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Abstract

We consider Bayesian games, with independent private values, in
which uniform punishment strategies are available. We establish that
the Nash equilibria of the Bayesian infinitely repeated game without
discounting are payoff equivalent to tractable separating (i.e., com-
pletely revealing) equilibria and can be achieved as interim coopera-
tive solutions of the initial Bayesian game. We also show, on a public
good example, that the set of Nash equilibrium payoffs of the undis-
counted game can be empty, while limit Nash equilibrium payoffs of
the discounted game, as players become infinitely patient, do exist.
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1 Introduction

We consider Bayesian games with independent private values. We make the
further assumption that “uniform punishment strategies” are available. We
first characterize the Nash equilibrium payoffs of the Bayesian infinitely re-
peated game without discounting as tractable, separating (i.e., completely
revealing) equilibrium payoffs. Using this characterization, we show, on a
public good example, that the latter set of Nash equilibrium payoffs can be
empty. We then establish a partial version of the folk theorem: the previous
equilibrium payoffs can be achieved as interim cooperative solutions of the
initial (one-shot) Bayesian game. We finally turn to the set of Nash equi-
librium payoffs of the discounted game. In this case, we show, that, in the
public good example, a limit Nash equilibrium payoff of the discounted game,
as players become infinitely patient, exists and differs significantly from pre-
vious equilibria identified in the recent literature (e.g., in Peski (2012))

Relationships with the previous literature

Aumann and Maschler started to study the Nash equilibrium payoffs of
infinitely repeated games with incomplete information in the mid-sixties (see
Aumann and Maschler (1995)). At the very same time, Harsanyi (1967) pro-
posed the formal definition of games with incomplete information as Bayesian
games. Building on the work of Aumann, Maschler and Stearns (1968), S.
Hart (1985) characterized the set of Nash equilibrium payoffs of any two-
person (undiscounted) infinitely repeated game in which only one of the
players has private information. This looks like an extremely particular class
of games but the characterization is already quite intricate: it involves a
description of the dynamic process followed by the equilibrium and so, does
not give much hope to be related to solutions of the one-shot game.

As S. Hart (1985), Koren (1992) considers two-person games but, instead
of assuming that only one player is privately informed, he assumes that every
player “knows his own payoff”. According to a more usual terminology in
microeconomics, he makes the assumption that “values are private and in-
dependent”. In this case, he shows that the Nash equilibrium of the (undis-
counted) infinitely repeated game can be characterized in an elegant way:
they are payoff equivalent to completely revealing (also called “separating”)
equilibria.1 Once such a characterization is available, one can ask whether

1See Shalev (1994) for a similar characterization of Nash equilibrium payoffs in Hart
(1985)’s model with “known own payoffs” and Forges (1992) for a survey of results on
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it confirms that repeating a game has the same effect as commitment in the
one-shot game.

The assumption of independent, private values is satisfied in many eco-
nomic applications, e.g., in some public good games (see Palfrey and Rosen-
thal (1994) and Fudenberg and Tirole (1991, example 6.1, p. 211). These
games typically involve more than two players but satisfy a further assump-
tion, which we call “uniform punishments”. We show (in proposition 1) that
in these public good games, and more generally, in any n−person Bayesian
game with independent, private values and uniform punishments, the Nash
equilibrium of the undiscounted infinitely repeated game are all payoff equiv-
alent to completely revealing equilibria. Furthermore, thanks to uniform pun-
ishments, our characterization is more tractable than Koren (1992)’s one and
immediately goes through in the case of n players.2

Our tractable characterization facilitates the comparison with the coop-
erative solutions of the initial Bayesian game. Furthermore, it tells us how
incentives to reveal private information can differ in the short and the long
run. In a finitely repeated game, players may benefit from hiding their type,
e.g., their willingness to contribute to a public good, at an early stage of the
game (see Fudenberg and Tirole (1991), example 8.3, p. 333). Proposition
1 tells us that, in an undiscounted infinitely repeated game, players cannot
benefit from concealing their private information.

Equipped with the characterization of proposition 1, we show in propo-
sition 2 that, for any n−person Bayesian game with independent, private
values and uniform punishments, the set of Nash equilibrium payoffs of the
undiscounted infinitely repeated game is contained in the set of interim co-
operative solutions of the Bayesian game, as defined in Myerson (1991) and
Forges (2013). In other words, the repetition of the game enables the players
to cooperate, as in the folk theorem with complete information. However, the
previous inclusion can be strict. More surprisingly, unlike the set of interim
cooperative solutions of the one-shot game, the set of Nash equilibria of the
infinitely repeated game can be empty. This is illustrated on a public good
game (example 1).

The latter finding, which tells us that, without discounting, the folk the-
orem does not hold for Bayesian games in which several players have private

non-zero sum infinitely repeated games with incomplete information.
2If uniform punishments are available, there is no need to appeal to Blackwell (1956)’s

approachability theorem. By extending the latter result to n players, as, in e.g., in Hörner,
Lovo and Tomala (2011), one should be able to prove Koren’s result for n players.
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information, must be contrasted with the results on “reputation effects”.
There is an extensive literature on this topic. Most papers concentrate on
two-person games with a single informed player, who tries to establish a
reputation, but allow for discounted payoffs (see Mailath and Samuelson
(2006); Sorin (1999) gives a synthetic presentation of various related mod-
els, including infinitely repeated games with known own payoffs; as a sample
of references, let us mention Kreps et al. (1982), Fudenberg and Maskin
(1986), Schmidt (1993), Cripps and Thomas (1995, 1997, 2003), Cripps et
al. (1996), Israeli (1999), Chan (2000), Cripps et al. (2005), Atakan and
Ekmekci (2012)). An important difference between the models designed to
study reputation effects and the one that we consider in these notes is that,
rather than perturbing a Bayesian game with complete information, we start
with given sets of types for every player and arbitrary beliefs over these types.

Our characterization shows that, under incomplete information, the co-
operative solutions of the one-shot game and the non-cooperative solutions
of the undiscounted repeated game mostly differ in the individual rationality
levels of the players. Under the assumptions of independent private values
and uniform punishments, the ex post individual rationality level of a player,
namely the level at which the other players can punish him when they know
his type, is relevant in the infinitely repeated game. Interim individually ra-
tional payoffs in the sense of Myerson (1991) are always ex post individually
rational. When there exist uniform punishment strategies, the reverse also
holds: this is the key of proposition 2. However, if the assumption of uniform
punishments is relaxed, individual rationality in the infinitely repeated game
relies on Blackwell (1956)’s approachability strategies. As a consequence,
proposition 2 is no longer true, while Koren’s characterization still holds, at
least in the two-person case. Section 6 discusses our underlying assumptions
in details.

Until section 5, as in Hart (1985) and Koren (1992), we assume that
payoffs in the infinitely repeated games are evaluated as Banach limits of
the expected average payoffs, namely, without discounting. The main justi-
fication for proceeding in this way is well-known: we are looking for robust
results, which do not depend on the precise discount factor of the players.
Even more, we are interested in robust equilibrium strategies, which can be
used for a reasonable range of discount factors. Hence, it is natural to start
with the study of the equilibrium payoffs of the undiscounted infinitely re-
peated game, in order to “guess” how the robust equilibrium payoffs look like.
This is how game theorists derived the folk theorem for infinitely repeated
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games with complete information.
While the study of the undiscounted infinitely repeated game seems a

mandatory first step, a careful analysis of the consequences of this assumption
is in order (see Bergin (1989) for an early reference). As we illustrate in
section 5, the phenomena described by proposition 1 (all equilibria are payoff
equivalent to completely revealing ones) and example 1 (the slightest doubt
on the players’ types can lead to non existence of equilibrium) are not to be
expected in discounted games, even with patient players.

As we already noticed, many papers devoted to reputation effects consider
repeated games with discounting but these papers impose restrictions on the
players’ beliefs. Before that, in their seminal papers, Aumann and Maschler
already showed that undiscounted zero-sum infinitely games in which both
players are uninformed could fail to have a value. However, Mertens and
Zamir (1971) proved that the value of the discounted game, as players become
more and more patient, always converges. To the best of our knowledge, there
is hardly any analog of this result in the non-zero-sum case. Peski (2008)
and Peski (2012) study discounted repeated games with specific forms of
incomplete information. Peski (2008) characterizes the limit of the sets of
Nash equilibrium payoffs of two-person discounted repeated games with lack
of information on one side and known own payoffs, when the informed player
has two types (namely, the discounted version of Shalev (1994) in the case
of two types). Peski (2008)’s characterization results show that more payoffs
can be achieved in the limit discounted case than in the undiscounted case but
still finitely revealing equilibria are the only ones that need to be considered.
Peski (2012) extends these results to the class of discounted repeated games
with known-own payoffs which satisfy an “open thread assumption”, namely,
at least in the two-person case, in which there exist belief-free equilibria in
the sense of Hörner and Lovo (2009) (see also Hörner, Lovo and Tomala
(2011)).3 There are no belief free equilibria in the public good example of
the current paper. Nonetheless, in every repeated version of this game with
a sufficiently high discount factor, we construct a Nash equilibrium payoff
which converges when players become increasingly patient. We thus show in
particular that Peski (2012)’s open thread assumption is not necessary for
equilibrium payoffs convergence.

