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ASYMPTOTIC SHALLOW WATER MODELS WITH NON
SMOOTH TOPOGRAPHIES

MATHIEU CATHALA

Abstract. We present new models to describe shallow water flows over non
smooth topographies. The water waves problem is formulated as a system of
two equations on surface quantities in which the topography is involved in a
Dirichlet-Neumann operator. Starting from this formulation and using the
joint analyticity of this operator with respect to the surface and the bottom
parametrizations, we derive a nonlocal shallow water model which only includes
smoothing contributions of the bottom. Under additional small amplitude
assumptions, Boussinesq-type systems are also derived. Using these alternative
shallow water models as references, we finally present numerical tests to assess
the precision of the classical shallow water approximations over rough bottoms.
In the case of a polygonal bottom, we show numerically that our new model is
consistent with the approach developed by Nachbin.

1. Introduction

1.1. Water waves over a rough bottom. Surface water waves propagation over
a variable bottom has been widely studied over the past decades because of its
importance in oceanography. Assuming the fluid is incompressible, homogeneous
and inviscid, its motion is governed by the Euler equations with nonlinear boundary
conditions at the surface. As the free surface boundary is part of the unknowns,
the full problem, known as the water waves problem, is very difficult to solve both
mathematically and numerically. Nonetheless, in some specific physical regimes it is
possible to derive much simpler asymptotic models (see [27] for a recent review).

In shallow water conditions i.e. when the typical wavelength of the waves is much
larger than the typical depth, the free surface problem is frequently approximated
by the Saint-Venant equations. When the bottom parametrization is smooth, it
is known [1, 35, 36, 25, 28, 24] that they provide a good approximation to the
exact solution of the full water waves equations. However, in case the bottom is
rough, there is no evidence that the Saint-Venant equations are still a relevant
approximation of the water waves problem. As a matter of fact, the topography
introduces singular terms in the Saint-Venant system if the bottom parametrization
is not regular.

On that basis, some models have been proposed to handle rapidly varying
periodic or random topographies. We cite in particular the papers of Rosales and
Papanicolaou [38], Nachbin and Sølna [30], Craig et al. [11], Craig, Lannes and
Sulem [12].

Concerning non smooth topographies, Hamilton [22] and Nachbin [29] used
a conformal mapping technique to derive long wave models in the case of two-
dimensional motions. In [29], a Boussinesq system is formulated to handle non
smooth one-dimensional topographies. However, this technique only applies to
polygonal (one-dimensional) bottom profiles.
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The purpose of the present paper is to derive alternatives to some classical shallow
water models (namely Saint-Venant equations, Serre equations and Boussinesq
system) which do not involve any singular term with non smooth topographies. The
systems we obtain consist in modifying the topographical terms in the classical
shallow water models. In case the bottom is smooth, these new systems are consistent
with the former.

1.2. Formulation of the water waves problem. Thorough this paper, we denote
by ζ(t, x) the surface elevation and by −H0 + b(x) a parametrization of the bottom,
where H0 is a reference depth (see Figure 1). The time-dependent fluid domain

z = −H0 + b(x)

x

z

0

−H0

z = ζ(t, x)

Ω(ζ, b)

Air

Figure 1. Sketch of the domain

consists of the region
Ω(ζ, b) =

{
(x, z) ∈ Rd × R ; −H0 + b(x) < z < ζ(t, x)

}
,

where d = 1, 2 denotes the spatial dimension of the free surface (and the bottom). We
further assume the flow is irrotational so that, from the incompressibility assumption,
the flow field is described by an harmonic potential Φ.

The asymptotic analysis of the water waves problem requires the use of dimen-
sionless quantities based on characteristics of the flow. More precisely, denoting by
λ the typical wavelength of the waves, by asurf their typical amplitude and by abott
the typical amplitude of the bottom variations, we define dimensionless variables
and unknowns as

x′ = x

λ
, z′ = z

H0
, t′ =

√
gH0
λ

t,

and
ζ ′ = ζ

asurf
, b′ = b

abott
, Φ′ = Φ

asurfλ
√
g/H0

.

To simplify the notations we omit the prime symbol in the rest of the paper. From
the previous physical scales we also define three independent parameters:

µ = H2
0

λ2 , ε = asurf
H0

, β = abott
H0

.

Our analysis focuses on the shallow water regime µ� 1. The parameters ε and β
respectively account for the relative amplitude of the waves and of the bathymetry.

Zakharov [40] and Craig and Sulem [16, 15] remarked that the water waves
equations can be written as a system of two scalar evolution equations on the
surface elevation ζ and on the velocity potential at the surface ψ = Φ|z=εζ . The key
point is that at time t, given ζ(t, ·) and b, the knowledge of ψ(t, ·) fully determines
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the velocity potential Φ(t, ·, ·) in the fluid domain as the solution of the following
non-dimensionalized elliptic problem

µ∆Φ + ∂2
zΦ = 0 in Ω(εζ, βb),

Φ = ψ(t, ·) on {z = εζ(t, x)},
∂nΦ = 0 on {z = −1 + βb(x)};

(1.1)

where ∆ denotes the Laplace operator in the horizontal variables and ∂n stands for
the outward conormal derivative associated with the elliptic operator µ∆ + ∂2

z . In
particular, one may define the Dirichlet-Neumann operator as

Gµ[εζ, βb] : ψ 7→
√

1 + ε2 |∇ζ|2∂nΦ|z=εζ . (1.2)

Using this operator the Zakharov/Craig-Sulem formulation of the water waves
problem writes, in dimensionless form,

∂tζ −
1
µ
Gµ[εζ, βb]ψ = 0,

∂tψ + ζ + ε

2 |∇ψ|
2 − εµ

( 1
µGµ[εζ, βb]ψ + ε∇ζ · ∇ψ

)2
2(1 + ε2µ |∇ζ|2)

= 0.
(1.3)

1.3. Statement of results and outline of the paper. As it appears from the
above formulation, the derivation of shallow water models is governed by the
asymptotic behavior of the Dirichlet-Neumann operator as µ� 1. The main task
consists in finding, in shallow water regime, an explicit relation between Gµ[εζ, βb]ψ
and ∇ψ through expansion of the Dirichlet-Neumann operator with respect to µ.
For smooth topographies, it is known (see Proposition 3.8 of [1]) that

1
µ
Gµ[εζ, βb]ψ = −∇ · ((1 + εζ − βb)∇ψ) +O(µ).

From the previous relation, one may deduce that, up to terms of order O(µ), the
couple (ζ,∇ψ) satisfies the classical Saint-Venant equations{

∂tζ +∇ · ((1 + εζ − βb)∇ψ) = 0,
∂t∇ψ +∇ζ + ε(∇ψ · ∇)∇ψ = 0. (1.4)

Now, in the presence of non smooth topographies, the contribution of the bottom
to the first equation of (1.4) may be singular whereas, as regards the full Dirichlet-
Neumann operator, the topographic contribution is still infinitely smooth from the
ellipticity of the potential equation (1.1).

