>>>>:

@Sk � @Y (jk ) = 0 ;

@Shv0i � @Y hw0i = 0 ;

@Shw0i + @Y hp0i = 0 ;

@Shv0 w0i + @Y

�
� 1

2 w2
0 + v0 p0 + �e0 � k (@� v0)

@�e
@vy

(v0; k@� v0)
�

= 0 ;
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which is endowed with the additional conservation law

(56) @Sh1
2 w2

0 + �e0i + @Y

�
w0 p0 � k (@� w0)

@�e
@vy

(v0; k@� v0)
�

= 0 :

Now, we may go further and make the link between the Eulerian (53) and the La-
grangian (55) modulated equations. Interestingly, even though it is all but a surprise,
(55) can be viewed as a Lagrangian reformulation of (53). More precisely, we are going
to show the following.

Theorem 2. Away from vacuum, there is a mass Lagrangian system of coordinates chang-
ing System(53) into (55). In particular, these systems are simultaneously hyperbolic. A
su�cient condition for the hyperbolicity of (53) and (55) is that

e := h�e0i + 1
2 hw2

0i � 1
2 hw0i 2

be a strictly convex function of(v; k; � =k), or equivalently that

E := h� 0i e = hE0i +
1
2

h� 0u2
0i �

1
2

h� 0u0i 2

h� 0i

be a strictly convex function of(%; K; D=K), where

v := hv0i ; � := hv0w0i � h v0i hw0i ;

%:= h� 0i ; D := h� 0ihu0i � h � 0u0i :

Proof. Let us recall that (R; U) is a 1=K -periodic solution of (64) if and only if (V; W) is
a 1=k-periodic solution of (65), with

R(� )V(Z (� )) = 1 ; U(� ) = W(Z(� )) ;
dZ
d�

= R =
1

V(Z)
;

1
k

= Z
� 1

K

�
:

This implies in particular that

(57) h� 0i =
K
k

; hv0i =
k
K

; hv0i =
1

h� 0i
; hw0i =

h� 0u0i
h� 0i

:

These observations enable us to make the relationship between (53) and (55) in the same
way as it is usually done between the 
uid equations in Eulerian coordinates and those
in mass Lagrangian coordinates. As a matter of fact, the second equation in (53) states
that h� 0i dX � h � 0u0i dT is a closed di�erential form, and thus an exact form in a simply
connected domain. We thus introduce the `rescaled mass Lagrangian coordinate'Y de�ned
(up to a constant) by

dY = h� 0i dX � h � 0u0i dT :

Setting S = T, this equivalently reads thanks to the last two relations in (57),

dX = hv0i dY + hw0i dS ;
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hence the second equation in (55). We can proceed similarly with the other equations.
The �rst one in (53) states that

K dX � �K dT = hv0i K dY + K (hw0i � � ) dS

is an exact di�erential form. Using the second relation in (57) and thathw0i � � = j hv0i ,
we get that kdY + jk dS is exact, hence the �rst equation in (55). As regards the other
equations, the third one in (53) gives the fourth one in (55), and the fourth one in (53) gives
the third one in (55) (this interplay between momentum and velocity equations is well-
known for standard 
uids motion, in which the conservation law of the momentum�u in
Eulerian coordinates is associated with a conservation law for the velocity in Lagrangian
coordinates, the other way round going from a conservation law forvu in Lagrangian
coordinates to a conservation law foru in Eulerian coordinates being less classical but
still true, as far as smooth solutions are concerned). In order to justify the correspondence,
it is convenient to rewrite these equations in a simpler way. This is done by using the
pro�le equations, which give

� 0(u0 � � ) = j ; g0 = � �
j 2

2� 2
0

; K (@� � 0)
@E
@�x

(� 0; K@� � 0) � E0 = �
j 2

2� 0
� � � 0 � � ;

w0 � jv 0 = � ; p 0 = � � � j 2 v0 ; �e0 � k (@� v0)
@�e
@vy

(v0; k@� v0) = 1
2 j 2v2

0 + � v 0 + � ;

so that the last two equations in (53) and (55) respectively read

(58)

8
><

>:

@T hu0i + @X
�
� � 1

2 � 2 + � hu0i
�

= 0 ;

@T h� 0 u0i + @X

�
h� 0 u2

0i � � � j 2

�
1
� 0

��
= 0 ;

(59)

(
@Shw0i � @Y (� + j 2 hv0i ) = 0 ;

@Shv0 w0i + @Y
�
� � 1

2 � 2 � j � hv0i � j 2 hv2
0i

�
= 0 :

The �rst equation in (58) means that

hu0i dX +
�

1
2 � 2 � � � � hu0i

�
dT = hv0w0i dY +

�
1
2 � 2 � � + ( hw0i � � )

hv0w0i
hv0i

�
dS

= hv0w0i dY +
�

1
2 � 2 � � + j � hv0i + j 2 hv2

0i
�

dS

is exact, which is equivalent to the second conservation law in (59). The second equation
in (58) means that

h� 0 u0i dX +
�

�


� 0 u2

0

�
+ � + j 2

�
1
� 0

��
dT =
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hw0i dY +
�

�


� 0 u2

0

�
+ � + j 2

�
1
� 0

��
dS = hw0i dY + ( � + j 2 hv0i 2) dS

is exact, which is equivalent to the �rst conservation law in (58). This �nishes to prove
the equivalence between the two modulated systems (53) and (55) (as long ash� 0i and
hv0i do not vanish). As a consequence, these two �rst order systems of conservation laws
are simultaneously hyperbolic. A su�cient condition for the hyperbolicity of (55) has
been pointed out by Gavrilyuk and Serre [12] in terms of the average energy

e := h�e0i + 1
2 hw2

0i � 1
2 hw0i 2 ;

which satis�es the generalizedGibbs relation

(60) de = � pdv + � d k + j d� ;

with p := hp0i , v := hv0i , and

(61) � :=
�

(@� v0)
@�e
@vy

(v0; k@� v0)
�

; � := hv0w0i � h v0i hw0i :

