
HAL Id: hal-00803937
https://hal.science/hal-00803937

Submitted on 24 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic resource allocation in a multi-product
make-to-stock production system

D. J. Hodge, K. D. Glazebrook

To cite this version:
D. J. Hodge, K. D. Glazebrook. Dynamic resource allocation in a multi-product make-to-stock pro-
duction system. Queueing Systems, 2011, pp.333-364. �10.1007/s11134-011-9217-2�. �hal-00803937�

https://hal.science/hal-00803937
https://hal.archives-ouvertes.fr

QUES9217_source.tex; 10/02/2011; 8:16 p. 1Queueing Systems manuscript No.
(will be inserted by the editor)

Dynamic resource allocation in a multi-product
make-to-stock production system

D. J. Hodge · K. D. Glazebrook

Received: date / Accepted: date

Abstract We consider optimal policies for a production facility in which sev-
eral (K) products are made to stock in order to satisfy exogenous demand for
each. The single machine version of this problem in which the facility manu-
factures at most one product at a time to minimise inventory costs has been
much studied. We achieve a major generalisation by formulating the produc-
tion problem as one involving dynamic allocation of a key resource which drives
the manufacture of all products under an assumption that each additional unit
of resource allocated to a product achieves a diminishing return of increased
production rate. A Lagrangian relaxation of the production problem induces
a decomposition into K single product problems in which the production rate
may be varied but is subject to charge. These reduced problems are of interest
in their own right. Under mild conditions of full indexability the Lagrangian
relaxation is solved by a production policy with simple index-like structure.
This in turn suggests a natural index heuristic for the original production
problem which performs strongly in a numerical study. The paper discusses
the importance of full indexability and makes proposals for the construction
of production policies involving resource idling when it fails.

Keywords backordering · dynamic programming · dynamic resource
allocation · index heuristic · Lagrangian relaxation · make-to-stock policy ·
queueing control

D. J. Hodge
Department of Mathematics and Statistics, Lancaster University, LA1 4YF, UK
Tel.: +44-1524-593780
E-mail: d.hodge@lancaster.ac.uk

K. D. Glazebrook
Department of Management Science, Lancaster University, LA1 4YX, UK
Department of Mathematics and Statistics, Lancaster University, LA1 4YF, UK
E-mail: k.glazebrook@lancaster.ac.uk

QUES9217_source.tex; 10/02/2011; 8:16 p. 2

2

BackordersInventory

a1

a3

a2

+

+

= S

λ1(a1)

λ3(a3)

λ2(a2) New customer
demands

μ1

μ2

μ3

Key

divisible
resource

M1 = 6

M3 = 8

M2 = 8

N1 = 7

N2 = 6

N3 = 9

Fig. 1: An illustration of a three-product (K = 3) queueing system currently in state
(−2, 5, 0). White circles can be seen as customers waiting for backorders to be fulfilled.

1 Introduction

The paper discusses the development of resource allocation policies for a facil-
ity which manufactures several (K) products. Each product has an associated
inventory and stored items are available to meet exogenous demand which is
assumed to occur according to K independent Poisson streams. Limited stor-
age space is available for each product, while orders arriving for a product
which is out of stock may be backordered. A maximum number of backorders
is allowed for each product. Any order arriving at a point in time at which
the corresponding maximum backorder level is achieved results in a lost sale.
Inventory-based costs are incurred for holding items in stock, for maintaining
backorders and for lost sales.

A single key resource (manpower, equipment, money) is available to drive
the production process. At each point in time, each item’s inventory level
(which will be negative in the case of backorders) is available to a central
controller to inform decisions concerning how the key resource should be dis-
tributed among the K products to secure a production schedule to minimise
the time average rate at which inventory costs are incurred overall. This may
be viewed as a problem concerning the optimal control of arrivals to a multi-
class queueing system. See Figure 1. To produce an account which is natural
to the application, we shall use the language of inventory/production systems
rather than that of queueing systems throughout.

The case in which the key resource is indivisible (the so-called single ma-
chine problem), namely where the facility manufactures at most one product
at a time, is well studied. In our model, the allocation of each additional unit
of resource to a product achieves a diminishing return in terms of production
rate. Equivalently, to achieve successive equal increases of production rate re-
quires escalating amounts of additional resource. An equivalent assumption of
service costs which are convex in a service rate is made by Ata and Shnoerson

QUES9217_source.tex; 10/02/2011; 8:16 p. 3

3

[1] in their analysis of an M/M/1 service system. This means that in our model
it will rarely be optimal to allocate all of the key resource to a single product.

In the paper, we first introduce the full multi-product scenario. We then
consider a relaxation which we can proceed to solve via a resulting product
decomposition. The decomposed single product problem is that in which the
resource may be applied to production at a variety of levels but is subject
to a per unit charge. Typically, we expect that higher production levels are
mandated when the inventory level and/or the resource charge are low.We seek
to establish structural properties of such single product problems in order to
inform the construction of strongly performing heuristics for the multi-product
case of primary interest.

A range of contributions have been made to single machine versions of
(variants of) our make-to-stock model. Unsurprisingly, the strongest results
regarding the structure of optimal policies relate to the simplest models. Ha
[6] followed by de Vericourt et al. [2] discuss the status of switching curve
policies with associated hedging points for the single machine, two product
case (K = 2) with Markovian dynamics. Sobel [12] and Gavish and Graves [3]
analyse a single machine, single product problem where the time to produce
a single item is deterministic and where a start-up cost is incurred whenever
the machine is switched on. Zheng and Zipkin [19] compare centralised and
decentralised control policies for a single machine setup with K = 2 and where
the two products have identical cost and production characteristics. A corre-
sponding multi-product study is given by Zipkin [20]. Perez and Zipkin [10]
propose a myopic heuristic for a single machine model in which the products
have identical cost characteristics and where the time to produce a single item
has a general distribution. Wein [17] uses a heavy traffic approach for a single
machine, multi-product problem with general stochastic structure for demands
and production times. Veatch and Wein [15] compare a number of heuristic
policies for single machine, multi-product problems, including the myopic pol-
icy proposed by Perez and Zipkin [10], an index heuristic based on Whittle’s
proposal [18] for restless bandits and one based on a heavy traffic analysis.

Menich and Serfozo [7] consider a very special multi-server, multi-product
model in the symmetric case in which product characteristics are identical.
They study a queueing problem with both customer routing available and
flexible service placement. They show that it is optimal to concentrate service
resources on the longest queues and to route new arrivals to the shortest
queues. Also of relevance is the work of Sobel [13] who, in the context of
a general queueing model with many possible service rates, shows that an
assumption that the resulting return is convex in the effort expended leads
inevitably to the conclusion that service policies which always choose maximal
service rates will dominate.

The model for our multi-product problem is presented in Section 2. In
order to construct strongly performing heuristics, we follow Whittle [18] and
Glazebrook et al. [4] in developing a Lagrangian relaxation of the original
problem in which a charge is levied for the deployment of the key resource. In
this relaxation the Lagrange multiplier (W) has an economic interpretation as

QUES9217_source.tex; 10/02/2011; 8:16 p. 4

4

a charge for one unit of resource applied to production for one unit of time.
As is demonstrated in Section 2, the Lagrangian relaxation yields a product-
wise decomposition which consequentially focusses attention on single product
problems with variable production rates and a charge for the resources used.
The single product problems will be said to be fully indexable if it is the case
that optimal production rates are decreasing in the resource charge for any
inventory level. Section 2 discusses the importance of full indexability and the
consequences of its failure. Inter alia, full indexability enables the construction
of simply structured index heuristics for the multi-product problem. The above
single product problems are studied in detail in Section 3, where a range of
sufficient conditions for full indexability are elucidated. The paper concludes
in Section 4 with an extensive numerical study.

In our numerical study our proposed index heuristic is applied to a range of
problems which are fully indexable. The heuristic comfortably outperforms a
range of competitors. The study illuminates the importance of the development
of policies which respond (i.e. dynamically) to changes in inventory level and
which are capable of dividing the resource between products in a way which
balances their individual needs. We also address the issue of resource idling. In
the bulk of our work we concern ourselves, not unreasonably, with models for
which we do not have large surplusses of resource which we desire not to use for
fear of over-stocking. Our indexability approach does, however, give rise to fair
charges which can be used to derive heuristic policies which perform strongly in
non-indexable cases with high holding costs which call for significant amounts
of resource idling. This discussion of heuristic design in the wake of the failure
of indexability is wholly novel to the index literature and could well have future
benefits in other areas of application. Details of a numerical study are given
in Subsection 4.2.

The class of heuristic policies developed in the paper can be viewed as a
generalisation of the restless bandit proposal of Veatch and Wein [15] to our di-
visible resource model, by the deployment and development of the generalised
index ideas of Glazebrook et al. [4]. The work additionally develops that of
Veatch and Wein by allowing for backordering of demand and by the illumina-
tion of the connection between resource idling and the failure of indexability
in our more general context. Further, the work of Niño-Mora [8], [9] on the
development of marginal productivity indices, argues the importance of index-
ability, albeit in the much simpler context of restless bandit-type models with
simple active-or-passive actions. Niño-Mora [9] follows Veatch and Wein [15] in
proposing restless bandit models, inter alia, for single machinge make-to-stock
queues.

2 The Model

Demands for K products arise in K independent streams, with μk the demand
rate for product k, 1 ≤ k ≤ K. In order to meet these demands all products
are made to stock. A finite resource is available to be divided between the

QUES9217_source.tex; 10/02/2011; 8:16 p. 5

5

products for this purpose. Such resource allocations are made dynamically in
response to changes in the stock levels of the products. Choice of a resource
level ak for product k from the set {0, 1, . . . , S} yields a production rate for
product k of λk(ak). Each function λk is strictly positive, strictly increasing
and strictly concave (i.e. the marginal rate of production is decreasing). The
positivity assumption ensures the system is ergodic under all policies. The
reader may think of the resource level ak as the size of the workforce dedicated
to production of product k.

Inventory costs are determined by the product specific parameters hk, bk
and Dk while the set of allowable inventory levels for product k is finite and
is given by Ωk ≡ {−Mk,−Mk + 1, . . . , Nk}. A negative inventory corresponds
to a number of backordered customers. These product k parameters have the
following interpretations:

Nk: maximum inventory level;
Mk: maximum number of backordered customers;
hk: holding cost rate per unit of time and per unit of inventory held;
bk: cost rate per unit of time for each backordered customer;
Dk: penalty cost for each unit of demand which arises while the system has Mk

backordered customers for product k.

