
HAL Id: hal-00803985
https://hal.science/hal-00803985v1

Preprint submitted on 24 Mar 2013 (v1), last revised 3 Oct 2013 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Near-optimal Binary Compressed Sensing Matrix
Weizhi Lu, Weiyu Li, Kidiyo Kpalma, Joseph Ronsin

To cite this version:
Weizhi Lu, Weiyu Li, Kidiyo Kpalma, Joseph Ronsin. Near-optimal Binary Compressed Sensing
Matrix. 2013. �hal-00803985v1�

https://hal.science/hal-00803985v1
https://hal.archives-ouvertes.fr


1

Near-optimal Binary Compressed Sensing

Matrix
Weizhi Lu, Weiyu Li, Kidiyo Kpalma and Joseph Ronsin

Abstract

Compressed sensing is a promising technique in signal processing that attempts to recover sparse

signal through as few linear and nonadaptive measurements as possible. In this sense, the recovery

performance is largely determined by the structure of measurement matrix. Recently, (0, 1) binary random

matrix is found attractive for its lower computation load as well as for its comparable performance with

Gaussian Matrix. However, the optimal distribution of binary random matrix for compressed sensing

remain unknown in theory. This paper, for the first time, deterministically defines one class of near-

optimal binary random matrix by comparing the restricted isometry property (RIP) of regular binary

random matrix characterized with the correlation between columns. And in theory, the proposed matrix

is expected to achieve nearly the best RIP with as few nonzero entries as possible. Simulation results

also confirm the availability of the proposed near-optimal matrix, with better performance over both

traditional binary random matrix and Gaussian matrix.

Index Terms

binary random matrix, compressed sensing, near-optimal, restricted isometry property, RIP.

I. INTRODUCTION

Suppose that a k-sparse signal x ∈ RN , with at most k nonzero entries, is measured by an undetermined

matrix A ⊂ RM×N with M < N

y = Ax, (1)
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compressed sensing [1] states that one can recover x perfectly from finite observations y ∈ RM . This

problem is customarily formulated as an l1-minimization based convex optimization problem

min ||x̂||1 subject to y = Ax̂ (2)

provided that restricted isometry property (RIP) is satisfied. To understand RIP, we first review the concept

k-restricted isometry constant (RIC) δk, which is the smallest quantity obeying

(1− δk)||xT ||2 � ||ATxT ||2 � (1 + δk)||xT ||2 (3)

for all subsets T ⊂ {1, ..., N} with cardinality |T | ≤ k and all vectors xT ∈ R|T |, where AT denotes the

set of columns of A with indices in T . And then RIP of order k asserts that the k-sparse signal can be

recovered faithfully by Eq. (1), if δ2k < 0.4652 [2]. Roughly speaking, RIP requires that the symmetric

matrix A′TAT approximates isometry.

It is well known that some random matrices generated by certain probabilistic processes, like Gaussian

or Bernoulli processes [1] [3], satisfy RIP with high probability. In terms of the works related to Johnson-

Lindenstrauss lemma [4] [5], these dense matrices are allowed to be sparsely sampled without obvious

performance loss in compressed sensing. However, due to the randomness in structure and the uncertainty

on RIP, these random matrices are prohibited in real applications. Consequently, several deterministic

sensing matrices based on some special codes, like Reed-Solomon codes [6] [7], Reed-Muller codes [8],

chirp sensing codes [9] etc., are sequentially proposed. In spite of explicit structure, these matrices still

suffer from uncertain RIP and unpromising performance [10].

Recently, the sparse binary parity-check matrix defined by LDPC codes [11] (shortly called ’LDPC

matrix’ in this paper) attracts our attention for its competitive performance as well as circuit-friendly

structure [12]. Up to now, the structure and construction for better LDPC matrix in coding theory have

been widely studied. In contrast, the literature for better performance in compressed sensing is rare. In

fact, as one class of (0, 1) binary sparse matrix, LDPC matrix has no distinguishable characteristic in

structure with its original definition [11], except for its particular representation and analysis methods

based on bipartite graph. In this sense, the research for better LDPC matrix is essentially equivalent to

searching more feasible sparse binary matrix with better performance while lower sparsity. However, to

the best of our knowledge, there seems no impressive work to address this problem. In the earlier works

[13] [14] [15] [16], LDPC matrix is only simply used as a common sparse binary random matrix [17],

without particular evaluations on structure, i.e., girth or correlation between columns. Recently Dimkis

et al. [18] propose that the good LDPC matrix in channel coding is probably the good sensing matrix
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in compressed sensing, by building a mathematical connection between channel coding and compressed

sensing with linear programming decoding. Furthermore, they state that the good matrix should have

large girth. Unfortunately, these theoretical results are still rough from the viewpoint of application.

Most recently, Li et al. [10] evaluate one class of LDPC matrix based on Berlekamp-Justesen codes,

and obtain deterministic RIP and comparable performance with Gaussian matrix. Obviously, all the

aforementioned works are far away from the ideal goal of defining the better or even best sparse binary

matrix in compressed sensing.

