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Fault Diagnosis Based on Fuzzy Observers for Wind Energy Conversion Systems

This paper addresses the design of fault diagnosis for Wind Energy Conversion System (WECS). In this approach, the residual signal is generated by a fuzzy observer which is based on Takagi-Sugeno (TS) fuzzy models based on Lyapunov function. The approach presented takes into account the stability and design of non-linear fuzzy inference systems based also on TS fuzzy models. The paper derives the necessary conditions for the assignability of eigenvalues to a region in the s-plane and the necessary conditions to guarantee the stability of fuzzy models. The problem is solved via the Linear Matrix Inequalities (LMI) method. The proposed TS observer is used for detection and isolation of faults which can affect a TS model. The proposed methodology is illustrated by estimating the speed of blades, speed of generator and the diagnosis fault of WECS.

Introduction

Wind power is a kind of renewable energy and plays an important role in the future energy supply. Without question, the safe operation of control system which is the center of wind turbine is essential to ensure the running of the unit. However, wind turbine usually works under the bad environment. The gearbox and bearing failure [START_REF] Yao | Wind Turbine Gearbox Fault Diagnosis Using Adaptive Morlet Wavelet Spectrum[END_REF]- [START_REF] Yang | The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network[END_REF] and various sensor faults often occur, such as sensor bias fault, sensor constant gains and so on. Wind generators are also inaccessible since they are situated on extremely high towers, which are normally 20 m or greater in height. When fault occurs it will seriously affect the engineering quality and cause great economic losses. Consequently the use of advanced fault detection, isolation and accommodation methods could improve the reliability of the turbine, even though, for some faults, it might result in production with limited power. Alternatively condition monitoring is used to monitoring some mechanical components such as gear box etc, [START_REF] Hameeda | Condition monitoring and fault detection of wind turbines and related algorithms: A review[END_REF]. This allows for early detection of the degeneration of the generator health, facilitating a proactive response, minimizing downtime, and maximizing productivity [START_REF] Amirat | A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[END_REF]- [START_REF] Amirat | Condition Monitoring and fault Diagnosis in Wind energy conversion System: A Review[END_REF].Recently, the fault mode behavior, protection and fault tolerant control of WECS have been covered in a large number of papers [START_REF] Wei | Sensor fault diagnosis of wind turbines for fault tolerant[END_REF]- [START_REF] Zhe | The Diagnosis Method for Converter Fault of the Variable Speed Wind Turbine Based on the Neural Networks[END_REF]. Reference [START_REF] Wei | Sensor fault diagnosis of wind turbines for fault tolerant[END_REF] an observer based scheme to detect sensor faults in the pitch system was presented. A parity equations based scheme for fault detection on wind turbines was presented in [START_REF] Dobrila | Fault tolerant wind turbine control[END_REF]. An unknown input observer was proposed for detection of sensor faults around the wind turbine drive train in [START_REF] Odgaard | Observer based detection of sensor faults in wind turbines[END_REF]. Fault detection of electrical conversion systems can be found e.g. in [START_REF] Poure | Reliability analysis of active power filter[END_REF]. References [START_REF] Guolian | Research on Fault Diagnosis of Wind Turbine Control System Based on Artificial Neural Network[END_REF]- [START_REF] Zhe | The Diagnosis Method for Converter Fault of the Variable Speed Wind Turbine Based on the Neural Networks[END_REF] present fault diagnosis of wind turbine control system based on artificial neural network. Also many current papers studied the fault tolerant control of electrical drive [START_REF] Wallmark | Control algorithms for a fault-tolerant PMSM drive[END_REF]- [START_REF] Mendes | Fault-tolerant operating strategies applied to three-phase induction-motor drives[END_REF] or the fault detection and diagnosis of rotating machinery [START_REF] Bellini | On-field experience with online diagnosis of large induction motors cage failures using MCSA[END_REF], [START_REF] Bachir | Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines[END_REF].