We write

fk(i) = hki
+ + bki

− +DkμkI(i=−Mk), −Mk ≤ i ≤ Nk, 1 ≤ k ≤ K, (1)

for the instantaneous rate of inventory costs incurred by product k when in
state i, where i+ = max(i, 0), i− = max(−i, 0) and I is an indicator. The
system state i ∈ Ω1 × Ω2 × . . .× ΩK ≡ Ω specifies every product’s inventory
level. The system state is observed at all times.

The inventory level of product k evolves under choice of action (resource
level) ak as follows: If the inventory level i �= −Mk, Nk then under action ak
the sojourn time in state i is exponentially distributed with rate μk + λk(ak).

The next system state will be i + 1 with probability λk(ak) {μk + λk(ak)}−1

and i− 1 otherwise. If i = Nk, the system spends an exp(μk) amount of time
there before transitioning to Nk − 1 while if i = −Mk, the system spends an
exp(λk(ak)) amount of time there before transitioning to −Mk + 1. For any
given vector of actions, the levels of distinct products evolve independently.

We suppose that there is a limited resource S available at all times for the
K products. An admissible action a = {a1, a2, . . . , aK} will specify a resource
level for each product from the admissible set

A =

{
a : ak ∈ N, 1 ≤ k ≤ K and

∑
k

ak ≤ S

}
. (2)

A stationary admissible policy π identifies an admissible action for each system
state and is identified with a function from Ω to A. We wish to identify

QUES9217_source.tex; 10/02/2011; 8:16 p. 6

6

production policies which minimise the average rate at which inventory costs,
aggregated over all products, are incurred. We express the optimisation as

V opt = min
π

K∑
k=1

Eπ [fk(Xk)] . (3)

In (3) the minimisation is over the set of stationary admissible policies while
the kth summand on the right hand side represents the average inventory cost
per unit of time incurred by project k under policy π. We useXk for the project
k inventory level with its stationary distribution under π. Results for stochastic
dynamic programming (DP) guarantee the existence of an optimal policy, π∗

say, which is stationary and which satisfies the DP optimality equations for
the system (see, for example, Puterman [11]). In light of this, our restriction
to policies from the stationary class is without loss of generality. We write π(j)
for the action taken by (stationary) policy π in state j.

Remark 1 A special case of our general make-to-stock model is the lost sales
model where bk = Mk = 0 and the inventory cost rate for product k in state
i is given by

fk(i) = hki
+ +DkμkI(i=0), 0 ≤ i ≤ Nk.

In this model there is no backordering and demand arising when there is no
stock results in lost sales, with a penalty cost Dk incurred for each.

Remark 2 It is worthy of note here that the scope of the model we shall solve
is not restricted in any practical sense by the limitations to integral resource
levels. We can subdivide the resources into any desired number of pieces and
this is only at the expense of computation time in our later algorithms. We also
note that the assumption of strict concavity for the production rate functions
is made to simplify and clarify the account. The ‘strictness’ may be dropped
at little cost. Furthermore, it is, at least intuitively, clear that even for non-
concave λ the Markovian dynamics of the problem imply that the concave hull
of λ(a), a = 0, . . . , S can be used.

2.1 Indexability and index heuristics

While in principle it is true that (3) could be solved by direct application
of the methods of stochastic dynamic programming (DP), in practice this is
computationally infeasible other than for very small problems (crucially, small
K). Hence we seek to develop strongly performing heuristic policies which are
close to cost minimising. To do this we develop a Lagrangian relaxation of (3)

which (a) extends the policy class to functions from Ω to {0, 1, . . . , S}K and
(b) penalises departures from the resource constraint in (2). We write

V (W) = min
π

{
K∑

k=1

Eπ [fk(Xk) +Wπk(Xk)]−WS

}
. (4)

QUES9217_source.tex; 10/02/2011; 8:16 p. 7

7

In (4) the minimisation is now over policies which can choose resource at any
level in the range {0, 1, . . . , S} for each product. The quantity Eπ [πk(Xk)] is
the average resource applied to product k per unit of time under policy π.
The parameter W is a Lagrange multiplier which has an interpretation as a
charge levied for each unit of resource per unit of time. This relaxation is due
to Whittle [18]. It is the Lagrangian arising from a relaxation of (3) in which
the average resource applied to the K products per unit of time is constrained
to be no greater than S. Since in the Lagrangian relaxation in (4) we have
eliminated the resource constraint in (2), and since the objective is additive
across products, it is clear that we have available a product-wise decomposition
of the optimisation problem. As a result of this decomposition an optimal
policy for (4) will have the form π(W) = {π1(W), π2(W), . . . , πK(W)} where
πk(W) is an optimal policy for a single product problem in which a variable
production rate is applied to product k and where the instantaneous cost rate
is given by

fk(i) +Wak (5)

when i is the inventory level of product k and ak is the resource level applied to
it. Such single product problems are discussed at greater length in Section 3.

Remark 3 While our prime focus is on problem (3), the unconstrained problem
(4) in which production capability can be secured for a per unit charge at rate
W is of independent interest.

After this brief introduction of the Lagrange multiplier W and its natural
charge interpretation we now sidestep its actual consideration via a simple
variable transformation. We multiply each fk by a constant c = W−1 and
consider minimising the aggregated costs cfk(i) + ak across the K products.
We write

V̄ (c) = min
π

{
K∑

k=1

Eπ [cfk(Xk) + πk(Xk)]− S

}
. (6)

The problems of determining optimal policies in (3) and (6) are plainly equiv-
alent, with the problem values being directly related by the equation V̄ (c) =
cV (W/c).

Remark 4 We have found that our analyses are more easily accomplished via
optimisation problem (6) than via direct use of the Lagrangian relaxation (4).
The use of c in place of W is well suited for proofs and calculations but, as we
shall see, the equivalent problems formulated with variable W lend themselves
much more directly to economic interpretation and heuristic understanding.

Write P̄k(c) for the single product problem in which resource levels from the
range {0, 1, . . . , S} are chosen for product k alone to minimise a combination
of inventory costs (cfk) and production costs, the latter being levied at rate
1. Problem P̄k(c) may be expressed as

V̄k(c) = min
πk

{Eπk
[cfk(Xk) + πk(Xk)]} . (7)

QUES9217_source.tex; 10/02/2011; 8:16 p. 8

8

We now describe what needs to be true of solutions to the P̄k(c), c ∈ R
+, 1 ≤

k ≤ K, to enable us to develop effective solutions to the resource constrained
production problem in (3).

Definition 1 (Full Indexability) Product k is fully indexable if there exists
a family of stationary policies π̄k(c) : Ωk → {0, 1, . . . , S}, c ∈ R

+, such that

(a) π̄k(c) is optimal for P̄k(c) ∀c ∈ R
+;

and
(b) π̄k(c) is increasing componentwise in c.

An appropriate form of index for this formulation is as follows:

Definition 2 (Product Indices) If product k is fully indexable with associ-
ated optimal policies π̄k(c), c ∈ R

+, its c-index function

ck : {0, 1, . . . , S − 1} × Ωk → R
+ ∪ {∞}

is given by

ck(a, i) = inf {c : π̄k(c, i) ≥ a+ 1} , or equivalently (8)

= sup {c : π̄k(c, i) ≤ a} . (9)

Non-indexability occurs if and only if these inf and sup definitions differ. We
discuss how this difference is manifested in Subsections 3.2 and 4.2. In the
former we show that, under given conditions, preventing a discrepancy for
i = N suffices to ensure full indexability.

The following result is a straightforward consequence of the above discus-
sion. Its proof is omitted.

Lemma 1 Suppose that all K products are fully indexable with c-index func-
tions ck, 1 ≤ k ≤ K. The policy π̄(c) for optimisation problem (6) such that

π̄(c, i) = a ⇐⇒ ck(ak − 1, ik) < c ≤ ck(ak, ik), 1 ≤ k ≤ K, i ∈ Ω (10)

achieves V̄ (c), ∀ c ∈ R
+.

Further, under full indexability we define equivalent W-indices by Wk(a, i) =
ck(a, i)

−1. This Wk(a, i) has the interpretation as the maximal value of the
resource charge W at which using action a + 1 in state i is optimal. It has a
natural interpretation as a fair charge for raising the resource level available
to product k above level a when its inventory level is i.

For intuition and for the discussion in the remainder of this section we re-
turn to W (= c−1). The W equivalent of (10) tells us that under full indexabil-
ity an optimal solution to the Lagrangian relaxation (4) may be characterised
as follows: in each state i, increase the amount of resource available to each
product k until the point is reached when the fair charge for adding further
resource (the W-index Wk(ak, ik)) falls below the actual (or prevailing) charge
W . This construction is strongly suggestive of a natural greedy index heuristic
πW , say, for (3) when all products are fully indexable.

The greedy index heuristic, πW , allocates resources in system state i as
follows:

QUES9217_source.tex; 10/02/2011; 8:16 p. 9

9

Step 1 Start with initial allocation 0 = {0, 0, . . . , 0}. Suppose the current al-
location is a = {a1, a2, . . . , aK} with

∑
k ak < S.

Step 2 Choose any k satisfying

Wk(ak, ik) = max
1≤j≤K

Wj(aj , ij). (11)

Step 3 Increment current allocation a by one in the k-th component. So
anewk = ak + 1 and anewj = aj for all j �= k.

Step 4 If
∑

k a
new
k < S return to Step 1. Otherwise to to Step 5.

Step 5 We declare a to be the action dictated by πW now that all S units of
resource have been allocated.

In words, in each state i the greedy index heuristic πW increases the amount
of resource available to the K products in decreasing order of their W-indices
Wk(·, ik) until the total resource allocated reaches S.

2.2 The greedy index heuristic and the importance of full
indexability

If we write
V ∗ = max

W≥0
V (W) (12)

then V ∗ is an easily computed lower bound on V opt. Write W ∗ for the max-
imising W in (12). In a context much simpler than the current one, Glazebrook
et al. [5] discuss how the nature of solutions to (4) and (12) can shed light
on the performance of a greedy index heuristic. Should it be the case that,
under full indexability, the policy π(W ∗) which achieves V ∗ be such that,
the system states which require that π(W ∗) take an inadmissible action have
small probability, in equilibrium, then V ∗ will be close to V opt and πW will
be close to optimal. However, as Glazebrook et al. [5] indicate, this approach
is conservative and πW can perform strongly even when this is not the case.

Asymptotic optimality of greedy index policies for restless bandits is known
to hold under given conditions. See Weber and Weiss [16]. Their result applies
to fully indexable versions of our model with each λk(a) constant for a ≥ 1.
The limit concerned allows the number of products K and the maximal re-
source S to diverge to infinity such that S/K → β < 1.

We now give an example which illustrates the importance of full indexa-
bility.