In this paper, by exploring the connection between the correlation and the girth of LDPC matrix,

for the first time, we theoretically define one class of near-optimal (0, 1) binary random matrix for

compressed sensing, which achieves nearly the best RIP with nearly fewest nonzero entries. Significantly,

this kind of matrix can be approximately determined and constructed in practice. In final simulations, the

proposed near-optimal matrix constructed with progressive edge-growth (PEG) algorithm [19] achieves

better performance than both traditional binary random matrix and Gaussian matrix. In the following

study, to distinguish with previous studies on binary matrix, we prefer to use ’LDPC matrix’ to refer to

the sparse binary random matrix characterized with the tool: bipartite graph, popularly used for LDPC

codes.

Moreover, it is necessary to mention that the accurate calculation of RIP has been regarded as a

difficult or even impossible assignment [20]. For instance, recent works [21] [22] have proved that the

RIP solution to a given matrix with a given order k is NP-hard. However, the computational obstacle can

be penetrated by analysis [23]. To search best binary random matrix, this paper approximates the RIP of

random matrix by analyzing given distribution. As will be shown later, the solution to RIP can be derived

by seeking the extreme singular values of AT [23]. Unfortunately, the accurate or comparable extreme

singular values of random matrix, cannot be well approximated with current random matrix theory [24].

Recall that the paper focuses on the comparison between RIPs rather than accurate RIP. Thus, in this

paper the solution to the extreme singular values of AT is roughly relaxed to calculating the extreme

eigenvalues of symmetric matrix of similar distribution with A′TAT . In other words, A′TAT is simply

regarded as symmetric rather than positive semidefinitive. As it is known, the extreme eigenvalues of

symmetric matrix has been widely studied in random matrix theory, and accurate solutions can be derived

or approximated on some constraints.

The rest of the paper is organized as follows. In next section, the regular binary random matrix is

defined by two types of LDPC matrices of different girth distributions. Relative concepts about Tanner

graph and girth are also introduced. In section III, the RIPs of above two types of LDPC matrices are
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firstly calculated and analyzed in Theorems 1-3, and then the near-optimal binary random matrix are

further derived by the comparison of RIPs in Theorem 4. In section IV, the empirical performance of

proposed near-optimal matrix constructed with PEG algorithm is verified, by comparing with LDPC

matrix with different sparsity as well as other popular matrices. Finally, this paper is closed with a

conclusion in section V.

II. FUNDAMENTALS OF LDPC MATRIX

In the study of LPDC codes, LDPC matrix tends to be represented by Tanner Graph (in Definition 1),

and analyzed with girth (in Definition 2, abbreviated as g). According to the distribution of girth, this

paper, for the first time, categorizes regular binary random matrix without same columns, into two types

of LDPC matrices: LDPC matrix with girth g > 4 (in Definition 3) and LPDC matrix with girth g = 4

(in Definition 4). This novel definition will be helpful for the following computation of RIP. Currently,

LDPC matrix with g > 4 can be constructed with numerous algorithms thanks to wide studies on LDPC

codes. In contrast, it seems that there is no off-the-shelf knowledge to the construction and analysis of

LDPC matrix with g = 4 due to its bad performance in LDPC codes. So this paper cannot sufficiently

describe its structure in the following study. Typically, to express the variation of the correlation between

columns with degree d varying, where d denotes the number of nonzero entries in each column, the

columns of LDPC matrix are normalized, and thus nonzero entries are set to 1/
√
d instead of 1.

Definition 1 (Tanner Graph): A bipartite graph holds N variable nodes and M check nodes,

respectively corresponding to N columns and M rows of binary matrix {0, 1}M×N . Variable nodes

and check nodes are connected by the nonzero entries of binary matrix.

Definition 2 (Girth): In Tanner graph, the girth is defined as the length of the shortest cycle through

all variable nodes.

Definition 3 ( LDPC Matrix with girth g > 4): A binary matrix A(M,N, d) ⊂ (0, 1/
√
d)M×N ,

consists of 2 ≤ d ≤M − 2 nonzero entries per column and Nd/M nonzero entries per row. In structure,

any two columns are allowed to share at most one same nonzero position. In adjacent Tanner graph, the

girth is larger than 4.

Definition 4 ( LDPC Matrix with girth g = 4): A binary matrix A(M,N, d, s) ⊂ (0, 1/
√
d)M×N ,

consists of 3 ≤ d ≤M − 2 nonzero entries per column and Nd/M nonzero entries per row. The largest

correlation value between two distinct columns is s/d with 2 ≤ s ≤ d− 1. In adjacent Tanner graph, the

girth is equal to 4.



5

For the performance of sensing matrix, the correlation between distinct columns has been a fundamental

index. Fortunately, the correlation of LDPC matrix with g > 4 can be statistically determined as shown in

Lemma 1. Conversely, as the former states, it is hard to detail the correlation distribution of LDPC matrix

with g = 4, due to limited knowledge. But one can roughly conjecture that its nonzero correlation values

are taken from the set {1/d, ..., s/d}. Therefore, with the rough relation between the largest correlation

and compressed sensing [25]

k <
1

2
(1 + 1/µ) (4)

where µ := maxi 6=j{|a′iaj |} = 1/d or s/d for above two types of LDPC matrices, it is reasonable to

expect that the larger d probably defines the better LDPC matrix. Also, this paper is developed with this

inspiration.

