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Elimination of extremal index zeroes from generic

paths of closed 1-forms

C. Moraga Ferrándiz ∗

September 4, 2014

Abstract

Let α be a Morse closed 1-form of a smooth n-dimensional manifold M. The zeroes

of α of index 0 or n are called centers. It is known that every non-vanishing de Rham

cohomology class u contains a Morse representative without centers. The result of this

paper is the one-parameter analogue of the last statement: every generic path (αt)t∈[0,1]
of closed 1-forms in a fixed class u 6= 0 such that α0,α1 have no centers, can be modified

relatively to its extremities to another such path (βt)t∈[0,1] having no center at all.

1 Introduction and main result

Let M be a closed smooth manifold of dimension n and u be a non-zero de Rham cohomology

class of degree 1 of M. We are considering (αt)t∈[0,1] a path of closed 1-forms where [αt ] = u

for every t. Generically, such a path only consists of Morse 1-forms but in a finite set of times

{ti}s
i=1 where the path crosses transversely the co-dimension one strata of birth/elimination

closed 1-forms. Namely, such an αti presents a unique degenerate zero p ∈ M such that for some

coordinate chart U of p and every t near to ti we have:

αt |U = d
(
x3

1 ∓ (t − ti)x1 +Q(x2, . . . ,xn)
)
.

Here Q is a non-degenerate quadratic form in the last n− 1 variables. The birth/elimination

strata are naturally co-oriented: we will say that αti is of birth-type if the orientation induced by

the path represents the fixed co-orientation of the strata; it corresponds to the “minus” case in the

last formula, where a pair of Morse critical zeroes of consecutive index appears as t increases

over ti.

The genericness of these properties for a path is a direct consequence of Thom’s transversality

theorem in jet spaces ([Tho56] or [GG73] for a more educational presentation), as it was shown
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by Cerf in [Cer68] for the case u = 0 (see also [Lau10]).

Among the zeroes of a Morse closed 1-form α , that we denote by Z(α), those of extremal

index are called centers. The idea of cancelling pairs of critical points of consecutive index

which are connected by a unique (pseudo)gradient trajectory, so much exploited in proving

Smale’s theorem of h-cobordism (see [Mil65]), is used in the paper [AL86] to construct α ′, a

Morse closed 1-form cohomologous to α which does not have any center. Their only restriction

is to ask the cohomology class u not to be rational (rk(u)> 1). Latour gives a more topological

proof without any requirement on u 6= 0 in [Lat94]. We deal with the one-parameter version of

this result and obtain the following theorem:

Theorem 1. Let dim(M)≥ 3. Every generic path of cohomologous closed 1-forms (αt)t∈[0,1]
such that α0,α1 have no centers can be deformed into a path (βt)t∈[0,1] of the same kind which

has the same extremities and no center at all.

A natural way to distinguish isotopy classes of non-singular closed 1-forms in the same

cohomology class, is to study deformations of paths of cohomologous 1-forms relative to their

extremities, the latter being non-singular. One expects to obtain a K-theoretic algebraic obstruc-

tion to isotopy on the non-exact case, in the spirit of [HW73]. This problem is partially treated

on [MF12], where we provide a process which would help to define such an obstruction for

generic paths only containing two intermediate consecutive indexes. The mentioned process,

that we call “graft of swallow-tail loops”, requires theorem 1 of this paper to work. Going

one step further – to paths whose critical indexes are contained on the region {2, . . . ,n−2} –

together with the graft of swallow-tail loops would give a way to define the obstruction.

Since lemmas 13 and 16 easily generalize to arbitrary index, they should be useful to shrinking

further the range of critical indexes in the context of Novikov acyclicity.

2 Novikov homology

Take α a Morse closed 1-form and choose B∗ ⊂ M̃ a lifting of Z(α) to the universal cover

M̃
π−→M, where P ∈ B∗ corresponds bijectively to p ∈ Z(α). We remark that B∗ is graduated by

the index. From that, we derive a graded module C∗(α) freely generated by B∗ over the Novikov

ring Λ−u associated with the cohomology class of α . We recall that Λ−u is the completion of

the group ring Λ := Z[π1M] given by

Λ−u =

{

∑
g∈π1M

ngg,ng ∈ Z

∣∣∣∣∣
ng = 0 except for finitely many g

or lim
ng 6=0

u(g) =−∞

}
.

As for Morse functions, a differential for C∗(α) can be obtained if we give us ξ , a special kind

of vector field adapted to α .

Definition 2. A vector field ξ is a pseudo-gradient of a Morse closed 1-form α if the function

α(ξ ) ∈ C ∞(M)
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(1) is strictly negative outside Z(α) and

(2) Z(α) are non-degenerate maxima of α(ξ ).

Such a vector field vanishes only at Z(α). Each zero p ∈ Z(α) has a local stable and

unstable manifold determined by ξ ; they are denoted respectively by W s
loc(p),W u

loc(p) and are

diffeomorphic to Euclidean spaces of complementary dimension. Their intersection is transverse

and reduced to p. The global stable and unstable manifold of p ∈ Z(α) determined by ξ are

defined by

W s(p) :=

{
x ∈ M

∣∣∣∣ lim
t→+∞

ξ t(x) = p

}
; W u(p) :=

{
x ∈ M

∣∣∣∣ lim
t→−∞

ξ t(x) = p

}
,

where (ξ t)t∈R denotes the flow of ξ . Given P a lifting of p, we denote W s/u(P) the connected

component of π−1(W s/u(p)) containing P.

We denote the set of orbits of ξ going from p to q by L (p,q). The image of these orbits is

clearly contained in W u(p)∩W s(q). The choice B∗ allows one to define the enwrapment, which

is a map L (p,q)
e−→π1M. Remark that every ℓ ∈ L (p,q) has a unique lifting ℓ̃ starting from

P; ℓ̃ goes so to gℓQ for a unique gℓ ∈ π1M. We set e(ℓ) := gℓ.

Definition 3. A pseudo-gradient ξ of a Morse closed 1-form α is Morse-Smale if its global

stable and unstable manifolds intersect transversely:

W u(p) ⋔W s(q), for all p,q ∈ Z(α).

This class of vector fields allows one to count orbits from p to q, two zeroes of α such

that ind(p) = ind(q) + 1. The orbits ℓ ∈ L (p,q) depend on the choice of such a ξ and

their enwrapment e(ℓ) on the choice of the lifting B∗. A sign s(ℓ) = ±1 can be computed

if an additional choice of orientation of the unstable manifolds is made. We obtain the in-

cidences 〈P,Q〉ξ ,B := ∑ℓ∈L (p,q) s(ℓ)e(ℓ) ∈ Λ−u. The property of being Morse-Smale for a

pseudo-gradient is generic as it was proven in [Kup63]; the interested reader is sent to [Paj06].

The next theorem is due to Latour:

Theorem 4 ([Lat94]). The Λ−u-linear extension of the map

∂
ξ ,B
∗+1 : C∗+1(α) −→ C∗(α)

P 7−→ ∑
Q∈B∗(α)

〈P,Q〉ξ ,BQ

is a differential for the graded Λ−u-module C∗(α). Moreover, the complex C∗(α,∂
ξ ,B
∗ ) does

not depend on the choice of the triple (α,ξ ,B∗) up to simple-equivalence.

The notion of simple-equivalence can be found on [Mau67]. The homology of the complex

C∗(α,∂
ξ ,B
∗ ), which we denote by H∗(M,u), only depends on the class u and it is called the
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Novikov homology of the class u. The historical reason is that the first theorem with the flavour of

theorem 4 was given by Novikov in his foundational paper [Nov81], which first gave Morse-type

inequalities for S1-valued functions f : M → S
1. These inequalities are related with a homology

theory1 of an abelian cover associated to f . Later, Sikorav proved in [Sik87, Ch. IV] that the

homology defined by Novikov is indeed a homology with local coefficients and extended it to

non-abelian covers.

Latour also proved that H∗(M,u) coincides with the version of Novikov homology on the

universal cover defined in Sikorav’s thesis.

Further versions of theorem 4 can be found on [Paj06, Ch. 14, Th. 2.2 and Th. 2.4] and

on [Far04, Th. 3.1].

3 Connecting saddles and elimination of centers

We are going to consider sinks (centers of index 0). The case of sources (centers of index n) can

be treated in an analogous way.

A Morse closed 1-form α induces a singular foliation Fα in M: two points x,y belong to the

same leaf F if there exists a smooth path [0,1]
γ−→M joining x to y such that α(γ ′(t)) = 0 for

all t ∈ [0,1]. A leaf is called singular if it contains some zero of α .