Example 1 Consider a two product problem (K = 2). Both products have
M = N = 10, h = 0.025, b = 1.5, and D = 200 and the total resource
available is S = 25. Product 1 has demand rate μ1 = 1.576, a high production
rate given by λ1(a) = 4.5a(a + 5.971)−1 and is not fully indexable. For full

QUES9217_source.tex; 10/02/2011; 8:16 p. 10

10

indexability we would need inter alia that π1(W, 9) is monotone decreasing in
W . To see that this is not so, we observe that for W > 200, π1(W) is the zero
policy and yet when W = 100 we have π1(W, 9) = 1. Further, we also have
π1(W, 9) = 0, W ≤ 0.056. Hence indices are not defined, but there are two

natural values for a fair charge W̃1(0, 9), namely a W -value at which optimal
policy π1(W) is indifferent between a = 0 and a = 1 in state 9. One fair charge
is close to 0.056 while the other is around 140.

Product 2 has demand rate μ2 = 1.046 and production rate given by
λ2(a) = 1.5a(a + 5.971)−1. The latter is considerably lower than for product
1 but is more appropriate to meet the product 2 demand. Product 2 is fully
indexable and its indices are well defined. Now consider the following heuris-
tics for the two product problem: Take as Heuristic 1 (H1) a version of the
greedy index heuristic πW in which we always take the index for product 1
to be the largest available fair charge and as H2 a version in which the index
for product 1 is always taken to be the smallest available fair charge. Direct
application of DP to this example yields V opt = 4.333 while the cost rates as-
sociated with H1 and H2 are respectively 4.370 (0.86% suboptimal) and 4.926
(13.7% suboptimal) and hence H1 clearly outperforms H2. If we now consider
a modified version of product 2 in which μ2 is significantly reduced then the
position is reversed and H2 outperforms H1 (see later Table 4).

One way of understanding this is via the value of W ∗, the maximiser in
(12). When μ2 is large, so is W ∗ and the high fair charge heuristic H1 may be
regarded as an appropriate admissible approximation to inadmissible π(W ∗)
with strong performance. When μ2 is small, so is W ∗ and now the low fair
charge heuristic H2 is closer to π(W ∗). Since when full indexability fails, which
fair charge to use in the construction of effective heuristic policies can depend
upon the other products, it is clear that failures of full indexability are a serious
issue.

In addition to the issues addressed by Example 1, full indexability also yields
indices which are monotone in the resouce level. This means that greedy heuris-
tic πW is trivial to implement and has a strong intuitive grounding. The greedy
heuristic provides a marked reduction in complexity compared to an optimal
brute force DP solution approach. A straightforward analysis of our algorithm
presented later, which calculates πW , yields that the number of calculations
used in obtaining this policy is O(KS(N+M)4). Importantly, it scales linearly
in both the number of products and the number of actions in each state. It
is the indexable decomposition of products which is key to linear scaling in
products. The natural LP formulation of (3) results in a formulation which
grows with the state-space size, NK , with (S + 1)NK variables and O(NK)
constraints. Even in comparison with other very simple heuristics we find the
index approach superior. A brute force approach to obtaining the best my-
opic allocation (for an exact description see Section 4) makes at least

(
S−1
K

)
checks and hence its requirements are O(K

(
S−1
K

)
). Finding the best static al-

location needs to check amongst O(
(
S−1
K

)
) policies and also to evaluate their

performances.

QUES9217_source.tex; 10/02/2011; 8:16 p. 11

11

3 The single product problem P̄ (c) and sufficient conditions for full
indexability

Following the approach sketched out in Section 2, we now proceed to study
the single product problems P̄k(c), c ∈ R

+, 1 ≤ k ≤ K. Since our focus now
shifts to individual products, we can drop the product identifier k from the
notation for the remainder of the section.

3.1 DP formulation of P̄ (c)

It is straightforward to show that the DP optimality equations for the
single-product make-to-stock model P̄ (c) take the form given in (13) below.
In (13), γ(c) is the optimal average cost rate per unit of time for P̄ (c) and
δ(c, i) : {−M,−M + 1, . . . , N − 1, N} −→ R is the associated bias function
which measures the transient effect of starting the system (assumed to be
evolving under an optimal policy) in state i. We have

μ {δ(c, i)− δ(c, i− 1)} I(i �=−M) = −γ(c) + cf(i)+

min
a

[a+ λ(a) {δ(c, i+ 1)− δ(c, i)} I(i �=N)] , −M ≤ i ≤ N. (13)

The minimisation in (13) is over a ∈ {0, 1, . . . , S}. If we denote by V (c, i, t)
the minimal t-horizon cost for P̄ (c) with initial state i then V (c, i, t) ∼ γ(c)t+
δ(c, i). As is plain from (13), successive differences in the function δ(c, i) play
a crucial role. We write

Δ(c, i) = δ(c, i)− δ(c, i− 1),

The ergodicity of our inventory level process under all policies guarantees that
δ(c, i) and Δ(c, i) are well-defined and finite (see Remark 5). We re-express
(13) as

μΔ(c, i)I(i �=−M) = −γ(c) + cf(i) + min
a

{a+ λ(a)Δ(c, i + 1)I(i �=N)} ,

−M ≤ i ≤ N. (14)

For any given policy π, we have an associated cost rate γπ(c), a bias function
δπ(c, i) and a differenced bias Δπ(c, i), defined in the natural analogous way.

Our system’s ergodicity guarantees that we can develop tractable expres-
sions for the key quantities Δ(c, i) and Δπ(c, i). Write pc ≡ {pc(j),−M ≤ j
≤ N} and pπ ≡ {pπ(j),−M ≤ j ≤ N} for the inventory level’s stationary
distribution under, respectively, some optimal policy π̄(c) for P̄ (c) and some
stationary policy π. We note in passing that, in the event of multiple optimal
policies for P̄ (c), no part of our analysis is dependent on which one we choose.
We further write pc

i ≡ {pci (j),−M ≤ j ≤ N} and pπ
i ≡ {pπi (j), −M ≤ j ≤ N}

for the modified stationary distributions obtained for the inventory level pro-
cess starting in state i when an instantly reflecting barrier is placed just below
i, blocking transitions to state i − 1. These are equivalent to the stationary

QUES9217_source.tex; 10/02/2011; 8:16 p. 12

12

distributions conditioned upon the product state being i or greater. The birth-
death nature of our models means that closed forms are easily available for
the above distributions. It is trivial that if i > −M , we have

pci(j) > pc(j) and pπi (j) > pπ(j) for j ≥ i, and pci (j) = pπi (j) = 0 for j < i.
(15)

We also write τc(i) for the expected time taken, under optimal policy π̄(c),
between entry into state i and the first subsequent entry into state i − 1. We
use τπ(i) for the corresponding quantity when the system evolves under policy
π. Standard theory (see, for example, Tijms [14]) yields the expressions

Δ(c, i) = τc(i)

N∑
j=−M

{pci(j)− pc(j)} {cf(j) + π∗(j)} , −M + 1 ≤ i ≤ N,

(16)

and

Δπ(c, i) = τπ(i)

N∑
j=−M

{pπi (j)− pπ(j)} {cf(j) + π(j)} , −M + 1 ≤ i ≤ N.

(17)

To understand (17) we observe that

δπ(c, i) = Cπ
i (c)− γπ(c)

i∑
j=1

τπ(j)

where Cπ
i (c) is the expected cost incurred by P̄ (c) when policy π is applied

from initial state i up to the state’s first entry into state 0. It then follows that

Δπ(c, i) = Cπ
i (c)− Cπ

i−1(c)− γπ(c)τπ(i) (18)

and the r.h.s. of (17) re-expresses the r.h.s. of (18) in terms of the distributions
pπ and pπ

i . The development which yields (16) is similar, with optimal policy
π̄(c) replacing π throughout. Some intuition for these expressions can be gained
by seeing each sum as the difference between the costs incurred going from
state i to i−1 under the policy considered, and the costs incurred in equilibrium
over an identical time period.

Plainly, Δ(c, i) = Δπ̄(c)(c, i), −M + 1 ≤ i ≤ N . It is also plain from the
DP equations (14) that if π̄1(c) and π̄2(c) are distinct optimal policies for P̄ (c)
then Δ(c, i) = Δπ̄1(c)(c, i) = Δπ̄2(c)(c, i), −M + 1 ≤ i ≤ N .

The following results are straightforward to establish from the above defini-
tions and the relations (15). They concern the behaviour of the key quantities

QUES9217_source.tex; 10/02/2011; 8:16 p. 13

13

as specified parameter values vary, while holding all non-specified parameters
fixed. A sketch proof is provided. Full details are available from the authors.

Proposition 1

(a) Minimised cost rate γ(c) is
(i) continuous and piecewise linear in each of h, b, D and c;
(ii) increasing and concave in c;

(b) For all −M ≤ i ≤ N and all stationary policies π, Δπ(c, i) is
(i) affine in h, b, D and c;
(ii) increasing in h;
(iii) decreasing in b and D;

(c) For all −M ≤ i ≤ N , Δ(c, i) is continuous and piecewise linear in h, b,
D, and c.

Sketch Proof : For part (a)(i), γ(c) can be seen as the minimum over a finite
collection of stationary policies of Fπ +Aπ, the sum of the average inventory
costs and resource costs under π. For any fixed policy π, Fπ and Aπ are both
continuous and indeed affine in h, b, D and c. Part (a)(ii) follows from the fact
that γ(c) is a minimum of functions, each of which is increasing and affine in
c. Parts (b) and (c) follow from these arguments using (14) to define Δ(c, i)
inductively for i decreasing from initial case i = N . We observe that Δ(c,N)
trivially has the required properties.

We conclude this section with the following characterisations of optimal
policies which are direct consequences of the DP optimality equations (14).
Before proceeding, please note that the policy π which chooses minimizing
actions in each state from (14) is an optimal policy. Naturally this character-
isation is only helpful once the values of the Δ(c, i) are known.

Proposition 2 A stationary policy π is optimal for P̄ (c) if and only if π(N) =
0 and

Δπ(c, i+1) {λ(π(i)) − λ(π(i) + 1)} ≤ 1 ≤ Δπ(c, i+1) {λ(π(i) − 1)− λ(π(i))} ,
−M ≤ i ≤ N − 1, (19)

where λ(S + 1) ≡ λ(S) and λ(−1) ≡ −∞ in (19).

Sketch Proof : This follows since firstly Δπ as defined above satisfies the DP
equations (14) with the π(i) replacing the choices in the minimisations. Then
secondly, the concavity of λ ensures that satisfying (19) means that π(i) will
indeed be the argmin in (14).