Field programmable gate array (FPGA)-based real-time power converter failure diagnosis for fault tolerant WECS with electrical machine has never been presented in [START_REF] Karimi | FPGA-based real time power converter failure diagnosis for wind energy conversion systems[END_REF]. Reference [START_REF] Karimi | Current Sensor Fault-Tolerant Control for WECS With DFIG[END_REF] shows current Sensor fault-tolerant control for WECS with double feed back induction generator.

In this paper fuzzy logic is combined with the model-based method to formulate the so-called fuzzy observers. The main idea is to use the Takagi-Sugeno fuzzy model [START_REF] Mendes | Fault-tolerant operating strategies applied to three-phase induction-motor drives[END_REF]. The idea of the TS model approach is to apprehend the global behaviour of a system by a set of local models, each of them characterizing the behaviour of the system in a particular zone of operation. The local models are then aggregated by means of an interpolation mechanism. So under the fuzzy logic observer scheme, a number of local linear observers are designed and the state estimation is given by a fuzzy fusion of local observer outputs. The diagnostic signal -a residual is the difference between the estimated and actual system outputs. Although all local observers are stable, the global observer is not necessary stable (i.e. the state estimation may not be converge). In this paper, the linear matrix inequality approach is used to analyze the global stability of the fuzzy observer and some measures to achieve global stability are presented.

The paper is organized as follows: In Section 2, the general structure of the Takagi-Sugeno fuzzy model and fuzzy controller are presented. The concept and structure of fuzzy observers and residual generation are presented in Section 3. Section 4 shows stability analysis for the proposed algorithm. Section 5 present System description and fault specifications. In section 6 the fuzzy observer for the described system is presented. Section 7 presents simulation of the wind turbine. Finally, concluding remarks are made in section 8 followed by the list of appendix and references.

Takagi-Sugeno Fuzzy PLANT Model and Nonlinear Controller

Takagi-Sugeno Fuzzy Plant Model

The TS fuzzy plant model describes the dynamic property of a nonlinear plant through fuzzy rules that have linear systems as the consequent parts. The inferred system is expressed as a weighted sum of a number of linear sub-systems [START_REF] Montagner | Convergent LMI relaxations for quadratic stabilizability and H3 control of Takagi-Sugeno fuzzy systems[END_REF]- [START_REF] Ghorbel | Takagi-Sugeno (TS) fuzzy model, linear matrix inequalities (LMI), quadratic Lyapunov function, fuzzy observers, unmeasurable premise variables[END_REF]. Let r be the number of fuzzy rules describing the nonlinear plant. The i th rule is of the following format, Plant Rule i :

IF )) ( ( 1 t x f is i N 1 AND …AND )) ( ( t x f ψ is i N Ψ Then u(t) x(t) ) ( B A t x i i + = 1 ) ( ) ( t x C t y i = (1) 
Where R t x nx1 ) ( ∈ is the state vector, R t u mx1 ) ( ∈ is the input vector, R t y gx1 ) ( ∈ is the output vector. R A nxn i ∈ , R B nxm i ∈ , R C gxn i ∈ and R D gxm i ∈ are constant system matrices. )) ( ( 1 t x f ,…, )) ( ( t x f ψ are the premise variables , i N α is a fuzzy term of rule i corresponding to the function )) ( ( t x f α , ψ α ,..., 1 = ,
i=1, 2…,r and ψ s a positive integer. Given the input vector u(t), the global state and output of the system are inferred as follows:
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is the grade of membership of the premise variable f(t), or the tensor product of grade of memberships, if f(t) is a vector. The membership grade function
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Nonlinear Controller

In the Parallel Distributed Compensation (PDC) design [START_REF] Ghorbel | Takagi-Sugeno (TS) fuzzy model, linear matrix inequalities (LMI), quadratic Lyapunov function, fuzzy observers, unmeasurable premise variables[END_REF], each control rule is designed from the corresponding rule of a TS fuzzy model. The designed fuzzy controller shares the same fuzzy sets with the fuzzy model in the premise parts. For the fuzzy model [START_REF] Yao | Wind Turbine Gearbox Fault Diagnosis Using Adaptive Morlet Wavelet Spectrum[END_REF] we construct the following fuzzy controller via the PDC. It is supposed that the fuzzy system (1) is locally controllable. A state-feedback by linear matrix Inequalities (LMI) is used to design controller for each subsystem. Controller Rule i th :
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Where j M β is a fuzzy term of rule j corresponding to the function
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and

