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ON A 3D MAGNETIC HAMILTONIAN WITH AXISYMMETRIC POTENTIAL AND UNITARY MAGNETIC FIELD

This study is about a magnetic Hamiltonian with axisymmetric potential in R 3 . The associated magnetic field is planar, unitary and non-constant. The problem reduces to a 1D family of singular Sturm-Liouville operators on the half-line. We study the associated band functions, in particular their behavior at infinity and we describe the quantum state localized in energy near the Landau levels that play the role of threshold in the spectrum. We compare our Hamiltonian to the "de Gennes" operators arising in the study of a 2D Hamiltonian with monodimensional, odd and discontinuous magnetic field. We show in particular that the ground state energy is higher in dimension 3.

INTRODUCTION

1.1. Quantum transport in translationally invariant magnetic systems. The motion of a spinless quantum particle in R n (here n " 2, 3) moving in a magnetic field B is well described by the spectral properties of the associated Hamiltonian, namely the magnetic Laplacian H A :" p´i∇ ´Aq 2 acting on L 2 pR n q, where A is a magnetic potential satisfying curl A " B. As in the classical picture, we expect the variation of the magnetic field to induce transport for a quantum particle, a well-known phenomenon when adding a boundary to a system with constant magnetic field (in this case edge currents appears along the boundary and are at the core of the Quantum Hall Effect, see [START_REF] Halperin | Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential[END_REF][START_REF] De | Propagating edge states for a magnetic hamiltonian[END_REF]). When there is no boundary, in dimension 2, the action of a perpendicular variable magnetic field (modeled by a 2D scalar vector field) modifies the transport properties of an electron gas ( [START_REF] Peeters | Quantum transport of a two-dimensional electron gas in a spatially modulated magnetic field[END_REF] for a physical approach). The most studied case is the so called Iwatsuka model corresponding to a magnetic field Bpx, yq " Bpxq translationally invariant and x-increasing ( [START_REF] Iwatsuka | Examples of absolutely continuous schrödinger operators in magnetic fields[END_REF]), tending to finite limits. The transport properties in the y direction are linked to the study of the band functions, that are the Fourier multipliers associated with the Hamiltonian (see [START_REF] Mantoiu | Some propagation properties of the Iwatsuka model[END_REF][START_REF] Exner | Edge currents in the absence of edges[END_REF]). The particular case of a piecewise constant magnetic field acting on a 2D electron gas is considered in [START_REF] Reijniers | Snake orbits and related magnetic edge states[END_REF], and more mathematical properties associated with this model are described in [START_REF] Hislop | Edge states induced by Iwatsuka hamiltonians with positive magnetic fields[END_REF][START_REF] Dombrowski | Edge currents and eigenvalue estimates for magnetic barrier Schrödinger operators[END_REF].

An analog model consists of a 3D planar translationally invariant magnetic field. Let us denote by pr, θ, zq the cylindrical coordinates of R 3 . We consider the magnetic potential Apr, θ, zq " p0, 0, aprqq with aprq a suitable real function. The associated magnetic field is planar and is given by Bpr, θ, zq " bprqp´sin θ, cos θ, 0q with bprq " a 1 prq. It is z-invariant and its field lines are circles contained in plans tz " z 0 u and centered at the origin of these plans. Under general assumptions on the function b, the classical trajectories of a particle in such a magnetic field are described in [44, Section 4]. The specific case of a magnetic field created by an infinite rectilinear current in the z direction is studied in [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF][START_REF] Bruneau | On the ground state of Laplacian with magnetic field created by a rectilinear current[END_REF]: in that case bprq " r ´1. The spectrum of H A is the half-line R `and the band functions are decreasing from `8 to 0. In [START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF] and [START_REF] Raikov | On the spectrum of a translationally invariant pauli operator. Spectral Theory of Differential Operators[END_REF], more general magnetic Hamiltonians with axisymmetric potentials are considered. The important particular case of a unitary magnetic field bprq " 1 is treated in [45, Section 4]. The author shows that the band functions associated with axisymmetric functions of R 3 loose their monotonicities and he deduces that the bottom of the spectrum of H A is positive. In this note we study in more details the structure of the spectrum of the magnetic Hamiltonian for the case bprq " 1 and we described the quantum states moving in such a magnetic field depending on their energy. We also make a natural comparison with an analog Hamiltonian in dimension 2, see below. Moreover, we explain how the operator studied here is linked to the magnetic Laplacian on wedges, a model appearing when studying the (Neumann) Schrödinger operator with large magnetic field in a domain with singular boundary (edges), see Section 1.3. 1.2. Description of the Hamiltonians and problematic. In this article we consider the magnetic potential defined in cartesian coordinates by Apx, y, zq :" p0, 0, a x 2 `y2 q . The associated magnetic field B :" curl A satisfies Bpx, y, zq " psin θ, ´cos θ, 0q (where θ is the angular cylindrical coordinates of R 3 ) and is unitary. Let (1.1)

H A :" p´i∇ ´Aq 2 " D 2
x `D2 y `pD z ´ax 2 `y2 q 2 be the Hamiltonian associated with the magnetic field B acting on L 2 pR 3 q. For an operator H, we denote by SpHq its spectrum. Let (1.2) Ξ 0 :" inf S pH A q be the ground state energy of H A . We know from [START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF] that SpH A q " rΞ 0 , `8q. Let F z be the partial Fourier transform in the z-variable. We have the direct integral decomposition:

(1.3) F z H A F z " ż À τ PR
pτ q dτ with (1.4) pτ q :" ´∆x,y `p}px, yq} ´τ q 2 , px, yq P R 2

where } ¨} denotes the euclidean norm of R 2 . The operator pτ q has compact resolvent and we denote by ζ 1 pτ q its first eigenvalue. Using (1.3) we have the fundamental relation