Remark 5 The assumption we shall make that all production rates are posi-
tive, and hence that λ(0) > 0 is worthy of comment at this point. It may be
that λ(0) represents a minimal production rate which is permanently main-
tained and that the application of additional resource raises production rate

QUES9217_source.tex; 10/02/2011; 8:16 p. 14

14

above this minimal level. That said, our primary motivation for the assumption
is presentational. When λ(0) > 0 the inventory level process is ergodic under
all stationary production policies. Most importantly the process becomes irre-
ducible on [−M,N], so that extra notation to deal with non-uniqueness of Δ(i)
on states never visited does not complicate matters. This fact significantly sim-
plifies the discussion at key points. However, problems with λ(0) = 0 pose no
serious difficulties. If we consider an approximating production rate function
λε(a), a ∈ {0, 1, . . . , S} such that λε(0) = ε < 2λ(1)− λ(2) and λε(a) = λ(a),
a �= 0, then λε will be strictly increasing and strictly concave whenever λ is.
Since, moreover, for the problems we consider, the inventory process behaves
well under the limit ε → 0 it is easy to conclude that our main results hold
when λ(0) = 0.

3.2 Sufficient conditions for full indexability

We now explore the issue of full indexability which is crucial for considera-
tion of the multi-product resource allocation problem. Recall from Definition
1 that full indexability is the requirement that there exist optimal policies for
P̄ (c) which are monotone increasing in the inventory cost multiplier c. We
begin our discussion with two examples.

Example 2 Consider a product with N = M = 10, S = 25, h = 0.05, b = 1.5,
D = 50, μ = 0.65. The production rate model is given by

λ(a) = λa(a+m)−1 + ε,

where λ = 1, m = 0.8 and ε = 0.05. The unique optimal stationary policy for
P̄ (c) is computed at four values of c as follows:

j -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
π∗(j) 25 25 25 25 25 25 23 20 18 16 12 10 8 6 5 4 3 2 1 1 0 c = 26.4644
π∗(j) 25 25 25 25 25 25 23 21 18 16 12 10 8 6 5 4 3 2 1 1 0 c = 26.6114
π∗(j) 25 25 25 25 25 25 23 21 18 16 12 10 8 6 5 4 3 2 1 0 0 c = 26.7760
π∗(j) 25 25 25 25 25 25 23 21 18 16 13 10 8 6 5 4 3 2 1 0 0 c = 27.0362

Please note that the action taken in state 9 decreases from 1 to 0 when c
increases from 26.6114 to 26.7760, thus the product is non-indexable. From
computations it is possible to verify that the right gradient ∂+

c Δ(c, 9) is pos-
itive when c = 26.7760. As we shall see, the requirement that all the Δ(c, i)
are decreasing in c is a sufficient condition for full indexability.

It could be conjectured from the above example that the product’s non-
indexability is driven by the truncated state space. In response to that, we
give a further example of non-indexability for a product with M = N = ∞.

Example 3 Consider a product with M = N = ∞, with inventory costs given
by f(i) = 10i− + 0.05i+ and other parameters given by λ(0) = 0, λ(1) = 1,
λ(2) = 1.75, μ = 0.6. We make the natural demand that we only consider
stable policies.

QUES9217_source.tex; 10/02/2011; 8:16 p. 15

15

It is straightforward that all policies of the form πm(i) = I(i≤m) minimise
the average rate at which resource is used in the class of stationary stable
policies. It will simplify our argument from this point if we revert to W = c−1

and the instantaneous cost rate f(i) +Wa, as in (5). We then have that the
average cost incurred under πm takes the form Am + 0.6W for some constant
Am. We have shown numerically that minm Am = A9 = 0.5162 and hence it
must follow that π9 is optimal for the single product problem P (W) for W
large enough.

We now consider the performance of policies defined by πm,2 = 2I(i≤m).
Calculations yield that the average cost rate incurred under π3,2 is 0.2464 +
0.6857W and hence that the optimal cost rate is bounded above by 0.3 when
W < 0.07. It must then be true that when W < 0.07 it can never be optimal
to reach inventory level 7 where the inventory cost rate is 0.35. It must then
follow that, for example, π(0.05, 6) = 0, namely that it is optimal to allocate
zero resource in state 6 when W = 0.05. However, we have already seen that,
for large enough W , π(W, 6) = π9(6) = 1. Hence the product fails to be fully
indexable.

In the next result we present a sufficient condition for full indexability. This
condition fails to hold in Example 2. Note that the constructive nature of the
proof of Theorem 1 will be exploited in the development of the algorithms
presented in Section 3.3.

Theorem 1 If Δ(c, i) is strictly decreasing in c for all i in the range −M ≤
i ≤ N then there exists a finite collection of intervals [Cn, Cn+1), 0 ≤ n ≤ L,
say, with C0 = 0 and CL+1 = ∞ and stationary policies πn, 0 ≤ n ≤ L, such
that

(a) πn is optimal for P̄ (c) over the range c ∈ [Cn, Cn+1), 0 ≤ n ≤ L,
and
(b) πn+1(i) ≥ πn(i), for all −M ≤ i ≤ N , 0 ≤ n ≤ L.

It follows that under these conditions the product is fully indexable.

Proof Note from Proposition 1 that all of the Δ(c, i) are continuous and piece-
wise linear in c. Hence the hypothesis of the theorem implies that the right
gradients ∂+

c Δ(c, i) must be (strictly) negative for all choices of c and i. Recall
the optimality conditions of (19), as these are pivotal in what follows.

We use Π(c) to denote the set of stationary policies which are optimal at
c. We have Δ(c, i) = Δπ(c, i), −M ≤ i ≤ N , π ∈ Π(c). Fix c = c1 and define

θ(c1) = min
π/∈Π(c1)

max
−M≤i<N

(∣∣1−Δπ(c1, i+ 1) {λ(π(i)) − λ(π(i) + 1)}
∣∣

∧
∣∣1−Δπ(c1, i+ 1) {λ(π(i) − 1)− λ(π(i))}

∣∣) > 0

and

ξ = max
c,i,π

{∣∣∂cΔπ(c, i)
∣∣}. (20)

QUES9217_source.tex; 10/02/2011; 8:16 p. 16

16

Note that, since from Proposition 1, for each i, π the quantity Δπ(c, i) is
affine in c, the maximisation in (20) is over a finite number of elements. Hence

ξ < ∞. If we now write ε(c1) = θ(c1) [2ξ {λ(1)− λ(0)}]−1 then by construction
it is straightforward that no π /∈ Π(c1) can satisfy (19) within the range
c1 ≤ c ≤ c1 + ε(c1). Hence for c ∈ [c1, c1 + ε(c1)) optimal stationary policies
for P̄ (c) must be members of Π(c1).

Now suppose that |Π(c1)| > 1. The strictly decreasing nature of Δ(c, i+1)
in c allows us to deduce that any policy π ∈ Π(c1) for which the left hand side
of (19) is satisfied with equality for some i at c = c1, namely

Δπ(c1, i+1) {λ(π(i)) − λ(π(i) + 1)} = Δ(c1, i+1) {λ(π(i)) − λ(π(i) + 1)} = 1,
(21)

cannot itself be optimal for any c > c1. It must follow that any policy π ∈
Π(c1) which is optimal for some c ∈ (c1, c1 + ε(c1)) must satisfy, for each
−M ≤ i ≤ N − 1,

Δπ(c1, i+1){λ(π(i))− λ(π(i)+1)}<1≤ Δπ(c1, i+1){λ(π(i)−1)− λ(π(i))} .

(22)

However, the strict concavity of λ(·) means that only one member of Π(c1),
π1 say, can satisfy (22). Moreover, it must be that

π1(i) ≥ π(i), for all π ∈ Π(c1), for all −M ≤ i ≤ N, (23)

and hence π1 is maximal in Π(c1).
We now define

c2 = inf {c > c1 : π1 /∈ Π(c)} .
We infer from the continuity of the Δ(c, i) (given in Proposition 1(c)) and
from (19) that π1 ∈ Π(c2) but that

Δπ1(c2, i+ 1){λ(π1(i))− λ(π1(i)+1)} = Δ(c2, i+ 1){λ(π1(i))− λ(π1(i)+1)}
= 1 (24)

for some i.
We now repeat the above argument, replacing c1 with c2. There will be

some interval [c2, c3) for which the maximal member of Π(c2) will be optimal.
Call this policy π2. Since π1 ∈ Π(c2) it must be that π1 �= π2 and

π2(i) ≥ π1(i), −M ≤ i ≤ N. (25)

To summarise, we note that π1 is optimal for c ∈ [c1, c2) while π2 is optimal
for c ∈ [c2, c3). Further, the two policies satisfy (25).

The proof is completed by a continuation of this argument together with
the observations (i) that c1 was chosen arbitrarily, and (ii) that the number of
distinct stationary policies is finite. ��

The following result is an immediate consequence.

QUES9217_source.tex; 10/02/2011; 8:16 p. 17

17

Corollary 1 For fixed values of the remaining system parameters ∃ h̄ such
that h ≤ h̄ implies that the product is fully indexable.

Proof Fix h = 0. From (17) we infer that, for any choice of i and π,

{τπ(i)}−1
∂cΔ

π(c, i) =

N∑
j=−M

{pπi (j)− pπ(j)}
{
bj− +DμI(j=−M)

}
. (26)

But the quantity bj−+DμI(j=−M) is decreasing over the range−M ≤ j ≤ N
and hence it is straightforward to conclude from (15) that ∂cΔ

π(c, i) < 0. It
must then follow that, for any i in the range −M ≤ i ≤ N , Δ(c, i) has a
negative gradient everywhere and so is strictly decreasing in c. Full indexability
when h = 0 follows from Theorem 1. It is straightforward to establish that full
indexability extends to a positive range for h. This concludes the proof. ��

Given that full indexability is not universal it is natural to develop a measure
of the extent to which we have it. In light of Theorem 1, one such measure
could be the first c-value above zero at which some Δ(c, i) fails to be strictly
decreasing. Hence we write

c̄ = inf
{
c ≥ 0 : ∂+

c Δ(c, i) ≥ 0 for some −M ≤ i ≤ N
}
. (27)

Note that Δ(c,−M) = −cD and hence is always decreasing for D > 0. It
will be useful to register the dependence of c̄ on system parameters in the
notation. Hence the conclusion of the proof of Corollary 1 may be expressed
as c̄(h) = ∞, 0 ≤ h ≤ h̄.

One critically important fact is that c̄ is bounded away from zero for rea-
sonable models. Proposition 4 which follows is one expression of this fact and
gives a positive lower bound for c̄ which applies for D large enough. Before
proceeding to the proof of Proposition 4, we need to state a result which is of
independent interest concerning the optimality of state-monotone policies for
P̄ (c). Its proof may be found in Appendix A.

Proposition 3 If λ(S) > μ then for fixed values of the remaining system
parameters, ∃ D̂ such that D ≥ D̂ implies the existence of an optimal policy
for P̄ (c) which is monotone decreasing in the state.

