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ON THE LOWEST ENERGY OF A 3D-MAGNETIC LAPLACIAN WITH
AXISYMMETRICAL POTENTIAL

NICOLAS POPOFF

ABSTRACT. We study the bottom of the spectrum of a magnetic hamiltonian with axisymmet-
rical potential in R3. The associated magnetic field is planar, unitary and non-constant. The
problem reduces to a 1D-family of singular Sturm-Liouville operators on the half-line. We
study to associated band functions and we compare it to the “de Gennes” operators arising in
the study of a 2D-hamiltonian with monodimensional, odd and discontinuous magnetic field.
We show in particular that the lowest energy is higher in dimension 3.

1. INTRODUCTION

1.1. Problematic. The action of a spatially inhomogeneous magnetic field on a two-dimensio-
nal electron gas has been the focus of several researches in the past decades (see [25] and [23]
for example). Indeed a perpendicular magnetic field (modeled be a 2D-scalar vector field)
modifies the transport properties of the electron gas (see [24] and also [13] for a more math-
ematical approach). In [29], the authors study among others the case of the magnetic field
Bε defined on R2 by Bεpx, yq “ signpxq, this magnetic field follow the Iwatsuka model (see
[20]): it is unidimensional and non-decreasing. Let Aεpx, yq :“ |x| be a magnetic potential
satisfying curlAε “ Bε and

(1.1) HAε :“ p´i∇´Aε
q
2
“ D2

x ` pDy ´ |x|q
2

the associated hamiltonian with D “ ´iB. The discontinuity of the magnetic field can induce
a quantum transport along the singularity called “edge current” and whose classical trajectory
corresponds to the so-called snake orbits (see [29] for more references). Mathematical prop-
erties of the hamiltonian HAε for small electric perturbations are studied in [18] (see also [8]
for a related hamiltonian on a half-plane). The bottom of the spectrum of the operator HAε is
denoted by Θ0. This spectral quantity has been introduced in [30] for a problem coming from
the modeling of the phenomenon of “surface superconductivity” (see also [2] or [14] for more
references). The study of the spectrum of HAε leads to the 1D-parameter family of operators
pencil

hτ :“ ´B2x ` p|x| ´ τq
2, x P R

called the de Gennes operators (see Subsection 2.1 for references and former results). The
bottom of the spectrum of such an operator family is called a “band function”.

The aim of this article is to study the bottom of the spectrum of a hamiltonian associated
to a planar inhomogeneous magnetic field of R3 whose associated magnetic potential is ax-
isymmetrical. Let us denote by pr, θ, zq the cylindrical coordinates of R3. If the magnetic
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potential has the shape Apr, θ, zq “ p0, 0, Aprqq with A convenient, the classical trajectories
of a particle in the associated magnetic field are described in [31, Section 3]. The spectrum
and the scattering properties of such hamiltonians are also studied in [32]. The particular case
of a magnetic potential created by an infinite rectilinear current in the z direction is studied in
[31]: the spectrum of PA,R3

`
is the half-line R` and the band functions are increasing from 0 to

`8. In this article we are interested to another 3D-hamiltonian with axisymmetrical potential
and we show that its spectrum has very different properties that the one studied in [31].

We define in R3 the magnetic potential

Apx, y, zq :“ p0, 0,
a

x2 ` y2q .

The associated magnetic field B :“ curlA satisfies Bpx, y, zq “ psin θ,´ cos θ, 0q. This
magnetic field is unitary and non-constant and its field lines are circles centered at the origin.
The restriction of the magnetic field B to a plane of the form ty “ axu with a P R has the
shape of the magnetic field Bε associated to the hamiltonian (1.1). Let

HA :“ p´i∇´Aq2 “ D2
x `D

2
y ` pDz ´

a

x2 ` y2q2

be the hamiltonian associated to the magnetic field B acting on L2pR3q and

(1.2) Ξ0 :“ inf S pHAq

its lowest energy, where SpLq denotes the spectrum of a self-adjoint operator L. One of our
goals is to compare Ξ0 with the lowest energy Θ0 of the hamiltonian HAε defined in (1.1). Let
Fz be the partial Fourier transform in the z-variable. We have the direct integral decomposition
(see [28]):