Ξ 0 " inf τ PR ζ 1 pτ q .
' Study of the band functions and applications. The study of pτ q reduces the problem to the singular 1D operators g m pτ q (where m P Z is the magnetic quantum number) introduced in Section 2.2. We denote by pζ n,m pτ qq nPN ˚its spectrum and we shorten the notation by ζ n,0 " ζ n when considering m " 0, which corresponds to restricting the operator to axisymmetric functions. The operator H A is fibered and the functions τ Þ Ñ ζ n,m pτ q are called the band functions (or dispersion curves). The study of their behavior is useful to describe many properties (transport and stability under perturbation) associated with H A . We are interested in the monotonicity properties and in the characterization of the infimum of ζ 1 pτ q. As shown in [START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF], it is also remarkable that these band functions tend to finite limits when τ Ñ `8 and are not contained in the general class of the band functions described in [START_REF] Érard | The Mourre theory for analytically fibered operators[END_REF]. These limits are the Landau levels, that play the role of thresholds in the spectrum. The analysis of quantum states localized in energy far from the threshold is classical for fibered operators (see [START_REF] Mantoiu | Some propagation properties of the Iwatsuka model[END_REF] for the Iwatsuka model and [START_REF] Érard | The Mourre theory for analytically fibered operators[END_REF] for an abstract approach), but the situation needs a deeper analysis when looking at energies close to the thresholds. We will provide precise asymptotic expansion and describe the consequences on the properties (geometrical localization and current) of a quantum state localized in energy near a threshold in the spirit of the recent work [START_REF] Hislop | Characterization of bulk states in one-edge Quantum Hall Systems[END_REF].

' The 2D analog model. We recall here a standard analog 2D model. Let B 0 be the unitary translationally invariant magnetic field defined on R 2 by B 0 px, yq " signpxq. Let A 0 px, yq :" p0, |x|q be a magnetic potential satisfying curl A 0 " B 0 . Notice the similar form with the vector fields B and A introduced above 1 . We denote by (1.5) H 0 :" p´i∇ ´A0 q 2 " D 2

x `pD y ´|x|q 2 , px, yq P R 2 the associated Hamiltonian with D " ´iB. In [START_REF] Reijniers | Snake orbits and related magnetic edge states[END_REF] the formal spectral analysis of the Hamiltonian H 0 allows to describe the transport properties of a 2D electron gas submitted to the magnetic field B 0 . Formal arguments show that the quantum trajectories correspond to the classical one, the so-called snake orbits. Mathematical properties of the Hamiltonian H 0 for small electric perturbations are studied in [START_REF] Dombrowski | Edge currents and eigenvalue estimates for magnetic barrier Schrödinger operators[END_REF] (see also [START_REF] Bruneau | Dirichlet and Neumann eigenvalues for half-plane magnetic Hamiltonians[END_REF] for a related Hamiltonian on a half-plane). Let Θ 0 :" inf SpH 0 q be the bottom of the spectrum of the operator H 0 . This spectral quantity has been introduced in [START_REF] Saint-James | Onset of superconductivity in decreasing fields[END_REF] for a problem coming from the modeling of the phenomenon of "surface superconductivity" (see Section 1.3).

The study of the spectrum of H 0 leads to the 1D parameter family of operators (1.6) h 0 pτ q :" ´B2

x `p|x| ´τ q 2 , x P R where τ P R is the Fourier variable dual to y. These well-known operators are sometimes known as the de Gennes operators (see Subsection 2.1 for references and former results). Once again, compare the above form with the operator pτ q defined in (1.4).

The operators H A and pτ q studied in this article may be seen as versions of the operators H 0 and h 0 but in higher dimensions and one of our goals is to compare the associated band functions. It is known that the eigenvalues of h 0 pτ q are exponentially close to the Landau levels for large τ . An application to the description of bulk states in one edge quantum system is given in [START_REF] Hislop | Characterization of bulk states in one-edge Quantum Hall Systems[END_REF]. Here, as we shall see, the band functions ζ n,m converge polynomially toward the Landau levels, giving rise to different localization phenomena for the quantum states localized in energy near the thresholds. We also are interested in comparing the ground state energies Θ 0 and Ξ 0 . Although this is a natural question when looking at similar quantum systems, this is also motivated by the link with a model operator on wedges as described in the paragraph below.

1.3. Connection with the Laplacian on a domain with edges in the large magnetic field limit. The modeling of the superconductivity phenomenon leads to study the minimizers of 1 we may notice that the magnetic field B 0 corresponds to the profile of the magnetic field Bpx, y, zq restricted to a plane ty " axu the Ginzburg-Landau functional. When applying a strong external magnetic field, the superconductivity phenomenon is destroyed. The linearization of the Ginzburg-Landau functional in that case leads to study the magnetic Laplacian with natural Neumann boundary conditions (see [START_REF] Giorgi | The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model[END_REF]). This operator is denoted by HpA, Ωq where A is the magnetic potential and Ω Ă R 3 is the domain. The bottom of its spectrum is denoted by λpB, Ωq. The critical value of the magnetic field for which the surface superconductivity appears in a type II superconductor Ω can be linked to λpB, Ωq (see [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF] for more references). This gives an important motivation for the comprehension of the behavior of λpB, Ωq for large values of B. For x P Ω we denote by Π x the tangent cone to Ω at the point x and B x :" Bpxq the magnetic field frozen at x. A general fact is that λpB, Ωq behaves like inf xPΩ λpB x , Π x q for large magnetic fields. This is well-known for several specific cases (regular domains, 2D polygonal domains, cuboid), see [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF] for an overview, and has been proved recently for general 3D corner domains ( [START_REF] Ël | Ground state energy of the magnetic laplacian on general three-dimensional corner domains[END_REF]). When the minimizers of x Þ Ñ λpB x , Π x q are on the boundary of Ω, by studying the associated eigenvectors and coming back to the related non-linear Ginzburg-Landau problem, one expects surface superconductivity to appear for magnetic strength near the critical field (see [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]).