3As already in Peski (2008), existence and non emptiness of limit sets of Nash equi-
librium payoffs as players become increasingly patient is not an issue in Peski (2012), at
least in the two player case, because belief free equilibria are assumed to exist. The main
result is a full characterization of the limit set, in terms of finitely revealing equilibria.
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Wiseman (2012) establishes a partial folk theorem in discounted repeated
games where the players have the same initial information and get private and
public signals along the play. While his model captures in particular “known
own payoffs”, as in multisided reputation models (see his example 3), his
assumption 1 ensures “gradual public learning” which has no counterpart in
infinitely repeated games like the ones considered here. As a consequence,
Wiseman (2012)’s folk theorem can be formulated in terms of feasible, ex
post individually rational payoffs, without any requirement of incentive com-
patibility. By contrast, incentive compatibility is crucial in this paper and in
Peski (2008, 2012).

2 Basic Bayesian game

2.1 Definition and main assumptions

Let us fix n players and, for every player i, i = 1, ...n,

• a finite set of types Θi

• a probability distribution qi over Θi

• a finite set of actions Ai, with |Ai| ≥ |Θi|

• a utility function ui : Θi × A → R, where A =
∏

1≤i≤n

Ai.

This defines a (one-shot) Bayesian game with independent, private values,
which we denote as Γ(q), with q = (qi)1≤i≤n.

4 Without loss of generality, we
assume that qi(θi) > 0 for every θi ∈ Θi. The interpretation is that types
θi, i = 1, ..., n, are first chosen in Θ, independently of each other, according
to q. At the interim stage, player i is only informed of his own type θi. The
players then choose simultaneously an action.

For any finite set E, let us denote as ∆(E) the set of probability distribu-
tions over E. A mixed strategy5 of player i in Γ(q) is a mapping from Θi to
∆(Ai). Similarly, a correlated strategy for players j 6= i is a mapping from

4We only recall the parameter q in the notation Γ(q) for the Bayesian game, because it
will often happen, e.g., in the examples, that the beliefs q vary while all other parameters
are fixed.

5More correctly, “behavior strategy”.
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Θ−i =
∏

j 6=i Θj to ∆(A−i), where A−i =
∏

j 6=i Aj. We keep the notation ui for
the (multi)linear extension of utility functions over mixed and/or correlated
strategies. Hence we write, for every i = 1, ..., n, θi ∈ Θi, π ∈ ∆(A),

ui(θi, π) =
∑

a

π(a)ui(θi, a)

In particular, for every i = 1, ..., n, θi ∈ Θi, σi ∈ ∆(Ai), τ−i ∈ ∆(A−i),

ui(θi, σi, τ−i) =
∑

ai,a−i

σi(ai)τ−i(a−i)ui(θi, ai, a−i)

For every player i, i = 1, ..., n, and θi ∈ Θi, let vi(θi) be the value6 of
the (complete information, zero-sum) game in which player i maximizes the
payoff ui(θi, ·), namely

vi(θi) = min
τ−i∈∆(A−i)

max
σi∈∆(Ai)

ui(θi, σi, τ−i) = min
τ−i∈∆(A−i)

max
ai∈Ai

ui(θi, ai, τ−i) (1)

Observe that, in the previous expression, the probability distribution τ−i

achieving the “min” possibly depends on θi, which is fixed in the underlying
optimization problem. vi(θi) can thus be interpreted as the ex post individ-
ual rationality level of player i, namely, the best amount that player i can
guarantee to himself if the other players know his type θi.

We consider the following assumption (“uniform punishment strategies”):

∀i ∃τ−i ∈
∏

j 6=i

∆(Aj) s.t. ∀θi ∈ Θi ∀ai ∈ Ai ui(θi, ai, τ−i) ≤ vi(θi) (2)

When (2) holds, τ−i defines independent
7 punishment strategies which enable

players j 6= i to punish player i uniformly, i.e., whatever his type θi is, but
even more, to keep player i’s payoff below his ex post individual rationality
level.

Assumption (2) is quite strong but, as illustrated below, it is satisfied in
a class of public good games (see, e.g., Palfrey and Rosenthal (1994)).8 In

6If we allow for correlated mixed strategies, the value exists and can be expressed as
a minmax or as a maxmin. We will nevertheless consider independent mixed strategies
below.

7Independent punishment strategies are important for proposition 1.
8As a slight weakening, vi(θi) could just be defined as

min
τ−i∈

∏

j 6=i ∆(Aj)
max

σi∈∆(Ai)
ui(θi, σi, τ−i).
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these games, the independent private values assumption also holds. Peters
and Szentes (2012)’s assumption 1 (p. 397) takes exactly the form of (2) if
values are private and independent and mixed strategies are allowed. We will
make a more precise comparison in section 4. We will discuss the role of our
various assumptions in section 6.

2.2 Application: contribution to a public good

The private information of every player i, i = 1, ..., n, is the value θi that he
attributes to his endowment of a single unit of the private good. The private
endowment values θi are chosen independently of each other, according to a
probability distribution qi. Player i has two possible actions ai: “contribute”
(c) and “do not contribute” (d). A public good is produced if, and only if, at
least m players contribute. The value of the public good is normalized to 1
for all players. For every a ∈ A, let M(a) be number of contributors, namely

M(a) = M((ai)1≤i≤n) = | {i : ai = c} |

The utility function of player i is described by

ui(θi, ai, a−i) = 1 if ai = c and M(ai, a−i) ≥ m
0 if ai = c and M(ai, a−i) < m

1 + θi if ai = d and M(ai, a−i) ≥ m
θi if ai = d and M(ai, a−i) < m

We refer to the game as PG(n,m, q), 1 ≤ m ≤ n. For instance, in PG(2, 1, q),
the payoff matrix associated with the pair of types (θ1, θ2) is

c d
c 1, 1 1, 1 + θ2
d 1 + θ1, 1 θ1, θ2

where we always assume θi ≥ 0 but can have θi < 1 or θi > 1. Fudenberg
and Tirole (1991, example 6.1, p. 211) propose the following interpretation:
player 1 and player 2 belong to a group (say, the members of some university
department) and each of them can represent the group at a committee (say,
the scientific board of the university). To attend the committee is time
consuming and it is enough that one player attends the committee meeting
to defend the interests of the group. The whole problem is to decide which
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one of the players will go to the meeting, given that the value of time for
each player is private information.

In PG(n,m, q), a uniform punishment against player i is easily derived:
the other players just have to decide not to contribute. More precisely, let
τ−i = (aj)j 6=i be the (n − 1)−uple of actions in which aj = d for all players
j 6= i. Assume first that m > 1. Then, by playing d, player i guarantees
himself θi whatever the other players choose. By playing τ−i, the players
j 6= i guarantee that player i’s payoff does not exceed θi. Hence, if m > 1,
vi(θi) = θi and τ−i is a uniform punishment strategy. Assume now that
m = 1. Again, by playing d, player i guarantees himself θi; but now, by
playing c, player i guarantees himself 1. Hence, by playing according to his
type, player i can guarantee himself max {θi, 1}. By playing τ−i, the players
j 6= i guarantee that player i’s payoff does not exceed max {θi, 1}. Hence, if
m = 1, vi(θi) = max {θi, 1} and τ−i is a uniform punishment strategy.

3 Undiscounted infinitely repeated Bayesian

game

Nash equilibria always exist in the one-shot game Γ(q), but fail to reflect
the fact that the players may care about the future consequences of their
present behavior. In a Nash equilibrium of Γ(q), players may reveal a lot of
information, choose an individualistic action, etc. Hence we turn to infinitely
repeated versions of the previous game, starting with the undiscounted one,
which we denote as Γ∞(q). According to Aumann and Maschler’s origi-
nal model (see Aumann and Maschler (1995)), the players’ types are fixed
throughout the game. More precisely, Γ∞(q) is played as follows:

- at a virtual stage (stage −1): the types θi, i = 1, ..., n, are chosen in

Θ =
∏

1≤i≤n

Θi independently of each other, according to q. Player i is

only informed of his own type θi.

