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On the convergence of the proximal algorithm for nonsmooth
functions involving analytic features.

Hedy ATTOUCH 1 Jérôme BOLTE 2 ,

Abstract We study the convergence of the proximal algorithm applied to nonsmooth functions that
satisfy the  Lojasiewicz inequality around their generalized critical points. Typical examples of func-
tions complying with these conditions are continuous semialgebraic or subanalytic functions. Following
 Lojasiewicz’s original idea, we prove that any bounded sequence generated by the proximal algorithm
converges to some generalized critical point. We also obtain convergence rate results which are related to
the flatness of the function by means of  Lojasiewicz exponents. Apart from the sharp and elliptic cases
which yield finite-time or geometric convergence, the decay estimates that are derived are of the type
O(k−s), where s ∈ (0, +∞) depends on the flatness of the function.

Key words Proximal algorithm,  Lojasiewicz inequality, real-analytic functions, subanalytic functions,
convergence rate.

1 Introduction

The proximal algorithm has been first introduced by Martinet (1970) [21] and Rockafellar (1976) [23] as
an approximation-regularization method in convex optimization and in the study of variational inequal-
ities associated to maximal monotone operators. In the last decades, it has been successfully applied
to a wide variety of situations, but still in the realm of convex optimization and monotone operators.
Recent progress in the modelling of decision processes in economics and decision sciences (procedural
rationality) provide strong motivation to develop the proximal algorithm in a nonconvex and possibly
nonsmooth setting. Our main concern in the present paper is to develop this algorithm in such a general
setting, namely by considering real-analytic functions, and more generally subanalytic lower semicontin-
uous functions. First, let us explain briefly the need to go beyond the classical convex setting and then,
why analyticity features come naturally in the picture.

In [4] and [6], Attouch and Soubeyran developed a model for “real life” decision making which is an
incremental decision process “A worthwhile to move approach of satisficing with not too much sacrificing”.
In this discrete dynamical model involving both exploration and exploitation aspects, the agent moves
from a performance xk to xk+1 when the estimated marginal gain u(xk+1) − u(xk) is greater than, or
equal to, the cost of moving c(xk, xk+1). In this context, optimization features of the decision process
are naturally modelled by the proximal algorithm (described below with the maximization version),

xk+1 ∈ argmax {u(x) − c(xk, x) : x ∈ X}.

Classical proximal algorithms correspond to quadratic costs, i.e., c(x, y) = |x − y|2 which expresses that
small changes are costless. Because of the cost to change, this process becomes of local nature, which
makes it more realistic than the classical global optimization modelling in economics and decision sciences.

The function u measures the quality of the decision or performance x ∈ X, it is the utility function in
economics, the valence in cognitive sciences. The opposite function f = −u , (which is now to minimize),
measures how far is the current performance from a given long term goal. Indeed, the concavity of
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u (convexity of f) is a too restrictive assumption in order to cover many interesting applications: for
example, in economics the utility function u is usually assumed to be quasiconcave. The convergence of
the proximal algorithm for quasiconvex functions has been considered only recently, see Goudou-Munier
[13] , Attouch-Teboulle [5].

The proximal algorithm can be viewed as an implicit discretization of the continuous steepest descent
method (also called continuous gradient method). This important fact has been soon recognized by many
authors. It is at the origin of various developments which have been enriching the original algorithm and
make it a powerful tool. A striking example is the link between interior point methods, proximal methods
associated to Bregman functions, the Riemannian steepest descent and the Lotka-Volterra dynamical
systems, see [5] and the references contained in it. An other example is the introduction of second
order proximal methods, see [2], which are obtained as discrete versions of the heavy ball with friction
dynamical system. This last system is an inertial version (second order dynamical system with respect to
time) of the steepest descent, see [3]. Indeed, our special interest for the proximal method for functions
involving analytic features comes from the recent developments concerning the convergence of the steepest
descent method by Simon [25], Haraux [14] and Bolte-Daniilidis-Lewis [9]. In this last paper, the authors
consider the case of subanalytic lower semicontinuous functions. This class of functions is very interesting
because it covers many relevant problems in optimization and decision sciences (recall that, by the Stone-
Weierstrass theorem, polynomials of several variables and hence analytic functions are dense in the space
of continuous functions for the topology of the uniform convergence on bounded sets). A key tool in the
mathematical analysis of such continous or discrete dynamical systems is the Lojasiewicz inequality. It
has been first stated by  Lojasiewicz in the case of real-analytic functions [17] and, more recently, extended
to nonsmooth functions [9].

