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ON THE LOWEST ENERGY OF A 3D MAGNETIC HAMILTONIAN WITH
AXISYMMETRIC POTENTIAL

NICOLAS POPOFF

ABSTRACT. We study the bottom of the spectrum of a magnetic hamiltonian with axisymmet-
ric potential in R3. The associated magnetic field is planar, unitary and non-constant. The
problem reduces to a 1D family of singular Sturm-Liouville operators on the half-line. We
study the associated band functions and we compare it to the “de Gennes” operators arising in
the study of a 2D hamiltonian with monodimensional, odd and discontinuous magnetic field.
We show in particular that the lowest energy is higher in dimension 3.

1. INTRODUCTION

1.1. Description of the 2D model. The action of a spatially inhomogeneous magnetic field
on a two-dimensional electron gas has been the focus of several researches in the past decades
(see [33] and [30] for example). Indeed a perpendicular magnetic field (modeled be a 2D scalar
vector field) modifies the transport properties of the electron gas (see [32]). The variation of
the magnetic field can induce a quantum transport called “edge current” (see [24] for a physical
overview). The case of a unidimensional and non-decreasing magnetic field is described by
the Iwatsuka model (see [26] for the original article and [15] for more recent results). The
perturbation by a unidimensional non-decreasing electric potential is studied in [9] and [14]
for example. These studies on elementary geometries help to understand the quantum hall
effect.

In [39], the authors study among others the case of the magnetic field B0 defined on R2 by
B0px, yq “ signpxq. Let A0px, yq :“ |x| be a magnetic potential satisfying curlA0 “ B0 and

(1.1) H0 :“ p´i∇´A0q
2
“ D2

x ` pDy ´ |x|q
2 , px, yq P R2

the associated hamiltonian with D “ ´iB. In [39] the formal spectral analysis of the hamil-
tonian H0 brings the transport properties of a 2D electron gas submitted to the magnetic field
B0 along the singularity of the magnetic field. Physical arguments show that the classical tra-
jectories correspond to the so-called snake orbits (see [38] and [39]). Mathematical properties
of the hamiltonian H0 for small electric perturbations are studied in [23] (see also [10] for a
related hamiltonian on a half-plane).

We denote by SpLq the spectrum of a self-adjoint operator L. Let

(1.2) Θ0 :“ inf SpH0q
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be the bottom of the spectrum of the operator H0. This spectral quantity has been introduced
in [40] for a problem coming from the modeling of the phenomenon of “surface superconduc-
tivity” (see section 1.3). The study of the spectrum of H0 leads to the 1D parameter family of
operators pencil

(1.3) h0pτq :“ ´B2
x ` p|x| ´ τq

2, x P R

where τ P R is the Fourier variable dual to y. These operators are known as the de Gennes
operators (see Subsection 2.1 for references and former results). The eigenvalues of such an
operator family seen as functions of τ are often called “band functions” or “dispersion curves”.
Their analysis brings the spectral properties of the hamiltonian H0.

1.2. Problematic and description of the 3D model. The aim of this article is to study
the bottom of the spectrum of a hamiltonian associated to a particular planar inhomoge-
neous magnetic field of R3 whose associated magnetic potential is axisymmetric. Let us
denote by pr, θ, zq the cylindrical coordinates of R3. In the case where the magnetic poten-
tial has the shape Apr, θ, zq “ p0, 0, aprqq, the associated magnetic field is planar and writes
Bpr, θ, zq “ bprqp´ sin θ, cos θ, 0q with bprq “ a1prq. Its field lines are circles centered at the
origin. Under general assumptions on the function b the classical trajectories of a particle in
such a magnetic field are described in [41, Section 4]. The spectrum and the scattering prop-
erties of the hamiltonian HA :“ p´i∇´Aq2 associated to such magnetic fields are studied in
[41] and [42]. The particular case of a magnetic field created by an infinite rectilinear current
in the z direction is studied in [41]: in that case bprq “ r´1. The spectrum of HA is the half-
line R` and the band functions are decreasing from `8 to 0. In [42], more general magnetic
hamiltonians with axisymmetric potentials are described and the author gives conditions for
the spectrum of HA to be the half-line R`. In [42, Section 4], the particular case bprq “ 1 is
treated. The author shows that the band functions associated to axisymmetric functions of R3

loose their monotonicities and he deduces that the bottom of the spectrum of HA is positive.
In this article we study in details the bottom of the spectrum of the magnetic hamiltonian for
the case bprq “ 1 and we make a comparison with the 2D hamiltonian defined in (1.1). We
introduce a new operator pencil that can be seen as a 2D version of the de Gennes operator
defined in (1.3).

We present here the magnetic hamiltonian for the case bprq “ 1 and the associated magnetic
potential aprq “ r. In the cartesian coordinates of R3 the magnetic potential writes

Apx, y, zq :“ p0, 0,
a

x2 ` y2q .