- at every stage t (t = 0, 1, ...): every player i chooses an action in Ai. The
choices are made simultaneously and revealed publicly right after stage
t.

Payoffs in Γ∞(q) are evaluated as (Banach) limits of arithmetic averages
(see Hart (1985), Forges (1992)). In section 5, we shall rather consider the
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discounted version of the infinitely repeated game.

3.1 Characterization of Nash equilibrium payoffs

Let us write q−i(θ−i) for
∏

j 6=i qj(θj). A version of the next characterization

of the Nash equilibrium payoffs of Γ∞(q) was established in Koren (1992).9

Proposition 1 Let Γ(q) be a Bayesian game with independent private values
in which uniform punishment strategies are available. Let x = (xi)1≤i≤n =
((xi(θi))θi∈Θi

)
1≤i≤n

. x is a Nash equilibrium payoff in Γ∞(q) if and only if
there exist π(θ) ∈ ∆(A), θ ∈ Θ, such that for every i = 1, ..., n, θi, θ

′
i ∈ Θi

xi(θi) =
∑

θ−i∈Θ−i

q−i(θ−i)ui(θi, π(θi, θ−i)) (3)

≥
∑

θ−i∈Θ−i

q−i(θ−i)max {ui(θi, π(θ
′
i, θ−i)), vi(θi)}

In the case of complete information, namely if the prior probability dis-
tribution q is degenerate, proposition 1 reduces to the standard folk theorem:
x = (xi)1≤i≤n ∈ Rn is a Nash equilibrium payoff of the infinitely repeated
game if and only if x is feasible (i.e., achieved by means of a probability dis-
tribution π ∈ ∆(A)) and individually rational (i.e., xi is larger than player
i’s minmax level).

The interpretation of Proposition 1, under incomplete information, is that
all Nash equilibria of Γ∞(q) are payoff equivalent to completely revealing
equilibria, in which

- at stage 0, every player i truthfully reveals his type θi

- at every stage t ≥ 1, given the reported types θ′ = (θ′i)1≤i≤n , every player i
plays according to π(θ′) ∈ ∆(A) provided that π(θ′) has been followed
at every previous stage 1, ..., t − 1. Otherwise, if player i does not
follow π(θ′) at some stage t ≥ 1, players j 6= i punish player i by
using uniform independent punishment strategies τ−i holding player i
at vi(θi) at every stage t+ 1, t+ 2, ... whatever his type θi and action
are.

9Koren (1992) establishes that all Nash equilibrium payoffs of Γ∞(q) are completely
revealing in the case of only two players, but without assuming uniform punishments. The
latter assumption greatly facilitates the formulation of the equilibrium conditions and the
extension to n players.
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The nondeviation condition (3) expresses that, assuming that players
j 6= i follow the equilibrium strategies, player i of type θi can report a type
θ′i possibly different from θi. At the end of stage 0, player i learns the true
types θ−i of the other players and can then either follow π(θ′i, θ−i) or not. In
the former case, he fully mimics the equilibrium strategy of type θ′i. In the
latter case, he is punished at the level vi(θi).

Condition (3) is thus both an incentive compatibility condition and an
individual rationality condition. Even under our strong assumptions, it is not
possible to separate these two aspects of player i’s nondeviating condition.
Obviously, for θ′i = θi, (3) is equivalent to

For every i and θ = (θi, θ−i) ∈ Θ : ui(θi, π(θ)) ≥ vi(θi) (4)

which implies that

For every i and θi ∈ Θi : xi(θi) ≥ vi(θi) (5)

With some abuse of language, we will refer to the latter property as x is ex
post individually rational and will denote as EXPIRi [Γ(q)] the set of all
vector payoffs which satisfy it for player i.

The previous equilibrium conditions are illustrated on examples 0, 1 and 2
below. Examples 0 and 1 belong to the class of public good games introduced
in section 2.2. Example 2 is a variant of the battle of the sexes already
proposed by Koren (1992) and is actually simpler.

Proposition 1 is established in an appendix.

Example 0:

Recalling section 2.2, let us consider the following two-person game PG(2, 1, q)

θ2 = ω θ2 = z

c d c d
θ1 = ω c 1, 1 1, 1 + ω 1, 1 1, 1 + z

d 1 + ω, 1 ω, ω 1 + ω, 1 ω, z
θ1 = z c 1, 1 1, 1 + ω 1, 1 1, 1 + z

d 1 + z, 1 z, ω 1 + z, 1 z, z

Each player has two possible types: Θi = {ω, z}, i = 1, 2. We assume that
0 < ω < 1 and z > 2: ω represents a “normal” type, who values the public
good more than his initial endowment, while z represents a “greedy” type.
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Let ω = 2
3
and z = 3. Consider the following distributions, which yield

feasible, ex post individually rational payoffs:

θ2 = 2/3
(prob. p2)

θ2 = 3
(prob. 1− p2)

c d c d
θ1 = 2/3
(prob. p1)

c 0 1/2 0 7/10

d 1/2 0 3/10 0
θ1 = 3

(prob. 1− p1)
c 0 3/10 0 0

d 7/10 0 0 1

Conditions (3) show that these distributions induce an equilibrium if and
only if p1 ≤

3
5
and p2 ≤

3
5
.

3.2 Existence of Nash equilibrium

Let us denote as N [Γ∞(q)] the set of all Nash equilibrium payoffs of Γ∞(q).
Thanks to proposition 1, the set N [Γ∞(q)] has a tractable representation so
that it is relatively easy to check whether it is empty or not. Koren (1992)
already proposes a two-player example in which there is no Nash equilibrium.
The next example pertains to the class of public good games introduced in
section 2.2.

Example 1: A public good game in which N [Γ∞(q)] is empty
Let us consider the game PG(2, 1, q) of example 0 and assume now that

the players hold the same beliefs: qi = (p, 1 − p), i = 1, 2, with 0 < p < 1.
We thus refer to the game as Γ∞(p). Let us set k = ω

1−ω
. We will show that

If z > k + 4 and p >
2

k + 4
, N [Γ∞(p)] = ∅ (6)

In other words, if the “greedy” type z is sufficiently high, but has an arbitrar-
ily small probability 1 − p, the infinitely repeated game has no equilibrium.
For instance, if ω = 1

3
and z > 4.5, the infinitely repeated game has no

equilibrium as soon as the probability of the “greedy” type is smaller than
5
9
.
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This finding should be contrasted with the results obtained in standard
reputation models, in which a very small probability of a “crazy” type is
enough to generate interesting equilibrium behavior in the incomplete infor-
mation game (see Kreps et al. (1982), Fudenberg and Maskin (1986), etc.).
Here, if both types are “normal” (p = 1), the infinitely repeated game has a
plethora of equilibria, but as soon as there is an arbitrarily small doubt that
the players could be (very) “greedy”, the game has no equilibrium at all.10

Recalling again section 2.2, the individual levels in Γ(p) are vi(ω) = 1 and
vi(z) = z, i = 1, 2. According to proposition 1, the equilibrium payoffs of
Γ∞(p) are characterized by four probability distributions π(θ) over {c, d} ×
{c, d}, one for every pair of types θ. If θ1 = θ2 = z, ex post individual
rationality implies that (d, d) must have probability 1. In order to show that
Γ∞(p) has no equilibrium, it is enough to show that Γ∞(p) has no symmetric
equilibrium11. We thus focus on π(θ)’s of the form:

θ2 = ω θ2 = z

c d c d
θ1 = ω c γc γ βc ρ

d γ γd α βd

θ1 = z c βc α 0 0
d ρ βd 0 1

where all parameters are nonnegative and 2γ+γc+γd = 1, α+ρ+βc+βd = 1.
The ex post individual rationality conditions (4) can be written as

γd ≤ kγ, βd ≤ kα and ρ ≥ (1−
1

z
)(1− βd) (7)

In the right hand sight of the equilibrium condition (3) for θ1 = ω and θ′1 = z,

max {1 + ρω − (1− ω)βd, 1} = 1

10Koren (1992) shows that Nash equilibrium payoffs may fail to exist in two-person
repeated games in which both players are privately informed. Cripps and Thomas (1995)
discuss the consequences of this phenomenon for reputation effects.