Lemma 1 (Correlation of LDPC matrix with g > 4): Any two distinct columns of LDPC matrix

A(M,N, d) in Definition 3 take on correlation values

a′iaj,j 6=i =

 1/d with probability ρ = Nd2−Md
(N−1)M

0 with probability 1− ρ
(5)

where ai and aj denote two distinct columns of A(M,N, d).

Proof: In Tanner graph associated with A(M,N, d), any variable node vi, i ∈ {1, ..., N}, holds d

neighboring check nodes cbk , where the subscript bk ∈ C ⊂ {1, ...,M} denotes the index of check node,

k ∈ {1, ..., d}, |C| = d; each check node cbk further connect with other Nd
M − 1 variable nodes vj , where

j ∈ Vbk ⊂ {1, ..., N} \ i represents the index of variable node, |Vbk | = Nd
M − 1. Since variable node vi

has girth> 4 as Definition 1, Vb1
⋂
Vb2

⋂
...
⋂
Vbk = ∅, namely |Vb1

⋃
Vb2

⋃
...
⋃
Vbk | = d × (NdM − 1).

Thus, among N − 1 variable nodes, there are Nd2−Md
M variable nodes connecting with variable node vi

through one check node. Equivalently, any column of A(M,N, d) has Nd2−Md
M correlated columns with

correlation value 1/d. Then formula (5) is proved.

III. LDPC MATRIX FOR COMPRESSED SENSING

In this section, the RIPs for LDPC matrices with g > 4 and g = 4 are first derived and analyzed in

Theorems 1-3, and then the near-optimal LDPC matrix is proposed and discussed by comparing RIP in

Theorem 4.
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Fig. 1. (a) Maximum, mean and minimum of the proportion of nonzero entries in the off-diagonal of A′
TAT , |T | = k, for

LDPC matrix A(400, 200, 7). The mean is equal to the theoretical value ρ = 0.2281 in Lemma 1. (b) The probability that the

proportion p of nonzero entries in the off-diagonal of A′
TAT centers on ρ with error bound |p − ρ|/ρ. Each point of (a) and

(b) is derived with 103 simulations.

A. RIP of LDPC matrix with girth larger than 4

With the definition of LDPC matrix with g > 4, it is easy to derive that A′TAT ⊂ {0, 1, 1/d}k×k with

T ∈ {1, ..., N} and |T | = k1, is a positive semi-definite symmetric matrix with the diagonal equal to

zero, and the off-diagonal of the distribution illustrated in Lemma 1. Theoretically, the solution to the

1Suffering from some possible confusion with the former notation in RIC, we simply assume |T | = k in the following part.
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RIC-δk of A′TAT , can be transformed to the pursuit for the extreme eigenvalues of A′TAT (equivalently,

the square of the extreme singular values of AT ), since

1− δk ≤ λk ≤
x′TA

′
TATxT
x′TxT

≤ λ1 ≤ 1 + δk (6)

where λ1 and λk represent the two extreme eigenvalues of A′TAT . Note that, in this paper λ1 ≥ λ2... ≥ λk
are customarily used to denote the order of eigenvalues of A′TAT .

As the introduction states, it is hard to directly derive the extreme singular values of AT , and so

we turn to calculate the extreme eigenvalues of random symmetric matrix of similar distribution with

A′TAT . In this paper, we prefer a simple algebra algorithm [26] rather than other popular results based on

semicircle law [27], for the solution of extreme eigenvalues. The major advantage of the former is that it

can provide an accurate solution for random symmetric matrix, if the random matrix could achieve some

special distribution. In contrast, the accuracy of the latter can only be expected if the matrix size k is

sufficiently large. Obviously, this is unfavorable for RIP usually with small k. In the following Theorem

1, the RIP-1 of LDPC matrix with g > 4 is derived with [26].

Theorem 1 (RIP-1): LDPC matrix A(M,N, d) in Definition 1 satisfies RIP with RIC

δk =
3k − 2

4d+ k − 2
(7)

With δ2k < 0.4652 [2], further derive k < 0.3671d + 0.2110, for the faithful recovery based on l1-

minimization.

Proof: Please see Appendix A.

Note that, as the proof detailed in Appendix A, the two extreme eigenvalues for RIP-1 are achieved on

the assumption that the proportion p of nonzero entries in the off-diagonal of A′TAT , could take value

1 or 0.5, for any |T |. However, as Lemma 1 discloses, this condition cannot be satisfied all the time,

because the proportion p should center on ρ < 1 with higher probability as |T | increases. For better

understanding, we further give an example in Figure 1, in which the proportion p for LDPC matrix

A(200, 400, 7) fast converges to the theoretical value ρ = 0.2281 < 0.5, as |T | increases. In this case, for

the large LDPC matrix with RIP of order k large enough such that p = ρ, its RIP-2 can be asymptotically

evaluated with semicircle law [27], as shown in Theorem 2. Note that, Theorem 2 is only feasible for

LDPC matrix with RIP of order k large enough such that the condition for semicircle law, |T | → ∞,

could be well approximated. Thus, considering generality and accuracy, RIP-1 rather than RIP-2 is used

in the following comparison between RIPs.
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Theorem 2 (RIP-2): Assume that the off-diagonal elements of A′TAT take nonzero values with

probability ρ = Nd2−Md
(N−1)M , for any |T |(|T | − 1)ρ ≥ 2, then drive that, the RIC-δk of A(N,M, d) can be

approximately formulated as

δk =
kρ+ 2

√
kρ(1− ρ) + 1

kρ− 2
√
kρ(1− ρ) + 3

(8)

if k = |T | → ∞.