Namely, it is shown in [12] (alternatively, the reader might take a look at [3]) that, if e
is a strictly convex function of (v; k; � =k) then (55) is Godunov-symmetrizable and thus
hyperbolic. We may note in addition that, by a standard argument on convex functions
(viewed as supremum envelopes of a�ne functions), the convexity of e as a function of
(v; k; � =k) is equivalent to the convexity ofh� 0i e as a function of (h� 0i ; kh� 0i ; h� 0i � =k).
An easy calculation (using relations in (57) and similar ones) shows that

h� 0i e = hE0i +
1
2

h� 0u2
0i �

1
2

h� 0u0i 2

h� 0i
=: E ; kh� 0i = K ; h� 0i

�
k

=
1
K

(h� 0ihu0i�h � 0u0i ) :

This shows that a su�cient condition for the hyperbolicity of (53) is the strict convexity
of E as a function of (%; K; D=K) where %:= h� 0i , D := h� 0ihu0i � h � 0u0i . Of course our
generalised Gibbs relation has its counterpart in terms of E. It reads

(62) dE = gd%+ � d K +
j
%

dD ;

where

(63) g := hg0i +
j 2

2

��
1
� 2

0

�
�

1
%2

�
�

j D
%2

:

Equation (62) can be derived from (60) as follows. Using that

E = %e; v = 1=% ; K= k% ; D = %2� ;

we readily get that

dE =
�

e + p v �
K �

%
� 2

j D
%2

�
d%+ � d K +

j
%

dD :
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It just remains to express the factor of d%in terms of `Eulerian' mean values. Indeed,
we can see the `temperature' � either as a `Lagrangian' mean value (by de�nition, see
Eq. (61)) or as an `Eulerian' one: it turns out that

� =
�

(@� � 0)
@E
@�x

(� 0; K@� � 0)
�

:

As a matter fact, by the Eulerian pro�le equation we have

K
�

(@� � 0)
@E
@�x

(� 0; K@� � 0)
�

=
�

E0 �
j 2

2� 0
� � � 0 � �

�
= %

�
�e0 �

j 2v2
0

2
� � � � v 0

�

by the relationship between Eulerian mean values and Lagrangian mean values we already
used several times, hence by the Lagrangian pro�le equation

K
�

(@� � 0)
@E
@�x

(� 0; K@� � 0)
�

= % k
�

(@� v0)
@�e
@vy

(v0; k@� v0)
�

= K � :

We can now work out the factor of d%by observing that

j � = hw0j (v0 � v)i = hw0(w0 � h w0i )i = hw2
0i � h w0i 2 ;

so that by de�nition

e = h�e0i +
j �
2

:

In addition we have that
p v = hp0 v0i + j �

since

hp0 v0i = h(p � j 2 (v0 � v)) v0i = p v � h j 2(v0 � v)2i = p v � h (w0 �h w0i )2i = p v � j � :

Therefore,

e + p v = h�e0 + p0 v0i +
3j �

2
;

and by our usual trick,

h�e0 + p0 v0i =
1
%

hE0 + p0i ;

wherep0 has to be expressed in Eulerian coordinates in the right-hand side. This amounts
to writing

hE0 + p0i =
�

E0 � � �
j 2

� 0

�
= K � �

j 2

2

�
1
� 0

�
+ � % = K � �

j 2

2

�
1
� 0

�
+ %

�
g0 +

j 2

2� 2
0

�

using once more the pro�le equations. So we have

e + p v �
K �

%
= hg0i +

j 2

2

��
1
� 2

0

�
�

1
%

�
1
� 0

��
+

3j �
2

;
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and noting that
j 2

%

�
1
� 0

�
= hj 2v2

0i = j 2 v2 + j � ;

we eventually obtain the claimed formula (62) with g de�ned by (63).

Still, it is not obvious at this stage that (53) or (55) are really evolution systems in
closed form. We shall observe on numerical experiments that evolutionarity may indeed
fail. For the moment, let us just note that if evolutionarity happens to fail, it does so
`simultaneously' for (53) and (55). As a matter of fact, at �xed (T; X ), we know that

(� 0; u0)(T; X; � ) = ( R; U)(T; X; �=K (T; X ))

where the pro�le (R; U) is a 1=K -periodic solution to

(64)

8
><

>:

R ( U � � ) � j ;

R�
@E
@�x

(R; R� ) � E(R; R� ) +
j 2

2R
+ � R � � � :

Here above, the sign� means equalities for functions of (T; X ) only. The quadruplet
(j; �; �; � ) is a natural set of parameters in (64), which we expect to determine properly
the wave numberK as well as the 1=K -periodic solution (R; U) to (64), up to translations,
hence also all mean values involved in (53) (54). Similarly,

(v0; w0)(S; Y; �) = ( V; W)(S; Y; �=k(S; Y))

and all mean values involved in (55) (56) are expected to be fully determined by (j; �; �; � )
through the pro�le equations

(65)

8
><

>:

W � j V � � ;

V�
@�e
@vy

(V; V� ) � �e(V; V� ) +
j 2V 2

2
+ � V � � � :

By the one-to-one correspondence we have pointed out between Eulerian and Lagrangian
periodic orbits, the mapping (j; �; �; � ) 7! (k; hV i ; hWi ; hV Wi ) will be locally invertible
if and only if ( j; �; �; � ) 7! (K; hRi ; hUi ; hRUi ) is so. Again, this is not exactly always the
case, as we shall see on speci�c examples in the next section.

4 Nature of modulated equations in practice

Our purpose here is to investigate the hyperbolicity of Whitham's modulated equations
for the Euler{Korteweg system. First of all, let us point out that the parameter� does
not play any role in that matter. This is due to Galilean invariance of the Euler{Korteweg
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system, unsurprisingly. To be more precise, let us rewrite the modulated equations in nat-
ural coordinates from the `thermodynamical' point of view. In the Lagrangian framework
they read

(66)

8
>>>><

>>>>:

@Sk � @Y (jk ) = 0 ;

@Sv � @Y w = 0 ;

@Sw + @Y p = 0 ;

@S(� + vw) + @Y
�
e + vp � k� � 1

2w2 � 2j �
�

= 0 ;

together with the generalized Gibbs relation (60) de =� pdv + � d k + j d�. We easily
check that (66) is invariant by translations of the form

(S; Y; k;v; w; �) 7! (S; Y; k;v; w � � ; �)

for any (constant) velocity � . Substituting � + j v for w, we thus see that the equations
in (66) are unchanged if� is replaced by� � � . Therefore, the eigenvalues of the lin-
earized equations about a reference `state' (k; v; � ; � ), and those about the translated
one (k; v; 0; � ) coincide. A similar argument works in the Eulerian framework too, see
Appendix C for more details.