Our main result (Theorem 4) relies precisely on a judicious use of the  Lojasiewicz inequality and
proves the convergence of the proximal algorithm to a critical point of the function to which it is applied
(f or u). Based on  Lojasiewicz’s original idea [17] this type of results has already been applied successfully
to explicit gradient method for analytic functions [1]. Our main result is completed by studying the rate
of convergence of the algorithm (Theorem 5). This rate depends on the value of the so called  Lojasiewicz
exponents which can be thought as local measures of the flatness of functions around their generalized
critical points.

2 The proximal algorithm

2.1 Preliminaries

The Euclidean scalar product of R
n and its corresponding norm are respectively denoted by 〈·, ·〉 and | · |.

Let us recall a few definitions concerning subdifferential calculus.

Definition 1 ([24]) Let f : R
n → R ∪ {+∞} be a proper lower semicontinuous function.

(i) The domain of f , written dom f , is the subset of R
n on which f is finite-valued.

(ii) For each x ∈ dom f , the Fréchet subdifferential of f at x, written ∂̂f(x), is the set of vectors
x∗ ∈ R

n which satisfy

lim inf
y 6= x
y → x

1

|x − y|
[f(y) − f(x) − 〈x∗, y − x〉] ≥ 0.

If x /∈ dom f , then ∂̂f(x) = ∅.
(iii) The limiting-subdifferential ([22]) of f at x ∈ R

n, written ∂f , is defined as follows

∂f(x) := {x∗ ∈ R
n : ∃xn → x, f(xn) → f(x), x∗

n ∈ ∂̂f(xn) → x∗}.
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Remark 1 The above definition implies that ∂̂f(x) ⊂ ∂f(x), where the first set is convex while the
second one is closed.

Remark 2 Clearly a necessary condition for x ∈ R
n to be a minimizer of f is

∂f(x) ∋ 0. (1)

Unless f is convex the above is not a sufficient condition. In the remainder, a point x ∈ R
n that satisfies

(1) is called limiting-critical or critical. The set of critical points of f is denoted by crit f .

2.2 Proximal algorithm

Let f : R
n → R ∪ {+∞} be a proper lower semicontinuous function. Given x0 ∈ R

n we consider the
following discrete dynamical system

xk+1 ∈ argmin {f(u) +
1

2λk
|u − xk|2 : u ∈ R

n}, (2)

where (λk)k∈N is a positive sequence.
Necessary and sufficient conditions for this algorithm to be well-defined can be found in Rockafellar-

Wets [24, Exercise 1.24., p. 20]. We simply assume here that

(H1) inf
Rn

f > −∞,

which clearly implies that, for all k ∈ N, the set appearing in (2) is nonempty and compact. Writing
down the optimality condition [24, Theorem 10.1] and using the subdifferentiation formula for a sum of
functions [24, Exercise 10.10]), it follows that there exists gk+1 ∈ ∂f(xk+1) such that

xk+1 = xk − λkgk+1. (3)

Let us fix some positive parameters λ− and λ+ with 0 < λ− < λ+ < +∞.

¿From now on we assume that λk ∈ (λ−, λ+) for all k ∈ N.

Consider the following assumption:

(H2) The restriction of f to its domain is a continuous function (on dom f).

The following result gathers a few elementary facts concerning the dynamical system (2).

Proposition 2 Let (xk)k∈N be a sequence which complies with (2) and denote by ω(x0) the set of its
limit points. Then

(i) The sequence (f(xk))k∈N is decreasing,

(ii)
∑

|xk+1 − xk|2 < +∞,

(iii) If f satifies (H2) then ω(x0) ⊂ crit f.