The associated magnetic field B :“ curlA satisfies Bpx, y, zq “ psin θ,´ cos θ, 0q. This
magnetic field is unitary and non-constant. The restriction of the magnetic field B to a plane
of the form ty “ axu with a P R has the shape of the magnetic field B0 associated to the
hamiltonian (1.1). Let

(1.4) HA :“ p´i∇´Aq2 “ D2
x `D

2
y ` pDz ´

a

x2 ` y2q
2

be the hamiltonian associated to the magnetic field B acting on L2pR3q and

(1.5) Ξ0 :“ inf S pHAq
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its lowest energy. We know from [42] that SpHAq “ rΞ0,`8q. One of our goals is to
compare Ξ0 with the lowest energy Θ0 of the hamiltonian H0 defined in (1.1). Let Fz be the
partial Fourier transform in the z-variable. We have the direct integral decomposition (see
[37]):

(1.6) F˚
zHAFz “

ż

À

τPR
`pτq dτ

with

(1.7) `pτq :“ ´∆x,y ` p}px, yq} ´ τq
2, px, yq P R2

where } ¨ } denotes the euclidean norm of R2. The operator `pτq has compact resolvent and we
denote by λ1pτq its first eigenvalue. This operator can be seen as a 2D version of the operator
h0pτq arising in the study of H0. Using (1.6) we have the fundamental relation

Ξ0 “ inf
τPR

λ1pτq .

The restriction of `pτq to axisymmetric functions reduces the problem to the singular 1D opera-
tor gpτq introduced in Subsection 2.2. We denote by pζnpτqqnPN˚ the spectrum of this operator
and we have ζ1pτq “ λ1pτq. We are interested in the description of the first band function
ζ1 and of its infimum Ξ0. We are also interested in comparisons with the spectral quantities
associated to the operator h0pτq coming from the study of the hamiltonian H0 defined in (1.1).

1.3. Connection with superconductivity. The modelization of the superconductivity phe-
nomenon leads to study the minimizers of the Gainzburg-Landau functional. For a strong
external magnetic field the superconductivity phenomenon is destroyed. The linearization of
the Gainzburg-Landau functional in that case leads to study the magnetic Laplacian with the
natural Neumann boundary conditions (see [19]). This operator is denoted by HA,Ω where A
is the magnetic potential and Ω Ă R3 is the domain. The bottom of its spectrum is denoted
by λpB,Ωq since it depends only of the magnetic field B :“ curlA. The critical value of
the magnetic field for which the superconductivity disappears in a type II superconductor Ω
is linked to λpB,Ωq (see [16] for example and [17] for more references). This gives an im-
portant motivation for the comprehension of the behavior of λpB,Ωq for large values of B.
For x P Ω we denote by Πx the tangent cone to Ω at the point x and rBx :“ |Bpxq|´1Bpxq
the normalized magnetic field frozen at x. Ones should expect that λpB,Ωq behaves like
infxPΩ |Bpxq|λp

rBx,Πxq for large magnetic fields, indeed all the known asymptotics of λpB,Ωq
have shown this structure. An ongoing work ([7]) is in progress to get the asymptotics for gen-
eral corner domains and non-vanishing regular magnetic fields.

In the perspective to determine the asymptotics of λpB,Ωq for large magnetic fields, it is
crucial to have comparisons between all the possible values of λprBx,Πxq for x P Ω. When the
boundary of Ω is regular, the tangent cones Πx are either spaces or half-spaces. The spectral
model quantity λprBx,Πxq is minimal and equal to θ0 in the case where Πx is a half-space with
the magnetic field tangent to the boundary (see [28]). In the case where the boundary of the
domain has an edge of opening α, it is necessary to study the Neumann magnetic Laplacian
on a new model domain: the infinite wedge of opening α denoted by Wα. First studies of this



4 NICOLAS POPOFF

operator are presented in [31], [5] and [35] for particular geometries. Let B be a constant uni-
tary magnetic field. We denote by bK the component of B orthogonal to the plane of symmetry
of the wedge. If bK ‰ 0, the magnetic Laplacian b´1

K HA,Wα degenerates formally toward
the operator HA (defined in (1.4)) when the opening angle α goes to 0. A formal analysis
and several numerical computations show that λpB,Wαq seems to converge to bKΞ0 when the
opening angle α goes to 0 (see [34, Chapter 6]). Therefore the comparison between bKΞ0 and
the spectral model quantities associated to the points of the regular boundary of Ω will brings
the asymptotics of the first eigenvalue of the magnetic Laplacian on a domain with an edge of
small opening. In this article we prove Θ0 ă Ξ0. An application of the comparison between
regular and singular model problems can be found in [36]. The semi-classical Laplacian with
a constant magnetic field in a domain with a curved edge (a lens) is studied. The authors
make an assumption on a 2D band function related to the conjecture 3.6 and use the tools of
the semi-classical analysis to provide complete expansion of the eigenvalues of the magnetic
Laplacian on the lens.

1.4. Contents and main results. In Section 2 we reduce the problem to a family of singular
1D Sturm-Liouville operators pgpτqqτPR on the half-line. We study the eigenvalues ζnpτq of
this 1D operators: we give a two-terms asymptotics when the Fourier parameter gets large
and we provide an upper bound for the minimum Ξ0. In Section 3 we give a formula for the
derivative of ζnpτq with respect to τ and we use it to show that Θ0 ă Ξ0. We also give a
criterion to characterize the minima of ζ1pτq. In Annex A we give numerical computations of
ζ1pτq.