The main result of the paper is the construction of an approximation that involves
an infinitely smoothing contribution of the bottom, namely

1
µ
Gµ[εζ, βb]ψ = −∇ · ((1 + εζ − bµ[βb])∇ψ) +O(µ),

where bµ[βb] is a regularization operator (defined below). This construction leads
to the formal derivation of a nonlocal shallow water system allowing non smooth
topographies. Under additional assumptions on ε, we also derive medium and small
amplitude models including dispersive effects.

The paper is organized as follows. Section 2 is devoted to the shallow water
analysis of the Dirichlet-Neumann operator. Using the fact that this operator
depends analytically on ζ and b, we show that the shallow water limit of Gµ[εζ, βb]ψ
can be computed using explicit expressions for its shape derivatives with respect
to the surface and the bottom parametrizations. This particular construction only
involves smoothing contributions of the bottom. Using this asymptotic analysis,
we address in section 3 the derivation of shallow water models under different
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sub-regimes, depending on the size of ε (that is the wave amplitude). All these
alternative models account for non smooth topographies. The numerical results we
present in section 4 confirm these alternative models are consistent with the classical
shallow water systems in case the bottom parametrization is smooth. Moreover
these new model can be used to asses the precision of the classical systems used
with rough bottoms. In the appendix, we present an additional numerical example
with a polygonal bottom. In this particular case, the results obtained indicate that
our new model is consistent with the approach developed by Nachbin for polygonal
topographies [29].

2. Asymptotic analysis of the Dirichlet-Neumann operator in shallow
water regime

In this section, we focus on the asymptotic analysis of the Dirichlet-Neumann
operator in shallow water regime. To handle rough bottoms, the strategy we adopt
is to bring into play the shape analyticity of the Dirichlet-Neumann operator, that is
to say a Taylor expansion of Gµ[εζ, βb]ψ with respect to the surface and the bottom
parametrizations. The shape derivatives, i.e. the terms of this Taylor series, can
be formally calculated and only give smooth contributions of the bottom. Thus
we perform a shallow water limit of Gµ[εζ, βb]ψ which allows rough bottoms by
analyzing the asymptotic behavior of these derivatives as µ � 1. In particular,
attention is payed to check that, in shallow water regime, the higher the order of
the shape derivative, the higher order in µ it contributes.

In the present section, the time variable does not play any role so that we drop
the dependence on t to simplify notation.

2.1. Shape analyticity of the Dirichlet-Neumann operator. The analyticity
of the Dirichlet-Neumann operator with respect to the surface elevation has been
deeply investigated for the case of a flat bottom (see e.g. [6, 10, 14, 13, 23]). In
case the topography is non-trivial, the shape analyticity of the Dirichlet-Neumann
operator with respect to the surface and the bottom parametrizations has been
more recently addressed by, among others, Nicholls and Taber [33] and Lannes [26,
Theorem A.11].

2.1.1. Taylor expansion of the Dirichlet-Neumann operator in powers of ζ. From
the analyticity with respect to the surface, if εζ lies in a small neighborhood of 0,
the Dirichlet-Neumann operator can be expanded as

Gµ[εζ, βb]ψ =
+∞∑
n=0
Gnµ [εζ, βb]ψ (2.1)

where each mapping ζ̃ 7→ Gnµ [ζ̃, βb]ψ is homogeneous of degree n1.
The description of the individual terms in this Taylor series expansion has been

first addressed for flat bottoms by Craig and Sulem [15] in two dimensions and a
generalization to three dimensions is given in [32]. Introducing an implicit operator
Lµ[βb] to take into account the bottom variations, Craig et al. [11] showed that this
description may be extended to the case of an uneven bottom.

In our non-dimensional framework, the first term of this expansion is given by

G0
µ[εζ, βb]ψ = √µ |D| tanh(√µ |D|)ψ +√µ |D|Lµ[βb]ψ, (2.2)

1Denoting by dnζ Gµ[0, βb](ζ̃)ψ the n-th derivative of ζ 7→ Gµ[ζ, βb]ψ at ζ = 0 in the direction ζ̃,
the n-th term in the Taylor expansion (2.1) is related to this shape derivative by dnζ Gµ[0, βb](ζ̃)ψ =
n!Gnµ [ζ̃, βb]ψ.
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where D = ∇
i and where we used the Fourier multiplier notation f(D)u, defined in

terms of Fourier transform by f̂(D)u = fû. Then, adapting the computations of
[11] to our dimensionless context, we get a similar recursive formula which reads,
for the even terms,
G2n
µ [εζ, βb]ψ =

µn

(2n)!D ·
{

(εζ)2nD |D|2(n−1) G0
µ[εζ, βb]ψ

}
−
n−1∑
p=0

µn−p

(2(n− p))!G
2p
µ [εζ, βb]

{
(εζ)2(n−p) |D|2(n−p)

ψ
}

−
n−1∑
p=0

µn−p−1

(2(n− p)− 1)!G
2p+1
µ [εζ, βb]

{
(εζ)2(n−p)−1 |D|2(n−p−1) G0

µ[εζ, βb]ψ
}
,

(2.3)
and for the odd terms,
G2n+1
µ [εζ, βb]ψ =

µn+1

(2n+ 1)!D ·
{

(εζ)2n+1 |D|2nDψ
}

−
n∑
p=0

µn−p

(2(n− p) + 1)!G
2p
µ [εζ, βb]

{
(εζ)2(n−p)+1 |D|2(n−p) G0

µ[εζ, βb]ψ
}

−
n−1∑
p=0

µn−p

(2(n− p))!G
2p+1
µ [εζ, βb]

{
(εζ)2(n−p) |D|2(n−p)

ψ
}
.

(2.4)

In particular, the linear operator G1
µ[ε·, β·]ψ is given by:

G1
µ[εζ, βb]ψ = −µ∇ · (εζ∇ψ)− G0

µ[εζ, βb](εζG0
µ[εζ, βb]ψ). (2.5)

2.1.2. Taylor expansion of the Dirichlet-Neumann operator in powers of b. From
the analyticity of the Dirichlet-Neumann operator with respect to the bottom
parametrization we know that, if βb lies in a sufficiently small neighborhood of 0,
the operator |D|Lµ[βb]ψ which stands for the contribution of the bottom in (2.2)
can also be expressed as a convergent Taylor series expansion,

|D|Lµ[βb]ψ =
+∞∑
n=0
|D|Lnµ[βb]ψ, (2.6)

where each mapping b̃ 7→ Lnµ[b̃]ψ is homogeneous2 of degree n. In [11], Craig et al.
obtained a recursion formula for the Lnµ[βb]ψ. Guyenne and Nicholls remarked in [21]
that this formula involves a smoothing operator, resulting in smooth contributions
of the bottom in (2.6). More precisely, starting from the recursion formula of
|D|Lnµ[βb]ψ (see [11, Eq. (A 8)-(A 9)]), one can see that the individual terms in
the Taylor expansion (2.6) take the form

∀n ≥ 1, |D|Lnµ[βb]ψ = √µ∇ ·
{
Bµ[βb]Fn−1

µ [βb] sech(√µ |D|)∇ψ
}
, (2.7)

where the smoothing operator Bµ[βb] is defined by
Bµ[βb]v = sech(√µ |D|)(βbv). (2.8)