It is therefore crucial to have comparisons between all the possible values of λpB x , Π x q for x P Ω. When the boundary of Ω is regular, the tangent cones Π x are either spaces or halfspaces. In this situation, the spectral model quantity λpB x , Π x q is minimal and equal to Θ 0 (defined as the bottom of the spectrum of H 0 , see above) when Π x is a half-space with the magnetic field tangent to the boundary (see [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF]). When the boundary of the domain has an edge of opening α, it is necessary to study the Neumann magnetic Laplacian on a new model domain: the infinite wedge of opening α denoted by W α . First studies of this operator are presented in [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF], [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF] and [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF] for case-specific geometries, and [START_REF] Popoff | The model magnetic Laplacian on wedges[END_REF] for the general case. Let B be a constant magnetic field. We denote by b K the component of B orthogonal to the plane of symmetry of the wedge. If b K ‰ 0, the magnetic Laplacian b ´1 K HpA, W α q degenerates formally toward the operator H A when the opening angle α goes to 0, see [START_REF] Popoff | The model magnetic Laplacian on wedges[END_REF]Lemma 5.1]. A formal analysis and several numerical computations show that λpB, W α q seems to converge to b K Ξ 0 when the opening angle α goes to 0 (see [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Chapter 6]). It is proved in [START_REF] Popoff | The model magnetic Laplacian on wedges[END_REF]Section 5] that for all constant magnetic fields B, there exists C " CpBq ą 0 such that

@α P p0, πs, λpB, W α q ď b K Ξ 0 `CpBqα 2 .
Therefore the comparison between b K Ξ 0 and the spectral model quantities associated with the points of the regular boundary of Ω (such as Θ 0 ) brings the asymptotics of the first eigenvalue of the magnetic Laplacian on a domain with an edge of small opening. In this article we provide an upper bound and numerical values for Ξ 0 . We also prove Θ 0 ă Ξ 0 . An application of the comparison between regular and singular model problems can be found in [START_REF] Popoff | When the 3D-magnetic Laplacian meets a curved edge in the semi-classical limit[END_REF]. The semi-classical Laplacian with a constant magnetic field in a domain with a curved edge (a lens) is studied. The authors make an assumption on a 2D band function related to the conjecture 4.7 and use the tools of the semi-classical analysis to provide complete expansion of the eigenvalues of the magnetic Laplacian on the lens. 1.4. Contents and main results. In Section 2 we reduce the problem to a family of singular 1D Sturm-Liouville operators pg m pτ qq τ PR on the half-line and we recall basic properties of their eigenvalues ζ n,m pτ q.

In section 3 we study these band functions when the Fourier parameter τ gets large, in particular we give in Proposition 3.4 a two-terms asymptotics

ζ n,m pτ q " 2n ´1 `m2 ´1 4 τ 2 `O ˆ1 τ 3 ˙.
We then describe in Section 3.2 quantum states localized in energy near the thresholds: we show that there exist such states which are localized far from the z-axis and we provide an upper bound on their current by using the above asymptotics. This situation does not occur for quantum states localized in energy far from the thresholds.

In Section 4 we focus on m " 0 and we give an original formula for the derivative of ζ n pτ q with respect to τ . We then use it to prove that Θ 0 ă Ξ 0 , showing that the ground state energy for these models is higher in dimension 3. We also give a criterion to characterize the minima of ζ 1 pτ q. In Annex A we give numerical computations of ζ 1 pτ q and check that the criterion is numerically satisfied.

DESCRIPTION OF THE 1D OPERATORS

2.1. The de Gennes operator. We first recall known results about the fibers operator arising in the study of the Hamiltonian H 0 defined in (1.5). Let F y be the partial Fourier transform in the y-variable. We have the following direct integral decomposition (2.1)

F ẙ H 0 F y :" ż À τ PR h 0 pτ q dτ
where h 0 pτ q is defined in (1.6). For all τ P R the operator h 0 pτ q has compact resolvent and we denote by µ n pτ q its n-th eigenvalue. Let h N 0 pτ q (resp. h D 0 pτ q) be the operator B 2 x `px ´τ q 2 acting on L 2 pR `q with Neumann (resp. Dirichlet) boundary condition in x " 0. We denote by µ N n pτ q (resp. µ D n pτ q) its n-eigenvalue. Then for all µ 2n´1 pτ q " µ N n pτ q and µ 2n pτ q " µ D n pτ q (see [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]). Moreover when τ goes to `8, both µ 2n´1 pτ q and µ 2n pτ q converge toward the Landau level 2n ´1 (respectively by below and by above). The convergence is exponential, see [START_REF] Fournais | Superconductivity between hc2 and hc3[END_REF] for a rough estimates and [START_REF] Hislop | Characterization of bulk states in one-edge Quantum Hall Systems[END_REF] for a precise asymptotic analysis.

Let u n,τ be a normalized eigenfunction of h N 0 pτ q associated with µ N n pτ q. Using the techniques from [START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF] and [START_REF] Bolley | An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material[END_REF], it is known that (2.2) pµ N n q 1 pτ q " pτ 2 ´µN n pτ qqu 2 n,τ p0q

and that there exists ξ n 0 P R such that τ Þ Ñ µ N n pτ q is decreasing on p´8, ξ n 0 q and increasing on pξ n 0 , `8q. Moreover the unique minimum of µ N n is non-degenerate and we have Θ 0 " inf τ µ N 1 pτ q. If we denote by ξ 0 :" ξ 1 0 , (2.2) provides ξ 2 0 " Θ 0 . Using (2.1) we get inf SpH 0 q " Θ 0 . Numerical computations (see [START_REF] Saint-James | Onset of superconductivity in decreasing fields[END_REF], [START_REF] Chapman | Nucleation of superconductivity in decreasing fields. I, II[END_REF] or [START_REF] Ël | Numerical estimates of characteristic parameters θ 0 and φp0q for superconductivity[END_REF] for a more rigorous analysis) show that pξ 0 , Θ 0 q « p0.7682, 0.5901q.