2. DESCRIPTION OF THE 1D OPERATORS

2.1. The de Gennes operator. We first recall known results about the de Gennes operator
arising in the study of the hamiltonian H0 defined in (1.1). Let Fy be the partial Fourier
transform in the y-variable. We have the following direct integral decomposition

(2.1) F˚
yH0Fy :“

ż

À

τPR
h0pτq dτ

where h0pτq is defined in (1.3). For all τ P R the operator h0pτq has compact resolvent and
we denote by µnpτq its n-th eigenvalue. Let hN

0 pτq (resp. hD
0 pτq) be the operator B2

x`px´ τq
2

acting on L2pR`q with Neumann (resp. Dirichlet) boundary condition in x “ 0. We denote by
µN
n pτq (resp. µD

n pτq) its n-eigenvalue. We have (see [17]) for all n ě 1 that µ2n´1pτq “ µN
n pτq

and µ2npτq “ µD
n pτq. When τ goes to `8, µN

n pτq is exponentially close to the Landau level
2n´ 1 (see [18]):

(2.2) @n ě 1, DC ą 0, Dτ0, @τ ě τ0, |µN
n pτq ´ p2n´ 1q| ď Ce´τ

2{2

A two-terms asympotics is computed formally in [39]. The more precise following expansions
are rigorously proved in [34, Section 1.5]:

(2.3) µD
n pτq “ 2n´ 1`

2n

pn´ 1q!
?
π
τ 2n´1e´τ

2

ˆ

1´
n2 ´ n` 1

2τ 2
`O

ˆ

1

τ 4

˙˙
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and

(2.4) µN
n pτq “ 2n´ 1´

2n

pn´ 1q!
?
π
τ 2n´1e´τ

2

ˆ

1´
n2 ´ n´ 1

2τ 2
`O

ˆ

1

τ 4

˙˙

.

Let un,τ be a normalized eigenfunction of hN
0 pτq associated to µN

n pτq. Using the technics from
[12] and [3], it is known that

(2.5) pµN
n q
1
pτq “ pτ 2

´ µN
n pτqqu

2
n,τ p0q

and that there exists ξn0 P R such that τ ÞÑ µN
n pτq is decreasing on p´8, ξn0 q and increasing

on pξn0 ,`8q. Moreover the unique minimum of µN
n is non-degenerate and we have Θ0 “

infτ µ
N
1 pτq. If we denote by ξ0 :“ ξ1

0 , (2.5) provides ξ2
0 “ Θ0. Using (2.1) we get inf SpH0q “

Θ0. Numerical computations (see [40], [11] or [6] for a more rigorous analysis) show that
pξ0,Θ0q « p0.7682, 0.5901q.

2.2. Reduction to a 1D problem. We reduce the study of the first eigenvalue of `pτq to a
1D singular Sturm-Liouville operator on a weighted space. In the polar coordinate pr, φq the
operator `pτq defined in (1.7) writes

´B
2
r ´

1

r
Br ´

1

r2
B

2
φ ` pr ´ τq

2 , pr, φq P R` ˆ p´π, πq .

The eigenfunctions associated to the first eigenvalue are axisymmetric therefore we restrict the
operator to the functions that does not depend on the variable φ. In other words we restrict our
study to the case where the magnetic quantum number m is equal to 0.

Let L2
rpR`q be the space of the functions squared integrable on the half axis R` for the

weight r dr.We denote by

xu, vyL2
rpR`q :“

ż

R`

uprqvprqr dr

the scalar product associated to L2
rpR`q. Let B1

r pR`q :“ tu P L2
r, u

1 P L2
rpR`q, ru P

L2
rpR`qu . We define the operator

gpτq “ ´B2
r ´

1

r
Br ` pr ´ τq

2

on the domain

Dompgpτqq “ tu P B1
r pR`q, u2 P L2

rpR`q,
1

r
u1 P L2

rpR`q, r2u P L2
rpR`q, pru1prqq|r“0 “ 0u .

The operator gpτq is unitary equivalent to the restriction of `pτq to axisymmetric functions of
R2. The form domain of gpτq is B1

r pR`q and the associated quadratic form is

qτ puq :“

ż

R`

`

|u1prq|2 ` r2
|uprq|2

˘

r dr .

Using the results from [4] we get that the operator gpτq has compact resolvent and we denote
by ζnpτq its n-th eigenvalue. We have ζ1pτq “ λ1pτq and

(2.6) Ξ0 “ inf
τPR

ζ1pτq ,

moreover the pζnpτqqně0 are the eigenvalues of `pτq which have axisymmetric eigenfunctions.
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2.3. Elementary results about the spectrum of the 1D operator. The boundary value prob-
lem associated to the eigenvalue ζnpτq is the following:

"

´ru2prq ´ u1prq ` rpr ´ τq2uprq “ rζnpτquprq , r ą 0 ,(2.7a)
ru1prq|r“0 “ 0 .(2.7b)

The EDO (2.7a) is singular and the point r “ 0 is regular singular, therefore using Fuchs
theory for EDO’s and the boundary condition (2.7b) we get (see [34, Proposition 6.4] for more
details and [42, Lemma 4.1] for a more general case):

Proposition 2.1. For all τ P R and for all n ě 1, ζnpτq is a simple eigenvalue of gpτq. We
denote by zn,τ an associated eigenfunction. The function zn,τ is the restriction on R` of an
analytic function on R, moreover it satisfies the Neumann boundary condition

(2.8) z1n,τ p0q “ 0 .

Since the form domain of gpτq does not depend on τ , we deduce from Kato’s theory (see
[27]) that all the ζnpτq are analytic with respect to τ . Moreover the Feynman-Hellmann ([25])
formula provides

(2.9) @n ě 1, @τ P R, ζ 1npτq “ ´2

ż

R`

pr ´ τq2zn,τ prqr dr ,

and we deduce that for all n ě 1, the function τ ÞÑ ζnpτq is decreasing on p´8, 0q.
In the special case τ “ 0, the operator gpτq is also known as the Laguerre operator (see [1])

whose eigenvalues are known:

@n ě 1, ζnp0q “ 4n´ 2 .