If, in addition, the sequence (xk)k∈N is bounded then
(iv) ω(x0) is a nonempty compact connected set, and

d(xk, ω(x0)) → 0 as k → +∞,

(v) If f satifies (H2) then f is finite and constant on ω(x0).
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Sketch of the proof Let us prove (i) and (ii). By definition, (2) implies that for all k ≥ 0 we have

f(xk+1) +
1

2λk
|xk+1 − xk|2 ≤ f(xk). (4)

This means that f(xk) is nonincreasing and by summing the inequalities (4) from 0 to N ≥ 0 we also
obtain that

N∑
k=0

|xk+1 − xk|2 ≤ 2λ+[f(x0) − f(xN+1)] ≤ 2λ+[f(x0) − inf
Rn

f ] < ∞.

Let us deal with (iii) and (v). For any limit point x̄ of f , we can use the lower semicontinuity of f to
obtain that limk→∞ f(xk) ≥ f(x̄). If, in addition, f satisfies (H2) then the above inequality is actually
an equality and (v) is proved. By using (ii), (3) and the fact that λk ≥ λ− > 0 we can assume that there
exists kp → +∞ such that {(xkp , gkp)} → (x̄, 0) with f(xkp) → f(x̄). Owing to the definition of the
limiting subdifferential it follows that (x̄, 0) belongs to the graph of ∂f , so that (v) and (iii) are proved.

Item (iv) follows by using (ii) together with some classical properties of sequences in R
n.

Remark 3 When xk is bounded, the convergence of the whole sequence xk may fail even for a finite-
valued smooth function f , see Palis-De Melo [19] or Absil-Mahony-Andrews [1].

3 Convergence analysis

3.1  Lojasiewicz inequality

Let f : R
n → R ∪ {+∞} be a proper lower semicontinuous function that satisfies (H2). The function f

is said to have the  Lojasiewicz property if:

(H3) For any limiting-critical point x̂, that is ∂f(x̂) ∋ 0, there exist C, ǫ > 0 and θ ∈ [0, 1) such that

|f(x) − f(x̂)|θ ≤ C|x∗|,∀x ∈ B(x̂, ǫ),∀x∗ ∈ ∂f(x). (5)

Remark 4 When θ = 0 we adopt the convention 00 = 0, and therefore if |f(x) − f(x̂)|0 = 0 we have
f(x) = f(x̂).

Lemma 3 Assume that f has the Lojasiewicz property.
(i) If K is a connected subset of the set of critical points of f , that is ∂f(x) ∋ 0 for all x ∈ K, then

f is constant on K.
(ii) If in addition K is a compact set, then there exist C, ǫ > 0 and θ ∈ [0, 1) such that

∀x ∈ R
n, d(x,K) ≤ ǫ, ∀x∗ ∈ ∂f(x), |f(x) − f(x̂)|θ ≤ C|x∗|. (6)

Proof. Item (i) is a straightforward consequence of (ii), let us therefore deal with (ii). The compact set
K can be covered by a finite number of open balls B(xi, ǫi), with xi ∈ K (i = 1, . . . , p) on which (5)
holds with constants Ci, θi. In other words, for each i ∈ {1, . . . , p} and for each x ∈ B(xi, ǫi) we have

|f(x) − f(xi)|
θi ≤ Ci|x

∗|

for all x∗ in ∂f(x). As a consequence, f is locally constant (and continuous) on the connected set K, it
is therefore constant. By choosing ǫ > 0 sufficiently small, we obtain that

{x ∈ R
n : d(x,K) ≤ ǫ} ⊂ ∪p

i=1B(xi, ǫi),

and the claimed result holds by letting C = max Ci and θ = max θi.
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Remark 5 (a) Real-analytic functions have the  Lojasiewicz property, see  Lojasiewicz [17, 18].
(b) If f is subanalytic and satisfies (H2) (with dom f closed in R

n), in particular if f is continuous and
subanalytic, it has the  Lojasiewicz property, see [9, 10], and also Kurdyka-Parusinski [16] for similar
results. Basic definitions and some examples of subanalytic functions can be found in [9]; for a compre-
hensive account on the topic one is referred to [26, 12] and references therein.
(c) Convex functions satisfying the following growth conditions

∀x̂ ∈ argmin f,∃C > 0, r ≥ 1, ǫ > 0,∀x ∈ B(x̂, ǫ), f(x) ≥ f(x̂) + Cd(x, argmin f)r

comply with (5) (with θ = 1 − 1
r ), see [9].