2.2.

Reduction to a 1D problem. We reduce the study of the first eigenvalue of pτ q to a 1D singular Sturm-Liouville operator on a weighted space. In the polar coordinate pr, φq the operator pτ q defined in (1.4) writes

´B2

r ´1 r B r ´1 r 2 B 2 φ `pr ´τ q 2 , pr, φq P R `ˆp´π, πq .

Let L 2 r pR `q be the space of the functions squared integrable on the half axis R `for the weight r dr. We denote by xu, vy L 2 r pR `q :" ż R `uprqvprqr dr the scalar product associated with L 2 r pR `q. Let B 1 r pR `q :" tu P L 2 r , u 1 P L 2 r pR `q, ru P L 2 r pR `qu . We define the operator g m pτ q " ´B2 r ´1 r B r `m2 r 2 `pr ´τ q 2 on the domain (2.3) Dompg m pτ qq " tu P B 1 r pR `q, u 2 P L 2 r pR `q, 1 r u 1 P L 2 r pR `q, 1 r 2 u P L 2 r pR `q, r 2 u P L 2 r pR `q, pru 1 prqq |r"0 " 0u . The form domain of g m pτ q is tu P B 1 r pR `q, 1 r u P L 2 pR `qu and the associated quadratic form is

q τ m puq :" ż R `ˆ|u 1 prq| 2 `m2
r 2 |uprq| 2 `pr ´τ q 2 |uprq| 2 ˙r dr .

Using the results from [START_REF] Bolley | Sur une classe d'opérateurs elliptiques et dégénérés à une variable[END_REF] we get that the operator g m pτ q has compact resolvent and we denote by ζ n,m pτ q its n-th eigenvalue and z n,m p¨, τ q an associated eigenvector. We shorten the notation when m " 0 by using ζ n,0 " ζ n and z n p¨, τ q " z n,m p¨, τ q. Then pτ q is unitarily equivalent to À mPZ g m pτ q and therefore (see also (1.3)):

(2.4) Ξ 0 " inf τ PR ζ 1 pτ q ,
moreover the pζ n pτ qq ně0 are the eigenvalues of pτ q which have axisymmetric eigenfunctions.

2.3.

Elementary results about the spectrum of the 1D operator. The boundary value problem associated with the eigenvalue ζ n pτ q is the following: " ´ru 2 prq ´u1 prq `rpr ´τ q 2 uprq " rζ n pτ quprq , r ą 0 , (2.5a) ru 1 prq |r"0 " 0 . (2.5b) The differential equation (2.5a) is singular and the point r " 0 is regular singular, therefore using Fuchs theory and the boundary condition (2.5b) we get (see [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Proposition 6.4] for more details and [45, Lemma 4.1] for a more general case): Proposition 2.1. For all τ P R and for all n ě 1, ζ n pτ q is a simple eigenvalue of g 0 pτ q. We denote by z n p¨, τ q an associated eigenfunction. The function z n p¨, τ q is the restriction on R òf an analytic function on R, moreover it satisfies the Neumann boundary condition

(2.6) z 1 n p0, τ q " 0 .
Since the form domain of g 0 pτ q does not depend on τ , we deduce from Kato's theory (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]) that all the ζ n pτ q are analytic with respect to τ . Moreover the Feynman-Hellmann ( [START_REF] Ismail | On the Hellmann-Feynman theorem and the variation of zeros of certain special functions[END_REF]) formula provides (2.7)

@n ě 1, @τ P R, ζ 1 n pτ q " ´2 ż R `pr ´τ q 2 z n pr, τ qr dr , and we deduce that for all n ě 1, the function τ Þ Ñ ζ n pτ q is decreasing on p´8, 0q.

In the special case τ " 0, the operator g m p0q is also known as the Laguerre operator (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]) whose eigenvalues are known:

@n ě 1, ζ n,m p0q " 4n ´2 `2|m| .
Remark 2.2. The eigenvalues of the 2D harmonic oscillator p0q " ´∆ `}px, yq} 2 with px, yq P R 2 are the even positive integers. Only the eigenspaces associated with eigenvalues of the form 4n ´2 have axisymmetric eigenfunctions.

ASYMPTOTIC OF THE BAND FUNCTIONS AND APPLICATION TO THE

DESCRIPTION OF QUANTUM STATES 3.1. Limits for large Fourier parameters. Using the lower bound pr ´τ q 2 ě τ 2 for τ ď 0 we deduce from the min-max principle that for all τ ď 0 we have ζ n,m pτ q ě τ 2 and therefore

(3.1) lim τ Ñ´8
ζ n,m pτ q " `8 .

In the case of the de Gennes operator h 0 pτ q, the eigenfunctions concentrate for large τ in the well of the potential pr ´τ q 2 and therefore the eigenvalues of h 0 pτ q converge toward the Landau levels for large τ (see Section 2.1). This is again true for the eigenvalues of the operator g m pτ q, indeed the potential satisfies the hypothesis of [45, Proposition 3.6] and we deduce:

(3.2) @pn, mq P N ˚ˆZ, lim τ Ñ`8
ζ n,m pτ q " 2n ´1 .

However we work in a weighted space and the harmonic approximation that consists in using the Hermite's functions as quasi-modes is not as good as in the case of the de Gennes operator.