(1.3) F˚
zHAFz “

ż

À

τPR
h2d
τ dτ

with
h2d
τ :“ ´∆` p}x} ´ τq2, x P R2

where }x} denotes the euclidean norm of R2. The operator h2d
τ has compact resolvent and we

denote by λ1pτq its first eigenvalue. This operator can be seen as a 2D-version of the operator
hτ arising in the study of HAε . Using (1.3) we have the fundamental relation

Ξ0 “ inf
τPR

λ1pτq .

The restriction of h2d
τ to axisymmetrical functions reduces the problem to the singular 1D-

operator gτ introduced in Subsection 2.2. We denote by pζnpτqqnPN˚ the spectrum of this
operator and we have ζ1pτq “ λ1pτq. We are interested in the description of the first “band
function” ζ1 and of its infimum Ξ0. We are also interested in comparisons with the spectral
quantities associated to the operator hτ coming from the study of the hamiltonian HAε defined
in (1.1).

Let us notice that the family of operators ph2d
τ qτPR appears also in the asymptotic analysis

of the Neumann magnetic Laplacian with constant magnetic on an infinite wedge of small
opening, provided that the magnetic field is not tangent to the plane of symmetry of the wedge
(see [26, Section 6.1] and [27]).
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1.2. Contents and main results. In Section 2 we reduce the problem to a family of singular
1D-Sturm-Liouville operators pgτ qτPR on the half-line. We study the eigenvalues of this 1D-
operators: we show that the first eigenvalue reaches its infimum Ξ0 and we provide an upper
bound. In Section 3 we give a formula for the derivative of the eigenvalues of gτ with respect
to τ and we use it to show that Θ0 ă Ξ0. In Annex A we give numerical computations.

2. DESCRIPTION OF THE 1D OPERATORS

2.1. The de Gennes operator. We first recall known results about the de Gennes operator
arising in the study of the hamiltonian HA defined in (1.1). Let Fy be the partial Fourier
transform in the y-variable. We have the following direct integral decomposition

(2.1) F˚
yHAεFy :“

ż

À

τPR
hτ dτ

where
hτ :“ ´B2x ` p|x| ´ τq

2, x P R
This operator has compact resolvent and we denote by µnpτq its n-th eigenvalue. Let hN

τ (resp.
hD
τ ) be the operator B2x`px´ τq

2 acting on L2pR`q with Neumann (resp. Dirichlet) boundary
condition in x “ 0. We denote by µN

n pτq (resp. µD
n pτq) its n-eigenvalue. We have (see [14])

for all n ě 1 that µ2n´1pτq “ µN
n pτq and µ2npτq “ µD

n pτq. When τ goes to `8, µN
n pτq is

exponentially close to the Landau level (see [15]):

(2.2) @n ě 1, DC ą 0, Dτ0, @τ ě τ0, |µN
n pτq ´ p2n´ 1q| ď Ce´τ

2{2

Let un,τ be a normalized eigenfunction of hN
τ associated to µN

n pτq. Using the technics from
[10] and [4], it is known that

(2.3) pµN
n q
1
pτq “ pτ 2 ´ µN

n pτqqu
2
n,τ p0q

and that there exists ξn0 P R such that τ ÞÑ µN
n pτq is decreasing on p´8, ξn0 q and increasing

on pξn0 ,`8q. Moreover the unique minimum of µN
n is non-degenerate, and if we denote by

ξ0 :“ ξ10 and Θ0 :“ infτ µ
N
1 pτq, (2.3) provides ξ20 “ Θ0. Using (2.1) we get inf SpHAεq “ Θ0.

Numerical computations (see [30], [9] or [6] for more rigorous analysis) show that pξ0,Θ0q «

p0.7682, 0.5901q.