From now on, we concentrate on the Euler{Korteweg system in mass Lagrangian
coordinates (2), with an energy of the form (4). We recall from (65) that a periodic
traveling wave solution (v; u) = ( V; W)(y + jt ) to (2)-(4) is characterized by a periodic
pro�le ( V; W) that must be solution of

(67) W � jV = �; 1
2 � (V)V 2

� + 1
2 j 2V 2 + �V � f (V) = � �;

where� , � , and � are constant of integrations.

Remark 1. The phase portrait of the ODE onV in (67) does not depend on the speci�c
capillarity function v 7! � (v), provided that it stays positive. In fact, up to a rescaling in
� , that ODE reduces to

1
2

_V 2 = f (V) � 1
2 j 2V 2 � � V � � :

Remarkably enough, this equation is also the integrated pro�le equation for traveling wave
solutions of speed� j 2 to the generalized Korteweg{de Vriesequation (gKdV)

@tv + @xp(v) = � @3
x v :

(This relationship between the traveling waves of the Euler{Korteweg equations in La-
grangian coordinates and those of the generalized Korteweg{de Vries equation has been
known for a long time, and is investigated in more details for instance in [13].) However,
when one turns to speci�c examples forp in the generalized Korteweg{de Vries equation,
it is most often to consider power lawsp = v
 . By contrast, we consider here laws that
go to in�nity at zero, or more generally at someco-volumeb, and to zero at in�nity.
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Using in particular the �rst equation in (67) above to substitute � + jV for W in (55),
and reformulating the last two equations in (55) as in (59), we can write the modulated
equations as

@Sk � @Y (jk ) = 0 ;(68)

@ShVi � @Y (j hV i + � ) = 0 ;(69)

@S(j hV i + � ) � @Y (� + j 2hVi ) = 0 ;(70)

@S(� hV i + j hV 2i ) � @Y ( 1
2 � 2 + j� hV i + j 2hV 2i � � ) = 0 :(71)

This is just an alternative formulation of (66) in terms of the `natural' parameters
(�; j; �; � ). Our main purpose is to investigate the hyperbolicity of (68-71), which by The-
orem 1 is a necessary condition for stability of the periodic wave, provided that nearby
periodic waves be parametrized by (k; hV i ; j hV i + �; � hV i + j hV 2i ). We can hardly check
these properties - evolutionarity and hyperbolicity - analytically, since neither the wave
number k nor the wave pro�le V is known explicitly in terms of (�; j; �; � ). However, it
is not di�cult to check them numerically. To make numerical computations more trans-
parent, we are going to change (�; � ) for more convenient parameters, under suitable
assumptions on the pressure lawv 7! p(v) = � f 0(v). In this respect, we shall start with
shallow water type pressure laws, and turn to the more complicated, Van der Waals type
pressure laws afterward. We shall see that the form of the capillarity� (v) also plays a
role - if a rescaling along orbits does not change the phase portrait, it does change mean
values. Our minimal assumption will be that� : (b;+ 1 ) ! (0; + 1 ) is a smooth function
for some nonnegative `co-volume'b.

Before going into speci�c examples, let us say a few words about two asymptotic limits,
namely the small amplitude regime, and the solitary wave limit. The former has been
analyzed in some detail in 2.3. In particular, it has been pointed out that a necessary
condition for the hyperbolicity of modulated equations about a small amplitude periodic
wave for the Euler{Korteweg system is that the Euler equations be hyperbolic at the
mean value of this wave. This is why we shall not try to get too close to center points
of the wave pro�le equations in the numerical computations that follow: we readily know
that the small amplitude wave trains about those points where the Euler equations are
not hyperbolic are unstable. (As to the other necessary condition, namely the positivity
of ! 2 ! 0;kk , we leave it aside for the moment.) The solitary wave limit corresponds to
when the wavenumberk tends to zero. As noticed in earlier work (see for instance [8, 9])
for which explicit computations can be made { involving elliptic integrals { , we expect
modulational instability for waves of small wavenumber when the endpoint of the limiting
solitary wave is an unstable state of the Euler equations. Thus we shall not try, in
numerical computations, to get too close to solitary wave orbits either.
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4.1 Shallow water type pressure laws

4.1.1 Parametrization of periodic waves

Here we assume thatp : (b;+ 1 ) ! (0; + 1 ) is smooth andstrictly convex, with

lim
v& b

p(v) = + 1 ; lim
v! + 1

p(v) = 0 ;

hence in particularp is monotonically decaying to zero at in�nity. The shallow water case
p(v) = 1 =v2 is the main application we have in mind. Ifv1 is to denote the endpoint of
a solitary wave with j 6= 0 and � as constants of integration, it must satisfy

j 2 < � p0(v1 ) ; � = � j 2v1 � p(v1 ) ;

in which case there is exactly one other solutionv0 2 (v1 ; + 1 ) to � = � j 2v � p(v) : Now,
inside the homoclinic loop connectingv1 to itself, there is a collection of periodic orbits
surrounding v0, which are determined for instance by their troughv� (see Figure 4.1.1).
More precisely, ifv� 2 (v1 ; v0) there is a unique periodic orbit passing throughv� and
solving the ODE

1
2 � (V)V 2

� + 1
2 j 2V 2 + �V � f (V) = � �; � := f (v� ) � 1

2 j 2v2
� � �v � :

<h ïj 2

v

v

v’

p=ïf’(v)

slope

Figure 1: Phase portrait for convex pressure law
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Let us consider the mapping

� : 
 � R3 ! R3

(j; v 1 ; v� ) 7! (j; � = � j 2v1 � p(v1 ); � = f (v� ) � 1
2 j 2v2

� � �v � );

with


 =
�

(j; v 1 ; v� ) j 0 < j 2 < � p0(v1 ); b < v1 < v � < v 0 ; j 2v1 + p(v1 ) = j 2v0 + p(v0)
	

:

It is a di�eomorphism onto the open subset � of R3 made of parameters (j; �; � ) for
which we do have a periodic wave. From now on, we parametrize periodic waves by
(j; v 1 ; v� ) 2 
 instead of ( j; �; � ) 2 �. Given ( j; v 1 ; v� ) 2 
 and ( j; �; � ) = �( j; v 1 ; v� )
there is a uniquev� (the peak of the periodic wave) greater thanv� such that

f (v� ) � 1
2 j 2(v� )2 � �v � = � = f (v� ) � 1

2 j 2v2
� � �v � :

The wave numberk of the corresponding periodic wave is given by

1
2k

=
Z v�

v�

s
� (v)

2(f (v) � 1
2 j 2v2 � �v � � )

dv ;

and mean values can be computed by quadrature in a similar way. In particular, we have

hVi = 2k
Z v�

v�

v

s
� (v)

2(f (v) � 1
2 j 2v2 � �v � � )

dv ;

hV 2i = 2k
Z v�

v�

v2

s
� (v)

2(f (v) � 1
2 j 2v2 � �v � � )

dv :

An elegant way to remove (integrable) singularities at endpoints in the integrals above
has been pointed out in [5]. Indeed, factorizing the denominator as

f (v) � 1
2 j 2v2 � �v � � = ( v� � v) (v � v� ) ' (v; j; v 1 ; v� ) ;

and introducing the change of variables

V : (� ; j; v 1 ; v� ) 7! v :=
v� + v�

2
+

v� � v�

2
sin� ;

we �nd that
1
2k

=
Z �= 2

� �= 2

s
� (V (� ; j; v 1 ; v� ))

2 ' (V (� ; j; v 1 ; v� ); j; v 1 ; v� )
d� ;

hV i = 2k
Z �= 2

� �= 2
V (� ; j; v 1 ; v� )

s
� (V (� ; j; v 1 ; v� ))

2 ' (V (� ; j; v 1 ; v� ); j; v 1 ; v� )
d� ;
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hV 2i = 2k
Z �= 2

� �= 2
V (� ; j; v 1 ; v� )2

s
� (V (� ; j; v 1 ; v� ))

2 ' (V (� ; j; v 1 ; v� ); j; v 1 ; v� )
d� :

Note that in the shallow water casef (v) = 1 =v,

v (� f (v) + 1
2 j 2v2 + �v + � ) = ( v � v� )

�
1
2 j 2v2 + ( 1

2 j 2v� + � ) v +
1
v�

�
;

hence' is explicitly given by

' (v; j; v 1 ; v� ) =
j 2

2v
(v + vm ) ; vm :=

1
j 2

�
1
2 j 2v� + � +

q
( 1

2 j 2v� + � )2 � 2 j 2=v�

�
:

First of all, we want to check whether (68)-(71) is an evolutionary system, or in other
words if the Jacobian matrixM 0 of the mapping

P := ( j; �; v 1 ; v� )T 7! W (P) := ( k; hV i ; � + j hV i ; j hV 2i + � hV i )T

is nonsingular. This can be done numerically. Next, we can rewrite (68)-(71) in the more
compact form

@SW (P) � @Y (j W (P) + F(P)) = 0 ;

F(P) := (0 ; �; � � j�; 1
2 � 2 � � )T ; (j; �; � ) = �( j; v 1 ; v� ) ;

from which we easily infer the quasilinear form

(72) M 0(P)(@S � j@Y )P + M 1(P)@Y P = 0 ;

with M 1(P) := � Jac F(P) � j W (P) (1; 0; 0; 0), i.e.

M 1(j; �; v 1 ; v� ) =

0

B
B
B
B
B
@

� k 0 0 0
�h V i � 1 0 0

� j hV i �
@�
@j

j �
@�

@v1
0

� (� hV i + j hV 2i ) +
@�
@j

� �
@�

@v1

@�
@v�

1

C
C
C
C
C
A

=

0

B
B
@

� k 0 0 0
�h V i � 1 0 0

� j hV i + 2 jv 1 j j 2 + p0(v1 ) 0
� (� hV i + j hV 2i ) + 2 jv 1 v� � jv 2

� � � (j 2 + p0(v1 ))v� p(v1 ) � p(v� ) + j 2(v1 � v� )

1

C
C
A :

By `change of frame'Y 7! Y + j S, the hyperbolicity of (72) at P = P is equivalent to
the hyperbolicity of

M 0(P)@SP + M 1(P)@Y P = 0

at P = P. OnceM 0(P) is known to be nonsingular, a su�cient condition for hyperbolicity
is that the eigenvalues ofM 0(P)� 1M 1(P) have four distinct real parts, because then they
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must be real and distinct. We comment below on a series of numerical results obtained
with the shallow water pressure lawp(v) = 1 =v2, in which we have computed mean
values by using the trapezoidal rule with 10 000 points of discretization, and the Jacobian
matricesM 0(P) by means of a �nite di�erence method and a discretization steph = 10� 6.
In each picture, we have plotted the real part of the eigenvalues ofM 0(P)� 1M 1(P) as
a function of the period �: the modulated equations are hyperbolic for a givenk if we
�nd four distinct real parts. When two curves collide, there is a set of complex conjugate
eigenvalue and the system is not hyperbolic any more.

4.1.2 Numerical results

We have checked the hyperbolicity of the modulated equations in the casesj = 1 and
various values ofv1 2 (0:55; 1:2) and in the casej = 4, v1 2 (0:15; 0:49). Since the
hyperbolicity does not depend on� , we have set� = 0 in M 0 and M 1. In both cases we
found a similar scenario. Let us describe the casej = 1. If v1 � v1

1 � 0:86, the Whitham
equations are hyperbolic for all periodic waves (see �gure 2).

Figure 2: Re(� i ); i = 1; 2; 3; 4 as functions of the period �. On the left: j = 1 and
v1 = 0:93. On the right: j = 1 and v1 = 0:9.

If v1 � v1
1 , one �nds a range of periodic wave periods �2 (� m ; � M ) for which the

Whitham equations are not hyperbolic, and thus periodic waves are spectrally unstable;
see �gure 3 (left). Moreover, ifv1 / 0:58, there is one eigenvalue that diverges to�1
which means that there exists �c such that det(M 0) = 0 and the modulation equations
are not of evolution type. If � 6= � c, the scenario is similar to the previous case: there is
a range of unstable periodic waves; see �gure 3 (right).
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Figure 3: Re(� i ); i = 1; 2; 3; 4 as functions of the period �. On the left: j = 1 and
v1 = 0:84. On the right: j = 1 and v1 = 0:55.