2Denoting by dnb Gµ[0, 0](b̃)ψ the n-th derivative of b 7→ Gµ[0, b]ψ at b = 0 in the direction b̃,
the n-th term in the Taylor expansion (2.6) is related to this shape derivative by dnb Gµ[0, 0](b̃)ψ =
n!√µ |D|Lnµ[b̃]ψ.
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Looking at (2.7), we see that any singular term introduced by the topography when
computing Fnµ [βb] (which is made explicit below) is then regularized using Bµ[βb]
so much so that the topographic contribution given by (2.7) is infinitely smooth.
Using (2.7), the description of the expansion (2.6) is computed from the following
recursion formula for Fnµ :

(i) for the even terms

F 2n
µ [βb]v = µn

(2n+ 1)! (βb)
2n |D|2n v

−
n∑
p=1

√
µ2p

(2p)! (βb)2p−1 |D|2(p−1)
D
(
D ·
{
βbF 2(n−p)

µ [βb]v
})

+
n−1∑
p=0

√
µ2p+1

(2p+ 1)! (βb)
2p |D|2p Tµ[βb]

{
F 2(n−p)−1
µ [βb]v

}
,

(2.9)

(ii) for the odd terms

F 2n+1
µ [βb]v =−

n∑
p=1

√
µ2p

(2p)! (βb)2p−1 |D|2(p−1)
D
(
D ·
{
βbF 2(n−p)+1

µ [βb]v
})

+
n∑
p=0

√
µ2p+1

(2p+ 1)! (βb)
2p |D|2p Tµ[βb]

{
F 2(n−p)
µ [βb]v

}
,

(2.10)

where Tµ[βb] is defined as

Tµ[βb]v = D
(
D · tanh(√µ |D|)

|D| {βbv}
)
. (2.11)

Remark 2.1. It is important to note that, even if (2.7) eventually results in
infinitely differentiable bottom contributions, it is by no means obvious how to
define the operators bF jµ[βb] for general b ∈ L∞(Rd). For instance, computing the
product bF 1

µ [βb]v = √µbTµ[βb]v requires to assign meaning to b |D| (bv). The latter
is of course well defined as soon as b belongs to W 1,∞(Rd) but it seems much more
technical to extend its definition to L∞(Rd) (see also Remark 4.1). More generally, it
is known that the Dirichlet-Neumann operator is analytic with respect to Lipschitz
deformations of the bottom (see [26, Theorem A.11]). Consequently, it is also
possible to extend the definition of the higher order terms to W 1,∞ parametrizations
of the bottom. Such extensions could be due to non-obvious cancellations in (2.9)-
(2.10). That being said, in the numerical simulations of section 4, we shall also
consider more general topographiesfor which the present approach gives promising
results3.
2.1.3. Analyticity of the Dirichlet-Neumann operator in shallow water regime. As
mentioned above, without any assumption on the shallowness parameter µ, both
Taylor expansions (2.1) and (2.6) of the Dirichlet-Neumann operator can be written
for small perturbations of the surface and the bottom, that is for ε and β small
enough. In shallow water regime µ� 1, one can roughly estimate from (2.2) and
the recursion formulas (2.3) and (2.4) that Gnµ [εζ, βb]ψ is at least of O(√µn+1).
Consequently the series in the right hand side of (2.1) converges (at least formally)
without any further condition on ε. Similarly, because Fnµ [βb] is of O(√µn), the
right hand side of (2.6) also converges without any further condition on β. For
these reasons, since we study the Dirichlet-Neumann in shallow water conditions, we

3The numerical experiment presented in the Appendix also indicates that, for a step bottom, the
present approach is consistent with the approach developed by Nachbin for polygonal topographies
[29].
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still use expansion (2.1) and (2.6) to compute Gµ[εζ, βb]ψ whereas no assumption is
made on ε and β (we only assume that they are of O(1)).

2.2. Shallow water expansion of the Dirichlet-Neumann operator. We
adopt a formal procedure to derive an expansion of Gµ[εζ, βb]ψ with respect to µ.
The task consists in computing the relevant contributions of each term Gnµ [εζ, βb]ψ
from the Taylor series expansion (2.1) with respect to ζ. This is possible thanks
to the fact that the order of the contribution in µ of Gnµ [εζ, βb]ψ increases with n.
Concerning the contribution of the topography note that, at the formal level, very
little regularity is required on b to write the recursive formulation of |D|Lµ[βb].
Indeed, as mentioned above, thanks to the smoothing operator Bµ[βb], each term
|D|Lnµ[βb] computed through (2.7) is well defined and gives smooth functions even
for non smooth bottoms (see also remark 2.1). For this reason, allowing non
smooth topographies, we use these formulas in order to estimate the shallow water
contribution of the bottom i.e. the asymptotic behavior of |D|Lµ[βb]ψ as µ→ 0.

To begin with, let us estimate the first contribution from G0
µ[εζ, βb]ψ. From (2.2),

G0
µ[εζ, βb]ψ can be expanded as G0

µ[εζ, βb]ψ = √µ |D|Lµ[βb]ψ +O(µ). Now, using
the relation (2.7) and looking at the recursion formulas (2.9) and (2.10), one sees
that |D|Lµ[βb]ψ gives first contributions at O(√µ) so that G0

µ[εζ, βb]ψ gives first
contributions at O(µ). Starting from this and using (2.3) and (2.4), one readily
proves by recursion that both G2n

µ [εζ, βb]ψ and G2n+1
µ [εζ, βb]ψ first contribute at

O(µn+1). Therefore, as we restrict our asymptotic analysis of the water waves
equations to O(µ), we only need to compute the relevant contributions from the
first two terms G0

µ[εζ, βb]ψ and G1
µ[εζ, βb]ψ. Indeed, the operator 1

µGµ[εζ, βb]ψ in
(1.3) can be formally expanded as

1
µ
Gµ[εζ, βb]ψ = 1

µ

(
G0
µ[εζ, βb]ψ + G1

µ[εζ, βb]ψ
)

+O(µ), (2.12)

so that one may approximate 1
µGµ[εζ, βb]ψ up to O(µ) by expanding G0

µ[εζ, βb]ψ
and G1

µ[εζ, βb]ψ up to O(µ2).
In order to determine the contributions from the term involving √µ |D|Lµ[βb]ψ,

we use the transformation (2.7) together with the recursion formulas (2.9) and
(2.10). From these formulas, √µ |D|Lµ[βb]ψ can be expanded as
√
µ |D|Lµ[βb]ψ = µ∇ ·Bµ[βb]

{
(F 0
µ [βb] + F 1

µ [βb]) sech(√µ |D|)∇ψ
}

+O(µ2).

Setting bµ[βb] = Bµ[βb]◦(F 0
µ [βb]+F 1

µ [βb]) that is bµ[βb]v = Bµ[βb]
{

v+√µTµ[βb]v
}

,
the topographical term writes

√
µ |D|Lµ[βb]ψ = µ∇ · bµ[βb]{sech(√µ |D|)∇ψ}+O(µ2).