Consider now ξ a pseudo-gradient for α . The orbits ℓ ∈ L ξ (p,q) of ξ going from p to q, two

zeroes of α , have an associated transverse length L(ℓ). This length is given by the integral

L(ℓ) :=−
∫

ℓ∗(α),

which is positive thanks to the condition (1) of the definition 2 of a pseudo-gradient.

Remark that u induces a group morphism π1M
u−→R given by integrating α along a repre-

sentative γ of a loop g = [γ]. As π∗α is exact, let us take a primitive M̃
h−→R, which verifies

dh = π∗α . An easy calculation shows that for ℓ ∈ L (p,q) we have:

L(ℓ) = L(ℓ̃) = h(P)−h(e(gℓ)Q) = h(P)−h(Q)−u(e(gℓ)), (1)

where ℓ̃ denotes the lifted orbit starting from P. This equality relates numerically the choice of

liftings with the enwrapment of orbits.

Notation 5. We call saddles S := Z1(α) the index 1 zeroes of α . The unstable manifold of

a saddle s associated with a pseudo-gradient ξ always decomposes as W u(s) = {s}∪ ℓ+∪ ℓ−

where ℓ+, ℓ− are two different non-trivial orbits called separatrices.

A well known fact about Novikov homology is that H0(M,u) = 0 for every u 6= 0 (see [Far04,

Cor. 1.33] for example). So, for ξ Morse-Smale, it implies in particular that the set Sc of

saddles with at least one separatrix going to c is non-empty: otherwise the lifting C has no

1In the mentioned paper, Novikov called “semi-open” his homology.
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chance to be in Im(∂
ξ
1 ) and we would have 0 6= [C] ∈ H0(M,u).

We distinguish two kinds of saddles s ∈ Sc.

The saddle s ∈ Sc is said to be of type ker if L (s,c) = {ℓ+, ℓ−}
and L(ℓ+) = L(ℓ−). Any lifting of W u(s) determines two liftings

of c related by an element g ∈ ker(u) as in figure 1: this is a direct

consequence of relation (1). These collection of saddles is denoted

by S ker
c . Saddles in the complementary set S n

c := Sc rS ker
c are

called normal saddles. Remark that if C ∈ B∗ is the chosen lifting

of a sink c, we can find a lifting S of s ∈ Sc such that W u(S) is as

in figure 1 or 2. However, there is a priori no reason to have S ∈ B∗.

C

S

gC

ℓ̃− ℓ̃+

Figure 1: s ∈ S ker
c

−∞π(C ′) 6= π(C) = c

CC

S

C′

S

C′

ℓ̃−

C

ℓ̃+ ℓ̃− ℓ̃+ ℓ̃− ℓ̃+

C

S

gC

ℓ̃− ℓ̃+

u(g) < 0

S

Figure 2: Possible situations of a lifting of W u(s) to M̃ for s ∈ S n
c .

If a normal saddle s ∈ S n
c has its two orbits going to c, their transverse lengths2 are

necessarily different; for any normal saddle s, we note by ℓ+ the shortest orbit joining s to c and

call it the connecting orbit of s. We note by L +
c the finite set of connecting orbits from the set

of normal saddles s ∈ S n
c to c.

Definition 6. A connecting saddle for the sink c is a normal saddle s ∈ S n
c minimizing the

length of connecting orbits L +
c

L−→R
+. In other words: L(ℓ+s )≤ L(ℓ+

s′ ) for every s′ ∈ S n
c .

Connecting saddles are going to be the main tool to eliminate sinks. We justify their existence

by a purely algebraic argument in lemma 7 below.

Lemma 7. Let α be a Morse closed non-exact 1-form together with a Morse-Smale pseudo-

gradient ξ . Then, every sink c ∈ Z0(α) admits a connecting saddle.

Proof. Choose liftings of c and of saddles S ; for saddles in Sc we do that as in figures

1 and 2. Let us see that Sc = S ker
c would imply that C /∈ Im(∂

ξ
1 ), leading to the same

contradiction as before. By identifying saddles with their chosen liftings, we clearly have

C /∈ ∂
ξ
1 (Λ−u ⊗ (S rSc)). An element of Im

(
∂

ξ
1 |Λ−u⊗(S ker

c )

)
is written as a finite sum times

C:

µ ·C := ∑
si∈S ker

c

λi(±1±gi) ·C,

2Since there is no other notion of length associated with orbits in the present paper, we will in the sequel forget

the adjective “transverse” relative to this length.
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where gi ∈ ker(u) and λi ∈ Λ−u. The next map is a morphism of Z[ker(u)]-modules:

(·)∗ : Λ−u −→ Z[ker(u)]
λ 7−→ ∑

g∈ker(u)
ngg .

Since (±1±gi) = (±1±gi)
∗ for all i, we have µ∗ = ∑λ ∗

i (±1±gi). Consider I the kernel of

the augmentation morphism of rings Z[ker(u)]
ε2−→Z2 given by ng 7→ nmod2. As the terms

(±1±gi) belong to the augmentation ideal, also does µ∗. Then µ cannot be 1.

Definition 8. A Morse closed 1-form α is said to be 0-excellent if there exists a pseudo-gradient

ξ for α such that for every sink c ∈ Z0(α), the map L +
c

L−→R
+ is injective.

Remark 9. The property of 0-excellence guarantees the uniqueness of connecting saddles:

the connecting saddle of a sink c is the only s ∈ S n
c such that ℓ+s realizes the minimum of

L +
c

L−→R
+. Moreover, 0-excellence is generic for α because any Morse closed 1-form can

be slightly perturbed in order to obtain a cohomologous 0-excellent 1-form by application of

lemma 10 to saddles.

Lemma 10 (REARRANGEMENT LEMMA). Let p be a zero of a Morse closed 1-form α0 of index

k, equipped with a primitive M̃
h0−→R and a pseudo-gradient ξ ; consider P a lifting of p to M̃.

If K > K′ > 0 are such that

W u(P)∩h−1
0 ([h0(P)−K,+∞)) is an embedded disk D

k,

then there exists U a neighbourhood of p and a path (αt)t∈[0,1] of cohomologous Morse closed

1-forms with primitives (ht)t∈[0,1] such that for all t ∈ [0,1] we have:

1. ξ is pseudo-gradient of αt ,

2. U ∩Z(αt) = p,

3. αt = α0 on MrU and

4. h1(P) = h0(P)−K′.

Proof. In the context of real-valued functions, this lemma is classical and can be found in [Mil65,

4.1] for example. For closed non-exact 1 forms, it is also well known and can be found

in [Far04, 9.5.1] under a slightly different presentation. The hypothesis about W u(P) allows

one, if k > 1, to take the neighbourhood U as a thickening of W s
loc(p)∪D

k in such a way that

it has lateral boundary ∂latU diffeomorphic to S
k−1 ×S

n−k−1 × [0,1] where each (x,y)× [0,1]
is contained in an orbit of ξ . A properly chosen isotopy of [0,1]2 decreases the values of

the primitive on a collar of ∂latU inside U as claimed; this is standard and carefully proven

in [MF12, Lemme 2.2.34]. Since we deal principally with sinks (k = 0), and the mentioned

choice of U is no more possible in this case, we present here the proof for sinks. Remark

that sinks automatically verify the hypothesis about W u(P) = {P} for every K > 0: there is no
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obstruction to decrease the values of a primitive as much as we want near local minima.

Choose ξ a Morse-Smale pseudo-gradient for α0 and call m := h0(C). Define U :=W s
loc(c)

and take V the connected component of π−1(U) containing C. We provide Dn
ε , the closed n-disk

of radius ε > 0, with polar coordinates (θ ,r) ∈ Sn−1×[m,m+ε]
Sn−1×{m} . By taking an ε > 0 small enough,

we have a diffeomorphism Ψ : Dn
ε →V ∩h−1

0 ((−∞,m+ ε]) such that:

1. h0

(
Ψ(Sn−1 ×{r})

)
= r, for every r ∈ [m,m+ ε] and

2. Ψ({θ}× (m,m+ ε]) is a lifting of a trajectory of ξ , for all θ ∈ S
n−1.

Take (ϕ)t∈[0,1] an isotopy of R such

that for all t ∈ [0,1]:

1. ϕt |[m+ ε
2 ,∞) = Id,

2. ϕt |(−∞,m+ ε
4 ]
= Id−tK.

m−K

m+ ε

2

m

m+ ε

2

ϕ1

Id

ϕ1

Figure 3: Graph of ϕ0 and ϕ1.

The path ht := ϕt ◦ h0|V extends π1M-equivariantly to V ′ :=
⋃

g∈π1M gV and then to the

whole M̃ by taking ht = h0 on M̃rV ′. The induced path of 1-forms αt := π∗(dht) fulfills the

required conditions.

The vector field ξ clearly keeps the property of being a pseudo-gradient all along the path

(αt)t∈[0,1] since the values of αt(ξ ) are those of α0(ξ ) eventually multiplied by ϕ ′
t > 0.