11If Γ∞(p) has an equilibrium, there exist probability distributions π(t), t ∈ T , over
{c, d}×{c, d} satisfying (3). If π(t), t ∈ T , satisfies (3), the probability distributions π′(t),
t ∈ T , in which player 1 and player 2 are permuted, also satisfy (3). The same holds for
the symmetric distributions 1

2 (π(t) + π′(t)), t ∈ T , thanks to the linearity of u and the
convexity of “max”.
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namely, βd ≤ kρ because, from (7), βd ≤ kα and α ≤ 1− βd − ρ ≤ 1
z−1

ρ ≤ ρ.
We can thus write (3) for θ1 = ω and θ′1 = z as

p(kγ − γd) + (1− p)(kα− βd) ≥ p(kρ− βd) (8)

This condition is not compatible with (7) if p is close enough to 1. In order
to get some intuition for this, let us try γd = βd = 0, i.e., an ex post efficient
equilibrium. (7) reduces to ρ ≥ 1− 1

z
. (8) is pγ+ (1− p)α ≥ pρ. Since γ ≤ 1

2

and α ≤ 1− ρ, (8) implies that p ≤ 2(1− ρ) ≤ 2
z
, which imposes a constraint

on p if z > 2. In the appendix, we show that the same kind of argument can
be used to show (6) for arbitrary γd, βd satisfying (7).�

Remarks:

1. If p is small enough in example 1 (with respect to z, which is kept fixed,
as the other parameters), equilibria of Γ∞(p) are easily constructed. For
instance, if p ≤ 2

z
, an ex post efficient equilibrium as above is achievable

(i.e., condition (3) for θ1 = z and θ′1 = ω is no problem).

2. Proposition 1 tells us that, when an equilibrium exists in the infinitely
repeated public good game of example 1, the associated payoff can as
well be achieved at a completely revealing equilibrium; in particular,
the players cannot benefit from behaving as if they were “greedy” when
their type is “normal”. Such a result does not hold in a finitely repeated
game. For instance, Fudenberg and Tirole (1991) (example 8.3, p. 333)
consider a two stage version of the public good game in which the
players’ types belong to the unit interval. They show that, in any
perfect Bayesian Nash equilibrium, the players contribute less in the
first period than in the second one: “Each player gains by developing
a reputation for not being willing to supply the public good”.

3. If there is uncertainty on the type of only one of the players, an equi-
librium always exists (see Shalev (1994)).
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4 Bayesian game with commitment

In this section, we show that the characterization in proposition 1 implies a
relationship between “repetition” and “cooperation”. Under complete infor-
mation, the standard folk theorem states that the set of Nash equilibrium
payoffs of an infinitely repeated game coincides with the set of feasible and
individually rational payoffs of the one-shot game, which in turn can be in-
terpreted as the set of cooperative solutions of the one-shot game (see e.g.
Kalai et al. (2010)). Under incomplete information, a natural candidate for
the latter set is Myerson (1991)’s set of feasible, incentive compatible and
interim individually rational payoffs in the (one-shot) Bayesian game Γ(q)
(see Forges (2013)). We denote this set as F [Γ(q)] and define it precisely
below. Myerson (1991)’s definitions take a simpler form in our framework of
independent private values. We then establish a partial folk theorem, namely
that F [Γ(q)] contains N [Γ∞(q)], the set of Nash equilibrium payoffs of the
infinitely repeated game Γ∞(q).

A payoff x = (xi)1≤i≤n = ((xi(θi))θi∈Θi
)1≤i≤n is feasible in Γ(q) if there

exists a correlated strategy π(θ) ∈ ∆(A), θ ∈ Θ, achieving x, namely

xi(θi) =
∑

θ−i

q−i(θ−i)ui(θi, π(θi, θ−i)) i = 1, ..., n, θi ∈ Θi (9)

A feasible payoff x achieved through π (as in (9)) is incentive compatible
if

xi(θi) ≥
∑

θ−i

q−i(θ−i)ui(θi, π(θ
′
i, θ−i)) for every i, θi, θ

′
i ∈ Θi (10)

A payoff x is interim individually rational if, for every player i, there
exists a correlated strategy τ−i ∈ ∆(A−i) of players j 6= i such that12

xi(θi) ≥ max
ai∈Ai

ui(θi, ai, τ−i) for every θi ∈ Θi (11)

Let INTIRi [Γ(q)] be the set of all vector payoffs satisfying the previous
property for player i. Observe that the previous definition describes a set
of vector payoffs which cannot be reduced to a “corner set” (of the form

12Literally, Myerson (1991)’s interim individual rationality condition requires that there
exists a type dependent correlated strategy of players j 6= i, τ−i(t−i) ∈ ∆(A−i), t−i ∈ T−i,
such that xi(ti) ≥ maxai∈Ai

∑
t−i

q−i(t−i)ui(ti, ai, τ−i(t−i)) for every ti ∈ Ti. But, with

independent private values, (11) is an equivalent formulation, since ui(ti, ·) is linear.
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xi(θi) ≥ wi(θi), θi ∈ Θi, for some well-defined individually rational level
wi(θi)). By contrast, ex post individually rational payoffs are described by a
“corner set”, since (vi(θi))θi∈Θi

is defined without ambiguity by (1).
The set F [Γ(q)] is formally defined as the set of payoffs satisfying (9),

(10) and (11).13 F [Γ(q)] contains the set of Nash equilibrium payoffs of Γ(q)
and is thus not empty.

In the next two statements, we make use of uniform punishment strate-
gies, which were not assumed to exist earlier in this section.

Lemma 1 Let Γ(q) be a Bayesian game with independent private values and
let x be a feasible payoff in Γ(q). If x is interim individually rational (namely,
(11)), x is ex post individually rational (namely, (5)): INTIRi [Γ(q)] ⊆
EXPIRi [Γ(q)] for every player i. If there exist uniform punishment strate-
gies, namely (2), then the reverse also holds: INTIRi [Γ(q)] = EXPIRi [Γ(q)]
for every player i.

The proof of lemma 1 is straightforward and therefore omitted. The
intuition behind the first part is that players j 6= i can impose a harder
punishment to player i if they know player i’s type θi (i.e., ex post). For the
second part, a uniform punishment strategy of players j 6= i against player i
provides an appropriate correlated strategy τ−i in (11).

Proposition 2 Let Γ(q) be a Bayesian game with independent private values
in which uniform punishment strategies are available: N [Γ∞(q)] ⊆ F [Γ(q)].

Proof: The proposition readily follows from the characterizations ofN [Γ∞(q)]
(in proposition 1) and F [Γ(q)] ((9), (10) and (11) above): the equality in (3)
is (9), the inequality in (3) implies (10) and (5), which in turn implies (11)
by lemma 1.�

As illustrated on example 1, unlike F [Γ(q)], N [Γ∞(q)] can be empty.
Hence, N [Γ∞(q)] can be strictly included in F [Γ(q)]. In other words, it may
happen that repetition makes some form of cooperation possible, but does

13Peters and Szentes (2012) argue that the set of solutions that can be achieved under
interim commitment in Γ(q) should be smaller set than F [Γ(q)] but, under an assumption
which is similar to our uniform punishment strategies, they recover F [Γ(q)].
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not exhaust the players’ cooperation possibilities. Example 2 below, taken
from Koren (1992), further illustrates the possible strict inclusion14.

Example 2: A game in which N [Γ∞(q)] is not empty and strictly included
in F [Γ(q)]

We will study a variant of the well-known battle of the sexes. Each player
has two possible types: Θi = {n, g}, i = 1, 2, and two possible actions:
Ai = {c, d}, i = 1, 2. We denote as pi ∈ [0, 1] the probability that player i’s
type is n (namely, qi = (pi, 1 − pi)). Payoffs are described by the following
matrices:

θ2 = n θ2 = g

c d c d
θ1 = n c 3, 1 0, 0 3, 1 0, 3

d 0, 0 1, 3 0, 1 1, 3
θ1 = g c 3, 1 3, 0 3, 1 3, 3

d 1, 0 1, 3 1, 1 1, 3

When θ1 = n, player 1 prefers c to d, but also prefers to make the same choice
as the other player. When θ1 = g, player 1 just prefers c to d, independently
of the choice of the other player. The preferences of player 2 are similar. In
this game, vi(n) =

3
4
, vi(g) = 3, i = 1, 2. A uniform punishment strategy of

player 1 (resp., 2) is to play c with probability 3
4
(resp., 1

4
).