2.2. Reduction to a 1D-problem. We reduce the study of the first eigenvalue of h2d
τ to a

1D-singular Sturm-Liouville operator on a weighted space. In the polar coordinate pr, φq the
operator h2d

τ writes

´B
2
r ´

1

r
Br ´

1

r2
B
2
φ ` pr ´ τq

2 , pr, φq P R` ˆ p´π, πq .

The eigenfunctions associated to the first eigenvalue are axisymmetric therefore we restrict the
operator to the functions that does not depend on the variable φ. Let L2

rpR`q be the space of
the functions squared integrable on the half axis R` for the weight r dr. We denote by

xu, vyL2
rpR`q :“

ż

R`

uprqvprqr dr
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the associated scalar product. Let B1
r pR`q :“ tu P L2

r, u
1 P L2

rpR`q, ru P L2
rpR`qu . We

define the operator

gτ “ ´B
2
r ´

1

r
Br ` pr ´ τq

2

on the domain

Dompgτ q “ tu P B
1
r pR`q, u2 P L2

rpR`q,
1
?
r
u P L2

rpR`q, r2u P L2
rpR`q, pru1prqq|r“0 “ 0u .

The operator gτ is unitary equivalent to the restriction of h2d
τ to axisymmetric functions of R2.

The form domain of gτ is B1
r pR`q and the associated quadratic form is

qτ puq :“

ż

R`

`

|u1prq|2 ` r2|uprq|2
˘

r dr .

Using the results from [5] we get that the operator gτ has compact resolvent and we denote
by ζnpτq its n-th eigenvalue. We have ζ1pτq “ λ1pτq and

(2.4) Ξ0 “ inf
τPR

ζ1pτq ,

moreover the ζnpτq corresponds to the eigenvalues of h2d
τ which have axisymmetric eigenfunc-

tions.

2.3. Elementary results about the spectrum of the 1D-operator. The boundary value prob-
lem associated to the eigenvalue ζnpτq is the following:

"

´ru2prq ´ u1prq ` rpr ´ τq2uprq “ rζnpτquprq , r ą 0 ,(2.5a)
ru1prq|r“0 “ 0 .(2.5b)

The EDO (2.5a) is singular and the point r “ 0 is regular singular, therefore using Fuchs
theory for EDO’s (see [3] for example) and the boundary condition (2.5b) we get (see [26,
Proposition 6.4] for more details):

Proposition 2.1. For all τ P R and for all n ě 1, ζnpτq is a simple eigenvalue of gτ . We
denote by zn,τ an associated eigenfunction. The function zn,τ is the restriction on R` of an
analytic function on R, moreover it satisfies the Neumann boundary condition

(2.6) z1n,τ p0q “ 0 .

Since the form domain of gτ does not depend on τ , we deduce from Kato’s theory (see
[21]) that all the ζnpτq are analytic with respect to τ . Moreover the Feynman-Hellmann ([19])
formula provides

(2.7) @n ě 1, @τ P R, ζ 1npτq “ ´2

ż

R`

pr ´ τq2zn,τ prqr dr ,

and we deduce that for all n ě 1, the function τ ÞÑ ζnpτq is decreasing on p´8, 0q.
In the special case τ “ 0, the operator gτ is also known as the Laguerre operator (see [1])

whose eigenvalues are known:

@n ě 1, ζnp0q “ 4n´ 2 .
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Remark 2.2. The eigenvalues of the 2D harmonic oscillator ´∆ ` |x|2 with x P R2 are the
even positive integers. Only the eigenspaces associated to eigenvalues of the form 4n´ 2 have
axisymmetric eigenfunctions.

‚ Limit for large parameters. Using the lower bound pr´τq2 ě τ 2 for τ ď 0 we deduce from
the min-max principle that for all τ ď 0 we have ζnpτq ě τ 2 and therefore

(2.8) lim
τÑ´8

ζnpτq “ `8 .

When τ goes to`8, as in the case of the de Gennes operator we expect that the eigenfunctions
concentrate in the wells of the potential pr ´ τq2 and therefore that the ζnpτq converge toward
the Landau level p2n´1q (see (2.2)). However we work in a weighted space and the harmonic
approximation that consist in using the Hermite’s functions as quasi-modes is not as good as
in the case of the de Gennes operator:

Proposition 2.3. We have

@n ě 1, lim
τÑ`8

ζnpτq “ 2n´ 1 and ζ1pτq “
τÑ`8

1´
1

4τ 2
`O

ˆ

1

τ 3

˙

.