It is proven in [45, Proposition 4.7] that (3.3) @n ě 1, Dγ n ą 0, Dτ n ą 0, @τ ą τ n , ζ n pτ q ď p2n ´1q ´γn τ ´2 .

We give a two-terms asymptotics of all the band functions ζ n,m for large τ : Proposition 3.1. For all pn, mq P N ˚ˆZ we have

(3.4) ζ n,m pτ q " τ Ñ`8 2n ´1 `m2 ´1 4 τ 2 `O ˆ1 τ 3 ˙.
In particular, only the eigenvalues associated with axisymmetrical eigenfunctions (m " 0) are below their limit.

Proof. We define the unitary transform M : uprq Þ Ñ ? r uprq from L 2 r pR `q into L 2 pR `q. Then Mg m pτ qM ˚expressed as ´B2 r `m2 ´1 4 r 2 `pr ´τ q 2 , r ą 0 acting now on the unweighted space L 2 pR `q. Using now the change of variable x " r ´τ , we are led to study

r g m pτ q :" ´B2 x `τ ´2 m 2 ´1 4 p1 `τ ´1xq 2 `x2 , x ą ´τ .
The remain of the proof is now standard and is based on the harmonic approximation procedure ([15, Chapter 4]), at the difference that our functions are not defined on the entire real axis but only on p´τ, `8q. A very similar situation is described with full details in [10, Section 2] and we give below elements of proof. We write r g m pτ q " h 8 `τ ´2pm 2 ´1 4 q `Vτ where h 8 :" ´B2

x `x2 is the harmonic oscillator and V τ is controlled near the well tx " 0u:

(3.5) Dx 0 ą 0, DC ą 0, @x P p´x 0 , x 0 q, @τ ě 1, |V τ pxq| ď C |x| τ 3 . We apply a cut-off to the Hermite's functions (that are the eigenfunctions of h 8 associated with the Landau levels 2n ´1) and we use the resulting functions as quasi-modes for the operator r g m pτ q. The min-max principle combined with (3.5) provides the upper bound of (3.4). The lower bound relies on Agmon estimates showing that the eigenfunctions of r g m pτ q are concentrated in the well of the potential tx " 0u when τ Ñ `8. A standard procedure consists then in using the (truncated) eigenfunctions of r g m pτ q as quasi-modes for h 8 , as in [23, Chapter 3]). Using that the eigenvalues ζ n,m pτ q are well separated for different n and large τ (see (3.2)) we conclude to the lower bound of (3.4) by using the spectral theorem.

Remark 3.2. It is possible to reach a full asymptotic expansion of ζ n,m pτ q in power of τ ´1 for large τ by using a series expansion of the potential V τ . Remark 3.3. It is also possible to add an electric perturbation to the magnetic Hamiltonians H 0 and H A . The associated Krein spectral shift function (see [START_REF] Birman | The spectral shift function. The papers of M. G. Kreȋn and their further development[END_REF] for an overview on the spectral shift function) will have singularities near the Landau levels 2n´1 who play the role of thresholds in the spectrum of the operators H 0 and H A . The asymptotic behavior of the spectral shift function near the thresholds depends among other things on the behavior of the band functions at energies close to the thresholds (see for example [START_REF] Briet | Spectral properties of a magnetic quantum Hamiltonian on a strip[END_REF] for a study of a magnetic Hamiltonian on a half-strip). Since the band functions µ n pτ q and ζ n,m pτ q have different behaviors for large τ , we expect that the spectral shift function associated with perturbations of the Hamiltonians H 0 and H A will have different singular behaviors when approaching the Landau levels.

3.2. Description of quantum states localized in energy near the thresholds. In this section we describe briefly how the previous asymptotics can be used to describe quantum states localized in energy near the thresholds in the spirit of the approach developed in [START_REF] Hislop | Characterization of bulk states in one-edge Quantum Hall Systems[END_REF]. For simplicity we focus on m " 0, which corresponds to axisymmetric states. Our analysis extends easily to the case m ‰ 0. For such a state ψ P L 2 pR 3 q we denote by ψ n pτ q :" xF z ψp¨, τ q, z n p¨, τ qy L 2 r pR `q its n-th Fourier coefficient. There holds the following decomposition: (3.6) ψpr, zq " ÿ nPN ˚żR e iτ z ψ n pτ qz n pr, τ q dτ and ÿ nPN ˚żR

|ψ n pτ q| 2 dτ " }ψ} 2 L 2 pR 3 q .

For a bounded interval I Ă SpH A q, we denote by P I the spectral projection on I associated with H A . We describe here the properties of a quantum state ψ localized in energy in I, that is a function ψ P L 2 pR 3 q satisfying P I ψ " ψ. In that case all the Fourier coefficient τ Þ Ñ ψ n pτ q are supported into ζ ´1 n pIq. Recall that the Landau levels 2n ´1 are the thresholds of H 0 as the limits of the ζ n pτ q for large τ . Therefore when I does not contain any threshold, ζ ´1 n pIq is a finite reunion of bounded intervals and the analysis from De Bièvre and Pulé ( [START_REF] De | Propagating edge states for a magnetic hamiltonian[END_REF]) shows that such a quantum state is geometrically localized near the z-axis.