Proof: Please see Appendix B.

B. RIP of LDPC matrix with girth equal to 4

For LDPC matrix A(N,M, d, s) with g = 4 and the largest correlation µ = s/d, the off-diagonal of

A′TAT possibly takes values from the set {0, 1/d, ..., s/d}, where 3 ≤ d ≤ M − 2 and 2 ≤ s ≤ d − 1.

With the same solution algorithm [26] to Theorem 1, the RIP-3 of LDPC matrix with g = 4 is derived

in Theorem 3.

Theorem 3 (RIP-3): LDPC matrix A(M,N, d) with g = 4 and µ = s/d , where 2 ≤ s ≤ d− 1 and

3 ≤ d ≤M − 2 satisfies RIP with RIC

δk =


(3k−2)s

(k−2)s+4d
if 3 ≤ d ≤ M

2
and 2 ≤ s ≤ d− 1

(3k−2)s+(k−2)(M−2d)
(k−2)s−(M−2d)k+2M

if M
2
< d ≤M − 2 and 2d−M ≤ s ≤ d− 1

(9)

Proof: Please see Appendix C.

Note that, like RIP-1, the two extreme eigenvalues for RIP-3 are also achieved as the off-diagonal

elements of A′TAT can take the maximal nonzero value s/d with probability 1, or take binary value

{0, s/d} with equal probability. Nevertheless, as the section II states, in practice it remains unknown

whether the above distributions could be well satisfied merely with limited knowledge about LDPC

matrix with g = 4. And so this paper cannot ensures that the extreme eigenvalues for RIP-3 possibly are

surely achieved by the practical matrix.

C. Our contributions: Near-optimal binary random matrix

This section attempts to theoretically define one class of near-optimal binary random matrix in Theorem

4, by comparing the RIPs of LDPC matrices with different sparsities/degrees.

Theorem 4 (Near-optimal binary random matrix): The largest degree dmax of LDPC matrix

A(N,M, dmax) with g > 4, defines the near-optimal binary random matrix for compressed sensing,

which obtains nearly the best RIP ( or least RIC-δk) with as few nonzero entries as possible. According

to 1 + d(dNM − 1) ≤ N [19], one can approximately derive dmax <
√
M .
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Proof: The near-optimal LDPC matrix A(N,M, dmax) is derived by comparing itself with other

LDPC matrix A(N,M, d < dmax) with g > 4 and LDPC matrix with g = 4.

1) If d ≤ dmax,

• compared to LDPC matrix with g > 4:

with RIP-1 or RIP-2, it is easy to derive that the RIC-δk decreases as the degree d increases.

Thus, LDPC matrix with g > 4 achieves best RIP as d = dmax.

• compared to LDPC matrix with g = 4:

by comparing RIP-1 and RIP-3, it is easy to derive that 3k−2
4d+k−2 <

(3k−2)s
(k−2)s+4d , if 2 ≤ s ≤ d− 1

and 3 ≤ d ≤ M/2 (note that dmax <
√
M < M/2). This indicates that the RIC-δk of LDPC

with g > 4 is less than that of LDPC matrix with g = 4. Thus, LDPC matrix with g > 4 and

dmax still holds better RIP, if d ≤ dmax.

2) If d > dmax,

• compared to LDPC matrix with g = 4:

by comparing RIP-1 and RIP-3, LDPC matrix (M,N, dmax) with g = 4 holds better RIP

in the following two cases: first, if dmax < d ≤ M/2 , let 3k−2
4dmax+k−2 ≤

(3k−2)s
(k−2)s+4d , derive

that dmax ≥ d/s; second, if M/2 < d ≤ M − 2, let 3k−2
4dmax+k−2 ≤

(3k−2)s+(k−2)(M−2d)
(k−2)s−(M−2d)k+2M ,

approximately derive that dmax ≥ (k+1)(2d−M)
6s+2(2d−M) .

There are three major factors rendering the near-optimal rather than optimal property of Theorem

4. First, as the proof, when d > dmax, the near-optimal matrix A(M,N, dmax) is derived under two

constraints: dmax ≥ d/s and dmax ≥ (k+1)(2d−M)
6s+2(2d−M) . For the first constraint, it is reasonable to conjecture

that the better LDPC matrix with g = 4 and d > sdmax, dose not exist, since it is contrast to the fact

that one can derive at most d = dmax when s = 1, in terms of the definition dmax for LDPC matrix with

g > 4 in Theorem 4. And for the second constraint, unfortunately it is hard to determine whether the ideal

d for better LDPC matrix with g = 4 exists or not with the complex formula. Nevertheless, note that,

the second constraint is derived from d > M/2, which is beyond our practical interest for sparse matrix.