Please note that state monotonicity of optimal policies for P̄ (c) for fully
indexable products will feed through into indices c(a, i) which are themselves
monotone increasing in i for each fixed a. By abuse of notation we now use
S for the policy for P̄ (c) which uses action S (maximal resource) in all states
up to N − 1 and pS(j) for the stationary probability of state j under such a
policy.

Proposition 4 If λ(S) > μ then for fixed values of the remaining system
parameters, ∃ D∗ such that if D ≥ D∗ then c̄(D) ≥ pS(−M)(Dμ+ bM)−1.

QUES9217_source.tex; 10/02/2011; 8:16 p. 18

18

Proof From Proposition 3 we know that, if λ(S) > μ then for D large enough,
the search for optimal policies can be restricted to those stationary policies
which are monotone decreasing in the state. Within this set of policies, cost
rates for those policies which are not identically zero are trivially bounded
below by pS(−M). Further, if D is such that hN ≤ Dμ + bM then it is easy
to show that the cost rate for the zero policy is bounded above by c(Dμ +
bM). Hence, for D large enough, if c(Dμ + bM) < pS(−M) then the zero
policy (which we call ∅) is optimal. However, when the zero policy is optimal
∂+
c Δ(c, i) (i > −M) has the same sign as

N∑
j=−M

{
p∅i (j)− p∅(j)

}
f(j) ≤ max {b(M − 1), hN} − (Dμ+ bM) p∅(−M).

(28)
The right hand side of (28) is negative for D large enough. The result now
follows. ��

Before proceeding to develop a simple sufficient condition for full indexability
in the form of a lower bound for the h̄ in Corollary 1, we elucidate an im-
portant simplification to (27) which is available under reasonable assumptions
regarding system parameters. It states that, in the search for c̄, the smallest
value of c at which a positive right gradient in one of the Δ(c, i) is encountered,
the i-value concerned must be N .

Proposition 5 If bM +Dμ ≥ hN then

c̄ = inf
{
c ≥ 0 : ∂+

c Δ(c,N) ≥ 0
}
.

Proof Recall from (17) that, for all choices of i and π,

{τπ(i)}−1
∂+
c Δπ(c, i) = X π

i −
N∑

j=−M

pπ(j)f(j), (29)

where

X π
i =

N∑
j=−M

pπi (j)
(
hj+ + bj−

)
. (30)

It is then trivial from (30) that over the range 0 ≤ i ≤ N , X π
i must be

increasing in i. Hence from (29) we have that, for all π,

∂+
c Δπ(c, i) > 0 =⇒ ∂+

c Δπ(c, i + 1) > 0, 0 ≤ i < N. (31)

We now introduce the complementary subsets of the set {−M + 1,−M +
2, . . . ,−1} defined by

S1 = {i : −M < i < 0 and b|i| < hN} ,
S2 = {i : −M < i < 0 and b|i| ≥ hN} .

QUES9217_source.tex; 10/02/2011; 8:16 p. 19

19

It is trivial that, for all π,

X π
i < hN = X π

N , i ∈ S1

and hence, using (29) that

∂+
c Δπ(c, i) ≥ 0 =⇒ ∂+

c Δ
π(c,N) > 0, i ∈ S1. (32)

It is also easy to establish that i ∈ S2 ⇒ b|i| ≥ hN ⇒ b|i − 1| ≥ hN ⇒
i − 1 ∈ S2. Further, X π

i < X π
i−1 for any π and any i ∈ S2. By induction we

then conclude that

X π
i < X π

i−1 < · · · < X π
1−M , i ∈ S2. (33)

However, if bM + Dμ ≥ hN then, by a direct calculation based on (29) we
easily infer that, for all π,

∂+
c Δπ(c, 1 −M) < 0. (34)

Combining (33) and (34) we deduce that, for all π,

∂+
c Δπ(c, i) < 0, i ∈ S2. (35)

It now follows from (31), (32), and (35) that, under the hypothesis of the
Proposition,

∂+
c Δ(c, i) ≥ 0 for some −M < i ≤ N

=⇒ ∂+
c Δ(c,N) ≥ 0.

This completes the proof. ��
We can now use Proposition 5 to strengthen Corollary 1.

Corollary 2 For fixed values of the remaining system parameters, if

0 ≤ h < N−1

[−1∑
j=−M

pS(j)
{
bj− +DμI(j=−M)

}]
≡ ĥ (36)

then c̄(h) = ∞ and the product is fully indexable.

Proof If h ≤ ĥ then hN ≤ bM + Dμ and hence from Proposition 5 we infer
that

c̄ = inf
{
c ≥ 0 : ∂+

c Δ(c,N) ≥ 0
}
.

However, for any policy π, we infer from (17) that

{τπ(N)}−1
∂cΔ

π(c,N) = hN −
N∑

j=−M

pπ(j)f(j), (37)

≤ hN −
−1∑

j=−M

pS(j)f(j),

= hN −
−1∑

j=−M

pS(j)
{
bj− +DμI(j=−M)

}
. (38)

QUES9217_source.tex; 10/02/2011; 8:16 p. 20

20

Plainly from (38) it follows that for all stationary policies π

h < ĥ =⇒ ∂cΔ
π(c,N) < 0

=⇒ ∂+
c Δ(c,N) < 0, for all c.

The result follows. ��

Remark 6 In practice, Corollary 2 guarantees full indexability for most rea-
sonable values of the holding cost parameter h. By reasonable we mean those
which conform with the conventional stock management interpretation of h as
a single time-step cost for product depreciation and storage costs. This will
be dwarfed by the backorder cost rate b and the penalty D for lost sales. For
example, taking M = N = 10, b = 1.5, D = 200 and λ(S) = 1 then ĥ takes
values 0.006, 0.07 and 0.32 when μ equals 0.667, 0.8 and 0.9 respectively. Re-
ducing D to 50, say, only marginally reduces these ĥ-values. Such bounds on h
are actually relatively high. However, should it prove necessary, a stronger but
more complicated form of Corollary 2 is available. The h-dependent optimal
policy which minimises the summation in equation (37), π∗(h), say, takes the
place of the full service policy S. Hence if we now write

ψ(h) = min

[
bM +Dμ

N
,

∑−1
j=−M pπ

∗(h)(j) {bj− +DμI(j=−M)}
N −

∑N
j=1 jp

π∗(h)(j)

]
(39)

and

h̃ = inf {h;h > 0 and h > ψ(h)} (40)

then the conclusion that c̄(h) = ∞, 0 ≤ h ≤ h̃, and hence that the product
is fully indexable over this h-range follows from a modest modification of the
proof of Corollary 2.

Example 3 illustrates the possibility of non-indexability even when the
finite state space limits are removed. However, the proof of Corollary 1 makes
it clear that, in the absence of holding costs (h = 0), we do have indexability
for arbitrarily large M and N . Proposition 6 states that this continues to
hold in the limit which dispenses with the bound on the number of available
backorders (M = ∞).

Proposition 6 If M = ∞, h = 0 and N < ∞ then the product is fully
indexable provided stable finite cost policies exist.

Proof This follows by differentiating equation (17). First we need to observe
that Δ(c,N) is well-defined and continuous in c since it is a simple function
of the optimal minimised costs. The values of all Δ(c, i) are then continuous
and unique via the DP equation. Then differentiating (17) yields the fact that
all Δ(c, i) are decreasing in c as required. ��

QUES9217_source.tex; 10/02/2011; 8:16 p. 21

21

Resolving the position when h = 0 and the bound on the inventory level is
dispensed with (N = ∞) has proved challenging and is deferred. However, we
pause to point out that if M < ∞, N = ∞ and λ(0) = 0 then h > 0 can
plainly lead to non-indexability since states i for which hi > bM + Dμ can
never be used under an optimal policy and so there will always be an effective
reduction to the finite state space case.

We conclude this subsection by reference to an important sub-case namely
the lost sales model. See Remark 1 in Section 2. Analyses along the lines of
which gave Proposition 3 and Corollary 1 yield the following:

Proposition 7 (Lost sales model) (i) For fixed values of the remaining sys-
tem parameters, ∃ D̂ such that D ≥ D̂ implies the existence of an optimal
policy for P̄ (c) which is monotone decreasing in the state;

(ii) For fixed values of the remaining system parameters, ∃ ĥ such that h ≤ ĥ
implies that the product is fully indexable.

3.3 Algorithmic checks for full indexability and index computation

We conclude this section by remarking that, should the question of full
indexability not be resolved by reference to the preceding theoretical results,
then it is a straightforward matter to check it numerically in any particu-
lar case. Algorithm 1 below both checks for full indexability and produces a
set of optimal policies for P̄ (c), namely {πn, 0 ≤ n ≤ L} and the c-intervals
{[Cn, Cn+1), 0 ≤ n ≤ L} over which they are optimal. This is as in the state-
ment of Theorem 1, and the reason for the overly constructive nature of the
proof of that theorem. In order to develop the algorithm we define, for any
stationary policy π, two complementary subsets of the state space as follows:

J−(π) = {i : −M ≤ i < N and ∂cΔ
π(c, i+ 1) ≤ 0} (41)

and

J+(π) = {−M,−M + 1, . . . , N − 1} \ J−(π). (42)

In what follows we use ei for an M+N+1-vector with a 1 in position M+1+i
and zeroes elsewhere.

Algorithm 1
Computing optimal policies for P̄ (c) and testing for full indexability

Step 0: Set c = 0 and initial optimal policy π ≡ {π(−M), π(−M + 1), . . . ,
π(N)} = {0, 0, . . . , 0}.

Step 1: Use (17) to calculate Δπ(c, i) and ∂cΔ
π(c, i) for the currently optimal

policy π and for −M < i ≤ N .
Step 2: If J−(π) �= ∅, define

C−= inf {c′ > c : Δπ(c′, i+ 1) {λ(π(i)) − λ(π(i)+1)}=1, some i ∈ J−(π)} .
(43)

Else let C− = ∞. If C− < ∞ let i− be the attaining i ∈ J−(π) in (43).

QUES9217_source.tex; 10/02/2011; 8:16 p. 22

22

Step 3: If J+(π) �= ∅, define

C+= inf {c′ > c : Δπ(c′, i+ 1) {λ(π(i)−1)− λ(π(i))}=1, some i ∈ J+(π)} .
(44)

Else let C+ = ∞. If C+ < ∞ let i+ be the attaining i ∈ J+(π) in (44).
Let C = min(C−, C+).

Step 4: If C+ < C− then declare the problem NOT FULLY INDEXABLE.
Step 5: If C = ∞ then store π as optimal on [c,∞) and STOP.
Step 6: If C < ∞ then store π as optimal on [c, C).
Step 7: If C = C− then define πnew = π + ei− .
Step 8: If C = C+ then define πnew = π − ei+ .
Step 9: Update πnew �→ π, C �→ c and return to Step 1.