Let us consider the (ex post efficient) correlated strategy π(θ), θ ∈ Θ,
defined by

θ2 = n θ2 = b

c d c d
θ1 = n c 1

2
0 0 0

d 0 1
2

0 1
θ1 = g c 1 0 0 1

d 0 0 0 0

(12)

It is easily checked that π(θ) satisfies (10) and (11), namely, induces a payoff
in F [Γ(q)], if and only if pi ≤

1
2
, i = 1, 2. Similarly, in order to induce a

payoff in N [Γ∞(q)], π(θ) must satisfy (3); in particular, player 1 of type

14For appropriate values of q, it also happens in the public good games of example 1 that
N [Γ∞(q)] is not empty and is strictly included in F [Γ(q)]. However, a full characterization
of N [Γ∞(q)] seems much harder in example 1 than in Koren (1992)’s example.
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θ1 = n cannot gain by pretending to be of type θ′1 = g, namely,

p2 + 1 ≥ p2 max

{
3,

3

4

}
+ (1− p2)max

{
0,

3

4

}
⇔ p2 ≤

1

5

The previous condition illustrates that, as expected, player 1 has more de-
viation possibilities at a (completely revealing) Nash equilibrium of Γ∞(q)
than at an interim cooperative solution of Γ(q). Imagine that player 1 is of
type n but pretends to be of type g at the first stage of Γ∞(q). Then he
learns player 2’s type θ2 and faces π(g, θ2). If θ2 = n, player 1 gets the best
payoff 3 by playing according to π(g, n). However, if θ2 = g, player 1 gets 0
by playing according to π(g, g). In this case, he should not play according
to π(g, g) but rather play c with probability 3

4
at every stage in order to

guarantee himself 3
4
. By checking the other equilibrium conditions in (3), we

get that π(θ) induces a payoff in N [Γ∞(q)] if and only if pi ≤
1
5
, i = 1, 2.

On the other hand, as already pointed out in Koren (1992), the correlated
strategy defined by

θ2 = n θ2 = g

c d c d
θ1 = n c 0 0 0 0

d 0 1 0 1
θ1 = g c 3

4
1
4

0 1
d 0 0 0 0

induces a payoff in N [Γ∞(q)] if and only if p2 ≤ 1
6
. There are thus many

probability distributions q ∈ ∆(Θ) for which π(θ) defined by (12) induces a
payoff in F [Γ(q)], and at the same time, N [Γ∞(q)] is not empty but does
not contain the payoff defined by (12).�

5 Discounted infinitely repeated Bayesian game

In this section, we turn to the δ−discounted version Γδ(q) of the infinitely
repeated game, for a given discount factor δ ∈ (0, 1). Γδ(q) is played as in
section 3, but the payoffs associated with a sequence of actions a = (at)t≥0 ∈
AN are now evaluated as

U δ
i (θi, a) =(1− δ)

∞∑

t=0

δtui(θi, a
t) for every i, θi
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Let us denote as N [Γ
δ
(q)] the set of all (interim expected) Nash equilibrium

payoffs of Γ
δ
(q). By the same arguments as under complete information,

N [Γ
δ
(q)] is nonempty and compact, for every δ ∈ (0, 1). An interesting

question is whether limδ→1 N [Γ
δ
(q)] is also nonempty, for some appropriate

definition of the limit of a sequence of sets. If there exist belief free equilibria
or more generally, if N [Γ

∞
(q)] is nonempty15, one has a candidate that

could belong to limδ→1 N [Γ
δ
(q)]. But the question seems especially hard

(and also more important) when N [Γ
∞
(q)] = ∅, as may happen when Γ

∞
(q)

is associated to the one-shot public good game PG(2, 1, q) (recall example 1
in section 3.2). A corollary of the proposition below is that, in this game,
for every q, lim infδ→1N [Γ

δ
(q)] is nonempty.16 We denote as ⌊x⌋ the largest

integer not greater than x.

Proposition 3 Let Γδ(q) be the δ−discounted infinitely repeated game as-
sociated with the public good game PG(2, 1, q), with beliefs q = ((pi, 1 −
pi)(pj, 1 − pj)), such that 0 < pj ≤ pi < 1. For every δ ∈ (1 − ω, 1), Γδ(q)
has an equilibrium of the following form:

• at every stage, independently of the past history, a “greedy” type player
does not contribute.

• before stage 0, a “normal” type player i (resp., player j) chooses τi ∈
{0, 2, . . . , 2T} (resp., τj ∈ {1, 3, . . . , 2T + 1}) according to an appropri-

ate probability distribution, where T =

⌊
log(1−pj)

log
(

δ−1+ω

δ−δ2(1−ω)

)

⌋
.

• at every stage t, if the other player contributed at least once in the past,
a “normal” type player does not contribute. Otherwise, namely, if the
other player played d at stages 0, ..., t− 1, and if t ≥ τi (resp., t ≥ τj),
a “normal” type player i (resp., player j) contributes.

When the discount factor δ → 1, the sequence of interim payoffs x(δ)
associated to this equilibrium converges to

xi(n) = xj(n) = 1

xi(g) = xj(g) = z + (1− ω)
(
1− (1− pj)

1
1−ω

)

15Or, more carefully, if N [Γ
∞
(q)] has a nonempty interior.

16With the definition x ∈ lim infδ→1N [Γ
δ
(q)] ⇔ ∀δn → 1 ∃xn ∈ N

[
Γ

δn
(q)
]
such that

xn → x.
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As expected, the payoff x does depend on the players’ beliefs (but only
through 1 − pj ≥ 1 − pi, namely through the probability of being “greedy”
for the player who is more likely to be so).

At equilibrium, the players behave as in a war of attrition: the players
do not contribute until one of them gives in to his opponent and contributes
forever. The contributing player thus reveals that his type is normal, whereas
the opponent never contributes and keeps his type unknown. Note that, once
one of the players has revealed that is type is normal, the players agree on a
fixed sequence of moves, as in the standard proof of the Folk theorem with
complete information. Under our assumption of private values, given such an
agreement, the player who has not revealed his type would not mind revealing
it (provided that the agreed sequence of moves is not modified, of course).
However, the previous equilibrium cannot be reduced to a completely re-
vealing one. Indeed, in the discounted game, the time before revelation is
costly and matters at equilibrium. The fact that payoffs are discounted is
thus critical in the equilibrium described by the previous proposition. In
the undiscounted game, a normal player is always better off waiting for his
opponent to give in, because waiting is free.

Proof of proposition 3

In order to show that the strategies described in the statement define an
equilibrium, we first construct appropriate distributions for τi and τj. We
adopt the convention that τi = +∞ if player i is greedy. If player i is normal,
τi has the value that player i had chosen before stage 0. This means that
player i will start to contribute at stage τi if player does not contribute before
him. We adopt the same convention for player j.
Let us compute the distribution P that an outside observer will assign to τi
and τj, prior to stage 0. Note that player i (resp. j) is an outside observer
of τj (resp. τi).

Probability distribution of τj
We have P(τj = t) = 0 if t is an even number or if t > 2T + 1. Also,

P(τj = +∞) = 1− pj. Observe that if i never contributes and if j is normal,
then j is right to start to contribute at least at stage 2T + 1. Indeed, his
stage payoff will become 1 instead of ω from then on.

The law of τj is such that player i cannot be tempted to start to contribute
at odd stages or at stages t ≥ 2T+1: if i starts to contribute at such a stage t
and if j plays as assumed, it is then strictly better for i to start to contribute
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at stage t − 1, as his stage payoffs will switch from ω to 1 earlier. Yet,
it remains to show that i can not increase his overall payoff by starting to
contribute at stage 2T +2. Also, player i of normal type has to be indifferent
between starting contributing at any stage t = 0, 2, . . . , 2T . Let us denote
Gi(2t) the overall payoff of player i when his type is normal and when he is
willing to start to contribute at stage 2t, the law of τj being fixed. We have,
for any t ≥ 0:

Gi(2t) =
t−1∑

s=0

P(τj = 2s+ 1)(ω + δ2s+1) + P(τj > 2t− 1)(ω + (1− ω)δ2t).

In particular, Gi(0) = 1.
So, the law of τj has to be such that 1 = Gi(2) = . . . = Gi(2T ), and
1 ≥ Gi(2T + 2).
From equality Gi(2) = 1, we get

P(τj = 1) =
(1− δ2)(1− ω)

δ − δ2(1− ω)
.

Now, let us show by induction that:

∀t ∈ {0, 1, . . . , T − 1}, P(τj = 2t+ 1) = (1− P(τj = 1))t P(τj = 1).

The property is obvious for t = 0. Then, if the property holds for each
s ∈ {0, 1, . . . , t− 1} (t ≤ T − 1), let us show that it also holds for s = t. The
fact that Gi(2t + 2) = Gi(2t) implies that Gi(2t + 2) − Gi(2t) = 0, which
gives:

P(τj = 2t+ 1)
(
ω + δ2t+1

)
+ P(τj > 2t+ 1)

(
ω + (1− ω)δ2t+2

)

−P(τj > 2t− 1)
(
ω + (1− ω)δ2t

)
= 0.
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As P(τj > 2t+ 1) = P(τj > 2t− 1)− P(τj = 2t+ 1), we get:

P(τj = 2t+ 1) = P(τj > 2t− 1)
(1− δ2)(1− ω)

δ − δ2(1− ω)

= P(τj > 2t− 1)P(τj = 1)

=

(
1−

t−1∑

s=0

P (τj = 2s+ 1)

)
P(τj = 1)

=

(
1−

t−1∑

s=0

(1− P (τj = 1))s P(τj = 1)

)
P(τj = 1)

=

(
1− P(τj = 1)

1− (1− P (τj = 1))t

1− (1− P(τj = 1))

)
P(τj = 1)

= (1− P(τj = 1))t P(τj = 1), (13)

which is the property for s = t.