Considering the resulting approximation of G0
µ[εζ, βb]ψ in (2.2) and performing a

first order Taylor expansion of tanh(√µ |D|)ψ and sech(√µ |D|)∇ψ then lead to

G0
µ[εζ, βb]ψ = −µ∇ ·

(
(1− bµ[βb])∇ψ

)
+O(µ2). (2.13)

The expansion of G1
µ[εζ, βb]ψ in (2.5) follows from the fact that G0

µ[εζ, βb]ψ is of
size O(µ):

G1
µ[εζ, βb]ψ = −µ∇ · (εζ∇ψ) +O(µ2). (2.14)

Gathering the last two approximations in (2.12), we finally deduce that
1
µ
Gµ[εζ, βb]ψ = −∇ ·

(
(1 + εζ − bµ[βb])∇ψ

)
+O(µ). (2.15)

Remark 2.2. In (2.12), the residual is actually of order O(ε2µ) so that if we consider
moderate amplitude surface waves i.e. ε = O(√µ), the resulting approximation in
(2.12) is precise up to order O(µ2). In that case, one may perform an asymptotic
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analysis up to O(µ2) by expanding G0
µ[εζ, βb]ψ and G1

µ[εζ, βb]ψ up to O(µ3). This
can be achieved by first approximating the topographical term in (2.2) as
√
µ |D|Lµ[βb]ψ =
µ∇ ·Bµ[βb]

{
(F 0
µ [βb] + F 1

µ [βb] + F 2
µ [βb] + F 3

µ [βb]) sech(√µ |D|)∇ψ
}

+O(µ2).

Then, using the recursion formula (2.9)-(2.10) and following the same steps that led
to (2.15), one finds that

1
µ
Gµ[εζ, βb]ψ =−∇ ·

(
(1 + εζ − b̃µ[βb])∇ψ

)
− µ

3∇ ·∆∇ψ + µ

2∇ · (bµ[βb]∆∇ψ)

+ µβ2∇ · bµ[βb]
{
−b

2

6 ∆∇ψ + b

2∇
(
∇ · (b∇ψ)

)}
+ µ3/2β2∇ ·Bµ[βb]

{
−b

2

6 ∆Tµ[βb]∇ψ + b

2∇
(
∇ · (bTµ[βb]∇ψ)

)}
− µε∇ · (1−Bµ[βb])

{
∇(ζ∇ · (1−Bµ[βb])∇ψ)

}
+O(µ2, µε2),

(2.16)

where b̃µ[βb] is defined as

b̃µ[βb]v = Bµ[βb]
{

(1 +√µTµ[βb] + µTµ[βb]2 + µ3/2Tµ[βb]3)v
}
. (2.17)

When no assumption is made on ε, one also needs to compute the relevant contri-
butions from G2

µ[εζ, βb]ψ and G3
µ[εζ, βb]ψ to perform an asymptotic analysis up to

O(µ2).

3. Derivation of shallow water models

This section is devoted to the study of shallow water waves without any regularity
assumption on the bottom parametrization. Using the shallow water expansion
of the Dirichlet-Neumann operator computed in section 2.2, we derive asymptotic
models that approximate, in this particular regime, the solutions of the water waves
equations 

∂tζ −
1
µ
Gµ[εζ, βb]ψ = 0,

∂tψ + ζ + ε

2 |∇ψ|
2 − εµ

( 1
µGµ[εζ, βb]ψ + ε∇ζ · ∇ψ

)2
2(1 + ε2µ |∇ζ|2)

= 0.
(3.1)

In Section 3.1, a nonlinear shallow water model is obtained at first order (with
respect to µ). Under additional assumptions on ε, asymptotic models with precision
O(µ2) are then derived in Section 3.2 and Section 3.3.

These approximate models are written in terms of the surface elevation ζ and
the horizontal velocity at the surface vs = (∇Φ)|z=εζ , where we recall that Φ is
the velocity potential given by (1.1). The link between ∇ψ and vs results from
the application of the chain rule which yields vs = ∇ψ − ε(∂zΦ)|z=εζ∇ζ. Now, by
definition of Gµ[εζ, βb],

(∂zΦ)|z=εζ = µ

1
µGµ[εζ, βb]ψ + ε∇ψ · ∇ζ

1 + µε2 |∇ζ|2
,

so that the horizontal velocity at the surface can be expressed as

vs = ∇ψ − µε
1
µGµ[εζ, βb]ψ + ε∇ψ · ∇ζ

1 + µε2 |∇ζ|2
∇ζ. (3.2)
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To achieve the formal derivation of an approximate model with precision O(µk)
(k = 1 or 2), the strategy we adopt in the next two sections is to take the following
steps:

(1) From (3.2), find an asymptotic expansion of order O(µk) of ∇ψ in terms of
the velocity vs;

(2) Plug this expansion into (2.15) (or (2.16)) to get an asymptotic expansion
of the Dirichlet-Neumann operator in terms of vs;

(3) In the first equation of (3.1), replace − 1
µGµ[εζ, βb]ψ by the approximation

of step (2) and neglect the terms of order O(µk);
(4) Take the gradient of the second equation of (3.1), insert the expansions

from steps (1) and (2) and neglect the O(µk) terms.

3.1. The nonlinear shallow water equations for non smooth bottoms. Fol-
lowing the steps 1–4 above, we derive a nonlocal shallow water approximation of (3.1)
at order O(µ). To this end, let us first remark that, at first order, vs = ∇ψ +O(µ).
Plugging this last expansion in (2.15) we get

1
µ
Gµ[εζ, βb]ψ = −∇ ·

(
(1 + εζ − bµ[βb])vs

)
+O(µ), (3.3)

where we recall that the smoothing operator bµ[βb] is defined as
bµ[βb]v = Bµ[βb]

{
(1 +√µTµ[βb])v

}
, (3.4)

with

Bµ[βb]v = sech(√µ |D|)(βbv) and Tµ[βb]v = D
(
D · tanh(√µ |D|)

|D| {βbv}
)
.

(3.5)
Therefore, substituting expansion (3.3) into the first equation of (3.1), then applying
∇ to the second equation and using both vs = ∇ψ+O(µ) and 1

µGµ[εζ, βb]ψ = O(1),
we obtain the following nonlocal approximate equations of motion up to terms of
order O(µ) {

∂tζ +∇ · ((1 + εζ − bµ[βb])vs) = 0,
∂tvs +∇ζ + ε(vs · ∇)vs = 0. (3.6)

Remark 3.1. The classical shallow water approximation of (3.1) can be written{
∂tζ +∇ · ((1 + εζ − βb)vs) = 0,
∂tvs +∇ζ + ε(vs · ∇)vs = 0. (3.7)

Hence in case the bottom parametrization is not regular, the alternative shallow
water model (3.6) differs from the classical approximation by the presence of a
regularized discharge, namely qµ = (1 + εζ − bµ[βb])vs, instead of the classical
discharge q = (1 + εζ − βb)vs. An illustration of this regularizing effect is given in
Figure 2. It is also worth mentioning that the water depth variable h = 1 + εζ + βb
has no regularized analogous in the present alternative shallow water model. Indeed,
one may feel inclined to define a regularized water depth as hµ = 1 + εζ − bµ[βb].
However, this last expression does not define a function but an operator (precisely
because bµ[βb] is an operator). As a particular consequence, unlike the Saint-Venant
equations which can be formulated in (h, q) variables instead of (ζ, v), the alternative
shallow water model can neither be formulated in terms of the water depth h (which
may be singular for non smooth bottoms) nor in terms of the quantity hµ (which is
not a function).