Please note that, should we be dealing with a problem which we know a priori
to be fully indexable, then at every stage in the application of Algorithm 1 we
will have C− < C+ and hence C = C−. In such cases we need never consider
steps 3, 4 and 8. Hence we then have the reduced version, namely Algorithm
2, which only computes optimal policies.

Algorithm 2
Computing optimal policies for P̄ (c) in known fully indexable cases

Step 0: Set c = 0 and initial optimal policy π ≡ {π(−M), π(−M + 1), . . . ,
π(N)} = {0, 0, . . . , 0}.

Step 1: Use (17) to calculate Δπ(c, i) and ∂cΔ
π(c, i) for the currently optimal

policy π and for −M < i ≤ N .
Step 2: Let

C = inf {c′ > c : Δπ(c′, i+ 1) {λ(π(i)) − λ(π(i)+1)}=1, some i ∈ J−(π)} .
(45)

Else let C = ∞. If C < ∞ let i− be the attaining i ∈ J−(π) in (45).
Step 3: If C = ∞ then store π as optimal on [c,∞) and STOP.
Step 4: If C < ∞ then store π as optimal on [c, C).
Step 5: If C < ∞ then define πnew = π + ei− .
Step 6: Update πnew �→ π, C �→ c and return to Step 1.

That both Algorithms 1 and 2 do indeed produce optimal policies for P̄ (c)
uses Propositions 1 and 2. In particular the continuity in c of the Δ(c, i),
asserted in Proposition 1(c), ensures that the algorithms work effectively at
c-values at which the optimal policy changes. Please also note that, once we
have a full specification of optimal policies for P̄ (c), c ≥ 0, then in the fully
indexable cases it is trivial to infer index values. See Definition 2.

4 Numerical Study

In the principal part of our numerical study, the performance of the greedy
heuristic πW proposed in Section 2.1 is compared with four competitor heuris-
tics. In most problems reported here there are two products (K = 2) with

QUES9217_source.tex; 10/02/2011; 8:16 p. 23

23

twenty-five units of resource available to drive production (S = 25). As ob-
served in Remark 2, the choice of such a moderately large S suffices to model
the divisibility of our resouce into small pieces. The exact value of moderately
large S is immaterial. The important feature is the range of production rates
available as determined by the ranges of the functions λk(a). The restriction
to two product problems is made so that direct application of stochastic DP
is possible (though expensive) to solve the problems to optimality. In all prob-
lems considered and for all heuristics the percentage cost rate suboptimality
100 (V HEURISTIC − V OPT) (V OPT)−1 was computed by means of DP value iter-
ation. At the end of the next subsection we do consider some four product
problems (K = 4), where finding optimal policies becomes prohibitively time
consuming, but the comparison of heuristics is still possible.

4.1 Comparative heuristic performance in fully indexable cases

As we saw in Section 3, products with realistically low h are generally fully
indexable. Thus the results presented in this subsection are for models which
exhibit full indexability. An important observation regarding our numerical
study here is that in studying fully indexable products we are consequently
restricting our analysis to models where the primary concern for the system ad-
ministrator is the optimal dynamic balance of resource sharing without idling.
We shall illustrate, by comparing πW to block policies which dynamically use
exclusively either a = (S, 0) or a = (0, S), the value of the sharing of resource
under a concave production rate and, by comparing to static policies, the value
of being able to act dynamically depending on the system state. In the interests
of providing a competitive heuristic which is both dynamic and also concerned
with resource balancing we further implement a one-step policy improvement
of the best static policy. We shall see that the greedy index heuristic, πW ,
comfortably outperforms all of these competitor heuristics.

With further regard to the model parameters in our study, we shall usually
study problems with a maximum of ten backorders (M = 10) and maximally
ten items of inventory (N = 10), for each product. For many of the system
costs it is only relative values that concern us, so we shall maintain the back-
order costs at b = 1.5 throughout. The lost sales penalty D will be considered
at two levels, D = 50 and D = 200, and the depreciation costs h initially will
be held at h = 0.0002 though we later entertain larger h values when con-
sidering idling. In Table 2 we will apply our heuristics to models with larger
N values. However, keeping M + N relatively low is important in keeping
the computation times of optimal policies manageable. Regarding computa-
tional effort, it is worthy of note that computing indices can be done offline
for each product independently, and so while recalculating an optimal policy
for a multi-product system after a small change to one product necessitates
a full recalculation, the new πW requires re-evaluation only of that product’s
indices. Our primary goal in the selection of μk and λk(a) is to obtain problems
where dynamic sharing of the resource is of interest. Hence the parameter sets

QUES9217_source.tex; 10/02/2011; 8:16 p. 24

24

selected try to avoid cases where one product has such high relative demand
(and consequently, costs) that the problem is very close to one involving only
a single product. At the end of this section we present some results from some
four product problems, where optimal policies are out of reach in computation-
ally feasible timescales, but where our index heuristic is seen to comfortably
outperform even our relatively strong policy improvement heuristic.

In our main study with K = 2 we consider 6300 randomly generated prob-
lems over a range of system parameters. These problems are constructed from
seven smaller studies of 900 problems over three distinct families of production
rate functions λk(a) with varying degrees of concavity. We consider one family
of reciprocal form:

λk(a) =
aλk

a+ βk
, 0 ≤ a ≤ 25, k = 1, 2;

a second with a power form:

λk(a) = 0.2
√
aλk, 0 ≤ a ≤ 25, k = 1, 2;

and finally a logarithmic family:

λk(a) = λk log

(
aβk + 25

25

)
, 0 ≤ a ≤ 25, k = 1, 2,

where λk and βk are positive constants. Natural calibration of the choices
of λk, βk and μk to develop interesting and diverse problems means that we
consider four primary parameter sets A, B, C and D. Details of these sets can
be found in Appendix B, but it is sufficient here to observe that A, B and C
respectively represent models with decreasing demand rates μ, while dataset D
was designed for use with the logarithmic production rate and draws parameter
values randomly from a subset of the range of set A. Within each of the datasets
the values of μk are drawn randomly from a uniform distribution and a variety
of fixed λk and βk combinations are cycled through to model problems with (i)
identical production rates, (ii) products with rates in a two-to-one speed-up
ratio, (iii) a three-to-one ratio; as well as different βk which has the added
effect of varying the degree of concavity of the production rate.

We now describe the heuristics for resource allocation considered in the
numerical study.
INDEX : the greedy index heuristic, πW , proposed in Section 2.1. All problems

generated in this part of the study are fully indexable;
STATIC : the optimal policy in the static class which chooses a fixed resource

allocation to drive production for all time. Development of this policy is
easily accomplished and results from the minimisation

min
a∈A

2∑
k=1

Eak
[fk(Xk)]

where A = {a : a1, a2 ∈ N, a1 + a2 ≤ 25};

QUES9217_source.tex; 10/02/2011; 8:16 p. 25

25

BLOCK : the policy which treats all 25 resource units as a single block, but
allocates them dynamically according to an appropriately designed index
policy. Thus at each stage it allocates either (25, 0) or (0, 25) according to

INDEX above applied to a model with S = 1 and λ̂k(1) = λk(25);
MYOPIC : the policy which in all states x chooses an action to maximise the

rate of reduction of the instantaneous inventory cost rate, as determined
by the minimisation

min
a∈A

2∑
k=1

λk(ak)
{
fk(xk + 1)− fk(xk)

}
I(xk<Nk).

OSPI : the policy resulting from taking STATIC and applying one step of the
policy improvement algorithm.

Table 1 demonstrates the exceptional performance of πW in a wide variety
of problems. The first observation to make from the table is that BLOCK and
MYOPIC heuristics perform very badly. MYOPIC performs so badly because
when h > 0 it refuses to stockpile any inventory. Thus in the problems of
interest to us, where h is small and optimal policies do not idle below state N ,
MYOPIC performs very poorly. This emphasises the importance of considering
longer-term costs in making good policy decisions. The very poor performance
of BLOCK also serves to illustrate the critical importance of balancing resource
usage under the concavity assumptions on λk(a). Restricting to either a =
(S, 0) or a = (0, S) at all times, albeit allowing dynamical reallocation, leads
to serious losses in potential productive capacity when λk(a) is not close to
linear.

While STATIC outperforms MYOPIC and BLOCK, its evident weakness does
make clear that the inability to act dynamically to adjust allocations can lead
to significant losses. In part, because of the poor performance of MYOPIC,
BLOCK and STATIC we have also implemented OSPI, a one-step policy im-
provement on STATIC, in the interests of comparing INDEX directly with a
well designed resource balancing, dynamic policy. We know that for dynamic
programming problems in many application contexts the policy improvement
updates to sensible policies do often very quickly return excellent policies.
Hence OSPI should provide a strong benchmark against which to test our IN-

DEX heuristic.
By way of explanation of the results in Table 1, it is worth noting that the

optimal minimised costs decrease as we use datasets A, B and C in turn. For the
reciprocal form problems dataset A consists of problems with a median optimal
cost rate of 128.28 and maximal cost rate of 421.57, while datasets B and C
have medians of 14.31 and 0.59 and maxima of 77.34 and 11.92 respectively.
Thus while maximal larger percentage suboptimalities are observed for dataset
C these correspond to very small absolute errors as they are inflated by very
low optimal costs. It is clear, however, that across this wide range of problems
πW performs outstandingly well. INDEX quite clearly outperforms even the
OSPI heuristic across all rows of the table. In Table 2 we briefly present a

QUES9217_source.tex; 10/02/2011; 8:16 p. 26

26

P
R
O
B
L
E
M

S
E
T

P
O
L
IC

IE
S

IN
D
E
X

S
T
A
T
IC

O
S
P
I

B
L
O
C
K

M
Y
O
P
IC

M
E
D

M
A
X

M
E
D

M
A
X

M
E
D

M
A
X

M
E
D

M
A
X

M
E
D

M
A
X

R
ecip

A
0
.0
0
4

0
.8
5
9

0
.8
7
0

4
2
.9
5
5

0
.0
4
7

3
.9
4
3

1
3
1
.4
9
6

1
4
7
0
.2
9
0

7
2
.2
9
2

5
5
8
.7
3
5

R
ecip

B
0
.2
3
9

4
.0
5
5

2
5
.5
1
3

1
2
2
.7
8
5

2
.3
1
1

1
1
.5
3
6

1
0
9
4
.9
1
2

>
1
0
0
0
0

3
4
7
.3
2
4

>
2
0
0
0

R
ecip

C
1
.2
6
2

1
1
.3
2
7

9
4
.9
4
5

2
8
4
.4
3
6

7
.3
7
6

2
2
.0
9
1

>
1
0
0
0
0

>
2
0
0
0
0

>
2
0
0
0

>
2
0
0
0
0

P
o
w
er

A
0

0
.0
2
5

0
.0
1
3

1
.5
2
8

0
0
.4
5
8

2
1
.2
8
2

1
1
5
.3
5
9

1
4
.8
9
7

4
3
.9
8
7

P
o
w
er

B
0
.0
0
1

0
.1
6
3

0
.1
4
9

1
4
.7
1
2

0
.0
2
9

4
.8
9
2

3
9
.3
5
0

2
9
9
.3
0
5

2
5
.1
9
2

1
0
3
.3
1
0

P
o
w
er

C
0
.0
4
9

7
.6
0
3

3
.1
4
1

3
4
7
.9
2
1

0
.9
9
9

4
8
.2
7
1

1
2
9
.3
2
9

>
9
0
0
0

5
0
.7
6
8

>
2
0
0
0

L
o
g
D

0
.2
3
0

5
.4
5
8

8
.7
7
6

1
6
4
.4
2
1

2
.9
0
2

4
3
.4
8
9

7
6
.1
1
3

1
6
7
1
.7
8
3

7
5
.2
8
9

1
1
8
1
.3
7
4

T
a
b
le

1
:

M
ed

ia
n
a
n
d
m
a
x
im

u
m

p
ercen

ta
g
e
su

b
o
p
tim

a
lities

o
f
fi
v
e
h
eu

ristic
p
o
licies

fo
r
th
ree

fo
rm

s
o
f
p
ro
d
u
ctio

n
ra
te.