Proof. The proof is elementary and we give the main lines. The details can be found in [26,
Subsection 6.2.1]. First we take for quasi-modes the Hermite’s functions centered in the wells
tr “ τu and the min-max principle provides a rough upper bound. To get the lower bound,
we use the technics of the semi-classical analysis (see [12, Theorem 4.23] for example): par-
tition of the unity near and far the wells of the potential, IMS formula, comparison to the
harmonic oscillator using Agmon estimates for the eigenfunctions. This gives ζnpτq Ñ 2n´1
for large τ (see [26, Proposition 6.10]). The asymptotic expansion for ζ1pτq needs a better
quasi-mode construction: we first perform a change of variable t “ r2

2
in order to work in a

unweighted space, then we construct suitable test-functions using the Hermite’s functions (see
[26, Proposition 6.11]) and we conclude with the spectral theorem. �

Remark 2.4. In the case of a 2D-electron gas submitted to the magnetic field Bε, the group
velocity of the electron associated to the frequence τ is given by ´pµN

1 q
1pτq (see [29, Section

II]). Let us notice that unlike for the eigenvalues of the de Gennes operator (see (2.2)), the con-
vergence of ζ1pτq toward 1 is not exponential. Therefore we should expect different transport
properties associated to a 3D-electron gas submitted to the magnetic field B.

‚ Existence of the minimum. We can deduce that the function τ ÞÑ ζ1pτq reaches its infimum.
We provide an upper bound:

Proposition 2.5. We have

(2.9) Ξ0 ď
?

4´ π

and there exists τ˚ P R such that Ξ0 “ ζ1pτ
˚q.

Proof. In order to get an upper bound we use gaussian quasi-modes: for ρ ą 0 we define
uρprq :“ e´ρr

2 . Elementary computations show that

qτ puρq

}uρ}L2
rpR`q

“ 2ρ`
1

2ρ
` τ 2 ´ τ

ˆ

π

2ρ

˙1{2

.
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We minimize the right hand side by choosing ρ “ π
8τ2

and we deduce from the min-max
principle:

ζ1pτq ď
π

4

1

τ 2
`

4´ π

π
τ 2 .

This upper bound is minimal for τ “ p π2

4p4´πq
q1{4 and provides (2.9) by using (2.4). Since ζ1 is

analytic, we deduce from (2.8), Proposition 2.3 and (2.9) that τ ÞÑ ζ1pτq reaches its infimum
on R. �

3. CHARACTERIZATION OF THE MINIMUM

In this section we give a new expression of the derivative of the function ζn. We use it to get
a comparison between Θ0 and Ξ0.

In order to have a parameter-independent potential, we perform the translation ρ “ r ´ τ
and we get that gτ is unitary equivalent to the operator

ĝτ :“ ´B2ρ ´
1

ρ` τ
Bρ ` ρ

2

acting on L2
ρ`τ pIτ q with Iτ :“ p´τ,`8q. The domain of the operator ĝτ is deduced from

Dompgτ q using the translation ρ “ r ´ τ . The interval Iτ depends now on the parameter.
Usually the technics from [10] and [11] give a trace formula for the derivative with respect
to the boundary of the eigenvalues of such an operator (see the formula (2.3) for example).
However the results of [11] specific to weighted spaces cannot be applied, indeed the weight
ρ ` τ depends on the parameter τ . We prove à la “Bolley-Dauge-Helffer” a formula for the
derivative that is of a different kind from (2.3) and [11, Theorem 1.8] and is independent from
the Feynman-Hellmann formula (2.7):

Proposition 3.1. Let n ě 1 and let zn,τ be a normalized eigenfunction associated to ζnpτq for
the operator gτ . We have

(3.1) ζ 1npτq “ xph
N
τ ´ ζnpτqqzn,τ , zn,τyL2pR`q .