As T =

⌊
log(1−pj)

log
(

δ−1+ω

δ−δ2(1−ω)

)

⌋
=
⌊

log(1−pj)

log(1−P(τj=1))

⌋
, this implies that

T−1∑

t=0

P(τj = 2t+ 1) =
T−1∑

t=0

(1− P(τj = 1))t P(τj = 1)

= 1− (1− P(τj = 1))T ≤ pj

The definition of T also implies that

T∑

t=0

(1− P(τj = 1))t P(τj = 1) > pj.

Since
∑T

t=0 P(τj = 2t+ 1) = pj, we have

P(τj = 2T + 1) < (1− P(τj = 1))T P(τj = 1),

and this shows that Gi(2T + 2) < Gi(2T ) = 1. Indeed if we assume by
contradiction that Gi(2T + 2) − Gi(2T ) ≥ 0, then, as in equation (13), we
have that P(τj = 2T + 1) ≥ (1− P(τj = 1))T P(τj = 1).

Probability distribution of τi
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We have P(τi = t) = 0 if t is an odd number or if t > 2T . Also, note
that P(τi = +∞) = 1 − pi. Similar arguments as the ones used for the law
of τj show that j should not start contributing at any stage 2t, t ≥ 1, or
at any stage t > 2T + 1. Yet, it remains to show that he should not start
contributing at stage 0. Let us denote Gj(2t+1) the overall payoff of player
j when he is normal and is willing to start contributing at stage 2t + 1, the
law of τi being fixed. We have, for any t ≥ 0:

Gj(2t+ 1) =
t∑

s=0

P(τi = 2s)(ω + δ2s) + P(τi > 2t)(ω + (1− ω)δ2t+1).

The law of τi has to be such that Gj(1) = . . . = Gj(2T + 1), and such
that 1 ≤ Gj(1), for j not to be tempted to start contributing at stage 0.
The fact that Gj(1) = Gj(3) implies that

P(τi = 2) =
(1− δ2)(1− ω)(1− P(τi = 0))

δ − δ2(1− ω)
= P(τj = 1)(1− P(τi = 0)),

and then, as before, on can prove by induction that:

∀t ∈ {1, . . . , T}, P(τi = 2t) =

(
δ − 1 + ω

δ − δ2(1− ω)

)t−1

P(τi = 2)

= (1− P(τj = 1))t−1
P(τj = 1)(1− P(τi = 0))

The fact that P(τi = +∞) = 1− pi is equivalent to:

pi =
T∑

t=0

P(τi = 2t),

which is equivalent to

pi = P(τi = 0) +
T∑

t=1

P(τi = 2t)

= P(τi = 0) + P(τj = 1)(1− P(τi = 0))
T∑

t=1

(1− P(τj = 1))t−1

= P(τi = 0) + (1− P(τi = 0))
(
1− (1− P(τj = 1))T−1

)
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so that

P(τi = 0) = 1−
1− pi

(1− P(τj = 1))T−1

= 1− (1− P(τj = 1))
1− pi

(1− P(τj = 1))T

≥ 1− (1− P(τj = 1))
1− pi
1− pj

≥ 1− (1− P(τj = 1))

≥ P(τj = 1).

We then have:

Gj(1) = P(τi = 0)(1 + ω) + P(τi > 0)(ω + (1− ω)δ)

= P(τi = 0)(1 + ω) + (1− P(τi = 0))(ω + (1− ω)δ)

= P(τi = 0)(1− δ(1− ω)) + ω + (1− ω)δ

≥ P(τj = 1)(1− δ(1− ω)) + ω + (1− ω)δ

= 1 +
1− δ

δ
(1− ω),

so that Gj(1) ≥ 1.

Type dependent probabilities defining the equilibrium strategies
The values of P(τj = 2t+1) and of P(τi = 2t) enables us to specify player

i and j’s strategies: a “normal” player i chooses stage 0 with probability

αi
0 =

P(τi = 0)

pi
=

1

pi

(
1−

1− pi

(1− P(τj = 1))T−1

)
=

1

pi


1−

1− pi(
δ−1+ω

δ−δ2(1−ω)

)T−1




and stage 2t (1 ≤ t ≤ T ) with probability

αi
2t =

P(τi = 2t)

pi
=

1

pi
(1− P(τj = 1))t−1

P(τj = 1)(1− P(τi = 0))

=
1

pi

(
δ − 1 + ω

δ − δ2(1− ω)

)t−1
(1− δ2)(1− ω)

δ − δ2(1− ω)

1− pi(
δ−1+ω

δ−δ2(1−ω)

)T−1

=
1− pi
pi

(
δ − 1 + ω

δ − δ2(1− ω)

)t−T
(1− δ2)(1− ω)

δ − δ2(1− ω)
,
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A “normal” player j chooses stages 2t+ 1 (0 ≤ t ≤ T − 1) with probability

αj
2t+1 =

P(τj = 2t+ 1)

pj
=

1

pj
(1− P(τj = 1))t P(τj = 1)

=
1

pj

(
δ − 1 + ω

δ − δ2(1− ω)

)t
(1− δ2)(1− ω)

δ − δ2(1− ω)

and stage 2T + 1 with probability

αj
2T+1 =

P(τj = 2T + 1)

pj
=

1

pj

(
pj −

T−1∑

t=0

P(τj = 2t+ 1)

)

=
1

pj

(
pj − 1 + (1− P(τj = 1))T

)

=
1

pj

(
pj − 1 +

(
δ − 1 + ω

δ − δ2(1− ω)

)T
)
.

Our construction ensures that this strategic profile is an equilibrium.

Limit payoffs
Let us now give limit payoffs as δ goes to 1.

For any δ ∈ (1− ω, 1), by construction player i’s overall expected payoff is 1
if his type is normal. If his type is greedy, his payoff is:

z +
T∑

t=0

P(τj = 2t+ 1)δ2t+1

= z +
T−1∑

t=0

(1− P(τj = 1))t P(τj = 1)δ2t+1 + o(1)

= z +
δP(τj = 1)

1− δ2 (1− P(τj = 1))

(
1− δ2T (1− P(τj = 1))T

)
+ o(1)

One can check that

(1− P(τj = 1))T −−→
δ→1

1− pj.

and that
δP(τj = 1)

1− δ2 (1− P(τj = 1))
= 1− ω.
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Moreover,

δ2T ∼
δ→1

δ
2

log(1−pj)

log

(

δ−1+ω

δ−δ2(1−ω)

)

= exp


2 log δ

log(1− pj)

log
(

δ−1+ω
δ−δ2(1−ω)

)


 ,

so that, by a straightforward calculation:

δ2T ∼
δ→1

(1− pj)
ω

1−ω .

Finally, limit equilibrium payoff is 1 for a normal player i and

z + (1− ω)
(
1− (1− pj)

1
1−ω

)

for a greedy player i. By similar means, the same holds for player j.

Limit probabilities over joint actions
Let us define the probability

πδ(θi, θj)(a) =
+∞∑

t=0

(1− δ)δtP(at = a|θi, θj).

The values of limδ→1 πδ are given by17

θi = ω θi = z
c d c d

θj = ω c 0 1−P
2

0 γ

pj

d 1−P
2

P 0 1− γ

pj

θj = z c 0 0 0 0
d γ

pi
1− γ

pi
0 1

where
γ = (1− ω)

(
1− (1− pj)

1
1−ω

)

17The type dependent distributions described by limδ→1 πδ are not ex post individually
rational (recall (4)) when one of the player is normal and the other is greedy. Hence, as
expected, they do not satisfy (3) and do not define an equilibrium of the undiscounted
game.
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and

P =

(
1−

1

pi

1− pi
1− pj

)(
1−

1

pj

)(
1− (1− pi)

ω
1−ω

)

+

(
1

pi

1− pi
1− pj

(
1−

1

pj

)
+

1

pj

(
1−

1

pi

1− pi
1− pj

))
ω
(
1− (1− pj)

1
1−ω

)

+
1

pipj

1− pi
1− pj

ω

2− ω

(
1− (1− pj)

2−ω
1−ω

)
�

6 Role of the assumptions

6.1 Independent private values

Independent private values are crucial in proposition 1. Without this as-
sumption, the Nash equilibria of Γ∞(q) are no longer payoff equivalent to
completely revealing equilibria, even if there are two players and only one of
them has private information (see Hart (1985) and Aumann and Maschler
(1995)).