4.2 Van der Waals type pressure laws

4.2.1 Parametrization of periodic waves

We consider in this section pressure laws that are possibly nonconvex, and even nonmono-
tone. A typical example is the van der Waals pressure law

p(v; T) =
RT

v � b
�

a
v2

;

which exhibits various types of behaviors depending on the temperatureT (compared to
a=(bR), whereR is the perfect gas constant, anda, b, are parameters of the speci�c 
uid).
More precisely, de�ning

T0 :=
81a

256bR
; Tc :=

8a
27bR

;

we easily see that

1. for T > T0, v 7! p(v; T) is monotonically decaying and convex,

2. for Tc < T < T 0, v 7! p(v; T) is monotonically decaying and admits two in
ection
points,

3. for T < T c, v 7! p(v; T) admits one local minimum, one local maximum, and two
in
ection points.

After nondimensionalization this pressure law reduces to

p(v) =



v � 1
�

1
v2
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with 
 := RT b
a . As seen above, transition values of
 are 
 0 =

81
256

and 
 c =
8
27

.

In what follows, we have chosen to deal with the case of a non monotone pressure and
T = 600K with a and b roughly corresponding to water, so that
 . 0:275< 
 c.

If we choosev1 such that j 2 < � p0(v1 ), and take as in the previous subsection
� = � j 2v1 � p(v1 ), the phase portrait of the travelling wave ODE

� (V)V�� + 1
2 � 0(V)V 2

� + p(V) + j 2V + � = 0;

is certainly independent of the function� , but heavily depends on the values ofj and v1

when the pressurep is non monotone.

v’

v

v

p
p

v’

v

v

Figure 4: Left: two �sh phase portrait. Right: eyes-and-guitar phase portrait. The
shaded regions correspond to the domain of hyperbolicity of Whitham's modulation equa-
tions for the cases we have tested
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Depending on areas delimited by the pressure curve and by the so-called Rayleigh line,
of equationy = � j 2(v � v1 ) in the (v; p) plane, two typical phase portraits arise, which
may be described as follows (see �gure 4).

Two �sh There are two disconnected homoclinic loops (the `�sh'), one ending atv1

and one with another endpoint, and all the trajectories outside these loops are
unbounded; thus there are two types of periodic orbits, surrounded by either one of
the homoclinic ones;

Eyes-and-guitar There are two homoclinic loops (the `eyes') ending at the same point
(maybe v1 ), and a third homoclinic loop (the `guitar') surrounds them; there are
three types of periodic orbits, those inside the eyes, and those in between the eyes
and the guitar.

A series of numerical investigations in various cases is reported below.

4.2.2 Numerical results in the eyes-and-guitar case

We have �rst considered the casej = 0:023732,v1 = 6:598196 and checked the hyper-
bolicity of Whitham's equations with a simple form of the capillary coe�cient: � (v) = 1.
Here, we have an \eyes and guitar" type phase portrait. There are three families of peri-
odic waves. The �rst one that is `above' the doubly homoclinic orbit. In this case, there
exists � c � 559 such that the modulation system is not of evolution type. Furthermore,
there exists � M � 555:4, such that if � > � M and � 6= � c, the modulated equations
are hyperbolic and thus periodic waves are stable under large wavelength perturbations
(see �gure 5). On the other hand, we found that the periodic waves we could compute in
the loops of the doubly homoclinic orbit are stable under large scale perturbations (here
Whitham's equations are hyperbolic); see �gure 6. In the smallest loop, we stopped the
computations at � � 105: below this value, the amplitude of periodic waves is too small
in comparison to the precision we �xed. Anyway, as explained at the beginning, we expect
that these periodic waves are unstable for su�ciently small amplitudes, since the Euler
equations are not hyperbolic at the center point (pressure is nondecreasing at that point).
We have testedj = 0:032 and the situation is the same.

4.2.3 Numerical results in the two-�sh case

Here, we have chosenj = 0:0258 andv1 = 1:90285: in this case there are two separated
homoclinic orbits. The �rst one is homoclinic tov1 and the second one is homoclinic to
w1 = 7:57197. In this latter homoclinic, there is a center atw0 = 32:49447 from which
bifurcates a family of periodic orbits. We have checked numerically the hyperbolicity of
Whitham's equations associated with this family: the modulation system is always hy-
perbolic (see �gure 7).

In the homoclinic orbit to v1 = 1:90285, there is a center atv0 = 3:2089 from which
bifurcates the second family of periodic orbits. The picture is a bit more complicated:
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Figure 5: Re(� i ); i = 1; 2; 3; 4 as functions of the period �. On the left: j = 0:023732
and v1 = 6:598196. On the right: zoom of the previous picture

Figure 6: Re(� i ); i = 1; 2; 3; 4 as functions of the period � for periodic waves forj =
0:023732 andv1 = 6:598196. On the left: periodic waves in the largest loop On the
right: periodic waves in the smallest loop up to �� 105 (the fourth eigenvalue is real and
smaller than � 10).

if 90 � � � � m � 95:15, the modulation system is hyperbolic. Again, we stopped
computations at � = 90 in the smallest loop since amplitude of the waves are too small
(for the precision of computations �xed here): it is expected that for su�ciently small
amplitudes, periodic waves are unstable since the Euler equations are not hyperbolic there.
Then if � 2 (� m ; � M � 125:5), the system is not hyperbolic and the associated periodic
waves are unstable. Finally, if � > � M , the Whitham equations are hyperbolic again (see
�gure 8).
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Figure 7: Re(� i ); i = 1; 2; 3; 4 as functions of the period � for periodic waves in the loop
of the homoclinic orbits to w1 = 7:57197. Herej = 0:0258 andv1 = 1:90285

Figure 8: On the left: Re(� i ); i = 1; 2; 3; 4 as functions of the period � for periodic waves
in the loop of the homoclinic tov1 . Here j = 0:0258 andv1 = 1:90285. On the right:
zoom of the previous picture on the three eigenvalues with the smallest real part. The
fourth one is always real

4.2.4 Conclusion from numerical investigations

We have found, in the cases where a doubly homoclinic orbit occurs, that periodic waves
that are inside a homoclinic loop are always spectrally stable under long wave length per-
turbations or, more precisely, that the modulation equations are hyperbolic. There is an
additional family of periodic waves for which we observed that there is a critical period
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� c where the modulated equations are not of evolution type. Moreover, we found that
there is � M such that Whitham's equations are hyperbolic only if � > � M .