Ω is a positive integer. R G mxn j ∈
is feedback gains vectors of rule j and c is the number of rules . Then, the final output of the fuzzy controller is
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where
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From Eq. ( 2), and Eq. ( 5), the fuzzy control system is given by:

)x(t) ( (g(t)) (f(t)) ) ( 1 i 1 j 1 1 - = = = r c G B A m t x j i i j i µ 1 (8) 

Fuzzy Observer Model and Residual Generation

TS Fuzzy Observers

This section presents fuzzy observer design methodologies involving state estimation for TS fuzzy models. In practice, all of states are not fully measurable, it is necessary to design a fuzzy observer in order to implement the fuzzy controller [START_REF] Amirat | A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[END_REF]. For the fuzzy observer design, it is assumed that the fuzzy system model ( 1) is locally observable. As in all observer designs, fuzzy observers [START_REF] Xiao-Jun | Analysis and Design of Fuzzy Controller and Fuzzy Observer[END_REF] are required to satisfy

0 (t) x - x(t) → as ∞ → t Where (t)
x ˆ is the estimated state vector by fuzzy observers. This condition guarantees that the steady-state error between x(t) and (t)

x ˆ converges to 0. As in the case of controller design, the PDC concept is employed to arrive at the following fuzzy observer structures: Observer Rule i:
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Where Li (1,2,…,r) are observation error matrices. ) (t y and ) ( ˆt y are the final output of the fuzzy system and the fuzzy observer respectively. The fuzzy observer has the linear state observer's laws in its consequent parts. For design of augmented system, we present LMI-based designs for an augmented system containing both the fuzzy controller and observer. The dependence of the premise variables on the state variables makes it necessary to consider two cases for fuzzy observer design:

3.1.1. Case A )) ( ( 1 t x f ,…,
)) ( ( t x f ψ do not depend on the state variables estimated by a fuzzy observer. The overall state estimation is a non-linear combination of individual local observer outputs. Then the overall observer dynamic is given by
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We use the same weight

)) ( ( t x h i defined in section 2.1 as that of the i th rule of the fuzzy models. The structure of the fuzzy observer as shown in Fig. 1. According Eq.( 4), Eq.( 5) and estimated state we obtain the following fuzzy controller:

Controller Rule i: IF )) ( ( 1 t x g is j M 1 AND …AND )) ( ( t x g Ω is j M Ω Then (t) x ˆ ) ( G t u j - = j=1, 2…,c (12) 
Then, the inferred output of the fuzzy controller is given by:

(t) x ˆ (g(t)) ) ( c 1 1 - = = j j j G m t u (13) 
By respectively substituting (13) into ( 2) and [START_REF] Odgaard | Observer based detection of sensor faults in wind turbines[END_REF], and let (t) xx(t) e(t) = we obtain the following system representations:
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Therefore, the augmented systems are represented as follows:
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A sufficient condition that guarantees the stability of the fuzzy system is obtained in terms of Lyapunov's direct method. The augmented system described by Eq. ( 16) is globally asymptotically stable if there exists a common positive definite matrix P such that
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3.1.2. Case B )) ( ( 1 t x f ,…,
)) ( ( t x f ψ depend on the state variables estimated by a fuzzy observer. So we use
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The fuzzy observers for Case B are of the following forms, instead of Eq.( 10).
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Accordingly, instead of Eq.( 13), the PDC fuzzy controller becomes
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Then the augmented systems are obtained as follows: 
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also the augmented system described by Eq.( 22) is globally asymptotically stable if there exists a common positive definite matrix P such that
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Figure 1:
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Residual Generation

Once the state and/or output are estimated, the diagnostic signal residual, can be generated by the comparison of measured and estimated outputs.