Remark 2.2. The eigenvalues of the 2D harmonic oscillator `p0q “ ´∆ ` }px, yq}2 with
px, yq P R2 are the even positive integers. Only the eigenspaces associated to eigenvalues of
the form 4n´ 2 have axisymmetric eigenfunctions.

2.4. Limits for large parameters. Using the lower bound pr´τq2 ě τ 2 for τ ď 0 we deduce
from the min-max principle that for all τ ď 0 we have ζnpτq ě τ 2 and therefore

(2.10) lim
τÑ´8

ζnpτq “ `8 .

In the case of the de Gennes operator h0pτq the eigenfunctions concentrate for large τ in the
wells of the potential pr ´ τq2 and therefore the eigenvalues of h0pτq converge toward the
Landau level for large τ (see (2.2)). This is again true for the eigenvalues of the operator gpτq,
indeed the potential satisfies the hypothesis of [42, Proposition 3.6] and we deduce:

Proposition 2.3. We have

@n ě 1, lim
τÑ`8

ζnpτq “ 2n´ 1 .

However we work in a weighted space and the harmonic approximation that consists in
using the Hermite’s functions as quasi-modes is not as good as in the case of the de Gennes
operator. It is proven in [42, Proposition 4.7] that

(2.11) @n ě 1, Dγn ą 0, Dτn ą 0, @τ ą τn, ζnpτq ď p2n´ 1q ´ γnτ
´2 .
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We give a two-terms asymptotics of the band functions ζn for large τ :

Proposition 2.4. For all n ě 1 we have

(2.12) ζnpτq “
τÑ`8

2n´ 1´
1

4τ 2
`O

ˆ

1

τ 3

˙

.

Proof. We use the change of variable t “ r2

2
and we get that the operator gpτq is unitary

equivalent to
´2BttBt ` p

?
2t´ τq2, t ą 0

defined on tu P H1pR`q, t u P H1pR`qu. Let us remark that we are now working on an
unweighted space. We center and rescale this operator with the change of variable defined by
x “ τ´1pt´ τ2

2
q and we are led to study the operator

(2.13) gsc
pτq :“ ´B2

x ´ 2τ´1
BxxBx ` τp

?
2x` τ ´

?
τq2 , x P Jτ

defined on Dompgscpτqq “ tu P L2pJτ q, B
2
xu P L

2pJτ q, BxxBxu P L
2pJτ q, Vτu P L

2pJτ qu
where Jτ :“ p´ τ

2
,`8q and the normalized potential is

Vτ pxq :“ τp
?

2x` τ ´
?
τq2 .

The expansion of Vτ near 0 provides

(2.14) Dx0 ą 0, DC ą 0, @x P p´x0, x0q, @τ ě 1, |Vτ pxq ´

ˆ

x2
´
x3

τ
`

5x4

4τ 2

˙

| ď C
x5

τ 3
.

Let h “ τ´1. We define H “ H0 ` hH1 ` h
2H2 with

(2.15)

$

’

&

’

%

H0 :“ ´B2
x ` x

2

H1 :“ ´2BxxBx ´ x
3

H2 :“ 5
4
x4

acting on functions of L2pRq. Let us notice that the formal two-terms expansion of gscpτq
for large τ corresponds to the operator H . In order to construct a quasi-mode for gscpτq
when τ gets large we construct a quasi-mode for H when h gets small. We are looking for
an approximate eigenpair pEh, uhq for the operator H with Eh “ E0 ` hE1 ` h2E2 and
uh “ u0` hu1` h

2u2. Solving formally Huh “ Ehuh leads to solve the following equations:
$

&

%

H0u0 “ E0u0(2.16a)
H1u0 `H0u1 “ E0u1 ` E1u0(2.16b)
H2u0 `H1u1 `H0u2 “ E2u0 ` E1u1 ` E0u2(2.16c)

We solve (2.16a) by taking

E0 “ E0,n :“ 2n´ 1 and u0 “ u0,n :“ Ψn, n ě 1

where Ψn denotes the n-th normalized Hermite’s function with the convention that Ψ1pxq :“

π´1{4e´x
2{2 is the first Hermite’s function. We take the scalar product of (2.16b) against u0,n

and we get E1 “ xH1u0,n, u0,ny. When n is odd (respectively even), the n-th Hermite’s func-
tion is even (respectively odd), H1u0,n is odd (respectively even) and u0,n ¨H1u0,n is odd. We
deduce that

E1 “ 0 .
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We now find u1: we have to solve

(2.17) pH0 ´ E0qu1 “ ´H1u0,n .

We decompose p´H1u0,nqpxq “ x3Ψnpxq ` 2Ψ1
npxq ` Ψ2

npxq along the basis of Hermite’s
functions:

´H1u0,n “ anΨn´3 ` bnΨn´1 ` cnΨn`1 ` dnΨn`3 .

Using that for n ě 1 (see [1]):

xΨnpxq “

c

n´ 1

2
Ψn´1 `

c

n

2
Ψn`1 and Ψ1

npxq “

c

n´ 1

2
Ψn´1 ´

c

n

2
Ψn`1 ,

computations yield

(2.18) @n ě 1,

$

’

’

’

’

’

&

’

’

’

’

’

%

an “ 3 ¨ 2´3{2
a

pn´ 1qpn´ 2qpn´ 3q

bn “ 2´3{2
pn´ 1q

?
n´ 1

cn “ 2´3{2n
?
n

dn “ 3 ¨ 2´3{2
a

npn` 1qpn` 2qq .