Conversely, we expect that a quantum states localized in energy near a Landau level may be localized far from the z-axis. This is indeed the case: set n P N ˚, let δ ą 0 be a small energy parameter and consider I δ :" p2n´1´δ, 2n´1`δq. When n 1 ‰ n, due to (3.1), the set ζ ´1 n 1 pI δ q is still bounded. However due to the continuity of ζ n , we have ζ ´1 n pI δ q " J δ Y pτ n pδq, `8q where J δ is a bounded set. Moreover due to (3.4) we have

(3.7) τ n pδq " δÑ0 c 1 4δ .
Assume that ψ is localized in energy in I δ . When Supppψ n q Ă J δ , ψ is geometrically localized near the z-axis. Assume now that Supppψ n q Ă pτ n pδq, `8q. Due to standard Agmon estimates, the eigenfunctions r Þ Ñ z n pr, τ q associated with ζ n pτ q are localized near the well of the potential tr " τ u when τ gets large. Therefore as in [START_REF] Hislop | Characterization of bulk states in one-edge Quantum Hall Systems[END_REF]Section 4], one can show by using (3.6) and (3.7) that ψ is localized at a distance at least Opδ ´1{2 q from the z-axis when δ gets small, showing that such a state is localized far from the variations of the magnetic field B.

We now show that the states described above do not propagate along the z-axis, as expected of the classical picture. We define the current operator as the commutator rH A , zs. It is wellknown that the spectrum of this observable can be interpreted as the velocity along the z-axis of a quantum state moving in the magnetic field B. Standard computations (see [START_REF] De | Propagating edge states for a magnetic hamiltonian[END_REF], [START_REF] Mantoiu | Some propagation properties of the Iwatsuka model[END_REF]) based on (3.6) and Feynman-Hellmann formula show that for all quantum states ψ localized in energy in I and such that Supppψ n q Ă pτ n pδq, `8q there holds

(3.8) |xrH A , zsψ, ψy| ď sup τ Ppτnpδq,`8q |ζ 1 n pτ q|}ψ} 2 L 2 pR 3 q ,
linking the current operator with the derivative of the band functions. Some tedious computations show that the asymptotics of ζ 1 n pτ q for large τ is directly derived from the one of ζ n pτ q (see [26, Section 3]) for a similar situation with full details). In particular, due to (3.7):

|ζ 1 n pτ n pδqq| " δÑ0 8δ 3{2 .
Using (3.8), we deduce that the current borne by quantum states localized in energy in I δ and far from the z-axis is controlled by Opδ 3{2 q when δ gets small.

We summarize now the situation: given an interval I Ă SpH A q that contains a threshold, a quantum state ψ localized in I is the superposition of the following: ' A component localized near the z-axis, whose Fourier coefficients are compactly supported. This component may be called edge state. ' A component localized far from the z-axis and bearing a small current, whose Fourier coefficient are supported in an interval of the form pτ n , `8q. This component is typical of the presence of a threshold in I. By comparison with the physical literature, we may call this component bulk state.

Remark 3.4. Unlike to the band functions µ n pτ q associated with the operator H 0 , the convergence of ζ n pτ q toward the Landau levels is not exponential. This is why the localization properties and the current borne by quantum state localized in energy near the thresholds are different from those described in [START_REF] Hislop | Characterization of bulk states in one-edge Quantum Hall Systems[END_REF].

CHARACTERIZATION OF THE MINIMUM

4.1. Rough upper bound for the ground state energy. Using the estimation (3.3), it is proved in [45, Theorem 4.9] that all the functions τ Þ Ñ ζ n pτ q loose their monotonicity for τ ą 0 and reach their infimum. We provide an upper bound for the infimum of τ Þ Ñ ζ 1 pτ q:

Proposition 4.1. We have Proof. In order to get an upper bound we use gaussian quasi-modes: for γ ą 0 we define u γ prq :" e ´γr 2 . Computations yield:

q τ 0 pu γ q }u γ } 2 L 2 r pR `q " 2γ `1 2γ `τ 2 ´τ ˆπ 2γ ˙1{2 .
We minimize the right hand side by choosing γ " π 8τ 2 and we deduce from the min-max principle:

ζ 1 pτ q ď π 4 1 τ 2 `4 ´π π τ 2 .
This upper bound is minimal for τ " p π 2 4p4´πq q 1{4 and provides (4.1) by using (2.4).

4.2.

Comparison between the lowest energies. In this section we focus on the case m " 0.

We give a new expression of the derivative of the function ζ n . We use it to get a comparison between Θ 0 and Ξ 0 .

In order to have a parameter-independent potential, we perform the translation ρ " r ´τ and we get that g 0 pτ q is unitarily equivalent to the operator ĝ0 pτ q :" ´B2 ρ ´1 ρ `τ B ρ `ρ2 , ρ ą ´τ acting on L 2 ρ`τ pI τ q with I τ :" p´τ, `8q. The domain of the operator ĝ0 pτ q is deduced from Dompg 0 pτ qq using the translation ρ " r ´τ . The interval I τ depends now on the parameter. Usually the techniques from [START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF] and [START_REF] Dauge | Eigenvalues variation. II. Multidimensional problems[END_REF] give a trace formula for the derivative with respect to the boundary of the eigenvalues of such an operator (see the formula (2.2) for example). However the results of [START_REF] Dauge | Eigenvalues variation. II. Multidimensional problems[END_REF] specific to weighted spaces cannot be applied, indeed the weight ρ `τ depends on the parameter τ . We prove à la "Bolley-Dauge-Helffer" a formula for the derivative that is of a different kind from (2.2) and [START_REF] Dauge | Eigenvalues variation. II. Multidimensional problems[END_REF]Theorem 1.8]. To our knowledge this formula is independent from the Feynman-Hellmann formula (2.7): Proposition 4.2. Let n ě 1 and let z n p¨, τ q be a normalized eigenfunction associated with ζ n pτ q for the operator g 0 pτ q. We have

(4.2)
ζ 1 n pτ q " xph N 0 pτ q ´ζn pτ qqz n p¨, τ q, z n p¨, τ qy L 2 pR `q .