Remark 3.2 (Smooth bottoms). In case the bottom parametrization is regular, a
Taylor expansion of Tµ[βb] and Bµ[βb] in (3.4) ensures that bµ[βb]vs = bvs +O(µ).
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Figure 2. Wave passing over a step. Left: elevation. Right:
comparison of the regularized discharge (—) with the classical
discharge (--∗- -).

Using this last approximation in (3.6), one recovers the classical Saint-Venant system
(3.7) from the alternative equations (3.6).

3.2. Medium amplitude models (ε = O(√µ)) for non smooth bottoms. In
this section, besides the shallow water hypothesis, we assume that the amplitude
parameter ε is of size O(√µ). In case the bottom is smooth, this regime leads to the
medium amplitude Green-Naghdi or Serre equations (see e.g. [26] for the derivation
of these equations).

3.2.1. Derivation of an approximate model with precision O(µ2). Under the previous
assumption on ε, let us follow the steps (1)-(4) given above to derive an approximate
model with precision O(µ2). Since

1
µ
Gµ[εζ, βb]ψ = −∇ · (1−Bµ[βb])vs +O(√µ), (3.8)

we can see from relation (3.2) that

∇ψ = vs − εµ∇ · (1−Bµ[βb])vs∇ζ +O(µ2). (3.9)

Plugging this last approximation in (2.16), we obtain
1
µ
Gµ[εζ, βb]ψ =−∇ ·

(
(1 + εζ − b̃µ[βb])vs

)
− µ

3 ∆∇ · vs + µ

2Sµ[βb]vs

− µε∇ · (1−Bµ[βb])
{
ζ∇(∇ · (1−Bµ[βb])vs)

}
+O(µ2),

where we recall that Bµ[βb] and b̃µ[βb] are respectively defined in (2.8) and (2.17),
while the dispersive topographical term Sµ[βb] is defined as

Sµ[βb]v = ∇ · (bµ[βb]∆v) + β2∇ · bµ[βb]
{
−b

2

3 ∆v + b∇
(
∇ · (bv)

)}
+√µβ2∇ ·Bµ[βb]

{
−b

2

3 ∆Tµ[βb]v + b∇
(
∇ · (bTµ[βb]v)

)}
. (3.10)
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Inserting this last expansion in the first equation of (3.1) yields an evolution equation
for the free surface up to O(µ2) terms:

∂tζ +∇ ·
(
(1 + εζ − b̃µ[βb])vs

)
+ µ

3 ∆∇ · vs −
µ

2Sµ[βb]vs

+ µε∇ · (1−Bµ[βb])
{
ζ∇(∇ · (1−Bµ[βb])vs)

}
= 0. (3.11)

Concerning the evolution of the velocity unknown we follow step (4) and take the
gradient of the second equation (3.1). On using (3.8) and (3.9), the result is

∂t ((1− µεAµ[ζ, βb])vs) +∇ζ + ε(vs · ∇)vs

− µε

2 ∇ (∇ · (1−Bµ[βb])vs)2 = O(µ2), (3.12)

where Aµ[ζ, βb] is defined as Aµ[ζ, βb]v = ∇ζ∇ · (1 − Bµ[βb])v. Now since, from
(3.11), ∂tζ may be approximated as ∂tζ = −∇ · (1−Bµ[βb])vs +O(√µ), we get

∂t ((1− µεAµ[ζ, βb])vs) = (1− µεAµ[ζ, βb]) ∂tvs

+ µε

2 ∇ (∇ · (1−Bµ[βb])vs)2 +O(µ2). (3.13)

Gathering (3.13) and (3.12) leads to
(1− µεAµ[ζ, βb])∂tvs +∇ζ + ε(vs · ∇)vs = O(µ2),

from which we deduce the following approximate evolution equation for the velocity
up to O(µ2) terms

∂tvs +∇ζ + ε(vs · ∇)vs + µε∇ζ∇ · (1−Bµ[βb])∇ζ = 0. (3.14)

3.2.2. Improving the frequency dispersion of the model. Equations (3.11) and (3.14)
only differ by nonlinear terms from the Boussinesq model formulated in terms of the
velocity at the surface (see e.g. [37, Eq. (16) and (17)]). Now it is known that the
latter is linearly ill-posed (see e.g. [5]), and so are the former. Indeed, the existence
of non-trivial solutions (ζ, ψ) of the form (ζ0, ψ0)ei(k·x−ωt) to the linearization of
(3.11)-(3.14) around ζ = 0, ∇ψ = 0 and for flat bottom b = 0 requires the dispersion
relation

ωα(k)2 = |k|2 − µ

3 |k|
4
,

and this relation does not lead to real-valued frequencies ωα(k) for high wave
numbers |k|. To improve the linear dispersion frequencies of the model one can use
the BBM ”trick” [2]. The idea is to note that since ∂tζ +∇ · ((1 + εζ − bµ[βb])vs) is
of size O(µ), we can introduce a real parameter α by adding the quantity

−µα3 (∆∂tζ + ∆∇ · vs + ε∆∇ · (ζvs)−∆∇ · bµ[βb]vs) = O(µ2)

to (3.11). The resulting approximate equation, together with (3.14), yields the fol-
lowing asymptotic model with precision O(µ2) for shallow water medium amplitude
waves

(1− µα

3 ∆)∂tζ +∇ ·
(
(1 + εζ−b̃µ[βb])vs

)
+ µ

3 (1− α)∆∇ · vs −
µ

2Sµ[βb]vs

+µε∇ · (1−Bµ[βb])
{
ζ∇(∇ · (1−Bµ[βb])vs)

}
+ µ

α

3 ∆∇ · bµ[βb]vs − µε
α

3 ∆∇ · (ζvs) = 0,

∂tvs +∇ζ + ε(vs · ∇)vs + µε∇ζ∇ · (1−Bµ[βb])∇ζ = 0.
(3.15)

The dispersion relation associated to (3.15) now reads

ωα(k)2 = |k|2 1 + α−1
3 µ |k|2

1 + α
3µ |k|

2 .



12 MATHIEU CATHALA

Consequently, the interest of the parameter α is that the corresponding system
(3.15) is linearly well-posed as soon as α ≥ 1. Moreover this parameter can be
adjusted (see for instance [9, 8]) to improve the dispersive characteristics embedded
in the medium amplitude model (3.15). To this end, we set α = 1.159 in all the
numerical tests of section 4.2.2. Following [9], this value has been chosen so that the
phase and group velocities associated to (3.15) stay close to the reference velocities
coming from the water waves equations (3.1).

Remark 3.3. When the bottom is smooth, further improvements of the dispersive
properties can be achieved by replacing the velocity variable vs at the surface with
a different velocity variable linked to the velocity at an arbitrary elevation. The
velocity at a certain depth is used in [34, 39] as dependent variable while a slightly
different choice is made in [8] with the introduction of a new dependent variable
(which is also related to the velocity at an arbitrary elevation as explained in [26]).
In the present case, since we are dealing with rough bottoms, we decide to work
with variables located at the surface where the irregularities of the bottom have the
least effect.