Second, it is necessary to recall that both RIP-1 and RIP-3 are derived on some special assumptions,

which cannot be well satisfied as |T | increases. Specially, as the former states, for LDPC matrix with

g = 4, the practical RIP may be better than RIP-3, since empirically it is hard for the practical matrix to

obey the assumption well as |T | increases. Third, it should be noted that this paper only investigates the

regular LDPC matrix, which is expected to share same number of nonzero entries between columns or
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between rows. In fact, Theorem 4 could also be roughly extended to irregular LDPC matrix with g > 4,

by proving that the larger average degree d implies better RIP. In practice, compared to the proposed

near-optimal LDPC matrix, irregular LDPC matrix usually can achieve a better RIP thanks to its larger

average degree [12].

IV. SIMULATION RESULTS

A. Simulation setup

To verify Theorem 4, this section first studies the performance of LDPC matrix over varying degrees

d. Considering the sparsity of input signal is usually uncertain and the noises are also inevitable in real

applications, LDPC matrix is further evaluated with varying sparsity level k and Gaussian noise. For

comparison, traditional binary random matrix of same degree with LDPC matrix and Gaussian matrix of

same size are also tested.

The near-optimal binary random matrix, LDPC matrix A(200, 400, dmax = 7) is constructed with PEG

algorithm. As a suboptimal greedy algorithm, PEG is suitable to explore the largest d of LDPC matrix

with g > 4. To obtain near-optimal sparsity by comparison, LDPC matrices A(200, 400, 1 ≤ d < 7)

with g > 4 and LDPC matrix A(200, 400, 7 < d ≤ 100) with g = 4 are also constructed with PEG

algorithm. Moreover, note that this paper cannot provide the examples of LDPC matrix with g = 4 and

some given µ = s/d, where 2 ≤ s ≤ d− 1, since there is no construction algorithms as section II states.

As particular examples, traditional binary random matrices with 1 ≤ d ≤ 100 nonzero entries randomly

and uniformly distributed in each column, denoted as R(M,N, d) with the largest correlation µ = s/d

and s = d− 1, are proposed for comparison.

Existing solution algorithms to Eq. (2) can be roughly categorized to two classes: convex optimization

algorithms (basis pursuit) [28] and greedy algorithms, like orthogonal matching algorithm (OMP) [29]

[30]. Since the experiments are developed based on performance comparison rather than pursuing best

performance, OMP is used here for much faster simulations. The input sparse signal is generated from

N(0, 1) and then normalized. All simulation results are averaged after 104 iterations, and both binary

random matrix and Gaussian matrix are randomly generated each iteration. The correct recovery rates

are measured with 1− ||x̂− x||2/||x||2.

B. Near-optimal property in both performance and sparsity
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TABLE I

THE LARGEST SPARSITY LEVEL k THAT CAN BE RECOVERED WITH PROBABILITY LARGER THAN 99%, FOR LDPC MATRIX

A(200, 400, d) AND BINARY RANDOM MATRIX R(200, 400, d).

d 1 2 3 4 5 6 7 8 9 10

k
LDPC 0 29 70 75 78 80 81 83 83 81

Random 0 0 55 69 73 75 76 76 76 76

d 11 12 13 14 15 20 30 40 50 100

k
LDPC 80 79 78 78 77 75 74 48 26 2

Random 76 76 76 76 76 76 76 76 76 76

In Table 1, the largest sparsity level k that ensures recovery rates larger than 99% are presented for

LDPC matrix binary random matrix with varying d. At the same time, the largest k for Gaussian matrix

of size (200, 400) is also derived as 76. Obviously, with same error tolerance, larger k indicates better

sensing matrix. As it is expected, the near-optimal binary matrix, LDPC matrix A(200, 400, dmax = 7)

achieves nearly the best performance with k = 81, larger than k = 76 for both binary random matrix

and Gaussian matrix, while slightly worse than k = 83 for LDPC matrices with d ∈ {8, 9}. Recall that,

since PEG algorithm attempts to reduce the overlap rates of nonzero positions of distinct columns, LDPC

matrices with g = 4 constructed with PEG algorithm tends to take correlation value 1/d with higher

probability rather than 2/d or others, as d is slightly larger than dmax. Therefore, the performance gain of

LDPC matrix with g = 4 and d ∈ {8, 9} over near-optimal LDPC matrix with g > 4 and dmax = 7, can

be explained by the fact that its correlation values take 1/d (< 1/dmax) with much higher probability

rather than s/d (> 1/dmax), 2 ≤ s ≤ d − 1. In this sense, this kind of LDPC matrix can be roughly

regarded as LDPC matrix with g > 4 and d > dmax, and so the better RIP can be reasonalby conjectured

with Theorem 4. Empirically, as Table 1 shows, the performance LDPC matrix constructed with PEG

algorithm, begins to degrade as the difference d−dmax > 2 [12]. By this observation, one can practically

construct better LDPC matrix than the near-optimal LDPC matrix with PEG algorithm.