T
h
ere

a
re

9
0
0
p
ro
b
lem

s
su

m
m
a
rised

in
ea
ch

row
o
f
th
e
ta
b
le.

D
eta

ils
in

tex
t.

QUES9217_source.tex; 10/02/2011; 8:16 p. 27

27

smaller random selection of problems using datasets A and B but with M = 5,
N = 20 and D = 50. The results are consistent with those in Table 1.

PROBLEM SET POLICIES
INDEX OSPI STATIC

MED MAX MED MAX MED MAX

Recip A 0.003 1.452 0.038 8.130 0.617 66.894
Recip B 0.560 10.033 4.131 22.545 37.051 240.303

Table 2: Median and maximum percentage suboptimalities of heuristic policies for
problems with the reciprocal form of production rate. Other details in text.

To complete our analysis of the greedy index heuristic we finally consider
much larger problems. We present in Table 3 the relative performance of IN-

DEX, OSPI, and STATIC for 900 four station problems (K = 4). The state
space of these problems is already large enough (around 200000 states) to
make finding optimal policies prohibitive. Dataset G used for these problems
is described in Appendix B, though essentially is an extension of dataset A to
four products. One result of considering more products is that even with sim-
ilarly constrained parameter values a very wide range of resultant achieveable
performances arise. The fact that INDEX outperforms OSPI across the entire
range of problems should stand as an illustration of its effectiveness in a wide
variety of scenarios. The results indicate that πW improves its performance rel-
ative to its best competitor, OSPI, when more products are considered. Over
the 900 problems the median percentage cost increase from INDEX to OSPI is
19%. The lowest losses from using OSPI compared to INDEX arise in problems
with one very costly queue where overall costs are high and thus percentage
differences inherently low. In problems with four relatively similar products
the cost of OSPI is often around 50% above that of INDEX. As would be ex-
pected, the benefits of dynamic policies grow with the number of products,
resulting in median losses of STATIC (relative to INDEX) of 114%. In conclu-
sion, these results point toward even stronger performance of INDEX in product
scenarios with large K than in the two-product problems earlier considered
for tractability.

4.2 The use of fair charges in heuristics with idling for
non-indexable cases

Finally, we address the issues of idling (i.e. not using the maximal resource
S in all system states) and non-indexability, which often will arise concurrently.
The issue of idling arises exactly when h is large, that is, when holding costs
in states visited under the optimal policy are comparable with the backorder
penalties incurred. For such problems Algorithm 1 remains a valid approach
to finding optimal policies. In the non-indexable cases we discover that the
optimal policies exhibit a very particular form of non-indexability. We find

QUES9217_source.tex; 10/02/2011; 8:16 p. 28

28

POLICIES
% LOSS OSPI STATIC

Min 0.68 2.34
LQ 9.37 39.41

Median 18.91 113.87
UQ 30.72 246.41
Max 87.47 1059.30

Table 3: Four product problems. Percentage losses relative to INDEX from using
OSPI and STATIC over the 900 problems from dataset G.

that, for a fixed state i, the optimal action values for P̄ (c) as c increases form
either (i) a sequence which is monotonically increasing to S, or (ii) a sequence
which is monotonically increasing to some s∗ and which then decreases to
0. Thus in case (ii) non-indexability is manifest by there being exactly two
distinct fair charges at which indifference between allocation levels a− 1 and
a occurs for some states at some action levels and also some states where the
optimal action level is below S for all c. The intuition of these values as fair
charges suggests the creation of the fair charge heuristics H1 and H2 described
below.

H1 : A greedy ‘fair charge’ policy performs as πW , treating unique fair charges
as indices, and always using the higher available fair charge as the index
for any state-action pair (i, a) in the case of two available fair charges.

H2 : A greedy ‘fair charge’ policy performs as πW , treating unique fair charges
as indices, and always using the lower available fair charge as the index
for any state-action pair (i, a) in the case of two available fair charges.

With direct reference to our definition of the greedy heuristic πW in Subsection
2.1 and index definitions (8) and (9) we observe that idling is not optimal in
state i of our relaxed problem when π̄k(c, ik) ↑ S as c → ∞ for every product
k (barring maximal-state products where idling is naturally mandated) – this
corresponds with case (i) above . Yet in case (ii), (8) and (9) will disagree on
an index value if cinfk (a, i) �= ∞, where cinfk (a, i) denotes the c-value emerging
from (8). In this case we resort to the fair charge intuition, the two fair charges
being W high = (cinfk (a, i))−1 from (8) and W low = (c∗k(a, i))

−1 where c∗k(a, i) =
inf{c > cinf : π̄k(c, i) ≤ a}. Any resource state pairs (a, i) such that cinfk (a, i) =
∞ are states where the relaxed solution never allocates more than resource a.
It is clear that in this case the appropriate unique fair charge is ck(a, i) = ∞,
and hence Wk(a, i) = 0. Implementation of πW , as described in Subsection
2.1, for H1 and H2 then uses these new W-indices with a minor modification to
equation (11) in ‘Step 2’ of the algorithm. Namely, that allocation terminates
without using all resource (idling) when max1≤j≤K Wk(aj , ij) = 0. Idling is
performed when at an allocation in which there is surplus resource no project
has a positive fair charge for raising its resource level.

When discussing the importance of indexability in Subsection 2.2 we ob-
served that when a problem is non-indexable the best choice of fair charge

QUES9217_source.tex; 10/02/2011; 8:16 p. 29

29

for use in a greedy fair charge policy can depend on the system as a whole.
The intuition for a policy like H2 performing well is as follows. Assume that
π(W ∗), which achieves V ∗ in (12), is a strongly performing policy for the re-
laxed problem with no strict S limit for the resource deployed. We conclude
that the preferred fair charges for use in the design of heuristic policies are
those in the region of W ∗. In our models here we take h = 0.25 to create
problems with idling. We also choose parameter sets such that under optimal
policies the time spent in idling states is significant enough to have a marked
effect upon optimal costs. In light of this, we created datasets E and F, which
are in fact just datasets A and C but with demand rates μ drawn from uniform
distributions whose limits are halved. These models have lowerW ∗ values than
those considered earlier since W ∗ is a measure of the underlying value placed
on resource by the system. Thus if the lower fair charges arising from the use
of Algorithm 1 are comparable with W ∗ then we would like our heuristic for
these problems to use these lower fair charges. Hence in these cases heuristic
H2 is the more compelling proposal. We shall, in fact, implement H ′

2(T) which
modifies H2 by ignoring lower fair charges if they exceed some threshold T .
This reflects the fact that in some non-indexable cases, it can be that both fair
charges are well in excess of W ∗.

In Table 4 we present the relative performances of H1, H
′
2(1/70), STATIC,

and OSPI for 1800 two product problems (K = 2) with parameters drawn from
datasets E and F and where h = 0.25. We do not suggest that H1, H2 and
H ′

2(T) are the only worthwhile proposals for the deployment of fair charges
in non-indexable contexts to develop heuristics for problems with idling. It
is, however, clear that while H1 quite obviously breaks down as a sensible
heuristic in a non-indexable environment, H ′

2(T) is a very serious proposal
for the use of the fair charge methodology. Median suboptimalities of 1.155%
(dataset E) and 0.470% (dataset F) for H ′

2(1/70) compare with 5.737% and
27.429% respectively for OSPI and suggest strongly that carefully designed
policies based on fair charges can offer compelling solutions to these challenging
problems.

DATASET E DATASET F

% POLICIES
SUBOPT. H2’ OSPI H1 STATIC H2’ OSPI H1 STATIC

Min 0.034 0.108 6.425 26.491 0.001 0.016 123.708 269.711
LQ 0.557 2.583 45.938 103.908 0.057 7.276 155.009 333.037

Median 1.155 5.737 61.183 135.974 0.470 27.429 172.520 359.905
UQ 2.149 11.560 76.132 168.242 1.259 54.766 189.450 387.342
Max 8.887 54.747 134.928 279.051 4.672 257.294 282.338 496.718

Table 4: Percentage suboptimalities of H′
2(1/70), OSPI, H1, and STATIC, in a high h

scenario. There are 900 problems for each dataset.

QUES9217_source.tex; 10/02/2011; 8:16 p. 30

30

Acknowledgement
The authors acknowledge the support for this work by the Engineering and
Physical Sciences Research Council (EPSRC) through grant EP/E049265/1.
They are also grateful to two referees and a co-ordinating editor for valuable
suggestions which have strengthened the paper.

References

1. Ata, B. and Shnoerson, S. (2006). Dynamic control of an M/M/1 ser-
vice system with adjustable arrival and service rates. Management Science,
52:1778–1793.

2. de Vericourt, F., Karaesman, F., and Dallery, Y. (2000). Dynamic schedul-
ing in a make-to-stock system: a partial characterization of optimal policies.
Operations Research, 48(5):811–819.

3. Gavish, B. and Graves, S. C. (1980). A one-product production/inventory
problem under continuous review policy. Operations Research, 28(5):1228–
1236.

4. Glazebrook, K. D., Hodge, D. J., and Kirkbride, C. (2011). General notions
of indexability for queueing control and asset management. The Annals of
Applied Probability, (to appear).