For solving (2.17) we take

u1 “ u1,n :“ ´
an
6

Ψn´3 ´
bn
2

Ψn´1 `
cn
2

Ψn`1 `
dn
6

Ψn`3 .

We take the scalar product of (2.16c) with u0,n and we get

E2 “ E2,n :“ xH2u0,n, u0,ny ` xH1u1,n, u0,ny .

We have xH2u0,n, u0,ny “
5
4
}x2Ψn}

2
L2pRq “

15
16
p2n2 ´ 2n` 1q and

xH1u1,n, u0,ny “ xu1,n, H1u0,ny “

ˆ

a2
n

6
`
b2
n

2
´
c2
n

2
´
d2
n

6

˙

“ ´
1

16

`

30n2
´ 30n` 19

˘

.

Therefore we deduce

E2,n “ ´
1

4
.

We now find u2 by solving

pH0 ´ E0qu2 “ E2,nu0,n ´H2u0,n ´H1u1,n .

By construction of E2,n the right hand side is orthogonal to u0,n. Thanks to the Fredholm
alternative we get a unique solution u2,n orthogonal to u0,n. Moreover since the right hand
side has exponential decay at infinity, u2,n has also exponential decay at infinity.

We now evaluate the quasi-pair constructed. Let Eh,n :“ 2n ´ 1´ 1
4
h2 be the approximate

eigenvalue constructed and uh,n :“ u0,n`hu1,n`h
2u2,n be the associated approximate eigen-

function. Since uh,n has exponential decay we have for all n ě 1 that there exists Cn ą 0 such
that for all h P p0, 1q:

(2.19) }Huh,n ´ Eh,nuh,n}
2
L2pRq ď Cnh

3 and |}uh,n}L2pRq ´ 1| ď Cnh .
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Let χτ P C80 pJτ q be a cut-off function wich satisfies 0 ď χτ ď 1, χτ pxq “ 1 for x ě ´1
4
τ

and χτ pxq “ 0 for x ď ´1
2
τ . We define uqm

τ,n :“ χτuh,n with h “ τ´1. We have uqm
τ,n P

Dompgscpτqq. Since uh,n has exponential decay at infinity we get with h “ τ´1:

}gsc
pτquqm

τ,n ´ p2n´ 1´ 1
4τ2
quqm

τ,n}L2pJτ q “ }Huh,n ´ Eh,nuh,n}L2pRq `Oph
8
q .

Using (2.19) and the expansion (2.14) we deduce that for all n ě 1 there exists Cn ą 0 such
that for all τ ě 1:

}gsc
pτquqm

τ,n ´ p2n´ 1´ 1
4τ2
quqm

τ,n}
2
L2pJτ q

ď
Cn
τ 3

and |}uτ,n}L2pJτ q ´ 1| ď
Cn
τ
.

Since gscpτq is unitary equivalent to gpτq we deduce the asymptotic expansion (2.12). �

Remark 2.5. In the case of a 2D electron gas submitted to the magnetic field B0, the group ve-
locity of a quantum particle is given by´pµN

n q
1pτq (see [39, Section II] for a physical approach

or [42] for a mathematical analysis). Let us notice that unlike for the eigenvalues µN
n pτq of the

de Gennes operator (see (2.2)), the convergence of ζnpτq toward the Landau levels 2n ´ 1 is
not exponential. Therefore we should expect different transport properties associated to a 3D
electron gas submitted to the magnetic field B.

If we denote by m P Z the magnetic quantum number, the spectral analysis of `pτq can be
deduced from the analysis of the spectrum of the operators

´B
2
r ´

1

r
Br `

m2

r2
` pr ´ τq2 , r ą 0

acting on L2
rpR`q. We denote by ζn,mpτq the n-th eigenvalue of this operator. In this article

we have focused on the case m “ 0 and we have denoted by ζnpτq “ ζn,0. It is proved in [42,
Proposition 3.6] that all the ζn,mpτq converge toward the Landau level 2n´ 1 for large values
of τ . Looking at the proof of Proposition 2.4, we can deduce that

(2.20) @m P Z, @n ě 1, ζn,mpτq “
τÑ`8

2n´ 1` pm2
´ 1

4
q

1

τ 2
`O

ˆ

1

τ 3

˙

.

Therefore only the eigenvalues of `pτq associated to axisymmetric function are below the
Landau level for large values of τ . Let us also notice that the second term of this asymptotics
does not depend on the energy level n.

It is also possible to add an electric perturbation to the magnetic hamiltonians H0 and HA.
The associated Krein spectral shift function (see [2] for an overview on the spectral shift func-
tion) will have singularities near the Landau levels 2n´1 who play the role of “threesholds” in
the spectrum of the operators H0 and HA. The asymptotic behavior of the spectral shift func-
tion near the threesholds depends among other things on the behavior of the band functions
at energies closed to the threesholds (see for example [8] for a study of a magnetic hamilton-
ian on a half-strip). Since the band functions µN

n pτq and ζnpτq have different behaviors for
large τ , we expect that the spectral shift function associated to perturbations of the hamilto-
nians H0 and HA will have different singular behaviors when approaching the Landau levels
by below. Since all the pζn,mqm‰0 converge to the same Landau level 2n ´ 1 by above (see
(2.20)), the singular behavior of the SSF when approaching the threesholds by above may also
be interesting.
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2.5. Rough upper bound. Using the estimation (2.11), it is proved in [42, Theorem 4.9] that
all the function τ ÞÑ ζnpτq loose their monotonicity for τ ą 0 and reach their infimum. We
provide an upper bound for the infimum of τ ÞÑ ζ1pτq:

Proposition 2.6. We have

(2.21) Ξ0 ď
?