Residual:

(t) y - y(t) r(t) = (25) E F ≥ ≤ Th Th r(t) ( 26 
)
Where Th is the threshold value

Stability Analysis For The Proposed Algorithm

For the fuzzy control system of ( 16) the sufficient stability condition is summarized by the following Lemma: The fuzzy control system of ( 16) is guaranteed to be globally asymptotically stable if the gains of the nonlinear controller of ( 13) are chosen as, E F 8 8 9

A B B C D = ≠ = ≠ - 1 = = c j for t x when q t x when t x Q Q t x q a j a m ij r i i a T j ,..., 2 , 1 0 ) ( c 1 (x(t) 0 ) ( ) ( ) ( (x(t) 1 µ ( 27 
)
and there is a common solution of P for the following LMI,

E F = > - 1 > = r i all for Q c Q Q m c k ik m ,..., 2 , 1 0 0 1 (28) where ) ( ) ( ij T ij m T m PK P K Q ij PK P K Q m + - = + - = c j r i for ,..., 2 , 1 ; ,... 2 , 1 = = , R K nxn m ∈ is a stable matrix to be designed. R Q nxn m ∈ is a symmetric positive definite matrix and R Q nxn ij ∈ is a symmetric matrix.
Lemma governs the way of designing the gains of the nonlinear controller of ( 13). The number of linear matrix inequalities is reduced to r+1, instead of r(r+1)/2 as stated in [START_REF] Wang | An approach to fuzzy control of nonlinearsystems: stability and the design issues[END_REF].

System Description and Specification of Faults

5.1. System Description WECS illustrated by Fig. 2. This system comprises of wind turbine, a drive train and induction generator (IG). The IG turbine are the most important part of this system and hence its reliability should be guaranteed . The possible faults in this system include the generator speed sensor and rotational sped of the turbine. The residual signal generated by the observer in this system is used as alarm signal for fault diagnosis

The dynamics of the system can be characterized by the following equations [START_REF] Yang | Integral Fuzzy Sliding Mode Control for Variable Speed Wind Power System[END_REF]:
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u is the input vector, V is the wind speed and x is state vector. I w is the wind disturbance and is defined by functions of state variables, thus making the model nonlinear [START_REF] Hee-Sang | Power Quality Control of Wind-Hybrid Power Generation Using Fuzzy-LQR Controller[END_REF]. The used system parameters are shown in Table 1 [START_REF] Yang | Integral Fuzzy Sliding Mode Control for Variable Speed Wind Power System[END_REF]. In this paper, this system is described by a TS fuzzy representation with the angular speed t ω as the premise variable Rule i th ω is depicted in Fig. 3.

[ ] 0 0 .V w T I χ = , (30) 
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Then, the system dynamics is described by 
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Sensor Fault Detection and Isolation

The objective of this part is to generate residuals that reflect the faults acting on the system (32). An ideal residual signal should remain zero in the fault-free case and non-zero when fault occurs. Once a fault has been detected, it must be estimated. The fault estimation will specify the type of fault, its duration, its amplitude and eventually its probable evolution. In the literature, there are several fault detection techniques. They are generally based on the change detection of the average and the variance. In this FDI study, we will not deal with the detection thresholds of residuals. We will confine ourselves only to the detection and localization of sensor. In order to identify the sensor fault, we consider that the output vector y(t) is corrupted by the sensor fault 2y. Then the system (30) becomes:

] [ I i 2 1 w u(t) B A x(t) x(t)) ( ) ( . + + 1 = = i i t x µ y x(t) ) ( ∆ + = c t y ( 34 
)
Figure 3: Membership Functions of State t ω

Fault Specification

The three faults considered for the generator speed sensor are: proportional error, fixed output, and no output [START_REF] Thomas Esbensen | Fault Diagnosis and Fault-Tolerant Control of Wind Turbines[END_REF]. These faults are modeled separately in the next subsections.

Proportional Error on Generator Speed Sensor

A proportional error on the generator speed sensor changes the sensor gain as shown below. 

) ( ) ( )) ( 1 ( ) ( , k v k k g pe k mes G G ω ω α ω + + = (35) 
[ ] 1 . 0 1 . 0 - ∈ pe α . )) ( 1 ( k pe α + is sensor gain. ) (k v g ω is a zero mean Gaussian distributed noise sequence with variance ) ( 2 k g ω σ
. The fault can either be a result of a faulty configuration of a sensor or be incipient faults.