C. Performance over input signals of varying sparsity or noises

In Figure 2, near-optimal LDPC matrix is compared with binary random matrix R(200, 400, 7) and

Gaussian matrix over varying sparsity levels k. Binary random matrix and Gaussian matrix present

comparative performance, while LDPC matrix significantly outperforms them. Note that the binary

random matrix with d = 7 has achieved its best performance as shown in Table 1. Similar results
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Fig. 2. The recovery rates of input signals with varying sparsity level k, for LDPC matrix A(200, 400, 7), binary random matrix

R(200, 400, 7) and Gaussian matrix of size (200, 400).

are also observed in Figure 3, where the normalized sparse signal of k = 40 is perturbed by Gaussian

noise N(0, σ2).

V. CONCLUSION

This paper has theoretically defined one class of near-optimal (0, 1) binary random matrix with lowest

sparsity to achieve nearly the best RIP. And the simulation results also verify that the near-optimal binary

matrix constructed with PEG algorithm, indeed exists with better performance over traditional binary

random matrix as well as Gaussian matrix. In future, it is attractive to search the largest degree dmax for

near-optimal LDPC matrix in both theory and practice.

APPENDIX A

PROOF OF THEOREM 1

Proof referring to [26]: As formula (6) discloses, the solution to RIC-δk can be reformulated as the

pursuit for the extreme eigenvalues of symmetric matrix A′TAT ⊂ {0, 1, 1/d}k×k, |T | = k. Customarily,

as the former states, we denote by λ1(A′TAT ) ≥ . . . ≥ λk(A′TAT ) the eigenvalues of A′TAT .

1) Let B = A′TAT − I ⊂ {0, 1/d}k×k, then Bii = 0 and Bij,i6=j = 0 or 1/d.

Let normalized x = (x1, . . . , xk)
′ be the eigenvector corresponding to λk(B). Then the minimal

eigenvalue can be formulated as

λk(B) = x′Bx = 1′[B ◦ (xx′)]1



13

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

σ2

R
ec

ov
er

y 
ra

te
s

 

 
Gaussian
Binary random
LDPC

Fig. 3. The recovery rates of normalized input signals with Gaussian noise N(0, σ2), for LDPC matrix A(200, 400, 7), binary

random matrix R(200, 400, 7) and Gaussian matrix of size (200, 400).

where ◦ denotes the Hadamard product and 1 = (1, . . . , 1)′ ∈ Rk. Since B is symmetric, by

simultaneous permutations of the rows and columns of B, we can suppose xi ≥ 0 for i = 1, . . . , n

and xi < 0 for i = n+ 1, . . . , k, and then xx′ is divided into four parts:

xx′ =

 Xn×n Xn×(k−n)

X(k−n)×n X(k−n)×(k−n)


where the entries in Xn×n and X(k−n)×(k−n) are nonnegative, while the entries in Xn×(k−n) and

X(k−n)×n are nonpositive. Further, define a novel matrix B̃ of same size with B

B̃ =

 0× 1n×n 1
d × 1n×(k−n)

1
d × 1(k−n)×n 0× 1(k−n)×(k−n)


where 1a×b is an a× b matrix with all entries equal to 1. It is easy to deduce that

λk(B̃) = min{y′B̃y : ‖y‖ = 1} ≤ x′B̃x ≤ x′Bx = λk(B).

Since the rank of B̃ is at most 2, it has at most two nonzero eigenvalues. Considering the trace

and the Frobenius norm, we have

λk(B̃) = −
√
n(k − n)

d2
, 0 ≤ n ≤ k.

If k is even, λk(B̃) ≥ − k
2d , with ’=’ at n = k/2.

If k is odd, λk(B̃) ≥ −
√
k2−1
2d , with ’=’ at n = (k − 1)/2 or n = (k + 1)/2.

Then λk(B) ≥ λk(B̃) ≥ − k
2d , with the limitation attained at k is even and n = k/2.
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So, we have the minimum eigenvalue λk(A′TAT ) ≥ 1− k
2d .

2) Let C = A′TAT −
d−1
d × I , then Cii = 1/d and Cij,i6=j = 0 or 1/d .

Let normalized x = (x1, . . . , xk)
′ be the eigenvector corresponding to λ1(C). By simultaneous

permutations of C and x, we can suppose xi ≥ 0 for i = 1, . . . , n and xi < 0 for i = n+1, . . . , k,

and the maximal eigenvalue is formulated as

λ1(C) = x′Cx = 1′[C ◦ (xx′)]1.

Further define

C̃ =

 1
d × 1n×n 0× 1n×(k−n)

0× 1(k−n)×n
1
d × 1(k−n)×(k−n),


then

λ1(C̃) = max{y′C̃y : ‖y‖ = 1} ≥ x′C̃x ≥ x′Cx

= λ1(C).

Since the rank of C̃ is at most 2, it has at most two nonzero eigenvalues. Considering the trace

and the Frobenius norm, we have

λ1(C̃) =
k + |k − 2n|

2d
.