3.3. A Boussinesq system for non smooth bottoms. The additional small
amplitude assumption ε = O(µ) is the traditional assumption that leads to the
usual Boussinesq models. In this particular regime, neglecting in (3.15) the terms
of order O(εµ) = O(µ2) yields the following Boussinesq-type approximation of the
water waves equations (3.1) with precision O(µ2)

(1− µα

3 ∆)∂tζ +∇ ·
(
(1 + εζ − b̃µ[βb])vs

)
+ µ

3 (1− α)∆∇ · vs −
µ

2Sµ[βb]vs + µ
α

3 ∆∇ · bµ[βb]vs = 0,

∂tvs +∇ζ + ε(vs · ∇)vs = 0,
(3.16)

where Sµ[βb] is defined as in (3.10).

Remark 3.4 (Smooth bottoms). Using the velocity at the surface as dependent
variable, the usual Boussinesq model derived by Peregrine for smooth bottoms (see
[37]) can be written

(1−µα3 ∆)∂tζ +∇ · (hbvs) + µ

3∇ · (h
3
b∇(∇ · vs))− µ

α

3 ∆∇ · vs

− µβ

2 ∇ · (h
2
b∇(∇b · vs))−

µβ

2 ∇ · (h
2
b∇ · vs∇b) + µβ

α

3 ∆∇ · (bvs) = 0,

∂tvs +∇ζ + ε(vs · ∇)vs = 0,
(3.17)

where hb = 1− βb stands for the (nondimensional) still water depth. Assuming that
the bottom is smooth, a Taylor expansion of both operators Tµ[βb] and Bµ[βb] in
(2.17) ensures that

b̃µ[βb]vs = βbvs + µβ

2 ∆(bvs)− µβ2b∇(∇ · (bvs)) +O(µ2).

Using this last expansion together with bµ[βb] = βbvs +O(µ) in the first equation
of (3.16) while keeping in mind that, as the bottom is smooth, Tµ[βb] gives first
contributions at O(√µ), one can check that this equation coincides with the first
equation of (3.17) up to terms of order O(µ2).

4. Numerical computations

In this section we describe spatial discretization and time integration of the
nonlocal shallow water models derived in the previous section. Then we present
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some numerical simulations in order to illustrate the behavior of these asymptotic
models.

4.1. Numerical scheme. The numerical simulations are made in the one dimen-
sional case d = 1. In that case, the nonlocal operators Bµ[βb] and Tµ[βb] that occur
in the definitions of bµ[βb] and b̃µ[βb] are given by

Bµ[βb]v = sech(√µ |D|)(βbv) and Tµ[βb]v = |D| tanh(√µ |D|)(βbv). (4.1)

4.1.1. Numerical scheme for the nonlinear shallow water equations. In the one
dimensional case, equations (3.6) reduce to{

∂tζ + ∂xvs + ε∂x(vsζ) = ∂x(bµ[βb]vs),
∂tvs + ∂xζ + εvs∂xvs = 0, (4.2)

Time integration. Following the previous work of Besse and Bruneau, we use a Crank-
Nicolson like scheme where the nonlinear part is avoided by doing a relaxation
that is by writing the linear and the nonlinear parts to different times (see [4, 3]
for a description of the method and e.g. [7, 19, 18] for applications to asymptotic
models related to the water waves equations). More precisely, given a time step
∆t, we consider functions (ζn, vn) which approximate ζ(tn, ·) and vs(tn, ·) at time
tn = n∆t and vn+ 1

2 which approximate vs(tn+ 1
2 , ·) at tn+ 1

2 = (n+ 1
2 )∆t. Then the

semi-discretized in time scheme for (3.6) reads, for all n ≥ 1, vn+ 1
2 = 2vn − vn− 1

2

and 
ζn+1 − ζn

∆t + ε∂x

(
vn+ 1

2
ζn+1 + ζn

2

)
= ∂x(bµ[βb]vn+ 1

2 )− ∂xvn+ 1
2 ,

vn+1 − vn
∆t + ∂x

(ζn+1 + ζn

2

)
+ εvn+ 1

2 ∂x

(vn+1 + vn

2

)
= 0.

Spatial discretization. In all the test cases, the (one-dimensional) spatial domain
is (0 , L). We assume periodic boundary conditions so that the nonlocal operator
bµ[βb] can be approximated using the discrete Fourier transform. This amounts to
evaluating all the differential operators in (4.1) in Fourier space while performing
nonlinear products in physical space. More precisely, if ∆x is a spatial step (chosen
such that N = L

∆x is an integer), the spatial domain is discretized by N equally
spaced points xj = j∆x, j = 1, . . . , N , and the corresponding discrete frequencies
are given by k = 2π

L {−N2 + 1 , . . . , N2 }. Then, if we wish to evaluate the discrete
analogue of Bµ[βb] applied to a discrete function u = (uj)1≤j≤N , we first multiply u
by (b(xj))1≤j≤N , then transform to the Fourier space (using fast Fourier transform),
multiply by the diagonal operator sech(√µk) and finally transform back to the
physical space. Approximations of other such terms in (3.4) is achieved similarly
which leads to a discrete approximation b∆xµ : RN → RN of the nonlocal operator
bµ[βb].

Thus considering discrete unknowns ζn = (ζnj )1≤j≤N and vn = (vnj )1≤j≤N at
time tn and vn+ 1

2 = (vn+ 1
2

j )1≤j≤N at time tn+ 1
2 , the fully discrete scheme reads, for

all n ≥ 1, vn+ 1
2 = 2vn − vn− 1

2 and
ζn+1 − ζn

∆t + εD1

(
vn+ 1

2
ζn+1 + ζn

2

)
= D1(b∆xµ vn+ 1

2 )−D1v
n+ 1

2 ,

vn+1 − vn
∆t +D1

(ζn+1 + ζn

2

)
+ εvn+ 1

2D1

(vn+1 + vn

2

)
= 0,

(4.3)

where D1 stands for the classical centered discretization of ∂x (with periodic bound-
ary conditions). When comparing both asymptotic models (3.6) and (3.7), we use for
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the classical shallow water model (3.7) a finite difference scheme similar in principle
to that described above for the alternative model.

4.1.2. Numerical scheme for the medium and small amplitude models. The one
dimensional version of the medium amplitude model (3.15) reads

(1− µα

3 ∂2
x)∂tζ + ε(∂x−

µα

3 ∂3
x)(vsζ) + µ

3 (1− α)∂3
xvs

=∂xb̃µ[βb]vs − ∂xvs + µ

2Sµ[βb]vs − µ
α

3 ∂
3
xbµ[βb]vs

− µε∂x(1−Bµ[βb])
{
ζ∂2
x(1−Bµ[βb])vs

}
,

∂tvs + ∂xζ + εvs∂xvs + µε∂x((1−Bµ[βb])∂xζ)∂xζ = 0,

(4.4)

and the dispersive topographical contribution Sµ[βb] is given by

Sµ[βb]v = ∂xbµ[βb]∂2
xv + β2∂xbµ[βb]

{
−b

2

3 ∂
2
xv + b∂2

x(bv)
}

+√µβ2∂xBµ[βb]
{
−b

2

3 ∂
2
xTµ[βb]v + b∂2

x(bTµ[βb]v)
}
.