4´ π

and there exists τ˚ P R such that Ξ0 “ ζ1pτ
˚q.

Proof. In order to get an upper bound we use gaussian quasi-modes: for γ ą 0 we define
uγprq :“ e´γr

2 . Computations yield:

qτ puγq

}uγ}2L2
rpR`q

“ 2γ `
1

2γ
` τ 2

´ τ

ˆ

π

2γ

˙1{2

.

We minimize the right hand side by choosing γ “ π
8τ2

and we deduce from the min-max
principle:

ζ1pτq ď
π

4

1

τ 2
`

4´ π

π
τ 2 .

This upper bound is minimal for τ “ p π2

4p4´πq
q1{4 and provides (2.21) by using (2.6). �

3. CHARACTERIZATION OF THE MINIMUM

3.1. Comparison between the lowest energies. In this section we give a new expression of
the derivative of the function ζn. We use it to get a comparison between Θ0 and Ξ0.

In order to have a parameter-independent potential, we perform the translation ρ “ r ´ τ
and we get that gpτq is unitary equivalent to the operator

ĝpτq :“ ´B2
ρ ´

1

ρ` τ
Bρ ` ρ

2 , ρ ą ´τ

acting on L2
ρ`τ pIτ q with Iτ :“ p´τ,`8q. The domain of the operator ĝpτq is deduced from

Dompgpτqq using the translation ρ “ r ´ τ . The interval Iτ depends now on the parameter.
Usually the technics from [12] and [13] give a trace formula for the derivative with respect
to the boundary of the eigenvalues of such an operator (see the formula (2.5) for example).
However the results of [13] specific to weighted spaces cannot be applied, indeed the weight
ρ ` τ depends on the parameter τ . We prove à la “Bolley-Dauge-Helffer” a formula for the
derivative that is of a different kind from (2.5) and [13, Theorem 1.8]. To our knowledge this
formula is independent from the Feynman-Hellmann formula (2.9):

Proposition 3.1. Let n ě 1 and let zn,τ be a normalized eigenfunction associated to ζnpτq for
the operator gpτq. We have

(3.1) ζ 1npτq “ xph
N
0 pτq ´ ζnpτqqzn,τ , zn,τyL2pR`q .
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Proof. We denote by ẑn,τ pρq :“ zn,τ pρ ` τq a normalized eigenfunction of ĝpτq associated to
ζnpτq. It satisfies

(3.2) ´ ẑ2n,τ pρq ´
ẑ1n,τ pρq

ρ` τ
` ρ2ẑn,τ pρq “ ζnpτqẑn,τ pρq .

For h ą 0 we introduce the quantity

dn,τ phq :“ pζnpτ ` hq ´ ζnpτqq xẑn,τ`h, ẑn,τyL2
ρ`τ pIτ q

.

The analyticity of the eigenpairs pζnpτq, ẑn,τ qnPN is a direct consequence of the simplicity of
the eigenvalues (see proposition 2.1) and of Kato’s theory. Since the ẑn,τ are normalized in
L2
ρ`τ pIτ q we deduce that

(3.3) lim
hÑ0

dn,τ phq

h
“ ζ 1npτq .

On the other side using the eigenvalue equation (3.2) we get:

dn,τ phq “

ż `8

´τ

`

ζnpτ ` hqẑn,τ`hpρqẑn,τ pρq ´ ζnpτqẑn,τ`hpρqẑn,τ pρq
˘

pρ` τq dρ

“

ż `8

´τ

ˆ

´ẑ2n,τ`hpρq ´
1

ρ` τ ` h
ẑ1n,τ`hpρq ` ρ

2ẑn,τ`hpρq

˙

ẑn,τ pρqpρ` τq dρ

´

ż `8

´τ

ˆ

´ẑ2τ pρq ´
1

ρ` τ
ẑ1n,τ pρq ` ρ

2ẑn,τ pρq

˙

ẑn,τ`hpρqpρ` τq dρ .

We make integrations by part on the terms with second derivative:

dτ phq “

ż `8

´τ

ẑ1n,τ`hpρq
`

pρ` τqẑ1n,τ pρq ` ẑn,τ pρq
˘

´
ρ` τ

ρ` τ ` h
ẑ1n,τ`hpρqẑn,τ pρq dρ

`

ż `8

´τ

´ẑ1n,τ pρq
`

pρ` τqẑ1n,τ`hpρq ` ẑn,τ`hpρq
˘

` ẑ1n,τ pρqẑn,τ`hpρq dρ

“ h

ż `8

´τ

1

ρ` τ ` h
ẑ1n,τ`hpρqẑn,τ pρq dρ .

Thanks to (3.3) and to the analyticity of the eigenpairs with respect to the parameter we have

ζ 1npτq “

ż `8

´τ

1

ρ` τ
ẑ1n,τ pρqẑn,τ pρq dρ .

Using (3.2) we deduce

ζ 1npτq “

ż `8

´τ

`

´ẑ2n,τ pρq ` ρ
2ẑn,τ pρq ´ ζnpτqẑn,τ pρq

˘

ẑn,τ pρq dρ .