If there are two separated homoclinic orbits, we found that periodic waves which
correspond to the larger solutions pass our stability test whereas there are range of periods
where Whitham's equations are not hyperbolic for the smaller solutions.

A A concrete computation

We derive here the averaged equations associated with Benjamin's impulses�u and vu
for (1) and (2) respectively. This computation is given for concreteness, even though it
is contained in the abstract computation made in Section 2. Taking the inner product
of (41) and (42) with (u0; � 0) and (w0; v0) respectively, then averaging and integrating by
parts in � , we receive

� K h@� (� 0(u0 � � )) u1 + @� ( 1
2(u0 � � )2) � 1 + A0(@� � 0) � 1i

+ @T h� 0 u0i + @X h� 0u2
0i + h� 0 (@X g0 + K @� B0)i = 0 ;

k h@� (w0 � jv 0) w1 � (j @� w0) v1 � a0(@� v0) v1i

+ @Shv0 w0i � @Y h1
2w2

0i + hv0(@Y p0 + k@� b0)i = 0 ;

All terms with index one here above cancel out because of the pro�le equations (39) and
(40), which imply indeed that

@� (� 0(u0 � � )) = 0 ; @� ( 1
2(u0 � � )2) + A0(@� � 0) = 0 ;

@� (w0 � jv 0) = 0 ; j @� w0 + a0(@� v0) = 0 :

This is straightforward for the equations on the left, and for the ones on the right we
observe that the second order di�erential operatorsA0 and a0 have been de�ned in such
a way that

A0(@� � 0) = @� g0 ; a0(@� v0) = @� p0 :

Finally, we recover the equations in (50) and (52) obtained by averaging the impulses'
conservation laws by checking that

h� 0 (@X g0 + K @� B0)i = @X

�
� 0 g0 + K (@� � 0)

@E
@�x

(� 0; K@� � 0) � E(� 0; K@� � 0)
�

hv0(@Y p0 + k @� b0)i = @Y

�
v0 p0 + �e(v0; k@� v0) � k (@� v0)

@�e
@vy

(v0; k@� v0)
�

:

Let us check the �rst equality, the second one being identical through the symmetry
(X; K; � 0; E; g0; B0) $ (Y; k; v0; �e; � p0; � b0). We have

@X

�
� 0 g0 + K (@� � 0)

@E
@�x

(� 0; K@� � 0) � E(� 0; K@� � 0)
�

� h � 0 (@X g0 + K @� B0)i =
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�
(@X � 0) g0 + @X

�
K (@� � 0)

@E
@�x

(� 0; K@� � 0) � E(� 0; K@� � 0)
��

� K h� 0 @� B0i :

Recalling the de�nition of g0 and integrating once by parts (in� of course), we get

h(@X � 0)g0i =
�

(@X � 0)
@E
@�

(� 0; K@� � 0) + ( @� @X � 0)
@E
@�x

(� 0; K@� � 0)
�

=

@X hE(� 0; K@� � 0)i �
�

(@X K )(@� � 0)
@E
@�x

(� 0; K@� � 0)
�

=

@X

�
E(� 0; K@� � 0) � K (@� � 0)

@E
@�x

(� 0; K@� � 0)
�

+ K @X

�
(@� � 0)

@E
@�x

(� 0; K@� � 0)
�

:

So it just remains to show that

h� 0 @� B0i = @X

�
(@� � 0)

@E
@�x

(� 0; K@� � 0)
�

:

Once again, this follows from integrations by parts. Indeed,

� h (@� � 0) B0i =
�

� (@� � 0)
@2E

@�@�x
(� 0; K@� � 0) (@X � 0) + ( @� � 0) @X

�
@E
@�x

(� 0; K@� � 0)
�

� K (@2
� � 0)

�
@2E
@�2x

(� 0; K@� � 0)
�

(@X � 0)
�

=
�

� @�

�
@E
@�x

(� 0; K@� � 0)
�

(@X � 0) + ( @� � 0) @X

�
@E
@�x

(� 0; K@� � 0)
��

= @X

�
(@� � 0)

@E
@�x

(� 0; K@� � 0)
�

:

B A convenient structural assumption

Our purpose here is to check that, under a reasonable structure assumption on the Hamil-
tonian H , the operator A � behaves properly, and if the kernel ofA (0) has the expected
size, our parametrization hypothesis for periodic pro�les is met.

Structure of the Hamiltonian To go further into the analysis of the abstract equation
(5), we need to be more speci�c about the form of the HamiltonianH . Inspired by our
examples (1)(3), (2)(4), and (9), we write theU -space asRN = Rn � RN � n for some
integer n, 0 � n � N , require that

U =
�

v
u

�
; H (U ) = I (v ; u) + E(v ; vx ) ;
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and assume thatH + cQ is uniformly strongly convex in both vx and u on the range
of (U ; vx )-values and speedsc under consideration. Note that a simple way to make this
assumption independent ofc is to assume thatJ � 1 has a block structure of the form

J � 1 =
�

� �
� 0(N � n)� (N � n)

�
;

as is the case for the Euler-Korteweg system.

B.1 Compactness of resolvents

We brie
y sketch here a proof of the fact that our structural assumption onH ensures
that A (0) with domain H 3(R=Z; Rn ) � H 1(R=Z; R(N � n)) have a nonempty resolvent set
and compact resolvents. In turn, this implies that, for all� , A � is a relatively compact
perturbation of A (0) .