5. Glazebrook, K. D., Kirkbride, C., and Ouenniche, J. (2009). Index policies
for the admission control and routing of impatient customers to heteroge-
neous service stations. Operations Research, 57:975–989.

6. Ha, A. Y. (1997). Optimal dynamic scheduling policy for a make-to-stock
production system. Operations Research, 45(1):42–53.

7. Menich, R. and Serfozo, R. F. (1991). Optimality of routing and servicing
in dependent parallel processing systems. Queueing Systems, 9(4):403–418.

8. Niño-Mora, J. (2001). Restless bandits, partial conservation laws and in-
dexability. Advances in Applied Probability, 33:76–98.

9. Niño-Mora, J. (2006). Restless bandit marginal productivity indices, dimin-
ishing returns, and optimal control of make-to-order/make-to-stock M/G/1
queues. Mathematics of Operations Research, 31(1):50–84.

10. Perez, A. P. and Zipkin, P. (1997). Dynamic scheduling rules for a multi-
product make-to-stock queue. Operations Research, 45(6):919–930.

11. Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley and Sons, New York, NY.

12. Sobel, M. (1969). Optimal average cost policy for a queue with start-up
and shut-down costs. Operations Research, 17:145–162.

13. Sobel, M. (1982). The optimality of full-service policies. Operations Re-
search, 30:636–649.

14. Tijms, H. (1994). Stochastic Models: An Algorithmic Approach. John
Wiley and Sons, New York, NY.

15. Veatch, M. H. and Wein, L. M. (1996). Scheduling a make-to-stock queue:
index policies and hedging points. Operations Research, 44(4):634–647.

QUES9217_source.tex; 10/02/2011; 8:16 p. 31

31

16. Weber, R. R. and Weiss, G. (1990). On an index policy for restless bandits.
Journal of Applied Probability, 27:637–648.

17. Wein, L. M. (1992). Dynamic scheduling of a multi-class make-to-stock
queue. Operations Research, 40(4):724–735.

18. Whittle, P. (1988). Restless bandits: Activity allocation in a changing
world. Journal of Applied Probability, 25:287–298.

19. Zheng, Y.-S. and Zipkin, P. (1990). A queueing model to analyze the value
of centralized inventory information. Operations Research, 38(2):296–307.

20. Zipkin, P. (1995). Performance analysis of a multi-item production-
inventory system under alternative policies. Management Science, 41(4):690–
703.

Appendix A On state monotonicity of optimal policies

For the proof of Proposition 3, we need the following preparatory lemma.

Lemma A.1 For fixed values of the remaining system parameters, ∃ D̄ such that D ≥ D̄
implies that all optimal policies for P̄ (c) choose maximal resource level S in state −M .

Proof We have that

γ(c) =
N∑

j=−M

pπ̄(c)(j)
{
chj+ + cbj− + cDμI(j=−M) + π̄(c, j)

}
, (A.1)

where as usual π̄(c) is any optimal policy for P̄ (c). We have a similar expression for γπ(c)
for any stationary policy π. These expressions are used in the subsequent argument.

Let A be the set of stationary policies π for which π(−M) < S. Within A, it is easy to
show that the smallest value of pπ(−M) is achieved by the policy, πA, which uses action S−1

in state −M and action S in all other states. Therefore we deduce pπ(−M) ≥ pπ
A
(−M) ≡ p1

for all π ∈ A for some constant p1. Plainly, however, we also have

γπ(c) ≥ p1c (bM +Dμ) , π ∈ A. (A.2)

Consider now the policy which uses action S in all states and has associated cost rate γS(c).
We find, via a simple calculation, that pS(−M) < p1 and yet

γS(c) < pS(−M)c(bM +Dμ) + chN + cb(M − 1) + S. (A.3)

From (A.2) and (A.3),

γπ(c) − γS(c) > (p1 − pS(−M))c(bM +Dμ) − chN − cb(M − 1) − S, π ∈ A. (A.4)

The expression on the r.h.s of (A.4) is positive for sufficiently large D. Hence for fixed
values of the remaining system parameters, there exists D̄ such that D ≥ D̄ implies that no
member of A can be optimal. This concludes the proof. ��

State monotonicity of optimal policies for sufficiently large D under given conditions now
follows.

Proposition 3 If λ(S) > μ then for fixed values of the remaining system parameters, ∃ D̂

such that D ≥ D̂ implies that

(a) Δ(c, i) is increasing in i on −M ≤ i ≤ N ;

QUES9217_source.tex; 10/02/2011; 8:16 p. 32

32

(b) there exists a stationary optimal policy π̄(c) for P̄ (c) which is monotone decreasing in
the state.

Proof It is a straightforward consequence of the DP optimality equations (14) that, over
the range 1 ≤ i ≤ N − 2, the following hold:

(i) Δ(c, i+ 1) ≤ Δ(c, i+ 2) ⇒ Δ(c, i) ≤ Δ(c, i+ 1) − ch/μ.
(ii) Δ(c, i) ≥ Δ(c, i+ 1) ⇒ Δ(c, i+ 1) ≥ Δ(c, i+ 2) + ch/λ(S).

Taken together, (i) and (ii) imply that over the range 1 ≤ i ≤ N either Δ(c, i) is increasing in
i or it is increasing up to some i∗ and is then decreasing. To eliminate the second possibility
we need to demonstrate that Δ(c,N −1) < Δ(c,N) for large enough D. However, from (14)
we have

μΔ(c, N) = −γ(c) + chN, (A.5)

and

μΔ(c, N − 1) = −γ(c) + ch(N − 1) + min {a + λ(a)Δ(c, N)} , (A.6)

with the minimisation in (A.6) taken over a ∈ {0, 1, . . . , S}. Now, from the proof of Lemma
A.1,

γ(c) ≥ cDμpS(−M),

which in turn yields from (A.5) that

D >
hN

μpS(−M)
⇒ μΔ(c,N) ≤ −cDμpS(−M) + chN < 0.

However, from (A.6) we see that upon choosing a = 0 in the minimisation,

Δ(c,N) < 0 ⇒ Δ(c,N − 1) < Δ(c,N).

From the above we conclude that

D >
hN

μpS(−M)
⇒ Δ(c,N − 1) < Δ(c, N), (A.7)

and hence that Δ(c, i) is increasing in i over the range 1 ≤ i ≤ N .
We now consider the range −M ≤ i ≤ 1. We first note that the I(i
=−M) on the l.h.s. of

(14) can be dropped if we replace f(i) by f̄(i) = bi− + hi+. It follows that a modified form
of (14) holds at i = −M without the I(i
=−M) term if we define Δ(c,−M) = −cD. The
expressions for Δ(c, i) and Δ(c, i− 1) from this modified (14) are

μΔ(c, i) = −γ(c) + cf̄(i) + min
a

{a + λ(a)Δ(c, i+ 1)} , −M ≤ i ≤ 0

μΔ(c, i− 1) = −γ(c) + cf̄(i− 1) +min
a

{a+ λ(a)Δ(c, i)} , −M < i ≤ 1

and we can deduce that for −M < i ≤ 0,

Δ(c, i) ≥ Δ(c, i− 1) ⇒ Δ(c, i+ 1) ≥ Δ(c, i) + cb/λ(S).

In light of this, and of the above, to prove (a) it is now sufficient to show that Δ(c, 1−M) >
Δ(c,−M) for large enough D.

From Lemma A.1 we know that ∃ D̄ such that D ≥ D̄ implies that the optimising action
in state −M must be S and hence that

Δ(c,−M) = −cD = −γ(c) + cf̄(−M) + S + λ(S)Δ(c, 1−M). (A.8)

Rearranging, we conclude from (A.8) that

cD {λ(S)− μ} + γ(c) − cbM = S + λ(S) {Δ(c, 1−M)−Δ(c,M)} . (A.9)

QUES9217_source.tex; 10/02/2011; 8:16 p. 33

33

However, from Proposition 1, γ(c) is continuous in D with positive right gradient

∂+
Dγ(c) = cμpc(−M) ≥ cμpS(−M) > 0 . (A.10)

Hence it is plain that γ(c) is increasing everywhere in D. We conclude that if λ(S) > μ,
the l.h.s. of (A.9) is increasing strictly in D with strictly positive right gradient everywhere.
Hence for all large enough D, it must follow that Δ(c, 1−M) > Δ(c,M) as required. This
concludes the proof of (a).

We conclude the proof of Proposition 3 by noting that (a) together with the observation
made before Proposition 2 on DP equation solutions straightforwardly yield (b). ��

Appendix B Numerical parameter sets

Table 5 describes the ranges of parameter values used in each dataset in the studies presented
in Section 4 of the paper. The key difference in construction between datasets A, B, C, D,
E and F are the selections of the pair (x, y). Dataset A uses (x, y) = (1, 1.5), Dataset B uses

PARAMETERS

λ1 λ2 μ1 μ2 β1 β2

1.5 1.5 (x, y) (x, y) (4,6) (4,6)
1.5 3.0 (x, y) (2x, 2y) (4,6) (4,6)
1.5 4.5 (x, y) (3x, 3y) (4,6) (4,6)

1.2 1.2 (x, y) (x, y) (2,3) (2,3)
1.2 2.4 (x, y) (2x, 2y) (2,3) (2,3)
1.2 3.6 (x, y) (3x, 3y) (2,3) (2,3)

1.5 1.2 (x, y) (x, y) (4,6) (2,3)
1.5 2.4 (x, y) (2x, 2y) (4,6) (2,3)
3.0 1.2 (2x, 2y) (x, y) (4,6) (2,3)

Table 5: Parameter set descriptions. Open set brackets (a, b) represent independent draws
from a continuous uniform distribution on [a, b]. For each row 100 samples are used to

generate problems.

(x, y) = (0.9, 1.05) and Dataset C uses (x, y) = (0.7, 0.9). Datasets E and F use (0.5, 0.75) and
(0.45, 0.575) respectively. Dataset D, devised for the logarithmic form λ(a) functions, uses
(x, y) = (1.1, 1.3) but also modifies β1 and β2 to be drawn from U[2,2.5] as opposed to U[4,6]
or U[2,3] used for the other datasets. In all tables based on these data 100 problems were
generated randomly selecting μ1, μ2, β1 and β2 uniformly from their respective distributions
resulting in a total of 900 problems for each dataset.

Dataset G used for the 900 four product models uses the same structure as in Table
5 with dataset A. To cater for the increased demand from the extra product queues we
increment all λk values above by one unit. In practice this has led to a very wide range
of achieved performance values, but none too extremely low or high to make the problems
concerned of negligible interest. The new third and fourth product queues are modelled upon
the basic queue 1, and thus (except in row 9 where the basic non-sped up product 1 is used)
share λk value with λ1. In keeping with product 1, μ3 and μ4 are drawn from independent
continuous uniform distributions on (x, y).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