We only need the cases k = 0,1 of lemma 10 in this paper. We want to eliminate pairs

of Morse zeroes of these indexes; the next version of the Morse elimination lemma, which

corresponds to the only theorem of [Lau13], is well adapted to our purpose.

Lemma 11 (MORSE ELIMINATION LEMMA). Let N
h0−→R be a Morse function equipped with a

Morse-Smale pseudo-gradient ξ . Let p,q two critical points of h0 such that ind(p) = ind(q)+1.

Suppose that there exists ε > 0 such that every orbit of W u(p) reaches the level h−1
0 (h0(q)− ε)

but one which goes to q,

then there exists V a neighbourhood of W u(p)∩h−1
0

(
[h0(q)− ε,+∞)

)
and a generic path of

functions (ht)t∈[0,1] such that:

1. ht is Morse for all t 6= 1
2
,

2. ht = h0 on N rV for all t and

3. Crit(ht |V ) =∅ for all t > 1
2
.

Lemma 12. Let s be a connecting saddle for a sink c of a Morse closed 1-form α0. There exists a

generic path (αt)t∈[0,1] of cohomologous 1-forms, beginning at α0, crossing the birth/elimination

strata only once and such that Z(α1) = Z(α0)r{s,c}.
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Proof. Equip α0 with a Morse-Smale pseudo-gradient such that the hypothesis in the present

lemma is verified. Consider M̃
h0−→R a primitive of α0; since s is a normal saddle we can

take S,C, liftings of s,c as in figure 2. We want to apply lemma 11 relatively to p = S,q =C,

which are joined by the lifted connecting orbit ℓ̃+. Since W u(S) has only another orbit, namely

ℓ̃− and thanks to equation (1), the hypothesis of lemma 11 relative to W u(S) is equivalent to

L(ℓ−)> L(ℓ+). The only situation which does not verify this inequality is that of first picture on

figure 2; but in this case |L (s,c)|= 1 and the orbit ℓ− of s does not go to c. We can then apply

lemma 10 to P =C′, the ending point of ℓ̃−, in order to decrease the value h0(C
′) as much as we

want without affecting the value of h0 on C; after this modification the situation is that of the

second picture of figure 2. In any case, the lifted orbit ℓ̃− goes under the level containing C, and

the unstable manifold W u(S) verifies the hypothesis of lemma 11. We find N a neighbourhood

of W u(S)∩h−1
0

(
[h0(C)− ε,∞)

)
for ε > 0 small enough so that π|N is injective. Apply now the

elimination lemma 11 to h0|N and the critical pair S,C; we perform this deformation of h0 in a

π1M-equivariant manner by imposing ht |gN = ht |N +u(g) for every g ∈ π1M and t ∈ [0,1]. So

the push-forward αt := π∗(dht) for t ∈ [0,1], is a well defined path of 1-forms which has the

required properties.

Note that lemmas 10, 11 and 12 also hold for smooth families of data when the assumptions

are satisfied for every parameter. The next two lemmas 13 and 16, are nothing but the adapted

versions of [Lau14, Lemma 3.6 and Lemma 3.5] for non-exact closed 1-forms, where we restrict

to the only case which we are concerned with: zeroes of indexes 0 and 1. In the mentioned

paper, the author proves the swallow tail lemma, stating that the proof of the lips lemma can be

performed in the same way. We proceed in the complementary way. Lemma 16 can be proven

by adapting the proof of [Lau14, Lemma 3.5].

Lemma 13 (ELEMENTARY LIPS LEMMA FOR SINKS). Let (αt ,ξt)t∈[0,1] be generic. Suppose

that (st ,ct)t∈[t0,t1] are continuous paths of saddles and sinks such that st0 = ct0 ,st1 = ct1 are

respectively birth and elimination and that there exists an ε > 0 and a continuous family(
ℓ+t

)
t∈(t0,t1) , ℓ

+
t ∈ L (st ,ct) such that for every t ∈ (t0, t1) we have:

L(ℓ−t )> L(ℓ+t )+ ε, where ℓ−t denotes the other separatrix of W u(st). (2)

Then, for all δ > 0 there exists a generic (α ′
t )t∈[0,1] such that:

1. αt = α ′
t for all t /∈ (t0 −δ , t1 +δ ),

2. Z(α ′
t ) = Z(αt)r{st ,ct} for all t ∈ (t0 −δ , t1 +δ ).

Proof. We are inspired by the proof of the only theorem of [Lau13]. Choose primitives (ht)t∈[0,1]

and consider a continuous lifting (ℓ̃+t )t∈[t0,t1] of the distinguished orbits, which join St with Ct ,

liftings of the considered zeroes. Thanks to the assumption about ℓ−t , the curve W u(St) intersects

the level of ht(Ct)− ε in a unique point at for t ∈ [t0, t1]. For each of these times, choose an

arc λ+
t : [−

√
ε,
√

ε]→W s(Ct) verifying ht(λ
+
t (u)) = ht(Ct)+u2 for every u ∈ [−

√
ε,
√

ε] and

extending smoothly W u(St) at
{

λ+
t (−

√
ε)
}
= ℓ̃+t ∩h−1

t (ht(Ct)+ ε). Denote by bt := λ+
t (

√
ε)
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and by W u
+(St) the connected and compact arc inside W u(St) determined by the points at and

λ+
t (−

√
ε).

Let at := at0 ,at1 ,bt := bt0 ,bt1 respectively for t ∈ [t0 − δ , t0),(t1, t1 + δ ]. It is easy to find a

continuous family of smooth arcs ([0,1]
It−→M̃)t∈[t0−δ ,t1+δ ] such that for all t ∈ [t0 −δ , t1 +δ ]:

1. it parametrizes W u
+(St)∪ Im

(
λ+

t

)
when defined,

2. the only critical points of ht |Im(It) are St ,Ct and have same index that st ,ct ,

3. the extreme values are It(0) = at and It(1) = bt .

We remark that for t ∈ [t0 −δ , t0)∪ (t1, t1 +δ ] we can define It by the rescaled flow line of −ξ̃t

of transverse length equal to 2ε starting at at ; namely It(u) := ξ−2εu
t (at).

CLAIM: There exists a smooth family (Nt)t∈[t0−δ ,t1+δ ] of tubular neighbourhoods of the

arcs It in M̃ where π is injective, together with coordinates (u,z) ∈ [0,1]×R
n−1 such that

It(u) = (u,0) and

ht(u,z) = ft(u)+Q(z).

Here Q is a positive definite quadratic form and ft := ht ◦ It .

Once the claim is proved, we can conclude as follows:

For all t ∈ [t0 − δ , t1 + δ ],
choose a smooth function gt :

[0,1]→ R such that gt ≤ ft ,

coincides with ft near {0,1}
and haves no critical points

as figure 4 suggests.

t = t0, t1t = t0 − δ, t1 + δ t ∈ (t0, t1)

ft
gt

ft
gt

ft
gt

St

Ct

2ε

Figure 4: Graphs of ft ,gt at the indicated times.

We want to modify the primitives ht = ft +Q into gt +Q, the latter having no critical

point on Nt thanks to the choice of gt . The interpolation, for s running into [0,1], given by

ks
t := ft + s(gt − ft)+Q almost succeeds: we do not want to change the values of the primitive

ht near ∂Nt . Pick ν > 0 as small as desired and construct a bump function ω : [0,∞) → R

verifying:

1. ω ′ ≤ 0,

2. supp(ω) = [0,2ν ] and ω|[0,ν ] = 1.

The two parameter family of functions

hs
t (u,z) := ft(u)+ω(‖z‖) · s

(
gt(u)− ft(u)

)
+Q(z),

clearly coincides with ht near ∂Nt and with ks
t when ‖z‖ ≤ ν , in particular near Im(It) = {z = 0}.

Moreover, it has the same critical points as ks
t : for z such that ‖z‖ ≥ ν , a calculation shows that
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for every i = 1, . . . ,n−1:

∂hs
t

∂ zi
(u,z) :=

(
ω ′(‖z‖)
‖z‖ s

(
gt(u)− ft(u)

)
+qi

)
zi,

where the term qi > 0 comes from the positive definite quadratic form Q. The factor coming

with zi is strictly positive due to the assumption on ω ′ and to the fact that gt − ft ≤ 0. The

z-derivative of hs
t vanishes only at z = 0, where hs

t and ks
t coincide.

This deformation can be done π1M-equivariantly since π is injective over Nt and we obtain the

s = 1 extremity (h1
t )t∈[t0−δ ,t1+δ ] which induces the generic path of closed 1-forms (α ′

t )t∈[0,1]
that we were searching for.