Proof. We denote by ẑn pρ, τ q :" z n pρ `τ, τ q a normalized eigenfunction of ĝ0 pτ q associated with ζ n pτ q. It satisfies (4.3) ´ẑ 2 n pρ, τ q ´ẑ 1 n pρ, τ q ρ `τ `ρ2 ẑn pρ, τ q " ζ n pτ qẑ n pρ, τ q . For h ą 0 we introduce the quantity d n,τ phq :" pζ n pτ `hq ´ζn pτ qq xẑ n p¨, τ `hq, ẑn p¨, τ qy L 2 ρ`τ pIτ q . The analyticity of the eigenpairs pζ n pτ q, ẑn p¨, τ qq nPN is a direct consequence of the simplicity of the eigenvalues (see proposition 2.1) and of Kato's theory. Since the ẑn p¨, τ q are normalized in L 2 ρ`τ pI τ q we deduce that On the other side using the eigenvalue equation (4.3) we get:

d n,τ phq " ż `8
´τ `ζn pτ `hqẑ n pρ, τ `hqẑ n pρ, τ q ´ζn pτ qẑ n pρ, τ `hqẑ n pρ, τ q ˘pρ `τ q dρ " ż `8 ´τ ˆ´ẑ 2 n,τ `hpρq ´1 ρ `τ `h ẑ1 n pρ, τ `hq `ρ2 ẑn pρ, τ `hq ˙ẑ n pρ, τ qpρ `τ q dρ ´ż `8 ´τ ˆ´ẑ 2 τ pρq ´1 ρ `τ ẑ1 n pρ, τ q `ρ2 ẑn pρ, τ q ˙ẑ n pρ, τ `hqpρ `τ q dρ .

We make integrations by parts on the terms with second derivative:

d τ phq " ż `8 ´τ ẑ1 n pρ, τ `hq `pρ `τ qẑ 1 n pρ, τ q `ẑ n pρ, τ q ˘´ρ `τ ρ `τ `h ẑ1 n pρ, τ `hqẑ n pρ, τ q dρ `ż `8 ´τ ´ẑ 1 n pρ, τ q `pρ `τ qẑ 1 n pρ, τ `hq `ẑ n pρ, τ `hq ˘`ẑ 1 n pρ, τ qẑ n pρ, τ `hq dρ " h ż `8 ´τ 1 ρ `τ `h ẑ1 n pρ, τ `hqẑ n pρ, τ q dρ .
Thanks to (4.4) and to the analyticity of the eigenpairs with respect to the parameter we have

ζ 1 n pτ q " ż `8 ´τ 1 ρ `τ ẑ1 n pρ, τ qẑ n pρ, τ q dρ .
Using (4.3) we deduce

ζ 1 n pτ q " ż `8
´τ `´ẑ 2 n pρ, τ q `ρ2 ẑn pρ, τ q ´ζn pτ qẑ n pρ, τ q ˘ẑ n pρ, τ q dρ . We make the translation ρ " r ´τ :

ζ 1 n pτ q " ż R ``´ẑ 2 
n pr, τ q ``pr ´τ q 2 z n pr, τ q ´ζn pτ qz n pr, τ q ˘˘z n pr, τ q dr .

Thanks to (2.6), we have z n p¨, τ q P Domph N 0 pτ qq and we deduce (4.2).

This formula is not sufficient to give direct informations on the monotonicity of the functions τ Þ Ñ ζ n pτ q. However it provides the following comparison between the bottom of the spectrum of the 2D Hamiltonian H 0 and the one of the 3D Hamiltonian H A : Theorem 4.3. We have Θ 0 ă Ξ 0 .

Proof. Let τ ˚be a point such that ζ 1 pτ ˚q " Ξ 0 (see Proposition 4.1). We have ζ 1 1 pτ ˚q " 0 and thanks to Proposition 4.2:

ζ 1 pτ ˚q " xh N 0 pτ ˚qz 1 p¨, τ ˚q, z 1 p¨, τ ˚qy L 2 pR `q }z 1 p¨, τ ˚q} 2 L 2 pR `q
.

We deduce from the min-max principle that ζ 1 pτ ˚q ě µ N 1 pτ ˚q. Let us suppose that we have the equality ζ 1 pτ ˚q " µ N 1 pτ ˚q, then z 1 p¨, τ ˚q is a minimizer of the quadratic form associated with h N 0 pτ ˚q and since z 1 p¨, τ ˚q satisfies the Neumann boundary condition (2.6), it is an eigenfunction of h N 0 pτ ˚q associated with µ N 1 pτ ˚q: @r ą 0, ´z2 1 pr, τ ˚q `pr ´τ ˚q2 z 1 pr, τ ˚q " µ N 1 pτ ˚qz 1 pr, τ ˚q . Combining this with (2.5a) we get z 1 1 p¨, τ ˚q " 0 on R `, which is absurd. Therefore we have Ξ 0 " ζ 1 pτ ˚q ą µ N 1 pτ ˚q ě Θ 0 .

4.3.

A criterion for the characterization of the minimum. In [45, Section 4], the author adresses the question of knowing how many minima has the band function τ Þ Ñ ζ n pτ q. We give here a criterion in order to characterize the critical points of ζ 1 . Numerical simulations show that this criterion seems to be satisfied. Let us notice that most of the techniques presented here can be found in [START_REF] Helffer | Spectral properties of higher order anharmonic oscillators[END_REF] and [START_REF] Helffer | The Montgomery model revisited[END_REF]. In the following we denote by z 1 p¨, τ q a normalized eigenfunction of g 0 pτ q associated with ζ 1 pτ q. Since ζ 1 pτ q is simple, τ Þ Ñ z 1 p¨, τ q is analytic and we denote by 9 z 1 pr, τ q :" B τ zpr, τ q .

Lemma 4.4. We have @τ P R, } 9 z 1 p¨, τ q} L 2 r pR `q ď 2 ζ 2 pτ q ´ζ1 pτ q }pr ´τ qz 1 p¨, τ q} L 2 r pR `q .