Time integration is achieved using the aforementioned Crank-Nicolson like scheme.
Concerning spatial discretization, we use discrete Fourier transform as described
above to approximate each nonlocal operator that appears in (4.4). Thus the fully
discrete scheme reads, for all n ≥ 1,

(I − µα

3 D2)ζ
n+1 − ζn

∆t + ε(D1 −
µα

3 D3)
(
vn+ 1

2
ζn+1 + ζn

2

)
+µ

3 (1− α)D3

(vn+1 + vn

2

)
= D1(b̃∆xµ vn+ 1

2 )−D1v
n+ 1

2 + µ

2S
∆x
µ vn+ 1

2 − µα3D3(b∆xµ vn+ 1
2 )

−µεD1(1−B∆x
µ )

{
ζn+ 1

2D2(1−B∆x
µ )vn+ 1

2
}
,

vn+1 − vn
∆t +D1

(ζn+1 + ζn

2

)
+ εvn+ 1

2D1

(vn+1 + vn

2

)
= µεD1((B∆x

µ − 1)D1ζ
n+ 1

2 )D1

(ζn+1 + ζn

2

)
,

(4.5)
where D1, D2 and D3 stand for the classical centered discretizations of ∂x, ∂2

x and
∂3
x while B∆x

µ , b∆xµ , b̃∆xµ and S∆x
µ are respectively the discrete approximations of the

nonlocal operators Bµ[βb], bµ[βb], b̃µ[βb] and Sµ[βb]. The one-dimensional version
of the Boussinesq-like system (3.16) is similarly approximated.

4.2. Numerical results. Our goal in the computations presented in this paper is
to compare the results produced by the nonlocal shallow water systems for rough
bottom derived in Section 3 with the ones obtained from the classical shallow water
models.

All simulations have been performed using N = 1024 points and ∆t = 10−2.
In all the test cases, the initial condition (ζ0, v0) consists of a unidirectional wave
propagating to the right on a domain of length L = 60:

ζ0(x) = v0(x) = a sech2
(x− 20

2

)
, 0 < x < 60, (4.6)

where a is an arbitrary parameter. The bathymetry can be parametrized as follows

b(x) = 1
2

(
tanh

(
2
(x− 30

δ

))
− tanh(x− 49)

)
, 0 < x < 60. (4.7)
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This parametrization is regular but it involves a slope of order 1
δ around x = 30.

Then as δ � 1 this slope becomes steep and the corresponding bottom becomes
rough (see Figure 3).

z
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Figure 3. Bathymetries at x = 30 for δ = 4 (left), δ = 0.5 (middle)
and δ = 0 (right).

4.2.1. Numerical results for the nonlinear shallow water equations. We aim at
evaluating the difference between both classical Saint-Venant system (3.7) and
the nonlocal alternative (3.6) in terms of the shallowness parameter µ. Since, for
practical purposes, the classical Saint-Venant system is often used with non smooth
topographies, the idea is to asses the price to pay when working with the classical
model though the bottom is rough. In this section, the amplitude parameter is set
to ε = 0.1.
Smooth bottom. In this test case, the topography parameter is β = 0.6. We set δ = 4
so that the corresponding bathymetry is smooth (see Figure 3). In this situation,
we know from Remark 3.1 that the nonlocal model (3.6) reduces to the classical
shallow water approximation (3.7) up to O(µ) terms. In order to illustrate this
precision, we computed the numerical solution given by (4.3) for several values of µ
and we then compared them with the numerical solution of the classical shallow
water equations. For each computation and each discrete time tn, the L∞-norm
differences Enζ = ‖ζnNL − ζnSV ‖∞ and Env = ‖vnNL − vnSV ‖∞ have been computed,
where (ζnNL, v

n
NL)n is the numerical solution of the nonlocal alternative system (4.3)

and (ζnSV, v
n
SV)n denotes the solution of the classical Saint-Venant scheme. Figure 4

depicts eζ = maxnEnζ as a function of µ (the maximum is taken over a duration of
1500 time steps). The computed order of convergence is 0.95 which is consistent
with the expected difference between both asymptotic models.
Rough bottom. In the following test cases, we focus on bottoms involving a steep
slope. More precisely, the bathymetry is still given by (4.7) but the simulations
have been performed for smaller values of δ, namely δ = 0.5, δ = 0.1 and the limit
value δ = 0. In the latter case, the bottom parametrization has a step at x = 30:

b(x) =
{

0 if 0 ≤ x < 30,
1
2 (1− tanh(10(x− 49))) if 30 < x ≤ 60.

Remark 4.1. Using the alternative shallow water model with the above step pa-
rametrization raises questions as to the meaning of the term D sech(√µ |D|)bTµ[βb]v
that appears in the definition of bµ[βb]v. Indeed, defining this term amounts to
defining the term T = D sech(√µ |D|)b |D| (bv), which is far from obvious for general
b ∈ L∞(R). Let us consider the case where b is the sign function and assume that v
is smooth. In this case, we can actually define T as a smooth function. Indeed, note
first that defining b |D| (bv) as a tempered distribution is tantamount to defining its
Fourier transform F(b |D| (bv)). Since, up to a multiplicative constant, Fb coincides
with the principal value p.v.

( 1
ξ

)
, the Fourier transform F(b |D| (bv)) can be formally
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Figure 4. Smooth bottom: convergence between the surface el-
evation computed by the classical Saint-Venant model and the
alternative one, as functions of the parameter µ.

written as a convolution product of the form p.v.
( 1
ξ

)
∗ F(|D| (bv)) = HF(|D| (bv)),

where H is the Hilbert transform. Now one can check that F(|D| (bv)) takes the
form F(|D| (bv)) = af1 +f2 with a ∈ C, f1 = v(0)sign and f2 ∈ L2(R) so that taking
the Hilbert transform yields F(b |D| (bv)) = ãf̃1 + f̃2 where ã ∈ C, f̃1 = v(0)log |·|
and f̃2 ∈ L2(R). Since FT (ξ) = sech(√µ |ξ|)ξF(b |D| (bv)), the last logarithmic
singularity gives rise to a term of the form sech(√µ |ξ|)ξ log |ξ|, which is continuous
and rapidly decreasing. This confirms that T makes sense and is a smooth function.
The same conclusion holds for piecewise continuous parametrizations of the bottom.

Figure 5 shows the comparison between the wave profiles and the velocities
determined from both the classical and the nonlocal shallow water models for a flow
over such a step. The shallowness parameter is set to be µ = 0.01 and the topography
parameter is β = 0.6. As the wave passes over the step (located at x = 30) the
classical Saint-Venant model produces oscillations at the top of both main and
reflected waves while the alternative model does not exhibit these oscillations.
Moreover the velocity computed by the classical model has a jump discontinuity
across the step. This discontinuity is ”smoothed” by the nonlocal model. Note that
the amplitude of the oscillations produced by the classical Saint-Venant equations
decreases with decreasing the topography parameter β.