PROOF OF THE CLAIM: The restriction of the projection π to any individual stable or

unstable manifold is injective. Moreover, we can suppose
(
π1M ·W u

+(St)
)
∩ Im

(
λ+

t

)
=∅ by

taking a smaller ε if necessary and hence, π|Im(It) is injective for every t ∈ [t0, t1]. Since π is also

injective over any flow line, π|Im(It) can also be supposed injective for t /∈ [t0, t1]. We deduce that

for every time t we can consider a compact neighbourhood Ut of Im(It) where π is injective.

Since (αt)t∈[0,1] is generic and contains a birth singularity of index 0 at t = t0, its universal

unfolding (see [Mar82, Ch. IV, §6]) is under the form αt(u,z) = d
(
u3 − (t − t0)u+Q(z)

)
, where

(u,z) are coordinates in some neighbourhood N ⊂Ut0 of the birth zero st0 = ct0 and t lives in

[t−0 , t+0 ] some small neighbourhood of t0. By construction of the arcs It , the path of functions

ft : [0,1]→ R is also generic with birth singularity at t = t0. This allows one to find coordinates

(u,z) splitting N as in the claim for t ∈ [t−0 , t+0 ]. We take Nt := N for t ∈ [t−0 , t+0 ]. We find the

neighbourhoods Nt for t ∈ [t−1 , t+1 ] by a similar reasoning.

For t ∈ [t+0 , t−1 ], let us take Morse models M (St)⊂Ut ⊃ M (Ct) of St ,Ct with coordinates

(u,z) ∈ R×Rn−1 such that

ht |M (St)(u,z) = ht(St)−u2 +Q(z) and ht |M (Ct)(u,z) = ht(Ct)+u2 +Q(z).

Further, we can require that (u,0) are coordinates of Im(It)∩M (St) and of Im(It)∩M (Ct)
respectively, in such a way that the functions ht |M (St)∪M (Ct) and ht(It(u))+Q(z) coincide. Take

Nt ⊂Ut a tubular neighbourhood of Im(It) whose D
n−1-fibers over Im(It)∩ (M (St)∪M (Ct))

are contained in the hypersurfaces {u = const}. We have then extended the z-part of the (u,z)-
coordinates to the whole Nt , verifying Im(It) = {z = 0}.

By construction of It , the functions ht(u,z) and ht(It(u))+Q(z) clearly coincide on Im(It)r
{St ,Ct}, where they do not have critical points. Their germs are thus isotopic and the path

method of Moser (see [Mos65]) can be used to find local isotopies that we glue by partition of

unity; moreover, the isotopy can be chosen stationary at M (St)∪M (Ct) since the functions

coincided there before. This can be seen as a direct application of [Lau14, Lemma 3.1].

This can be continuously done in the whole interval [t+0 , t−1 ]; so we have found the mentioned

coordinated tubular neighbourhoods for the intermediate times [t+0 , t−1 ]. Still, to have a coherent

system of coordinate neighbourhoods all over the interval [t−0 , t+1 ], we have to produce change of

10



coordinates twice at t = t+0 , t−1 from the (u,z) coming respectively from the birth and elimination

path in order to obtain the specified Morse models respectively around St+0
,Ct+0

and St−1
,Ct−1

.

The variables u and z are separated in both cases; to make the models coincide on t = t+0 , it

is enough to operate the coordinate change u
ϕ7−→

√
(u±κ)3 ∓3κ(u±κ)2 in the u-part where

κ :=

√
t+0 −t0

3
and (+,−) corresponds to (St ,Ct). Remark that the germs at 0 given by Id and ϕ

are isotopic. A similar modification is done at t = t−1 .

The next concept is useful to describe generic paths of closed 1-forms (αt)t∈[0,1]. It depends

essentially on the choice of paths B∗(αt)⊂ M̃ lifting the continuous paths determined by the

zeroes Z(αt). Choose B∗(α0), liftings of the initial zeroes together with liftings of the birth

zeroes; this determines B∗(αt), continuous liftings of the zeroes.

Definition 14. Let (αt)t∈[0,1] be a generic path of closed 1-forms. Take a family of primitives

(ht)t∈[0,1] together with continuous liftings B∗(αt). Associated with this data, we have the

Cerf-Novikov graphic, which is given by the set:

Gr(B∗) :=
⋃

t∈[0,1]
{t}×ht (B∗(αt))⊂ [0,1]×R.

Example 15. The local change in the Cerf-Novikov graphic when we apply the elementary lips

lemma for sinks 13 can be seen in figure 5.

Ct

St

t0
t0 − δ

t1

(αt)

t1 + δ t0 − δ

(α′

t)

t1 + δ

Figure 5: Elimination of a “pair of lips”.

Lemma 16 (ELEMENTARY SWALLOW-TAIL LEMMA FOR SINKS). Let (αt ,ξt)t∈[0,1] be generic.

Suppose that (st ,s
′
t ,ct)t∈[t0,t1] are continuous paths of saddles and sinks such that st0 = ct0 ,s

′
t1
=

ct1 are respectively birth and elimination and that there exists an ε > 0 and continuous families

ℓ+t ∈ L (st ,ct),(ℓ
′
t)
+ ∈ L (s′t ,ct) for t ∈ (t0, t1) such that the other separatrix of W u(st),W

u(s′t)
respectively verifies inequality (2) of lemma 13.

Then, for all δ > 0 small enough, there exists a generic (α ′
t )t∈[0,1] such that:

1. αt = α ′
t for all t /∈ (t0 −δ , t1 +δ ),

2. Z(α ′
t ) =

(
Z(αt)r{st ,s

′
t ,ct}

)
∪{s′′t } for all t ∈ (t0 −δ , t1 +δ ), where (s′′t )t∈[t0−δ ,t1+δ ] is

a continuous path of saddles starting at s′
t0−δ and ending at st1+δ .

11



Ct

St

t0

t0 − δ

t1

(αt)

t1 + δ

g−1S′

t

(α′

t
)

g−1S′

t

t0 − δ t1 + δ

Figure 6: Elimination of a “swallow-tail”.

Example 17. Applying lemma 16 affects the graphic as it is depicted in figure 6. The en-

wrapment of (ℓ′t)
+ does not vary in (t0, t1); denote it by g := e

(
(ℓ′t)

+
)
. Nothing guarantees a

priori that g = 1π1M, or in other words, that the chosen liftings S′t of s′t are those realizing the

elimination of the Ct . The dashed line is just a translation by the vector
(
0,u(g−1)

)
of the curve

ht(S
′
t) of the graphic.

The last tool that will be needed in order to prove the main theorem is lemma 20 below,

which is again an adapted version of [Lau14, Lemma 2.5] for closed 1-forms. The remainder of

this section supposes each closed 1-form α – in a path or not – having a distinguished primitive

h : M̃ → R.

Definition 18. A cylinder adapted to α is a C ∼= Dn−1 × [−1,1] embedded into M̃ verifying the

next properties:

1. The restriction π|C is injective,

2. the caps C± := Dn−1 ×{±1} are included on levels of h and

3. the restriction of h to the lateral boundary ∂latC := ∂Dn−1 × [−1,1] has no critical point.

We say moreover that such an adapted C is semi-conjugated to the function F : Rn → R if

there exist an embedding ϕ : C → R
n containing 0 in its interior and ψ ∈ Diff(R) such that the

following square commutes:

C
h

//

ϕ
��

R

ψ
��

Rn F
// R

(3)

Fix an i ∈ {0,1, . . . ,n−1} and choose coordinates x = (z,u) ∈ R
n−1 ×R until the end of

this section.

Definition 19. A path of closed 1-forms is a birth path of index i centred at time t0 if there exists

ε > 0 and a path of cylinders (Ct)t∈[t0−ε,t0+ε] respectively adapted to αt and semi-conjugated to

F
i,t0

t : Rn → R where (F i,t0
t )t∈[t0−ε,t0+ε] is a birth model of index i centred at t0, namely:

F
i,t0

t (z,u) :=
(
u3 − (t − t0)u

)
+Qi(z), where Qi is a quadratic form of index i.

We say that such a birth path starts at (αt0−ε ,Ct0−ε).
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Remark that F
i,t0

t has no critical point when t < t0.

Lemma 20 (LEFT-SHIFTING OF BIRTH). Two statements hold:

1. Let C be a cylinder adapted to α and semi-conjugated to F
i,ε
0 .

Then there exists a birth path (αt)t∈[0,2ε] starting at (α,C ).

2. Let (αt)t∈[a,b] be a generic path with primitives (ht,0)t∈[a,b] and cylinders (Ct,0)t∈[a,b]
respectively adapted to αt and semi-conjugated to F

i,ε
0 . Let (βb,s)s∈[0,2ε] be a birth path

of index i starting at (αb,Cb,0).
Then there exists a family (βt,s)s∈[0,2ε] of birth paths of index i, parametrized by t ∈ [a,b],
extending the given birth path for t = b and such that for every fixed t ∈ [a,b], it starts at

(αt ,Ct,0).