Our structural assumptions readily yield

A (0) = Jk@� A(0) ; A(0) = � 3 + � 2k@� � k@� � �
2 � k@� � 1k@�

with � 1 = � �
1, � 3 = � �

3,

� 1 =
�

� 1 0n� (N � n)

0(N � n)� n 0(N � n)� (N � n)

�
; � 2 =

�
� 0n� (N � n)

0(N � n)� n 0(N � n)� (N � n)

�
; � 3 =

�
� �
� � 3

�
;

with � 1 and � 3 being uniformly positive de�nite. Then, standard energy estimates enable
us to show that

�
�hU ; (z � A (0) )U i

�
� � j Re(z)j kU k2 � C kvk2

H 2 � C kuk2
H 1 ;�

�
�
�

��
(k@� )3v
C0k@� u

�
; (z � A (0) )U

� �
�
�
� � 1

2h(k@� )3v; � 1(k@� )3v i + C
2 hk@� u; � 3k@� ui

� C jIm(z)j [kvk2
H 5=2 + kuk2

H 1=2 ] � C kU k2

where C is a positive constant independent ofz. From this we obtain that there exist
� > 0 and C0 > 0 such that if jRe(z)j � � [1 + jIm(z)j6] then

(73) kU kH 3 � H 1 � C0k(z � A (0) )U k:

This already shows that, for such az, (z � A (0) ) has a closed range and is one-to-one with
a continuous inverse. To check that the previous range is dense, we only need to examine
whether the formal adjoint is indeed one-to-one (on smooth functions). This amounts to
show that

(74) (� �z � A(0) Jk@� )V = 0

has no nontrivial smooth solutionV . Applying the operator Jk@� to (74), we deduce
from (73) applied to �z and U = Jk@� V that k@� V = 0, which in turn implies V = 0,
because of (74) and the fact thatz is nonzero. This proves that for the above� > 0, if
jRe(z)j � � [1 + jIm(z)j6] then z lies in the resolvent set ofA (0) .

Since we have not used any Poincar�e inequality in our previous arguments, they apply
mutatis mutandis to A with domain H 3(R; Rn ) � H 1(R; R(N � n)), and show that it has a
nonempty resolvent set.
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B.2 Parametrization of periodic orbits

Let us prove that, under our structural assumption onH , there is no restriction in assum-
ing, as done in Theorem 1, that Whitham's parametrization by (k; M ; P) is admissible.
More precisely, we are going to show that, if nearby periodic traveling wave pro�les form
a N +2 dimensional manifold, and if the generalized kernel ofA (0) is of dimensionN +2,
then those nearby pro�les are parametrized by (k; M ; P). This extends to our Hamiltonian
framework a result previously shown for parabolic conservation laws by Serre [19].

To set things on a more formal ground, we de�ne on some open neighborhoodU of
wave values (�; c; v(0); v x (0); � ) the map

R :
U �! R2n ;

(� ; c;v0; v0;x ; � ) 7�! ([v ]�0 ; [vx ]�0 )

where [� ]�0 denotes the jump [f ]�0 = f (�) � f (0), and U is the solution of

E(H + cQ )[U ] = � ; v(0) = v0; vx (0) = v0;x :

We identify in the usual way nearby periodic traveling wave pro�les with elements of the
zero set ofR .

Proposition 2. Assume thatU is non trivial and that R has constant rank2n � 1. Then
the generalized kernel ofA (0) is of dimension N + 2 if and only if, up to translation,
nearby periodic traveling wave pro�les may be regularly parametrized by(k; M ; P).

Proof. Our proof is based upon the fact that the dimension of the generalized kernel of
A (0) is the algebraic multiplicity of zero as a root of some Evans functionD( � ) (see [11]).
Indeed, viewing spectral problem

(75) z V = A V

for (z;V ) = ( z; (v ; u)T ) as a system of coupled di�erential equations of third-order in
v and �rst-order in u, we may introduce its fundamental solutionR(z; �) normalized by
R(z; 0) = Id R3n � R( N � n ) and de�ne

D(z) = det([ R(z; � )]�
0 ):

Then the condition on the dimension of the generalized kernel ofA (0) reads

D(z) = a zN +2 + O(zN +3 )

for some nonzeroa [11]. We want to convert this into some information about pro�les
parametrization.

Let us denote byV j (z; �) the solution to (75) corresponding to thej -th column of the
matrix R(z; �), that is V j (z; �) solves (75) and (v j (z; 0); v j

x (z; 0); v j
xx (z; 0); u j (z; 0))T is the

j -th vector of the canonical basis ofR3n � R(N � n) . The Evans function is then written

D(z) =

�
�
�
�
�
�
�
�

[ v1] � � � [ vN +2 n ]
[ v1

x ] � � � [ vN +2 n
x ]

[ v1
xx ] � � � [ vN +2 n

xx ]
[ u1] � � � [ uN +2 n ]

�
�
�
�
�
�
�
�
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where we have dropped the marks 0 and �on jumps. To go further, using our structural
assumptions, we write3

A = J@xA ; A = � 3 + � 2@x � @x � �
2 � @x � 1@x

with � 1 = � �
1, � 3 = � �

3,

� 1 =
�

� 1 0n� (N � n)

0(N � n)� n 0(N � n)� (N � n)

�
; � 2 =

�
� 0n� (N � n)

0(N � n)� n 0(N � n)� (N � n)

�
; � 3 =

�
� �
� � 3

�
;

� 1 and � 3 being uniformly positive de�nite. Integrating (75) from 0 to � yields

z
Z �

0
V j = J

�
� 1(0)[v j

xx ] + � [v j
x ] + � [v j ] + � [u j ]

� 3(0)[u j ] + � [v j ]

�
:

Therefore, up to a nonzero multiplicative constant,D(z) is also written
�
�
�
�
�
�

[ v1] � � � [ vN +2 n ]
[ v1

x ] � � � [ vN +2 n
x ]

z
R�

0 V 1 � � � z
R�

0 V N +2 n

�
�
�
�
�
�
:

Now, corresponding to the impulse equation, we also have

z
@Q
@U�

(V j
� ) = @x

�
U � Hess(H + cQ )(V j ) + V j � E(H + cQ )(U ) �

@(H + cQ )
@U�

(V j
� )

�

+ @x

�
@2(H + cQ )