Proof. We denote by ẑn,τ pρq :“ zn,τ pρ ` τq a normalized eigenfunction of ĝτ associated to
ζnpτq. It satisfies

(3.2) ´ ẑ2n,τ pρq ´
ẑ1n,τ pρq

ρ` τ
` ρ2ẑn,τ pρq “ ζnpτqẑn,τ pρq .

For h ą 0 we introduce the quantity

dn,τ phq :“ pζnpτ ` hq ´ ζnpτqq xẑn,τ`h, ẑn,τyL2
ρ`τ pIτ q

.

The analyticity of the eigenpairs pζnpτq, ẑn,τ qnPN is a direct consequence of the simplicity of
the eigenvalues (see proposition 2.1) and of Kato’s theory. Since the ẑn,τ are normalized in
L2
ρ`τ pIτ q we deduce that

(3.3) lim
hÑ0

dn,τ phq

h
“ ζ 1npτq .
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On the other side using the eigenvalue equation (3.2) we get:

dn,τ phq “

ż `8

´τ

`

ζnpτ ` hqẑn,τ`hpρqẑn,τ pρq ´ ζnpτqẑn,τ`hpρqẑn,τ pρq
˘

pρ` τq dρ

“

ż `8

´τ

ˆ

´ẑ2n,τ`hpρq ´
1

ρ` τ ` h
ẑ1n,τ`hpρq ` ρ

2ẑn,τ`hpρq

˙

ẑn,τ pρqpρ` τq dρ

´

ż `8

´τ

ˆ

´ẑ2τ pρq ´
1

ρ` τ
ẑ1n,τ pρq ` ρ

2ẑn,τ pρq

˙

ẑn,τ`hpρqpρ` τq dρ .

We make integrations by part on the terms with second derivative:

dτ phq “

ż `8

´τ

ẑ1n,τ`hpρq
`

pρ` τqẑ1n,τ pρq ` ẑn,τ pρq
˘

´
ρ` τ

ρ` τ ` h
ẑ1n,τ`hpρqẑn,τ pρq dρ

`

ż `8

´τ

´ẑ1n,τ pρq
`

pρ` τqẑ1n,τ`hpρq ` ẑn,τ`hpρq
˘

` ẑ1n,τ pρqẑn,τ`hpρq dρ

“ h

ż `8

´τ

1

ρ` τ ` h
ẑ1n,τ`hpρqẑn,τ pρq dρ .

Thanks to (3.3) and to the analyticity of the eigenpairs with respect to the parameter we have

ζ 1npτq “

ż `8

´τ

1

ρ` τ
ẑ1n,τ pρqẑn,τ pρq dρ .

Using (3.2) we deduce

ζ 1npτq “

ż `8

´τ

`

´ẑ2n,τ pρq ` ρ
2ẑn,τ pρq ´ ζnpτqẑn,τ pρq

˘

ẑn,τ pρq dρ .

We make the translation ρ “ r ´ τ :

ζ 1npτq “

ż

R`

`

´z2n,τ prq `
`

pr ´ τq2zn,τ prq ´ ζnpτqzn,τ prq
˘˘

zn,τ prq dr .

Thanks to (2.6), we have zn,τ P DomphN
τ q and we deduce (3.1). �

This formula is not sufficient to give direct informations on the monotonicity of the functions
τ ÞÑ ζnpτq. However it provides the following comparison between the bottom of the spectrum
of the 2D-hamiltonian HAε and the one of the 3D-hamiltonian HA:

Theorem 3.2. We have
Θ0 ă Ξ0 .

Proof. Let τ˚ be a point such that ζ1pτ˚q “ Ξ0 (see Proposition 2.5) and zτ˚ an associated
eigenfunction such that }zτ˚}L2

rpR`q “ 1. We get ζ 11pτ
˚q “ 0 and thanks to Proposition 3.1:

ζ1pτ
˚
q “

xhN
τ˚zτ˚ , zτ˚yL2pR`q

}zτ˚}2L2pR`q
.