Proof. The first statement is easy to prove; we want to construct a family of primitives (ht)t∈[0,2ε]

starting at h, the given primitive of α . Take first Ct := C and ϕt := ϕ for every t ∈ [0,2ε] and

just choose (ht)t∈[0,2ε] the functions making the diagram (3) commute for ψ = Id and the model

functions (F i,ε
t )t∈[0,2ε]; then extend this path of functions π1M-equivariantly over π1M ·C . Of

course, in order to have a honest path of primitives starting from h, we need the deformation to

be stationary near the boundary of C ; this can be obtained up to taking C ′ a subcylinder of C

and a bump function ω with support contained on C , such that ω|C ′ = 1 and depending only on

the u-coordinate of C . The diagram (3) still commutes up to a suitable choice of (ϕt)t∈[0,2ε] and

rescaling (ψt)t∈[0,2ε] starting at (ϕ, Id). The interested reader can compare this semi-conjugation

method with that of elementary birth paths in [Cer70, Ch.3, §1].

For the second statement, the square appearing on figure 7 represents the two-parameter family

(βt,s) that we want to construct: an extension of the given data which corresponds to the bottom

and right-side edges of the mentioned square.

(βb,s)s∈[0,2ε]

Σ
t

s

(βa,s)s∈[0,2ε]

(βt,2ε)t∈[a,b]

(αt)t∈[a,b]

(βt,s)(t,s)∈[a,b]×[0,2ε]

Figure 7: A path of birth paths. The birth parameters are denoted by Σ.

Remark that for every t ∈ [a,b] the cylinder Ct,0 comes with a foliation induced by the levels

of ϕt,0 ◦F
i,ε
0 . Since this function has no critical point, the foliation is trivial and the leaves are

all diffeomorphic to the lower level, which corresponds to the cap Dn−1 ×{−1}, the cylinders

being adapted.

Take adapted subcylinders (C ′
b,s)s∈[0,2ε] of those given by the birth path (βb,s)s∈[0,2ε] such that

13



C ′
b,s contains on its interior the critical points of F

i,ε
s – via the embeddings – when s ∈ [ε,2ε];

by choosing a family of adapted subcylinders (C ′
t,0 ⊂ Ct,0)t∈[a,b] ending at the selected C ′

b,0,

we construct a two-parameter family of diffeomorphisms
(
θ ′

t,s : C ′
t,0 → C ′

b,s

)
(t,s)∈[a,b]×[0,2ε]

extending θ ′
b,0 := IdC ′

b,0
and such that:

1. for every t ∈ [a,b], the map θ ′
t,0 : C ′

t,0 → C ′
b,0 globally preserves the foliations and

2. for every parameter value, θ ′
(t,s) preserves the foliations near the boundary3.

Thanks to an extension of isotopies, this family can be promoted to a family of diffeomorphisms

θt,s : Ct,0 → Cb,s preserving the foliation on the complementary part to the subcylinders. For

every fixed t ∈ [a,b], the maps (ht,s)s∈[0,2ε] given by the composition hb,s ◦θt,s : Ct,0 → R start

at ht,0 and are semi-conjugated to the family (F i,ε
s )s∈[0,2ε] up to rescaling. Extend now π1M-

equivariantly the paths (ht,s)s∈[0,2ε] over π1M ·Ct,0 and by ht,0 outside the mentioned union of

cylinders. The two-parameter family
(
ht,s

)
(t,s)∈[a,b]×[0,2ε]

is made of primitives of the claimed

path of birth paths ((βt,s)s∈[0,2ε])t∈[a,b].

4 One-parameter elimination of centers

This section is devoted to prove theorem 1. Let us denote by Σ ⊂ (0,1) the set of stabilisation –

birth and elimination – times of a path (αt)t∈[0,1] like in theorem 1. Denote by ν ≥ 0 the amount

of times t where αt is of type birth of index 0. As the extremities have no center, we have

necessarily ν elimination times of index 0. If ν = 0 we are done because the extremities of

(αt)t∈[0,1] are supposed to have no center.

Definition 21. A generic path of closed 1-forms is said to be normal if the set Σ of stabilisation

times is ordered as follows:

1. first births of index i> 0, then births of index 0 noted by {a1 < .. . < aν}, then eliminations

of index 0 noted by {bν < .. . < b1}, finally eliminations of index i > 0. Moreover, for

every i = 1, . . . ,ν:

2. the continuous path of sinks (ct)t which starts at t = ai ends at t = bi.

Proposition 22. If dim(M)> 1, a birth time t0 ∈ Σ of a generic path (αt)t∈[0,1] can be shifted

to the left as much as we want. More precisely:

For every t ′0 ∈ (0, t0) there exists an ε > 0 and a generic path (α ′
t )t∈[0,1] such that:

1. α ′
t = αt for every t /∈ [t ′0 − ε, t0 + ε],

2. Σ′ =
(
Σr{t0}

)
∪
{

t ′0
}

and

3. the birth singularities of αt0 ,α
′
t ′0

have same index.

3Remark that for any s ∈ [0,2ε], the function F
i,ε
s has no critical point near ∂C ′

b,s.
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Proposition 22, together with a completely symmetric version for right-shifting of elimina-

tions, allow us to restrict the attention to normal paths in an evident manner.

Proof of proposition 22. Note by pt0 ∈ Z(αt0) the considered birth zero and choose a lifting Pt0 .

If i denotes the index of pt0 , the birth model (F i,t0
t )t∈[t0−ε,t0+ε] of index i constitutes a path of

primitives for some ε > 0 and some coordinates (u,z) on a neighbourhood N of Pt0 centred on

0 ∈ Rn. Over N, the maps (F i,t0
t )t∈[t0−ε,t0+ε] are semi-conjugated to themselves. Let δ > 0 such

that the critical values of F
i,t0

t are included on [−δ ,δ ], and this for every t ∈ [t0 − ε, t0 + ε]. We

easily find cylinders (Ct)t∈[t0−ε,t0+ε] such that for every t ∈ [t0 − ε, t0 + ε]:

1. Crit(F i,t0
t )⊂ intCt ,Ct ⊂ F−1

(
[−δ ,δ ]

)
∩N and

2. properties 2 and 3 of definition 18 are verified.

Since δ can be chosen as small as desired up to taking a smaller ε , property 1 concerning the

injectivity of the projection can be also achieved. The path (αt)t∈[t0−ε,t0+ε] is so a birth path of

index i. Of course we can suppose ε < t ′0. Set a := t ′0 − ε,b := t0 − ε .

Consider (ht)t∈[0,1] extending the choice of primitives that we have made near t0 and the

1-dimensional submanifold of [0,1]× M̃ given by:

T :=
{
(t,Qt) ∈ [0,1]× M̃

∣∣∣ Qt ∈ Crit(ht)
}
.

The embedded curve T cannot disconnect [0,1]× M̃ since its dimension is n+ 1 > 2. We

choose two points on the connected manifold
(
[0,1]× M̃

)
rT :

• K := (a,xa) where xa is a regular point of ha and

• L := (b,xb), such that xb ∈ intCb.

These two points can be connected by an arc

γ : [a,b] −→
(
[0,1]× M̃

)
rT

t 7−→ (t,xt)
; (4)

remark that any two functions without critical points are semi-conjugated. Each time that we

have x a regular point of a primitive h of α , we find a cylinder C adapted to α , containing x in

its interior and such that h|C has no critical points; this cylinder is therefore semi-conjugated

to F
i,ε
0 , since the initial extremity of a birth model of index i has no critical points. We can

therefore choose a continuous family of cylinders (Ct,0)t∈[a,b] along γ , respectively adapted to

αt and being semi-conjugated to F
i,ε
0 . Apply then statement 2 of lemma 20 to the next data:

• the path (αt ,Ct,0)t∈[a,b] and

• the birth path given by (βb,s)s∈[0,2ε] where βb,s := αb+s for every s ∈ [0,2ε].
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We obtain a path of birth paths (βt,s)s∈[0,2ε] depending on t ∈ [a,b], each starting from αt .

Consider then the one-parameter family given by:

α ′
t =





αt if t ∈ [0,a]
βa,t−a if t ∈ [a,a+2ε]
βt−2ε,2ε if t ∈ [a+2ε,b+2ε]
αt if t ∈ [b+2ε,1]

.