@U�;x @U�
(U j

�;x )(V j
� ) +

@2(H + cQ )
@U�;x @U�;x

(U j
�;x )(V j

�;x )
�

= @x (U � AV j + � 1U x � V j
x + (( � 2 � � �

2)U x � � 1U xx ) � V j )

where the convention is as before that linearization and derivatives are taken atU . By
integrating the relation here above, we obtain

z
Z �

0

@Q
@U�

(V j
� ) = ( � 1v x )(0) � [v j

x ] + � [v j ] + � z
Z �

0
V j :

We still need to check that it is not a trivial relation. But, since U is non trivial, there is
a point wherev x is nonzero, otherwisev would be constant thusu and U would also be
constant, a contradiction. Then, since assumptions of the proposition and terms of the
equivalence we are currently proving are invariant by translation, we may assume that
v x (0) is nonzero. Now let us pick̀ such that the `-th component of� 1(0)v x (0) is nonzero
and, for anyV = ( v; u)T 2 RN = Rn � R(N � n) , denote byv � the vector ofR(n� 1) obtained

3We warn the reader that, because ofk factors, these notations are not compatible with the ones of
the previous section of the present Appendix.
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from v by deleting the `-th component. Then, up to a nonzero multiplicative constant,
D(z) is

zN +1

�
�
�
�
�
�
�
�

[ v1] � � � [ vN +2 n ]
[ (v1

� )x ] � � � [ (vN +2 n
� )x ]R�

0
@Q
@U�

(V 1
� ) � � �

R�
0

@Q
@U�

(V N +2 n
� )

R�
0 V 1 � � �

R�
0 V N +2 n

�
�
�
�
�
�
�
�

:

Up to a change of basis we may assume thatV 1(0 ; �) = U x , V j (0 ; �) = U � j � 2n for
2n + 1 � j � N + 2n and (V 1(0 ; �); � � � ; V 2n (0 ; �)) is a basis of the linear span of
f U (v 0 )1 ; � � � ; U (v 0 )n U (v 0;x )1 ; � � � ; U (v 0;x )n g. With this choice, after setting eV 1 = V z(0; �),
D(z) is written up to a nonzero multiplicative constant

zN +2

�
�
�
�
�
�
�
�
�
�
�

[ ev1] [ v2] � � � [ vN +2 n ]

[ (ev1
� )x ] [ (v2

� )x ] � � � [ (vN +2 n
� )x ]

R�
0

@Q
@U�

( eV 1
� )

R�
0

@Q
@U�

(V 2
� ) � � �

R�
0

@Q
@U�

(V N +2 n
� )

R�
0

eV 1
R�

0 V 2 � � �
R�

0 V N +2 n

�
�
�
�
�
�
�
�
�
�
�

+ O(zN +3 ):

Since eV 1 satis�es U x = A eV 1, it di�ers from U c by an element of the kernel ofA
which is spanned by (V 1(0 ; �); � � � ; V N +2 n (0 ; �)). This yields that, up to a multiplicative
nonzero constant and an additive remainderO(zN +3 ), D(z) reads

zN +2

�
�
�
�
�
�
�
�

[ vc] [ v2] � � � [ vN +2 n ]
[ ((v � )c)x ] [ (v2

� )x ] � � � [ (vN +2 n
� )x ]R�

0
@Q
@U�

((U c)� )
R�

0
@Q
@U�

(V 2
� ) � � �

R�
0

@Q
@U�

(V N +2 n
� )

R�
0 U c

R�
0 V 2 � � �

R�
0 V N +2 n

�
�
�
�
�
�
�
�

or

zN +2

�
�
�
�
�
�
�
�
�
�

v x (0) [ vc] [ V 2
1(0 ; �)] � � � [ vN +2 n (0 ; �)]

(v � )xx (0) [ ((v � )c)x ] [ (v2
� )x (0 �)] � � � [ (vN +2 n

� )x (0 ; �)]
1 0 0 � � � 0

Q (U )(0)
R�

0
@Q
@U�

((U c)� )
R�

0
@Q
@U�

(V 2
� (0 ; �)) � � �

R�
0

@Q
@U�

(V N +2 n
� (0 ; �))

U (0)
R�

0 U c
R�

0 V 2(0 ; �) � � �
R�

0 V N +2 n (0 ; �)

�
�
�
�
�
�
�
�
�
�

:

We are ready to complete the proof by observing the latter determinant. Indeed
our assumption onR implies that the (2n � 1)-st rows of the above matrix are linearly
independent. Furthermore, the kernel of the corresponding linear map is the tangent space
at U of the pro�les manifold (pro�les being identi�ed when equal up to translation). Thus
the di�erential map of U 7! (� ;

R�
0 Q (U );

R�
0 U ) is invertible on this tangent space if and

only if the above determinant is non zero. Consequently, this map is full-rank if and only
if the generalized kernel ofA (0) is of dimensionN + 2.

Note that, by introducing Floquet exponents in previous arguments as in analogous
computations in [19], one may obtain an alternative proof of Theorem 1.
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C Galilean invariance

In order to check that the hyperbolicity of the Euler{Korteweg modulation equations
(53) does not depend on� , it is convenient to rewrite those equations in a form that is
similar to (66) for (55). Substituting %� + j for the mean momentumh� 0u0i in (53), and
manipulating the remaining mean values as in the proof of Theorem 2, we receive the
system

(76)

8
>>>>>>>><

>>>>>>>>:

@T K + @X (�K ) = 0 ;

@T %+ @X (%� + j ) = 0 ;

@T

�
%� + j + D

%

�
+ @X

�
1
2

(%� + j )(%� + j + 2D)
%2

+ g
�

= 0 ;

@T (%� + j ) + @X

�
(%� + j )2 + 2jD

%
+ %g + K � � E

�
= 0 ;

together with the generalized Gibbs relation (62) dE = gd%+ � d K +
j
%

dD. Then, we

easily check that (76) is invariant by the Galilean transformation

(T; X; K; %; �; D ) 7! (T; X � � T; K; %; � � � ; D)

for any � . Since this transformation leaves invariant all the `thermodynamic' variables
(K; %; D;g; � ; j; E), it leaves (76) invariant just because it does so for the reduced system

8
>>>>>><

>>>>>>:

@T K + @X (�K ) = 0 ;

@T %+ @X (%�) = 0 ;

@T � + @X

�
1
2

� 2 +
j + D

%
�

�
= 0 ;

@T (%�) + @X (%�2 + 2j� ) = 0 :
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