(d) Infinite-dimensional versions of (5) have been developed in view of the asymptotic analysis of dissi-
pative evolution equations. These can be found in Simon [25], and Haraux [14].
(e) Kurdyka has recently established a  Lojasiewicz-like inequality for functions definable in an arbitrary
o-minimal structure [15].

3.2 Convergence results

The proofs we develop here are adapted from  Lojasiewicz’s original idea [17].

Theorem 4 (Convergence result) Assume that f satisfies (H1), (H2), (H3) and let (xk)k∈N be a
sequence generated by the proximal algorithm.

If the sequence (xk)k∈N is bounded, then

+∞∑
k=0

|xk+1 − xk| < +∞,

in particular the whole sequence (xk)k∈N converges to some critical point of f .

Proof. Changing f into f − infk≥0 f(xk) we can assume with no loss of generality that f(xk) converges
to 0. The case when xk+1 = xk for some k ≥ 1 has no consequence on the asymptotic analysis, so that
we may suppose that |xk+1 − xk| > 0 for all k ≥ 0. In view of (4), we obtain also that f(xk) is positive
and decreases (strictly) to 0.

By using the convex inequality for the function s > 0 → −s1−θ and (4) for all k ≥ 0 we obtain that

f(xk)1−θ − f(xk+1)1−θ ≥ (1 − θ)f(xk)−θ(f(xk) − f(xk+1))

≥ (1 − θ)f(xk)−θ 1

2λk
|xk+1 − xk|2. (7)

By Proposition 2 (iii) and (iv), and Lemma 3 (take K = ω(x0)) there exist an integer N0, real numbers
C and θ ∈ (0, 1) such that

0 < |f(xk)|θ ≤ C|gk| =
C

λk
|xk − xk−1|

for all k ≥ N0.
Combining the above result with (7) (recall λk > λ− > 0) yields the existence of a positive constant M
such that

|xk+1 − xk|2

|xk − xk−1|
≤ M(f(xk)1−θ − f(xk+1)1−θ) (8)

for all k ≥ N0.
Fix r ∈ (0, 1) and take k ≥ N0. If |xk+1 − xk| ≥ r|xk − xk−1|, (8) implies that

|xk+1 − xk| ≤
M

r
[f(xk)1−θ − f(xk+1)1−θ],
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and thus we have for all k ≥ N0

|xk+1 − xk| ≤ r|xk − xk−1| +
M

r
[f(xk)1−θ − f(xk+1)1−θ].

If N ≥ N0 an easy induction yields

N∑
k=N0

|xk+1 − xk| ≤
r

1 − r
|xN0 − xN0−1| +

M

r(1 − r)
[f(xN0)1−θ − f(xN+1)1−θ], (9)

and the conclusion follows from the fact that f is bounded from below. �

Remark 6 Similar convergence results could be obtained for functions belonging to some o-minimal
structure, see Kurdyka [15] and references therein.

If (xk)k∈N is a bounded sequence generated by (2), let us denote by x∞ its (unique) limit point.
Applying Proposition (2) (iii) and (5) we obtain the existence of a neighborhood around x∞ such that
(5) holds. The number θ appearing in (5) is then called a  Lojasiewicz exponent of x∞.

Theorem 5 (Rate of convergence) The assumptions are those of Theorem 4. Let (xk)k∈N be a
bounded sequence generated by the proximal algorithm and let us denote by θ a  Lojasiewicz exponent of
x∞. The following estimations hold

(i) If θ = 0, the sequence (xk)k∈N converges in a finite number of steps,
(ii) If θ ∈ (0, 1

2 ] then there exist c > 0 and Q ∈ [0, 1) such that

|xk − x∞| ≤ c Qk,

(iii) If θ ∈ ( 1
2 , 1) then there exists c > 0 such that

|xk − x∞| ≤ c k−
1−θ
2θ−1 .