This new path is homotopic, relative to its extremities, to the original one: the homotopy is

stationary for t /∈ [a,b+2ε] and (α ′
t )t∈[a,b+2ε] is nothing but the left-side and top edges of the

square depicting the two-parameter family (βt,s) on figure 7. The path (α ′
t )t∈[a,b+2ε] clearly

crosses the birth stratum at time a+ ε = t ′0 while b+ ε = t0 is no more a birth time. We find an

explicit homotopy of paths by sliding the birth path to the left as figure 8 suggests.

(t, 0)

(
βt,s

)
s∈[0,2ε]

(
α′

t

)
t∈[a+2ε,b+2ε]

ht(xt)

(
ht(Ct)

)
t∈[b,b+2ε]

(
ht,s(Ct,s)

)
s∈[0,2ε]

(t, 2ε)

(
ha,s(Ca,s)

)
s∈[0,2ε]

(
αt

)
t∈[0,a]

(
αt

)
t∈[b+2ε,1]

(
α′

t

)
t∈[a,a+2ε]

t ∈ (a, b)

b

t0

b+ 2ε

b

t0

b+ 2ε

b

t0

b+ 2εa

t′0

a+ 2ε

a

t′0

a+ 2ε

a

t′0

a+ 2ε

(a, 0)

(a, 2ε)

(b, 2ε)

(b, 0)

(a, 0)

(a, 2ε)

(b, 2ε)

(b, 0)

(a, 0)

(a, 2ε)

(b, 2ε)

(b, 0)

Σ

Σ

Σ

t

Figure 8: Effect of a birth shift on the Cerf-Novikov graphic.
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From now on, we concentrate on eliminating the more internal path of sinks (ct)t∈[t0,t1] of

a normal path (αt)t∈[0,1]: the interval (t0, t1) is made up of Morse times. We would be done if

there was a path of saddles (st)t∈[t0,t1] satisfying the hypothesis of lemma 13 with respect to

the specified sinks. We have defined connecting saddles in order to find such a candidate of

saddles path (st)t∈[t0,t1]. The connecting saddle of ct is determined near t0 and t1 by genericness

of (αt)t∈[0,1], as we have seen in the proof of the claim of lemma 13. However, lemma 7

does not apply to the Morse family (αt)t∈[t+0 ,t−1 ] since we cannot equip it with pseudo-gradients

(ξt)t∈[t+0 ,t−1 ] being Morse-Smale at every time: the set of times t where ξt is Morse-Smale, is

only a dense subset of [t+0 , t−1 ].
We want a more general condition than Morse-Smale’s one, which ensures existence of connect-

ing saddles for generic paths. The next proposition goes in this direction.

Proposition 23. Let (αt)t∈[0,1] be a generic path of Morse closed 1-forms together with a path

(ct)t∈[0,1] of sinks. For every generic path (ξt)t∈[0,1] of pseudo-gradients of (αt)t∈[0,1], consider

T := {t ∈ [0,1] | ct admits a connecting saddle st} ;

then the map T
L−→R

+ given by t 7→ L(ℓ+t ) is bounded by some constant K > 0.

Proof. Since (ξt)t∈[0,1] is generic, the set T is at least dense in [0,1] by lemma 7. If the map L

of the statement is not bounded, there exists (ti)⊂ T converging to some τ /∈ T such that the

sequence
(
L(ti)

)
ti∈T

diverges. Let us see that this can not happen.

Take τ /∈ T and ητ , a Morse-Smale pseudo-gradient for ατ . Consider Ω a small Morse neigh-

bourhood of Z(ατ). We can find an isotopy (ϕt)t of ϕτ := IdM such that ϕ∗
t (αt)|Ω = ατ |Ω for

t near τ . Take a δ > 0 small enough such that the condition 〈ϕ∗
t (αt),ητ〉|MrΩ < 0 holds for

every t such that |t − τ| < δ . The vector field ηt := (φt)∗(ητ) is still a pseudo-gradient for

every t ∈ [τ − δ ,τ + δ ] and clearly Morse-Smale since φt is a diffeomorphism. In particular,

the sinks ct have connecting saddles relative to (ηt)t∈[τ−δ ,τ+δ ], whose connecting orbits ver-

ify L(ℓ+ηt
)<K for every t ∈ [τ−δ ,τ+δ ] and some K > 0 since ηt is Morse-Smale in these times.

Consider now any Morse α together with a primitive h : M̃ → R and ξ a Morse-Smale

pseudo-gradient for α . If C is a lifting of a sink c of α , define for all a > h(C), the basin

Bas(a) ⊂ M̃ given by the closure of W s(C)∩ h−1 ((−∞,a)). If s is a connecting saddle for c

of connecting orbit ℓ+, call S the initial extremity of the lifting ℓ̃+ going to C. Remark that

for every ε > 0, any critical point of h of index 1 contained in Bas(h(S)− ε) corresponds to a

saddle in S ker
c . In particular we have that h(S) coincides with the value

D := sup
{

a ∈ R
∣∣ α|π(Bas(a)) is exact

}
.

The latter value only depends on α , and the length of the connecting orbit for any Morse-

Smale pseudo-gradient ξ coincides with D− h(C). We conclude that L(ℓ+
ξt
) = L(ℓ+ηt

) for all

t ∈ [τ −δ ,τ +δ ] where ξt is Morse-Smale.
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We need the notion of truncated unstable manifold associated with some pseudo-gradient ξ :

denote by γ
p
x the portion of orbit going from p ∈ Z(α) to some x ∈W u(p). For every K > 0, we

set

W u
K(p) := {x ∈W u(p) | L(γ p

x )≤ K} .

Definition 24. Let K > 0. We say that a pseudo-gradient ξ for a closed 1-form α is K-

transversal if

W u
K(pt) ⋔W s(qt), for every pt ,qt ∈ Z∗(αt).

Reconsider the Morse path (αt)t∈[t+0 ,t−1 ] as before proposition 23, which says that the length

L of connecting orbits do not explode in this family. Take K > K′ > 0 where K is a bounding

value for L. So, any sink ct in our Morse family, admits a connecting saddle on times when the

equipping ξt verifies the K-transversality property.

A generic equipment (ξt)t∈[t+0 ,t−1 ] verifies the K-transversality property everywhere but in a finite

set of times where a K-sliding appears. Briefly explained, this results from the openness and den-

sity of the condition of K-transversality for pseudo-gradients: the truncated unstable manifolds

admit compactifications W u
K(pt) to submanifolds with corners of M (as in [Lat94, Prop. 2.11.2]);

the mentioned result is obtained by applying Thom’s transversality theorem (see also [Hir94]) to

the finite collection of varying families ∪tW
u
K(pt),∪tW

s(qt). More precisely, the transversality

theorem is applied to a moving holed sphere ∆(Pt) of dimension i− 1 with respect another

fixed one ∆(gQt) of dimension n− j− 1, both embedded in a n− 1 dimensional manifold L,

which corresponds to a level of ht between gQt and Pt . The mentioned holed4 spheres are the

intersection with L of W u
K(Pt) and W s(gQt) respectively, i, j are respectively the index of pt ,qt

and the possible values of g are u-bounded by the truncation by K > 0.

We deduce that K-transversality fails in a finite set of times where we find a unique orbit

ℓ connecting two not necessarily different zeroes of same index i. This is properly proven

in [MF12, Prop. 2.2.33]; a geometrically instructive description of the impact of this accident on

the Novikov maps induced by ξt can be found in [MF12, Prop. 2.2.36], but consulting [Mil65, Th.

7.6 - Basis theorem] should suffice since it explains the analogue case of real-valued equipped

Morse functions.

The property of K-transversality is so enough to ensure the existence of connecting saddles,

while 0-excellence ensures uniqueness. But, for our generic (αt)t∈[t+0 ,t−1 ], 0-excellence also holds

everywhere but in a finite set of times, that we call competition times. This comes from the work

of [Cer70]: a generic path of functions ft : V → R from a compact manifold V has a finite set of

times τi where two critical points pτi
,qτi

cross their critical value. This holds so for the path ht |V
where (ht)t∈[t+0 ,t−1 ] are primitives of (π∗αt)t∈[t+0 ,t−1 ] and V is a compact neighbourhood containing
⋃

t∈[t+0 ,t−1 ]

(
W s(Ct)∩h−1([ht(Ct),ht(Ct)+K]

)
for a continuous lifting (Ct)t∈[t+0 ,t−1 ] of the sinks.

In this setting, call R the finite set of times where K-transversality of ξt or 0-excellence

of αt fails. The map [t+0 , t−1 ]rR
s−→M defined by t 7→ st , where st is the unique connecting

4Holes appear when the unstable manifold crosses a level containing a critical point of ht in its closure.
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saddle st for ct , is continuous. Let us study what happens near each τ ∈ R.