6.2 Uniform punishments

In the case of two players, if values are private and independent in Γ(q),
Koren (1992) proves that the Nash equilibria of Γ∞(q) are payoff equivalent
to completely revealing equilibria without assuming uniform punishments
(i.e., (2)). However, in this more general case, the equilibrium conditions
can take a more complex form than (3). Examples 3 and 4 below illustrate
how the absence of uniform punishments modifies the results.

In example 3, the conditions (3) of proposition 1 are no longer sufficient
for an equilibrium. Proposition 2 does not hold either: we construct an equi-
librium payoff in Γ∞(q) which does not belong to F [Γ(q)], i.e., cannot be
achieved through commitment in Γ(q).

In example 4, an assumption weaker than uniform punishments holds,
which guarantees that the Nash equilibrium payoffs of Γ∞(q) can be char-
acterized exactly as in proposition 1, by (3). However, proposition 2 still
fails.

In both examples 3 and 4, there are two players and only player 1 has
private information (|Θ2| = 1, A = A1 × A2), so that the conditions in
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proposition 1 reduce to: there exists π(θ1) ∈ ∆(A), θ1 ∈ Θ1, such that, for
player 1,

x1(θ1) = u1(θ1, π(θ1))

≥ u1(θ1, π(θ
′
1)) ∀θ1, θ

′
1 ∈ Θ1 i.e., incentive compatibility (14)

≥ v1(θ1) ∀θ1 ∈ Θ1 i.e., ex post individual rationality (15)

and, for player 2,

x2 = u2 (π(θ1)) ≥ v2 ∀θ1 ∈ Θ1 i.e., ex post individual rationality (16)

As shown by Hart (1985), in order to characterize the equilibrium payoffs
of Γ∞(q), ex post individual rationality (namely, (5) or (15) above) is not
sufficient. A stronger condition, which makes full use of the fact that Γ∞(q)
is an infinitely repeated game, is needed. This condition is formally stated
below, in the current framework of lack of information on one side.18 Let
val1 [u] denote the value to player 1 of the one-shot game with payoff function
u.

Definition A vector payoff x1 = (x1(θ1))θ1∈Θ1 is individually rational for
player 1 in the infinitely repeated game Γ∞(q) if and only if

∀p1 ∈ ∆(Θ1),
∑

θ1

p1(θ1)x1(θ1) ≥ val1

[
∑

θ1

p1(θ1)u1(θ1, ·)

]
(17)

Let INTIR1 [Γ∞(q)] be the set of vector payoff that are individually
rational for player 1 in the infinitely repeated game Γ∞(q). The previous def-
inition is justified by Blackwell (1956)’s approachability theorem: condition
(17) is necessary and sufficient for player 2 to have a strategy in the infinitely
repeated game Γ∞(q) such that player 1’s payoff cannot exceed x1(θ1) when
he is of type θ1.

Let us compare INTIR1 [Γ∞(q)] with the two sets of individually ratio-
nal payoffs introduced for the one-shot game Γ(q), namely, EXPIR1 [Γ(q)]
and INTIR1 [Γ(q)]. First of all, player 2 can use a punishment strategy
of the one-shot game at every stage of the infinitely repeated game: as a

18The same condition holds as well in two-person games with independent private values
(see Koren (1992)).
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consequence of Blackwell (1956)’s characterization, (11) implies (17). Fur-
thermore, (17) holds in particular at the extreme points of ∆(Θ1), so that it
implies ex post individual rationality (i.e., (15)). To sum up,

INTIR1 [Γ(q)] ⊆ INTIR1 [Γ∞(q)] ⊆ EXPIR1 [Γ(q)]

These inclusions hold in two-person games with independent private values,
even if player 2 also has private information (see Koren (1992)). From Lemma
1, under the assumption of uniform punishments, the three sets coincide. In
examples 3 and 4 below, this assumption does not hold. In example 3,
the two inclusions are strict. In example 4, the first inclusion is strict but
INTIR1 [Γ∞(q)] = EXPIR1 [Γ(q)].

Example 3

Let n = 2, Θ1 = {h, l}, |Θ2| = 1: only player 1 has private information.
Here, the prior probability distribution is fully described by the probability
that player 1’s type is h, which we still denote as q ∈ [0, 1]. Let |A1| = |A2| =
2 and the utility functions be described by

u1(h, ·) =

(
1 0
0 0

)
u1(l, ·) =

(
0 0
0 1

)

u2(·) =

(
0 2
0 0

)

The assumption of uniform punishments is clearly not satisfied: player 2 must
play right in order to hold player 1 of type h at his value level v1(h) = 0 and
must play left to hold him at v1(l) = 0. Consider the probability distribution

π(h) = π(l) = π =

(
1
4

1
2

0 1
4

)
∈ ∆(A1 × A2)

Let us check that it defines an equilibrium of Γ∞(q), for every p ∈ (0, 1),
namely that the associated payoffs, x1(h) = x1(l) = 1

4
, x2 = 1, verify the

above conditions (including (17)). Player 2’s payoff x2 = 1 is individually
rational since the value of player 2’s game is v2 = 0. π is clearly incen-
tive compatible since it is nonrevealing. According to (17), a vector payoff
(x1(h), x1(l)) is individually rational for player 1 in Γ∞(q) if and only if

∀p ∈ [0, 1] , px1(h) + (1− p)x1(l) ≥ val1

(
p 0
0 1− p

)
= p(1− p)
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so that (1
4
, 1
4
) is indeed individually rational for player 1 in Γ∞(p), for every

p ∈ (0, 1). Hence ((1
4
, 1
4
), 1) ∈ N [Γ∞(q)] for every q ∈ (0, 1). However,

((1
4
, 1
4
), 1) /∈ F [Γ(q)] because (1

4
, 1
4
) is not interim individually rational in the

sense of (11): let τ = (β, 1 − β); maxa1 u1(h, a1, τ) = β ≤ 1
4
is incompatible

with maxa1 u1(l, a1, τ) = 1− β ≤ 1
4
.

Consider now the probability distribution

π(h) = π(l) = π =

(
0 1
0 0

)

π satisfies the equilibrium conditions of proposition 1 (namely (14), (15) and
(16) above) but the vector payoff of player 1 is (0, 0) and is not individually
rational for player 1 in Γ∞(q), namely does not satisfy (17). Hence π does
not define an equilibrium of Γ∞(q).

Example 3 illustrates that player 1 can benefit from not revealing his
information to player 2, if player 2 intends to punish him. Of course, when
uniform punishments are available, the revelation of information does not
matter.�

Example 4

The framework is the same as in example 3 but the utility functions are
described by

u1(h, ·) =

(
1 2
0 −1

)
u1(l, ·) =

(
−1 0
2 1

)

u2(·) =

(
2 0
0 2

)

v1(h) = v1(l) = 1. As in the previous example, the assumption of uniform
punishments is not satisfied. Let p ∈ [0, 1].

val1 [pu1(h, ·) + (1− p)u1(l, ·)] = val1

(
2p− 1 2p
2− 2p 1− 2p

)

= 1− 2p if p ≤
1

4

=
1

2
if
1

4
≤ p ≤

3

4

= 2p− 1 if p ≥
3

4
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This function is convex so that a vector payoff (x1(h), x1(l)) is individually
rational for player 1 in the sense of (17) if and only if it is ex post individ-
ually rational (namely, (15): x1(h) ≥ 1 and x1(l) ≥ 1): INTIR1 [Γ∞(q)] =
EXPIR1 [Γ(q)]. In particular, in this example, the equilibrium conditions
in Γ∞(q) are correctly described in proposition 1, namely by (14), (15) and
(16).19

In spite of the previous property, proposition 3 fails. The probability
distributions

π(h) =

(
1 0
0 0

)
π(l) =

(
0 0
0 1

)

lead to an equilibrium in Γ∞(q), with payoff ((1, 1), 2), but (1, 1) is not in-
terim individually rational for player 1 in the sense of (11): let τ = (β, 1−β);
maxa1 u1(h, a1, τ) = 2 − β ≤ 1 is incompatible with maxa1 u1(l, a1, τ) =
β + 1 ≤ 1.�

In both examples 3 and 4, interim individual rationality takes a different
form in the one-shot game and in the infinitely repeated game. In example 3,
in order to defend himself, player 1 must play in a non-revealing way in the
repeated game. In example 4, player 1 benefits from revealing his information
to player 2.