Proof. We differentiate }z 1 p¨, τ q} 2 L 2 r pR `q " 1 with respect to τ and we get that 9 z 1 p¨, τ q is orthogonal to z 1 p¨, τ q in L 2 r pR `q. We deduce from the min-max principle: pζ 2 pτ q ´ζ1 pτ qq} 9 z 1 p¨, τ q} 2 L 2 r pR `q ď xpg 0 pτ q ´ζ1 pτ qq 9 z 1 p¨, τ q, 9 z 1 p¨, τ qy L 2 r pR `q.

We differentiate g 0 pτ qz 1 p¨, τ q " ζ 1 pτ qz 1 p¨, τ q with respect to τ and we get pg 0 pτ q´ζ 1 pτ qq 9 z 1 p¨, τ q " ´Bτ g 0 pτ qz 1 p¨, τ q, therefore pζ 2 pτ q ´ζ1 pτ qq} 9 z 1 p¨, τ q} 2 L 2 r pR `q ď x´B τ g 0 pτ qz 1 p¨, τ q, 9 z 1 p¨, τ qy L 2 r pR `q . By using Cauchy-Schwarz inequality and the identity B τ g 0 pτ q " ´2pr ´τ q we deduce the Lemma. Proof. We introduce the scaled operator g 0 pτ, aq :" ´a´2 1 r B r rB r `par ´τ q 2 , a ą 0 which is unitarily equivalent to g 0 pτ q. We denote by z a pr, τ q :" z 1 p r a , τ q and we have @a ą 0, pg 0 pτ, aq ´ζ1 pτ qq z a p¨, τ q " 0 .

We differentiate this relation with respect to a: (4.6) pg 0 pτ, aq ´ζ1 pτ qq B a z a p¨, τ q `Ba g 0 pτ, aqz a p¨, τ q " 0 with B a g 0 pτ, aq " 2a ´3 1 r B r rB r `2rpar ´τ q .

We make the scalar product of (4.6) with z a p¨, τ q in L 2 r pR `q and we take a " 1: 1 pr, τ q| 2 `pr ´τ q 2 |z 1 pr, τ q| 2 ˘r dr " ζ 1 pτ q, by using (4.7) and (4.8) we get (4.5).

We can now state our criterion: if the spectral gap is large enough in a critical point of ζ 1 , this critical point is a non-degenerate minimum: APPENDIX A. NUMERICAL APPROXIMATIONS The numerical approximations described here use the finite element library Mélina ([33]). We refer to [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Subsection 6.2.4] for more simulations and computation details. We denote by ζn pτ q a numerical approximation of ζ n pτ q. The figure 1 presents the numerical approximations ζ1 pτ q for τ " k 100 with 0 ď k ď 500. The numerical approximations have a unique minimum Ξ0 " 0.8630 and the corresponding minimizing Fourier parameter is τ ˚" 1.53 . We also plot the constant Θ 0 « 0.5901 according to the computation of [START_REF] Ël | Numerical estimates of characteristic parameters θ 0 and φp0q for superconductivity[END_REF] and the upper bound ? 4 ´π « 0.9265 given by Proposition 4.1.

The figure 2 presents the numerical approximation ζ2 pτ q ´3 ζ1 pτ q for τ " k 100 with 0 ď k ď 500. These quantities are positive for τ ą 0, therefore we think that ζ 2 pτ q ´3ζ 1 pτ q is positive for all τ ą 0. Using Proposition 4.6, we believe that the conjecture 4.7 is true. 
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  τ ˚P R such that Ξ 0 " ζ 1 pτ ˚q.
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 1 FIGURE 1. The numerical approximations ζ1 pτ q for τ " k 100 with 0 ď k ď 500 compared to the constant Θ 0 and the upper bound ? 4 ´π.

Proposition 4.6. Let τ C be a critical point of ζ 1 . Then we have (4.9)

ζ 2 1 pτ C q ě 2 ζ 2 pτ C q ´3ζ 1 pτ C q ζ 2 pτ C q ´ζ1 pτ C q .

Proof. We first differentiate the Feynman-Hellmann relation (2.7) and we get

z 1 pr, τ qz 1 pr, τ qr dr .

The Cauchy-Schwarz inequality and the Lemma 4.4 provide

ζ 2 pτ q ´ζ1 pτ q .

If τ C is a critical point of ζ 1 , we deduce (4.9) from the Lemma 4.5.

We know that ζ 2 p0q ´3ζ 1 p0q " 0 and that ζ 2 ´3ζ 1 goes to 0 for τ large (see Proposition 3.2). Moreover numerical simulations show that ζ 2 ´3ζ 1 seems to be positive on p0, `8q, see figure 2. We already know that ζ 1 is non-increasing on p´8, 0q, therefore using Proposition 4.6 we believe that all the critical points of ζ 1 are minima. Therefore we are led to make the following:

Conjecture 4.7. The band function τ Þ Ñ ζ 1 pτ q has a unique and non-degenerate minimum. Remark 4.8. Let us notice that similar conjectures can be found in the literature: in [START_REF] Popoff | When the 3D-magnetic Laplacian meets a curved edge in the semi-classical limit[END_REF], the characterization of the minimum of the band function of a related model problem would bring localization property for the semi-classical Laplacian of a domain with a curved edge. In [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF] the author makes a conjecture on the monotonicity of the derivative of a band function associated with a magnetic Hamiltonian in R 3 . Using the techniques from [44, Section 3] and [START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF]Section 5], the conjecture 4.7 can bring scattering properties for the Hamiltonian H A . Moreover if the conjecture 4.7 is true, we will be able to describe the number of eigenstates created under the action of a suitable electric perturbation (see [START_REF] Raikov | Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential[END_REF]).
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