We make the translation ρ “ r ´ τ :

ζ 1npτq “

ż

R`

`

´z2n,τ prq `
`

pr ´ τq2zn,τ prq ´ ζnpτqzn,τ prq
˘˘

zn,τ prq dr .

Thanks to (2.8), we have zn,τ P DomphN
0 pτqq and we deduce (3.1). �
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This formula is not sufficient to give direct informations on the monotonicity of the functions
τ ÞÑ ζnpτq. However it provides the following comparison between the bottom of the spectrum
of the 2D hamiltonian H0 and the one of the 3D hamiltonian HA:

Theorem 3.2. We have
Θ0 ă Ξ0 .

Proof. Let τ˚ be a point such that ζ1pτ
˚q “ Ξ0 (see Proposition 2.6) and zτ˚ :“ z1,τ˚ an asso-

ciated eigenfunction such that }zτ˚}L2
rpR`q “ 1. We have ζ 11pτ

˚q “ 0 and thanks to Proposition
3.1:

ζ1pτ
˚
q “

xhN
0 pτ

˚qzτ˚ , zτ˚yL2pR`q

}zτ˚}2L2pR`q
.

We deduce from the min-max principle that ζ1pτ
˚q ě µN

1 pτ
˚q. Let us suppose that we have the

equality ζ1pτ
˚q “ µN

1 pτ
˚q, then zτ˚ is a minimizer of the quadratic form associated to hN

0 pτ
˚q

and since zτ˚ satisfies the Neumann boundary condition (2.8), it is an eigenfunction of hN
0 pτ

˚q

associated to µN
1 pτ

˚q and it satisfies hN
0 pτ

˚qzτ˚ “ µN
1 pτ

˚qzτ˚ , that is

@r ą 0, ´z2τ˚prq ` pr ´ τ˚q2zτ˚prq “ µN
1 pτ

˚
qzτ˚prq .

Combining this with (2.7a) we get z1τ˚ “ 0 on R`, that is absurd. Therefore we have Ξ0 “

ζ1pτ
˚q ą µN

1 pτ
˚q ě Θ0 . �

3.2. A criterion for the characterization of the minimum. In [42, Section 4], the author
states the question of knowing how many minima has the band function τ ÞÑ ζnpτq. We
give here a criterion in order to characterize the critical points of ζ1. Numerical simulations
show that this criterion seems to be satisfied. Let us notice that most of the technics presented
here can be found in [22], [21] and [20]. In the following we denote by zτ a normalized
eigenfunction of gpτq associated to ζ1pτq. Since ζ1pτq is simple, τ ÞÑ zτ is analytic and we
denote by 9zτ :“ Bτzτ .

Lemma 3.3. We have

@τ P R, } 9zτ}L2
rpR`q ď

2

ζ2pτq ´ ζ1pτq
}pr ´ τqzτ}L2

rpR`q .

Proof. We differentiate }zτ}2L2
rpR`q

“ 1 with respect to τ and we get that 9zτ is orthogonal to zτ
in L2

rpR`q. We deduce from the min-max principle:

pζ2pτq ´ ζ1pτqq} 9zτ}
2
L2
rpR`q

ď xpgpτq ´ ζ1pτqq 9zτ , 9zτyL2
rpR`q.

We differentiate gpτqzτ “ ζ1pτquτ with respect to τ and we get pgpτq´ζ1pτqq 9zτ “ ´Bτgpτqzτ ,
therefore

pζ2pτq ´ ζ1pτqq} 9zτ}
2
L2
rpR`q

ď x´Bτgpτqzτ , 9zτyL2
rpR`q .

By using Cauchy-Schwarz inequality and the identity Bτgpτq “ ´2pr ´ τq we deduce the
Lemma. �

Lemma 3.4 (Viriel identity). Let τC be a critical point of ζ1. Then we have

(3.4)
ż

R`

r|z1τCprq|
2 dr “

ż

R`

pr ´ τCq
2
|zτCprq|

2r dr “
ζ1pτCq

2
.
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Proof. We introduce the scaled operator

gpτ, aq :“ ´a´2 1

r
BrrBr ` par ´ τq

2, a ą 0

which is unitary equivalent to gpτq. We denote by zaτ prq :“ zτ p
r
a
q and we have

@a ą 0, pgpτ, aq ´ ζ1pτqq z
a
τ “ 0 .

We differentiate this relation with respect to a:

(3.5) pgpτ, aq ´ ζ1pτqq Baz
a
τ ` Bagpτ, aqz

a
τ “ 0

with

Bagpτ, aq “ 2a´3 1

r
BrrBr ` 2rpar ´ τq .

We make the scalar product of (3.5) with zaτ in L2
rpR`q and we take a “ 1:

(3.6)
ż

R`

`

´2|z1τ prq|
2
` 2rpr ´ τq|zτ prq|

2
˘

r dr “ 0 .

Thanks to (2.9), if τC is a critical point of ζ1 we have
ż

R`

pr ´ τCq|zτCprq|
2r dr “ 0

and therefore

(3.7)
ż

R`

pr ´ τCq
2
|zτCprq|

2r dr “

ż

R`

rpr ´ τCq|zτCprq|
2r dr .