Then λ1(C) ≤ λ1(C̃) ≤ k
d , with ’=’ at n = 0 or n = k. And further derive

λ1(A
′
TAT ) = λ1(C) +

d− 1

d
≤ k + d− 1

d

3) Finally, we can deduce

δk =
λ1(A

′
TAT )− λk(A′TAT )

λ1(A′TAT ) + λk(A
′
TAT )

=
3k − 2

4d+ k − 2
,

with λ1(A′
TAT )

λk(A′
TAT )

= 1+δk
1−δk [31].

APPENDIX B

PROOF OF THEOREM 2

Proof: To derive the extreme eigenvalues of A′TAT , we first search the extreme eigenvalues of

B = (A′TAT − I)

where I is an identity matrix. And clearly B is a symmetric matrix of the diagonal elements equal to 0,

and the off-diagonal elements equal to 1 with property ρ and 0 with property 1− ρ.
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Further, suppose [32]

Q =
1√

ρ(1− ρ)
(B − ρ1)

where 1 is a all-ones matrix. Then Q has entries with mean zero and variance one. With semicircle law

[27] , the extreme eigenvalues 1√
k
Q, k = |T |, can be approximated as

−2 ≤ λ( 1√
k
Q) ≤ 2

namely,

−2
√
kρ(1− ρ) ≤ λ(B − ρ1) ≤ 2

√
kρ(1− ρ),

if k →∞ [33].

With cauchy interlacing inequality [34], we can further derive that

λi(B − ρ1) ≤ λi(B) ≤ λi−1(B − ρ1)

for 1 < i ≤ k, if B − ρ1 and ρ1 are Hermitian matrices, and ρ1 is positive semi-definite and has rank

equal to 1. As a result, it is easy to derive that

λ2(B) ≤ λ1(B − ρ1) ≤ 2
√
kρ(1− ρ)

and

λk(B) ≥ λk(B − ρ1) ≥ −2
√
kρ(1− ρ)

As for λ1(B) 2, it is known that [36]

λ1(B) ≈ kρ+ 1

In this sense, the extreme eigenvalues of A′TAT can be approximately formulated as

λ1(A
′
TAT ) = λ1B + 1 ≤ kρ+ 2

and

λk(A
′
TAT ) = λkB + 1 ≥ −2

√
kρ(1− ρ) + 1

Therefore, the RIC of A′TAT can also be deduced

2In [35], it is proved that λ1(B) ≈ kρ, as kρ is sufficiently large.
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δk =
λ1 − λk
λ1 + λk

=
kρ+ 2

√
kρ(1− ρ) + 1

kρ− 2
√
kρ(1− ρ) + 3

APPENDIX C

PROOF OF THEOREM 3

The proof is similar to that for Theorem 1 in Appendix A. So in the following we just give a sketch.

Proof:

1) If 3 ≤ d ≤M/2, [A′TAT ]ii = 1 and [A′TAT ]ij,i6=j ∈ {0, . . . , s/d}, 2 ≤ s ≤ d−1, for i, j = 1, . . . , k.

a) Let B = A′TAT − I ,

λk(B) ≥

 −sk/2d if k is even

−s
√
k2 − 1/2d if k is odd

,

then λk(A′TAT ) = 1 + λk(B) ≥ 1− sk
2d .

b) Let C = A′TAT − (1− s
d)I , derive λ1(C) ≤ ks/d, then λ1(A′TAT ) ≤

(k−1)s+d
d .

2) if M/2 < d ≤M − 1, [A′TAT ]ii = 1 and [A′TAT ]ij,i6=j ∈ {(2d−M)/d, . . . , s/d}, 2d−M ≤ s ≤

d− 1, for i, j = 1, . . . , k.

a) Let B = A′TAT−(1−
2d−M
d )I , derive λk(B) ≥


k(2d−M−s)

2d if k is even

k(2d−M)−
√

(2d−M)2−(k2−1)s2
2d if k is odd

further λk(B) ≥ −k(2d−M−s)
2d , then λk(A′TAT ) ≥

k(2d−M−s)+2(M−d)
2d .

b) Let C = A′TAT − (1− s
d)I , then λ1(C) ≤ ks/d, so λ1(A′TAT ) ≤

(k−1)s+d
d .

3) Finally, with δk = λ1−λk

λ1+λk
, derive

δk =


(3k−2)s

(k−2)s+4d
if 3 ≤ d ≤ M

2
and 2 ≤ s ≤ d− 1

(3k−2)s+(k−2)(M−2d)
(k−2)s−(M−2d)k+2M

if M
2
< d ≤M − 2 and 2d−M ≤ s ≤ d− 1

REFERENCES

[1] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp.

4203 – 4215, dec. 2005.

[2] S. Foucart, “A note on guaranteed sparse recovery via l1-minimization,” Applied and Computational Harmonic Analysis,

vol. 29, no. 1, pp. 97 – 103, 2010.

[3] E. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE

Transactions on Information Theory, vol. 52, no. 12, pp. 5406 –5425, Dec. 2006.



17

[4] D. Achlioptas, “Database-friendly random projections: Johnson–Lindenstrauss with binary coins,” J. Comput. Syst. Sci.,

vol. 66, no. 4, pp. 671–687, 2003.

[5] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random

matrices,” Constructive Approximation, vol. 28, no. 3, pp. 253–263, 2008.