We deduce from the min-max principle that ζ1pτ˚q ě µN
1 pτ

˚q. Let us suppose that we have
the equality ζ1pτ˚q “ µN

1 pτ
˚q, then zτ˚ is a minimizer of the quadratic form associated to hN

τ˚
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and since zτ˚ satisfies the Neumann boundary condition (2.6), it is an eigenfunction of hN
τ˚

associated to µN
1 pτ

˚q and it satisfies hN
τ˚zτ˚ “ µN

1 pτ
˚qzτ˚ , that is

@r ą 0, ´z2τ˚prq ` pr ´ τ˚q2zτ˚prq “ µN
1 pτ

˚
qzτ˚prq .

Combining this with (2.5a) we get z1τ˚ “ 0 on R`, which is absurd. Therefore we have
Ξ0 “ ζ1pτ

˚q ą µN
1 pτ

˚q ě Θ0 . �

We give here a criterion in order to characterize the critical points of ζ1.

Proposition 3.3. Let τC be a critical point of ζ1. Then we have

ζ21 pτCq ě
ζ2pτCq ´ 3ζ1pτCq

ζ2pτCq ´ ζ1pτCq
.

Proof. We follow the proof of [16, Lemma 7] (see also [17, Section 2]). The main ingredients
are the Feynman-Hellmann formula and the Viriel Theorem. �

We know that ζ2p0q ´ 3ζ1p0q “ 0 and that ζ2 ´ 3ζ1 goes to 0 for τ large. Moreover several
numerical computations show that ζ2 ´ 3ζ1 seems to be positive on p0,`8q, see figure 2. We
already know that ζ1 is non-increasing on p´8, 0q, therefore using Proposition 3.3 we believe
that all the critical points of ζ1 are minima. Therefore we are led to make the following:

Conjecture 3.4. The band function τ ÞÑ ζ1pτq has a unique and non-degenerate minimum.

Let us notice that similar conjectures can be found in the litterature: in [27], the characteriza-
tion of the minimum of the band function of a related model problem would bring localization
property for the semi-classical Laplacian of a domain with a curved edge. In [31] the au-
thor makes a conjecture on the monoticity of the derivative of a band function associated to a
magnetic hamiltonian in R3.

Using the technics from [31, Section 3] and [32, Section 5], the conjecture 3.4 can bring
scattering properties for the hamiltonian PA,R3

`
. Moreover if the conjecture 3.4 is true, we will

be able to describe the number of eigenstates created under the action of a suitable electric
perturbation V (see [7]). We hope to continue these investigations in the future.
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APPENDIX A. NUMERICAL APPROXIMATIONS

The numerical approximations described here use the finite element library Mélina ([22]).
We refer to [26, Subsection 6.2.4] for more simulations and computations details. We denote
by ζ̆npτq a numerical approximation of ζnpτq. The figure 1 presents the numerical approxi-
mation ζ̆1pτq for τ “ k

100
with 0 ď k ď 500. The numerical approximations have a unique

minimum Ξ̆0 “ 0.8630 and the corresponding minimizing Fourier parameter is τ̆˚ “ 1.53 .
We have also plotted the constant Θ0 « 0.5901 according to the computation of [6] and the
upper bound

?
4´ π « 0.9265 given by Proposition 2.5.

The figure 2 presents the numerical approximation ζ̆2pτq´3ζ̆1pτq for τ “ k
100

with 0 ď k ď
500. These quantities are positive for τ ą 0, therefore we think that ζ2pτq ´ 3ζ1pτq is positive
for all τ ą 0. Using Proposition 3.3, we believe that Conjecture 3.4 is true.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

τ

 

 

ζ
1
(τ)

Ξ
0

θ
0

(4−π)1/2

FIGURE 1. The numerical approximations ζ̆1pτq for τ “ k
100

with 0 ď k ď 500

compared to the constant Θ0 and the upper bound
?

4´ π.
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ζ
2
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FIGURE 2. The numerical approximations ζ̆2pτq ´ 3ζ̆1pτq for τ “ k
100

with
0 ď k ď 500.
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