Fixed Output From Generator

Speed Sensor A fixed output from the generator speed sensor is an abrupt fault, which can happen at any time resulting in the following measurement equation. No Output From Generator Speed Sensor No output from a generator speed sensor results in the same changes in the measurement equation as a fixed output does. In contrast to a fixed output the control system is notified when no output is received from the sensor. The three faults are also considered for the blade rotor speed sensor.

f f mes G k mes G k k k > ∀ = ) ( , ) ( , ω ω (36)

Fuzzy Observer Model For The Described Systems

Firstly we can easily checked that the following necessary conditions are satisfied: i ∈ {1, 2, 3}, j ∈ {1, 2} Rank (Ai, C(j, :)) = 3. The fuzzy observer is designed to estimate the system output and generate the residual signal. Three TS observers are designed as shown in Fig. 4 , the first is based on the turbine rotational speed In this way, the following residual signals are generated:

t t t t r y ω ω ω 1 - = = ∆ = ∆ G G G G r y ω ω ω 2 - = ∆ = ∆ =

Simulations and Results

According to Eq. (35), Fig. 5 shows the proportional error of the generator speed sensor in the rated wind speed that represents sensor failure between t=40s and t=50s .

FDI Using Global Observer3 and Generator Speed Observer2

The simulation results of the fault detection and isolation based on the observer3 and the observer2 are illustrated by the Fig. 6 and Fig. 7 with the initial conditions ( 

Conclusion

In this paper, based on a TS fuzzy model representation, the design of fault diagnosis is proposed. The synthesis conditions lead to the resolution of an LMI problem. Moreover, the estimation of the residual signals for wind energy conversion systems is considered. The proposed observer is then used for state estimation and for detection and isolation of faults which can affect WECS models. The fuzzy observer used in this paper is based on the combination of the TS fuzzy model and the idea of PDC.The effectiveness of the proposed methodology is illustrated by estimating the generator speed and faults of wind energy conversion systems. It can be concluded that the fuzzy observer is an effective tool to generate residual signals for WECS fault diagnosis. The scope of application of this work extends to all WECS with parametric uncertainties and possible faults. 
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 2 Figure 2: Structural diagram of wind power system where, χ =0.1 represents the variance of random component of wind variation. G ω is the rotational
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  is based on the two outputs t ω and G ω .
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 42 Figure 4: Block diagram of the WECS observer-based FDI The sensor fault detection and localization is based on the analysis of the residuals k i y i y yik r , -= k ∈{1, 2, 3} , i ∈ {1, 2} generated by three observers (Fig.4) which depend on two inputs TG,ref and V applied to the system (29). The turbine rotational speed observer1 and the generator speed observer2 use respectively only one output t ω and G ω . The global observer3 uses two outputs t ω and G ω .

  that there are sensor failures without being able to locate them since the corresponding observers depend on the faulty output
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 526 Figure 5: Proportional error on the generator speed sensor G
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 772 Figure 7: Sensor fault detection and isolation using observer3 7.2 FDI Using Turbine Rotational Speed Observer1. The simulation results of the fault detection and isolation based on the observer1 are illustrated by the Fig.8. The residuals ( t t ω ω -) and (
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 8 Figure 8: Sensor fault detection and isolation using observer1

Table 1 :

 1 

	System parameters
	Rated power	600 [kW]
	The radius of the turbine L Air density ρ	35 [m] 1.225 [kg /m3]
	Rated wind speed	12.35 [m/s]
	Cut-in speed	4 [m/s]
	Cut-out speed	25 [m/s]
	The stiffness coefficient k	16.8570 N.ms/rad
	The shaft damping d	3324.2 N.ms/rad
	The generator inertia J G	63.857 kg.m2
	The turbine inertia J T	82988 kg.m2
	The friction coefficient fT	0.3071 kg.m /s
	The friction coefficient fG	399.1060 kg.m /s
	where	

i N 1 is a fuzzy term of rule i. The degree of membership function for state t