[6] M. Akcakaya and V. Tarokh, “A frame construction and a universal distortion bound for sparse representations,” IEEE

Transactions on Signal Processing, vol. 56, no. 6, pp. 2443 –2450, june 2008.

[7] R. A. DeVore, “Deterministic constructions of compressed sensing matrices,” Journal of Complexity, vol. 23, no. 4-6, pp.

918 – 925, 2007.

[8] S. Howard, A. Calderbank, and S. Searle, “A fast reconstruction algorithm for deterministic compressive sensing using

second order reed-muller codes,” in 42nd Annual Conference on Information Sciences and Systems (CISS 2008), march

2008, pp. 11 –15.

[9] L. Applebaum, S. D. Howard, S. Searle, and R. Calderbank, “Chirp sensing codes: Deterministic compressed sensing

measurements for fast recovery,” Applied and Computational Harmonic Analysis, vol. 26, no. 2, pp. 283 – 290, 2009.

[10] D. Li, X. Liu, S. Xia, and Y. Jiang, “A class of deterministic construction of binary compressed sensing matrices,” Journal

of Electronics (China), vol. 29, pp. 493–500, 2012.

[11] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21 –28, Jan

1962.

[12] W. Lu, K. Kpalma, and J. Ronsin, “Sparse binary matrices of LDPC codes for compressed sensing,” in Data Compression

Conference (DCC), 2012, april 2012, p. 405.

[13] D. Baron, S. Sarvotham, and R. Baraniuk, “Bayesian compressive sensing via belief propagation,” IEEE Transactions on

Signal Processing, vol. 58, no. 1, pp. 269 –280, jan. 2010.

[14] M. Akcakaya, J. Park, and V. Tarokh, “Low density frames for compressive sensing,” in 2010 IEEE International Conference

on Acoustics Speech and Signal Processing (ICASSP), march 2010, pp. 3642 –3645.

[15] W. Xu and B. Hassibi, “Efficient compressive sensing with deterministic guarantees using expander graphs,” in IEEE

Information Theory Workshop, ITW ’07, sept. 2007, pp. 414 –419.

[16] S. Sarvotham, D. Baron, and R. Baraniuk, “Sudocodes: Fast measurement and reconstruction of sparse signals,” in IEEE

International Symposium on Information Theory, july 2006, pp. 2804 –2808.

[17] R. Berinde and P. Indyk, “Sparse recovery using sparse random matrices,” MIT-CSAIL Technical Report, 2008.

[18] A. Dimakis, R. Smarandache, and P. Vontobel, “LDPC codes for compressed sensing,” IEEE Transactions on Information

Theory, vol. 58, no. 5, pp. 3093 –3114, may 2012.

[19] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Transactions

on Information Theory, vol. 51, no. 1, pp. 386 –398, jan. 2005.

[20] D. Needell and J. A. Tropp, “Cosamp: iterative signal recovery from incomplete and inaccurate samples,” Commun. ACM,

vol. 53, no. 12, pp. 93–100, Dec. 2010.

[21] A. M. Tillmann and M. E. Pfetsch, “The Computational Complexity of the Restricted Isometry Property, the Nullspace

Property, and Related Concepts in Compressed Sensing,” ArXiv e-prints, May 2012.

[22] A. S. Bandeira, E. Dobriban, D. G. Mixon, and W. F. Sawin, “Certifying the restricted isometry property is hard,” ArXiv

e-prints, Apr. 2012.

[23] J. D. Blanchard, C. Cartis, and J. Tanner, “Compressed sensing: How sharp is the restricted isometry property?” SIAM

Rev., vol. 53, no. 1, pp. 105–125, Feb. 2011.



18

[24] M. Rudelson and R. Vershynin, “Non-asymptotic theory of random matrices: extreme singular values,” in International

Congress of Mathematicans, 2010.

[25] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Transactions on Information

Theory, vol. 47, no. 7, pp. 2845–2862, Nov 2011.

[26] X. Zhan, “Extremal eigenvalues of real symmetric matrices with entries in an interval,” SIAM Journal on Matrix Analysis

and Applications, vol. 27, no. 3, pp. 851–860, 2005.

[27] L. Pastur, “On the spectrum of random matrices,” Theoretical and Mathematical Physics, vol. 10, pp. 67–74, 1972.

[28] S. Boyd and L. Vandenberghe, Convex Optimization. Cambrige university press, March 2004.

[29] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: recursive function approximation with

applications to wavelet decomposition,” in Conference Record of The Twenty-Seventh Asilomar Conference on Signals,

Systems and Computers, nov 1993, pp. 40 –44 vol.1.

[30] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE

Transaction on Information Theory, vol. 53, pp. 4655–4666, 2007.

[31] S. Foucart and M.-J. Lai, “Sparsest solutions of underdetermined linear systems via lq-minimization for 0 ≤ q < 1,”

Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 395 – 407, 2009.

[32] L. V. Tran, V. H. Vu, and K. Wang, “Sparse random graphs: Eigenvalues and eigenvectors,” Random Structures &

Algorithms, vol. 42, no. 1, pp. 110–134, 2013.
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