The phenomena described in the previous examples were first identified in
the study of zero-sum infinitely repeated games with incomplete information
(see Aumann and Maschler (1995)).

7 Appendix

7.1 Proof of proposition 1

7.1.1 Strategies and payoff functions

A strategy of player i in Γ∞(q) is a sequence of mappings σi = (σt
i)t≥0,

σt
i : Θi × At−1 → ∆(Ai). The n−tuple of prior probability distributions

q = (qi)1≤i≤n and an n−tuple of strategies σ = (σi)1≤i≤n induce a probability
distribution over Θ×AN, where AN is the set of all infinite sequence of moves.

19The simplification of the equilibrium conditions in the case of convex value functions
(which give rise to a linear concavification) is acknowledged in Koren (1992), remark 4. A
similar condition is considered in Forges (1988).
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We denote as Eq,σ the corresponding expectation. Given a = (at)t≥0 ∈ AN,
let us define

U
T+1

i (θi, a) =
1

T + 1

T∑

t=0

ui(θi, a
t) for every i, θi and T = 0, 1, ...

As in Hart (1985) (see also Forges (1992), Koren (1992), Shalev (1994)), we
define the interim payoffs associated with an n−tuple of strategies σ as

Ui(θi, σ) =L
[
Eq,σ(U

T

i (θi, ã) | θi)
]

where L is a Banach limit and ã denotes the sequence of moves as a random
variable.

7.1.2 Sufficient conditions for an equilibrium

Let us assume that the conditions (3) hold. Then we can construct an
n−tuple of strategies σ = (σi)1≤i≤n in Γ∞(q) which achieve the interim pay-
offs xi(θi) (namely, such that xi(θi) = Ui(θi, σ) for every i, θi) and which
define a Nash equilibrium of Γ∞(q). For every player i, σi is described as
follows:

at the first stage (t = 0): choose ai so as to reveal type θi (which is possible
since |Ai| ≥ |Θi|)

at every stage t ≥ 1: given the n−tuple of reported types θ′, play according
to π(θ′) if π(θ′) was chosen at every previous stage; otherwise, play a
punishment strategy in order to keep the first player j who did not
follow π(θ′) below his ex post individually rational level vj(θj).

7.1.3 Necessary conditions for an equilibrium

Let us start with an arbitrary Nash equilibrium σ = (σi)1≤i≤n in Γ∞(q).
Let σi(θi) be the associated strategy of player i of type θi, namely, σi(θi) =
(σt

i(θi))t≥0, with σt
i(θi) : A

t−1 → ∆(Ai). Let xi(θi) = Ui(θi, σ) be the asso-
ciated interim equilibrium payoff of player i of type θi. Let us show that
the conditions (3) hold, namely, that the same payoffs can be achieved by a
completely revealing equilibrium.

In order to get some intuition, let us assume that, at equilibrium, there
is a finite, possibly very long, phase of information transmission (say, until
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stage t0) and that afterwards (thus, at stages t0 + 1, t0 + 2,...), the players
play independently of their types. Since σ is an equilibrium, player i of type
θi cannot benefit from playing according to σi(θ

′
i), with θ′i possibly different

from θi, until stage t0 and then, from stage t0 +1 on, by either continuing to
play σi(θ

′
i) or just guaranteing himself vi(θi) (i.e., by playing optimally in “his

true one-shot game”, with payoffs ui(θi, ·), at every stage t0 + 1, t0 + 2,...).20

More precisely, the equilibrium strategies σi(θi) generate probability dis-
tributions µσ(· | θ1, ..., θn) over the limit frequencies of moves, i.e., over ∆(A)
(see Hart (1985) or Koren (1992) for details). Together with the prior q,
these probability distributions generate a probability distribution Pq,µσ

over
Θ×∆(A) such that

xi(θi) = Ui(θi, σ) = Eq,µσ
(ui(θi, π̃) | θi) for every i, θi (18)

where Eq,µσ
is the expectation with respect to Pq,µσ

and π̃ stands for the
frequency of move as a random variable.21

By considering the previous specific deviations of player i of type θi
(namely, mimic type θ′i and/or play optimally in the one-shot game), we
obtain that

xi(θi) ≥ Eq,µσ
(max {ui(θi, π̃), vi(θi)} | θ′i) for every i, θi, θ

′
i (19)

We can also rely on a variant of the revelation principle to see that (18)
and (19) must be satisfied as soon as σ is an equilibrium. Let us imagine
that a fully reliable mediator asks the players to report their types and then
given the n−tuple of reported types θ′ ∈ Θ, chooses a frequency of moves
π ∈ ∆(A) according to µσ(· | θ′) and recommends π to all players22. In
other words, when the players report θ′ = (θ′i)1≤i≤n, the mediator selects π
exactly as the players themselves do at the equilibrium σ. (18) says that
by telling the truth and following the recommendation of the mediator, the
players get the same interim payoff as by playing σ. (19) says that if players

20Note that player i may reveal further information on his type by playing so as to
guarantee himself vi(ti). This typically happens out of equilibrium.

21If information transmission ends up after finitely many stages t0, π̃ can be interpreted
as the frequency of moves from stage t0 + 1 on.

22As in the standard proof of the Folk theorem under complete information, we interpret
a distribution of moves π as a deterministic sequence of moves (in A) which achieves the
frequency of π. This interpretation is straighforward if the components of π are rational
(in Q).
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j 6= i tell the truth to the mediator, follow the recommendation π as long as
every player follows π and punish any deviator at his ex post minmax level,
then player i of type θi cannot benefit from reporting type θ′i to the mediator
and/or not following π.

Conditions (18) and (19) differ from (3) in two respects. (18) and (19)
involve (type dependent) probability distributions over ∆(A), while (3) is
formulated in terms of deterministic distributions π(θ), θ ∈ Θ. Moreover, in
(19), the probability distribution µσ is not necessarily completely revealing23.

By construction, and recalling that types are independent of each other,
for any function f over ∆(A), the probability Pq,µσ

satisfies

Eq,µσ
(f(π̃) | θi) =

∑

θ−i

q−i(θ−i)Eµσ
(f(π̃) | θi, θ−i) for every i, θi

Hence, for every i, θi, (18) can be rewritten as

xi(θi) =
∑

θ−i

q−i(θ−i)Eµσ
(ui(θi, π̃) | θi, θ−i)

Recalling that ui(θi, ·) is linear, we get

xi(θi) =
∑

θ−i

q−i(θ−i)ui (θi, Eµσ
(π̃ | θi, θ−i))

which is the first part of (3) if we set π(θ) = Eµσ
(π̃ | θ).

By proceeding similarly and using in addition that “max” is convex, for
every i, θi, θ

′
i, (19) can be rewritten as

xi(θi) ≥
∑

θ−i

q−i(θ−i)Eµσ
(max {ui(θi, π̃), vi(θi)} | θ′i, θ−i)

≥
∑

θ−i

q−i(θ−i)max {Eµσ
(ui(θi, π̃) | θ

′
i, θ−i) , vi(θi)}

≥
∑

θ−i

q−i(θ−i)max {ui (θi, Eµσ
(π̃ | θ′i, θ−i)) , vi(θi)}

≥
∑

θ−i

q−i(θ−i)max {ui (θi, π(θ
′
i, θ−i)) , vi(θi)}

The last expression is the inequality in (3).�

23The above reliable mediator selects π as a random function of the players’ reported
types but does not reveal these reported types.
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7.2 Computation of example 1

Recall from section 3.2. that the ex post individual rationality conditions are
(7), namely,

γd ≤ kγ, βd ≤ kα and ρ ≥ (1−
1

z
)(1− βd).

Since ρ ≤ 1− βd, we can set ρ = (1− ǫ)(1− βd) with ǫ ≤ 1
z
.

Furthermore, α ≤ (1− βd)− ρ = ǫ(1− βd). Hence, βd ≤ kα ≤ kǫ(1− βd),
so that βd ≤

kǫ
1+kǫ

.
A further equilibrium condition is (8), namely,

p(kγ − γd) + (1− p)(kα− βd) ≥ p(kρ− βd).

Since kγ − γd ≤
k
2
and kα− βd ≤ kǫ− (kǫ+ 1)βd, this condition implies

p

[
(2 + k)βd −

k

2

]
≥ (1 + kǫ)βd − kǫ.

In the left hand side, (2 + k)βd ≤
k
2
, because βd ≤

kǫ
1+kǫ

and ǫ ≤ 1
z
< 1

k+4
. We

thus get the following condition on p

p ≤
(1 + kǫ)βd − kǫ

(2 + k)βd −
k
2

≤ 2ǫ <
2

k + 4
,

where the second inequality comes from the fact that the expression is de-
creasing in βd if ǫ < 1

k+4
.�
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