In order to estimate the error (in terms of the parameter µ) committed when
using the classical Saint-Venant model, the quantity eζ = maxnEnζ has again been
computed and the results are plotted in Figure 6. To study the influence of the
topography parameter, this figure also presents the results obtained with β = 0.3.
As expected the error committed by the classical model increases with β. The
computed orders of convergence with respect to µ for the surface elevation have
been gathered in Table 1. For the case of small amplitude bottom (β = 0.3), the
convergence rate remains close to 1 except for the step topography (δ = 0). Now,
for the case of large amplitude bottom (β = 0.6), the order of convergence decreases
with the steepness of the topography. In the limit case δ = 0, the classical model
becomes a O(µ 1

2 ) approximation (compared with O(µ) for smooth topographies).
In other words, with this particular kind of rough bottoms, if one decides to use the
classical shallow water model, the price to pay is at most one-half order of precision.
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Figure 5. Elevation and velocity for a wave passing over a step:
classical Saint-Venant model (left) and nonlocal alternative (right).

10 3 10 2 10 110 3

10 2

10 1

µ

m
a
x

E
ζ

 

 

δ = 0
δ = 0.1
δ = 0.5

1
1/2

10 3 10 2 10 110 4

10 3

10 2

10 1

µ

m
a
x

E
ζ

 

 

δ = 0
δ = 0.1
δ = 0.5

1

1

β = 0.6 β = 0.3

Figure 6. Rough bottom: convergence between the surface el-
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δ Convergence rate
β = 0.6 β = 0.3

4 0.96 0.94
0.5 0.71 0.94
0.1 0.63 0.94
0 0.54 0.71

Table 1. Shallow water models: computed convergence rates with
respect to µ.
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Figure 7. Convergence between the surface elevation computed by
the classical Boussinesq model and the alternative one, as functions
of the parameter µ.

δ Convergence rate
4 2.33

0.5 1.79
0.1 1.19
0 1.18

Table 2. Boussinesq models: computed convergence rates with
respect to µ for the wave amplitude.

4.2.2. Numerical results for the medium and small amplitude models.
Convergence as functions of the shallowness parameter . We consider once again the
L∞-norm difference Enζ = ‖ζnα − ζnBouss ‖∞, where (ζnα)n is the elevation computed
by the nonlocal alternative Boussinesq model while (ζnBouss)n denotes the numerical
elevation given by the classical Boussinesq system. In the sake of evaluating the
convergence between both classical Boussinesq system and the nonlocal alternative
as functions of µ, the quantity eζ = maxnEnζ has been computed over a duration
of 1500 time steps and for several values of δ. The results are depicted in Figure 7
and the computed orders of convergence are given in Table 2. As we noticed
in Remark 3.4, the alternative model (3.16) reduces to the standard Boussinesq
system (3.17) up to O(µ2) terms for smooth bottoms. The computed order of
convergence of 2.33 obtained for the smooth step (δ = 4) is thus consistent with the
expected difference between both asymptotic models. In the limit case of the step
bottom (δ = 0) the convergence rate becomes 1.18. Consequently using the classical
Boussinesq approximation costs at most about one order of precision.
The case of a step bottom (δ = 0). In this limit case, two different behaviors emerge
when comparing the classical shallow water medium amplitude model with the
nonlocal alternative:

i) For the small values of the shallowness, say µ < 0.01, the elevation and velocity
computed by the classical model are close to those given by the nonlocal
alternative (see Figure 8 obtained for µ = 0.01). In particular, as seen when
comparing Figure 8 to Figure 5 both obtained for µ = 0.01 and ε = 0.1, the
amplitude of the oscillations produced by the classical medium amplitude model
are lower than those obtained with the classical Saint-Venant model.
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Figure 8. Elevation and velocity for a wave passing over a step
(µ = 0.01, ε = 0.1). Classical medium amplitude model (left) and
nonlocal alternative (right).
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Figure 9. Elevation and velocity for a wave passing over a step
(µ = 0.04, ε = 0.2). Classical medium amplitude model (left) and
nonlocal alternative (right).
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ii) For values of the shallowness parameter in the range 0.01 < µ < 0.05, some
instabilities arise when using the classical medium and small amplitude models
with a step bottom. This behavior is illustrated in Figure 9, which shows a
comparison between the wave profiles and the velocities determined from both
the classical and the nonlocal shallow water medium amplitude models. Note
that these instabilities do not vanish for small values of the time step.

Appendix A. The case of polygonal topographies

In the case of two dimensional motions and when the bottom has polygonal
shape, Hamilton [22] and Nachbin [29] used a conformal mapping technique to
derive long wave models. This conformal mapping technique can be adapted to
derive shallow water models with polygonal topography. The idea is to use Schwarz-
Christoffel mapping theory (see e.g. [31]) to find a conformal map from a strip
to the fluid domain at rest (see [29, 20]). From a numerical point of view, the
main interest of this technique is that such a mapping can be efficiently computed
using, for instance, the Schwarz-Christoffel Toolbox [17] (see [20, Appendix A] for
an application to the conformal mapping of a fluid domain with polygonal bottom).
This particular conformal mapping can then be used to approximate the Dirichlet-
Neumann operator. Broadly speaking, the derivation of this approximation proceeds
via the following steps:

(1) Transform the Laplace equation (1.1) into an elliptic boundary value problem
defined on the flat strip.

(2) Express the Dirichlet-Neumann operator in terms of the solution of this
new problem (the so-called transformed potential).

(3) Approximate the transformed potential using a BKW procedure.
(4) Use this approximate solution in the expression of (2) to deduce an approx-

imation of Gµ[εζ, βb]ψ.
Denoting by Σ the Schwarz-Christoffel mapping function and setting (σ(x), ρ(x)) =
Σ−1(x, εζ(x)) (the transformed free surface), the resulting approximation is

Gµ[εζ, βb]ψ = −∂x
(

1 + ρ
dσ
dx

∂xψ

)
+O(µ),

giving rise to the following nonlinear shallow water system with polygonal topography ∂tζ + ∂x

(
1 + ρ

dσ
dx

vs

)
= 0,

∂tvs + ∂xζ + εvs∂xvs = 0.
(A.1)

To evaluate the behavior of the nonlocal shallow water model (3.6) when the bottom
has polygonal shape, we compare the solutions produced by both systems (4.2) and
(A.1) in the particular case of a rectangular bottom. The bathymetry is given by

b(x) =
{

0 if x < 30 or x > 50,
1 if 30 ≤ x ≤ 50,

as illustrated in Figure 10. The initial condition is the unidirectional wave defined in
(4.6) and the amplitude parameters are set to ε = 0.1 and β = 0.6. Time histories
of the surface elevation computed by both models are shown in Figure 11. The
simulation was performed using N = 1024 points and ∆t = 10−1. As the wave
passes over the step, both models produce similar results.

Acknowledgments. The author would like to thank André Nachbin for helpful
comments and for kindly providing material on the Schwarz-Christoffel mapping.
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