Since

@τ P R,
ż

R`

`

|z1τ prq|
2
` pr ´ τq2|zτ prq|

2
˘

r dr “ ζ1pτq,

by using (3.6) and (3.7) we get (3.4). �

We can now state our criterion: if the spectral gap is large enough in a critical point of ζ1,
this critical point is a non-degenerate minimum:

Proposition 3.5. Let τC be a critical point of ζ1. Then we have

(3.8) ζ21 pτCq ě 2
ζ2pτCq ´ 3ζ1pτCq

ζ2pτCq ´ ζ1pτCq
.

Proof. We first differentiate the Feynman-Hellmann relation (2.9) and we get

@τ P R, ζ21 pτq “ 2´ 4

ż

R`

pr ´ τq 9zτ prqzτ prqr dr .

The Cauchy-Schwarz inequality and the Lemma 3.3 provide

ζ21 pτq ě 2´
8}pr ´ τqzτ}

2
L2
rpR`q

ζ2pτq ´ ζ1pτq
.

If τC is a critical point of ζ1, we deduce (3.8) from the Lemma 3.4. �
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We know that ζ2p0q ´ 3ζ1p0q “ 0 and that ζ2 ´ 3ζ1 goes to 0 for τ large (see Proposition
2.3). Moreover numerical simulations show that ζ2´ 3ζ1 seems to be positive on p0,`8q, see
figure 2. We already know that ζ1 is non-increasing on p´8, 0q, therefore using Proposition
3.5 we believe that all the critical points of ζ1 are minima. Therefore we are led to make the
following:

Conjecture 3.6. The band function τ ÞÑ ζ1pτq has a unique and non-degenerate minimum.

Remark 3.7. Let us notice that similar conjectures can be found in the litterature: in [36],
the characterization of the minimum of the band function of a related model problem would
bring localization property for the semi-classical Laplacian of a domain with a curved edge.
In [41] the author makes a conjecture on the monotonicity of the derivative of a band function
associated to a magnetic hamiltonian in R3.

Using the technics from [41, Section 3] and [42, Section 5], the conjecture 3.6 can bring
scattering properties for the hamiltonian HA. Moreover if the conjecture 3.6 is true, we will
be able to describe the number of eigenstates created under the action of a suitable electric
perturbation (see [8]). We hope to continue these investigations in the future.

‚ Acknowledgements. The author is grateful to E. Soccorsi for giving the physical impulsion,
for his interest in this work and for precious advices. The author is also grateful to V. Bruneau
for helpful discussions.
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APPENDIX A. NUMERICAL APPROXIMATIONS

The numerical approximations described here use the finite element library Mélina ([29]).
We refer to [34, Subsection 6.2.4] for more simulations and computation details. We denote by
ζ̆npτq a numerical approximation of ζnpτq. The figure 1 presents the numerical approximations
ζ̆1pτq for τ “ k

100
with 0 ď k ď 500. The numerical approximations have a unique minimum

Ξ̆0 “ 0.8630 and the corresponding minimizing Fourier parameter is τ̆˚ “ 1.53 . We have also
plotted the constant Θ0 « 0.5901 according to the computation of [6] and the upper bound?

4´ π « 0.9265 given by Proposition 2.6.

The figure 2 presents the numerical approximation ζ̆2pτq´3ζ̆1pτq for τ “ k
100

with 0 ď k ď
500. These quantities are positive for τ ą 0, therefore we think that ζ2pτq ´ 3ζ1pτq is positive
for all τ ą 0. Using Proposition 3.5, we believe that the conjecture 3.6 is true.
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FIGURE 1. The numerical approximations ζ̆1pτq for τ “ k
100

with 0 ď k ď 500

compared to the constant Θ0 and the upper bound
?

4´ π.
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FIGURE 2. The numerical approximations ζ̆2pτq ´ 3ζ̆1pτq for τ “ k
100

with
0 ď k ď 500.
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[7] V. BONNAILLIE-NOËL, M. DAUGE, N. POPOFF. Polyhedral bodies in large magnetic fields. Ongoing work
(2013).

[8] P. BRIET, G. RAIKOV, E. SOCCORSI. Spectral properties of a magnetic quantum Hamiltonian on a strip.
Asymptot. Anal. 58(3) (2008) 127–155.

[9] V. BRUNEAU, P. MIRANDA, G. RAIKOV. Discrete spectrum of quantum Hall effect Hamiltonians I. Mono-
tone edge potentials. J. Spectr. Theory 1(3) (2011) 237–272.

[10] V. BRUNEAU, P. MIRANDA, G. RAIKOV. Dirichlet and neumann eigenvalues for half-plane magnetic
hamiltonians. To appear (2013).



LOWEST ENERGY OF A MAGNETIC HAMILTONIAN WITH AN AXISYMMETRIC POTENTIAL 17

[11] S. J. CHAPMAN. Nucleation of superconductivity in decreasing fields. I, II. European J. Appl. Math. 5(4)
(1994) 449–468, 469–494.

[12] M. DAUGE, B. HELFFER. Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators. J.
Differential Equations 104(2) (1993) 243–262.

[13] M. DAUGE, B. HELFFER. Eigenvalues variation. II. Multidimensional problems. J. Differential Equations
104(2) (1993) 263–297.

[14] S. DE BIEVRE, J. PULE. Propagating edge states for a magnetic hamiltonian. Math. Phys. Electron. J. 5(3)
(1999).

[15] N. DOMBROWSKI, F. GERMINET, G. RAIKOV. Quantization of edge currents along magnetic barriers and
magnetic guides. Ann. Henri Poincaré 12(6) (2011) 1169–1197.
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