1st problem - COMPETITION: ατ is not 0-excellent for ξτ . We call τ a competition time,

where two saddles s1
τ ,s

2
τ compete to be the connecting saddle of cτ . The map s presents a

discontinuity as figure 9 suggests.

ct

s1t

s2t

cτct

s2t

s1t
s1τ s2τ

t < τ t = τ t > τ

ℓ+1 ℓ+2 ℓ+1 ℓ+2 ℓ+1 ℓ+2

Figure 9: Two normal saddles competing on t = τ .

We can compare competition times with the fact that a generic path of functions ft : V → R

from a compact manifold V has a finite set of times τi where two critical points pτi
,qτi

cross

their critical value (see [Cer70]). This holds so for the path ht |V where (ht)t∈[0,1] are primitives of

(π∗αt)t∈[0,1] and V is a compact neighbourhood containing
⋃

t∈[t+0 ,t−1 ]

(
W s(Ct)∩h−1([ht(Ct),ht(Ct)+K]

)

for a continuous lifting (Ct)t∈[t+0 ,t−1 ] of the sinks.

2nd problem: - K-SLIDING: As we have mentioned, in these times ξτ has a unique orbit

ℓ ∈ L (sτ ,s
′
τ) connecting two not necessarily different zeroes of same index j. The only case

which affects connecting saddles is that of j = 1 and st being the connecting saddle for ct on

times t < τ .

This forces the saddle s′τ to belong to S ker
cτ

: the accident

does not concern W u(s′t) and s′t conserves its type for t

near τ; if s′τ is a normal saddle, st cannot be the connect-

ing saddle for ct when t < τ because the connecting orbit

(ℓ+t )
′ of s′t would be shorter than the connecting orbit ℓ+t

of st .

The connecting orbits (ℓ+t ) converge for t
t<τ−→τ to a bro-

ken orbit ℓ ∗ ℓ′τ ∈ L (sτ ,s
′
τ) ∗L (s′τ ,cτ) as the figure 10

suggests.

In particular, the enwrapments of the connecting orbits ℓ+t
for times just before and after t = τ are related by some

g ∈ ker(u): the length of the connecting orbit ℓ+t presents

an avoidable discontinuity at t = τ .

st

ct

s′t

ℓ

ℓ′τ(ℓ+t )t<τ

ℓ−t

W s(st)

Figure 10: K-sliding time.

We describe now a local modification of a generic path which allows one to transmute a

K-sliding time into a pair of competition times.

Proposition 25. Let (st ,ct , ℓ
+
t )t∈[0,1] be as the above description, associated with a path of Morse

closed 1-forms (αt)t∈[0,1] provided with a generic equipment (ξt)t∈[0,1] with no competition times
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and only one K-sliding time at t = τ . There exists a deformation to a generic couple (α ′
t ,ξ

′
t )t∈[0,1]

such that:

1. nothing has changed in the complementary of some interval (t0, t1) containing τ ,

2. the only accidents of the equipment (ξ ′
t )t∈[t0,t1] are two competition times τ− < τ+,

3. the sinks of αt and α ′
t are the same for every time t.

Proof. Choose initial liftings B∗(α0) of the zeroes and take B∗(αt) the continuous path of

liftings associated with it. We denote by (Ct)t∈[0,1] the lifting of the sinks (ct)t∈[0,1] containing

cτ , the sink involved with the K-sliding phenomenon. The stated deformation is going to produce

the local changes in the Cerf-Novikov graphic as it is depicted in figure 11.

Ct

τ

(αt)

0 1

Ct

τt0 t10 1

1

2

(α′

t)

Ct

τt0 t10 1τ− τ+

Figure 11: Changing a K-sliding into two competitions.

The connecting orbits ℓ+t lift uniquely to orbits ℓ̃+t going to Ct , and starting from g−1St

where g is the enwrapment of ℓt and St is the chosen lifting of the connecting saddle st of ct ; the

dashed line represents the values ht(g
−1St), a translated curve of the graphic.

There exists an ε > 0 small enough such that the intersection of W s(St) with Lt , the level

of ht(St)+ ε , is a (n−2)-sphere for all t near τ , which we denote by St . Take Kt a relatively

compact open neighbourhood of St in M̃ such that π|Kt
is injective.

For every t in an interval [t0, t1] containing τ , choose an arc It : [0,1] → Lt ∩Kt intersecting

St transversely only once at time θ = 1
2
. By the hypothesis on the equipment (ξt)t∈[0,1], one

of the connected components of It
(
[0,1]r

{
1
2

})
, say I+t := It

(
(1

2
,1]

)
, is entirely contained in

W s(gCt)∪W s(g′S′t), where g′ is the enwrapment of the accidental orbit ℓ ∈ L (sτ ,s
′
τ). These

arcs can be chosen in order to have I+t ⋔ W s(g′S′t); in particular, the extremities It(1) can be

taken into W s(gCt) for every t ∈ [t0, t1]. The other component I−t verifies

I−t ∩
⋃

u(k)≥0

W s(kgCt) =∅ :
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if there was not the case, St would be in W s(kgCt) leading to a contradiction with the fact that st

is a connecting saddle for ct whose connecting orbit has enwrapment g. Again by a transversality

argument together with (5), we can take the other extremities going to a sink for every t ∈ [t0, t1];
more precisely:

It(0) ∈W s(k′gC′
t) where u(k′)< 0 or π(C′

t) 6= π(Ct). (5)

For every t ∈ [t0, t1], we obtain new primitives (h′t)t∈[t0,t1] by modifying π1M-equivariantly the

initial ht in Kt ∩h−1
t

(
(ht(St),+∞)

)
by introducing a cancelling pair of critical points S′′t ,Rt of re-

spective index 1,2. The new generic family of pseudo-gradients, which only differs from the orig-

inal on π(Kt), can be chosen such that W u(S′′t )∩Lt = {It(0), It(1)} and W u(Rt)∩Lt = It
(
(0,1)

)
:

a new pair of zeroes of index 1,2 appears now in times t ∈ (t0 +δ , t1 −δ ) for a small δ . For

the new birth and elimination times t = t0 +δ , t1 −δ , the unstable manifold of Rt = S′′t is a half

2-disk which intersects Lt precisely at It
(
[0,1]

)
. The associated Cerf-Novikov looks as in the

second picture of figure 11. From genericness of (ξ ′
t )t∈[t0,t1] together with (5), we deduce that

the new saddles s′′t := π(S′′t ) belong indeed to S n
ct

, and this for every t ∈ (t0, t1).

The separatrix of S′′t passing through It(1) evidently crosses the level of St since it goes to

gCt for every t ∈ (t0, t1); the other separatrix of S′′t , passing through It(0) goes to k′gC′
t and (5)

allows us to decrease the value of k′gC′
t under the level of St in the case5 π(C′

t) 6= π(Ct) by

applying lemma 10 with parameters. Since C′
t is a sink, we can decrease its value even more:

below the level of gCt , this will be important in the Case 2 of the proof of theorem 1. We can so

apply the rearrangement lemma 10 to the one-parameter family of S′′t to continuously decrease

the value of S′′t under ht(St) for t near τ . The saddle s′′t becomes thus the connecting saddle for

ct into the interval (τ−,τ+) of times t where h′t(S
′′
t )< h′t(St). Times t = τ−,τ+ corresponds to

competition times between st and s′′t .

We prove now our main result, which is theorem 1 announced in the introduction.

Proof of theorem 1. We only eliminate the sinks; the sources can be treated similarly.

As we have argued in the beginning of this section, we can suppose that (αt)t∈[0,1] is normal.

Denote by a := aν the last birth time and by b := bν the first elimination time of (αt)t∈[0,1]. We

are going to produce a generic path (α
(1)
t )t∈[0,1] such that:

1. it coincides with the original (αt)t∈[0,1] outside of (a− ε,b+ ε),

2. (α
(1)
t )t∈[0,1] has ν −1 birth times of index 0.

The path (α
(1)
t )t∈[0,1] clearly share extremities with (αt)t∈[0,1]. Iterating the construction ν times,

we obtain a generic (α
(ν)
t )t∈[0,1] which is the announced (βt)t∈[0,1].

Choose continuous liftings B∗(αt) and primitives (ht)t∈[0,1] of (αt)t∈[0,1]. Consider the path

of local minima of (ht)t∈[0,1] given by (Ct)t∈[a,b], the lifting of the corresponding path of sinks

5The other case says that k′gC′
t = k′gCt is already under gCt .
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(ct)t∈[a,b]. Take (ξt)t∈[0,1] a generic equipment for (αt)t∈[0,1]. We replace the finite amount

of K-sliding times in the interval [a,b] concerning our sinks by twice competition times by

introducing trivial pairs of index (1,2) as in proposition 25. The dimension hypothesis is used

here: the new zeroes of index 2 are not sources because n ≥ 3. Remark that after this operation,

our path – still denoted (αt)t∈[0,1] – is no more normal: the Cerf-Novikov graphic over the

interval [a,b] contains finitely many times the last picture of figure 11, each of those contributing

with four accidents. Let us denote by {ti}r
i=1 ⊂ (a,b) the union of the finite set of competition

times related to (ct)t∈[a,b] together with the times of the new births and eliminations of index 1.

Suppose first that the simplest case, r = 0 holds. Since there is not any competition, K-

sliding or stabilisation time between a and b, we have a continuous path of connecting saddles

(st)t∈[a,b] for our sinks. Consider the set of times ∆ ⊂ (a,b) where the family of non-connecting

separatrices (ℓ−t )t∈[a,b] do not verify L(ℓ−t )> L(ℓ+t ). For any t ∈ ∆,st is the connecting saddle

for ct and ℓ−t has to go to a sink c′t 6= ct ; we can so apply the one-parameter version of the

rearrangement lemma 10 to c′t for t in any interval containing ∆ in order to have L(ℓ−t )> L(ℓ+t )
for all t ∈ (a,b). The hypothesis of the elementary lips lemma for sinks 13 respectively to the

couples (st ,ct)t∈[a,b] is now verified and we obtain the claimed family (α
(1)
t )t∈[0,1] by applying

it; the graphic changes as in figure 5.

Let us treat now the case r = 1. It means that there is only one competition at t = t1: if

t1 was a birth time, necessarily r ≥ 4. Since there is no accident in (a, t1), the saddle st is the

connecting saddle of ct for every t ∈ (a, t1). In t = t1, a connecting saddle s′t1 6= st1 competes

with st1 and s′t is then the connecting saddle for ct when t ∈ (t1,b). Since there is no accident

in the interval (a,b) other than the competition at t = t1, the continuous path of saddles (st)t

starting at sa = ca is defined until t = b+ ε for some small ε > 0: the saddles st and s′t are

different for every t ∈ (a,b) and st does not cancel at t = b. In the same way, the continuous

family (s′t) is defined from a− ε .

Competitions do not change the enwrapment of orbits. In particular, we can suppose that the

length of the non-connecting orbit of W u(st) is bigger than L(ℓ+t ) for every time t since it is the

case for times near a. The same reasoning applies to the non-connecting orbit of W u(s′t). We

can apply the elementary swallow-tail lemma for sinks 16 to (αt)t∈[0,1], relative to the zeroes

(st ,s
′
t ,ct)t∈[a,b]. The graphic has changed as in figure 6 and we obtain the claimed (α

(1)
t )t∈[0,1].

The rest of the proof consists in obtaining a path (α ′′
t )t∈[0,1] with same extremities and births

of index 0 than the previous one but where the value of r has been lowered. Three different

cases can occur:

Case 1.A: t1, t2 are competition times. We perform a preliminary modification to (αt)t∈[0,1]
as figure 12 suggests.

The modified (α ′
t )t∈[0,1] is a generic path of 1-forms obtained by inserting a loop (γ1

t ) in

(αt)t∈[0,1], based at time t1 + ε for an ε > 0 small enough. This loop is constructed by following

forwards then backwards the path realizing the elimination of st1+ε with ct1+ε given by lemma
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a t1 t2

St

Ct

g−1S′

t

(αt)

a t2t+1 a′

Ct

t1

St

Ct

g−1S′

t

(α′

t)

Figure 12: Case 1.A - Effect in the Cerf-Novikov graphic of the preliminary modification on

(αt)t∈[0,1].

12. The new birth and elimination times of the considered path of sinks (ct)t are denoted by:

t1 < t+1 < a′ < t2.

Remark that the zeroes (st ,s
′
t ,ct)t∈[a,t+1 ] of the

path (α ′
t )t∈[0,1] are as in the situation r = 1 that

we have just described. We apply lemma 16

to the mentioned zeroes to obtain (α ′′
t )t∈[0,1],

whose graphic is depicted in figure 13: we have

reduced by one the number of competitions.

(α′′

t )

a t2a′

Ct

g−1S′

t

Figure 13: One competition less.

Case 1.B: t1 is competition, t2 is birth. This case can be treated similarly to the latter one:

the birth singularity comes from the application of proposition 25 and the graphic of the path

that we are considering is as in the first picture of figure 14. By inserting a loop at t1 + ε in

the same way that we have done in the case 1.A, we manage to isolate a situation verifying the

hypothesis of lemma 16 near the competition at t1 as in the second picture of figure 14; we apply

lemma 16 to obtain the claimed path (α ′′
t )t∈[0,1] having one competition less.

a t1 t2

St

Ct

g−1S′

t

(αt)

t5t3 t4 a t1 t2

St

Ct

g−1S′

t

(α′

t)

t5t3 t4t+1 a′

Figure 14: Case 1.B - First modification on (αt)t∈[0,1].

Case 2: t1 is birth. The Cerf-Novikov graphic is thus as in the first picture of figure 15,

where (S′t)t∈[t1,t4] represent the chosen liftings of the family of saddles coming from the use of

proposition 25. Remark that the saddles st appearing at t = a are the connecting saddles for

the considered family of sinks before t2 and after t3. We start modifying the path by inserting

two loops based at times t2 + ε and t3 + ε realizing forwards then backwards the elimination of

s′t2+ε with ct2+ε and that of st3+ε with ct3+ε respectively to obtain a situation similar to that of

the second picture of figure 15 with two swallowtails around t = t2, t3 respectively.

As we pointed on proposition 25, the separatrices of the inserted saddles S′t not going to Ct
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a

(αt)

St

Ct

t2t1 t3 t4t4 a

(α′

t)

t2t1 t3 t4t4

S′

t

t+2

Figure 15: Case 2 - First modification on (αt)t∈[0,1].

can be supposed to end on a sink C′
t lower than Ct , and this for every t ∈ [t1, t4]. In particular,

the swallowtail concerning the competition at t = t3 can be eliminated as usually. Remark that

the situation near the competition at t = t2 does not allow one to apply lemma 16 since the sinks

s′t do not exist on the interval [a, t1].

Choose t ′1 < a. By carefully applying proposition 22, we can shift the index 1 birth point

St1 to t = t ′1 in such a way that the relative position of W u(S′t) and W s(Ct) is preserved for

intermediate values of t: call (Ct)t∈[t1−ε,t1+ε] a choice of adapted cylinders of the birth path

of index 1 such that S′t1 ∈ Ct1 . Remark that W s(S′t) is contained on W s(Ct)∩W s(C′
t) for every

t ∈ (t1, t1 + ε] and then, the set

∆t :=W s(Ct)∪W s(C′
t)

is a connected codimension zero set of M̃, also for t = t1. This remains true on the interval [a, t1),
since the open interval does not contain any accident and ∆a absorbs W s(Ca = Sa). Define

∆t := M̃ for every t < a.

Clearly, the set ∆ := ∪t∈[0,t1+ε]∆t is a codimension zero connected set of [0,1]× M̃. The 1-

dimensional submanifold T appearing on the proof of proposition 22 does not disconnect ∆

since n ≥ 3.

Call a′ := t ′1−ε,b′ := t1−ε ; up to taking a smaller ε , we can suppose that the interior of the

cylinder Cb′ intersects ∆b′ . Construct an arc γ : [a′,b′]→ ∆rT as in (4) where L := (b′,xb′)
is taken such that xb′ ∈ ∆b′ ∩ intCb′ . This path γ allows one again to take a continuous path of

cylinders parametrized by [a′,b′] and ending on Cb′ , whose union serves as the support of the

claimed birth shift preserving the relative position of the mentioned invariant manifolds. After

realizing the shift, the effect of the latter modifications is a generic path whose Cerf-Novikov

graphic is like the first picture of figure 16.

a t2t1 t3 t4t4t+2t′1

(α′′

t )

a t2t1 t3 t4t4t+2t′1

St

Ct

S′

t

Figure 16: Case 2 - Second modification on (αt)t∈[0,1].

Thanks to the way in which we have performed the birth shift, the hypotheses of lemma 16

are verified for some small interval containing [a, t+2 ]: we apply it to obtain the claimed path

(α ′′
t )t∈[0,1]. Remark that we have not modified the path near t4; the connecting saddles for the
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considered family of sinks is thus st near t4, as it was at the beginning of this case. Even if

(α ′′
t )t∈[0,1] is not normal in this case, we can continue the reduction of singular times on the

family of sinks (ct)t∈[t4,b] since the elimination at t4 does not create a discontinuity of connecting

saddles of the considered sinks.

In any case, we find the path (α
(1)
t )t∈[0,1] with one birth of index 0 less than the original one.

Before treating the next path of sinks, take the precaution of shifting the eventual new index 1

stabilisation times in order to convert (α
(1)
t )t∈[0,1] again into a normal path.
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