Proof The notations are those of the previous proof. For any k ≥ 0, set ∆k =
∑∞

p=k |x
p+1 −xp| which is

finite by Theorem 4. The triangle inequality yields ∆k ≥ |xk − x∞|, it is therefore sufficient to establish
the estimations appearing in (ii) and (iii) for ∆k. With no loss of generality we may assume that ∆k > 0
for all k ≥ 0.

Using (9), and the fact that f(xk) decreases to zero we obtain for k sufficiently large (recall that
r ∈ (0, 1) can be taken arbitrarily)

∆k ≤
1

1 − r
(∆k−1 − ∆k) +

M

r(1 − r)
f(xk)1−θ

≤
1

1 − r
(∆k−1 − ∆k) +

M

r(1 − r)
(C|gk|)

1−θ
θ (10)

≤
1

1 − r
(∆k−1 − ∆k) + (λ−)1−1/θ MC

1−θ
θ

r(1 − r)
(∆k−1 − ∆k)

1−θ
θ (11)

where (10) and (11) follow respectively from (5) and (3).

Assume that θ belongs to (1
2 , 1), so that 1−θ

θ < 1. Since ∆k → 0 as k → ∞, we deduce from (11) that
there exist an integer N1 ≥ N0 and a positive constant C1 such that

∆
θ

1−θ

k ≤ C1(∆k−1 − ∆k), (12)
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for all k ≥ N1. Define h : (0, +∞) → R by h(s) = s−
θ

1−θ and let R ∈ (1, +∞). Take k ≥ N1 and assume
first that h(∆k) ≤ R h(∆k−1). By rewriting (12) as

1 ≤
C1(∆k−1 − ∆k)

∆
θ

1−θ

k

,

we obtain that

1 ≤ C1(∆k−1 − ∆k)h(∆k)

≤ RC1(∆k−1 − ∆k)h(∆k−1)

≤ RC1

∫ ∆k−1

∆k

h(s)ds

≤ RC1
1 − θ

1 − 2θ
[∆

1−2θ
1−θ

k−1 − ∆
1−2θ
1−θ

k ].

Thus if we set µ = 2θ−1
(1−θ)RC1

> 0 and ν = 1−2θ
1−θ < 0 one obtains that

0 < µ ≤ ∆ν
k − ∆ν

k−1. (13)

Assume now that h(∆k) > R h(∆k−1) and set q = ( 1
R )

1−θ
θ ∈ (0, 1). It follows immediately that ∆k ≤

q∆k−1 and furthermore - recalling that ν is negative - we have

∆ν
k ≥ qν∆ν

k−1

∆ν
k − ∆ν

k−1 ≥ (qν − 1)∆ν
k−1.

Since qν −1 > 0 and ∆p → 0+ as p → +∞, there exists µ̄ > 0 such that (qν −1)∆ν
p−1 > µ̄ for all p ≥ N1.

Therefore we obtain that
∆ν

k − ∆ν
k−1 ≥ µ̄. (14)

If we set µ̂ = min{µ, µ̄} > 0, one can combine (14) and (13) to obtain that

∆ν
k − ∆ν

k−1 ≥ µ̂ > 0

for all k ≥ N1. By summing those inequalities from N1 to some N greater than N1 we obtain that
∆ν

N − ∆ν
N1

≥ µ̂(N − N1) and consequently (iii) follows from

∆N ≤ [∆ν
N1

+ µ̂(N − N1)]1/ν ≤ cN−
1−θ
2θ−1 (c being a positive constant).

When θ ∈ (0, 1
2 ], (11) shows that ∆k complies with the following inequality (for k sufficiently large)

∆k ≤ C2(∆k−1 − ∆k),

where C2 is a positive constant. This implies that ∆k ≤ C2

1+C2

∆k−1 and item (ii) follows easily with

Q = C2

1+C2

∈ (0, 1).

Assume that θ = 0, set I := {k ∈ N : xk+1 6= xk} and take k in I. If k is sufficiently large we have

1

λ2
k

|xk+1 − xk|2 = |gk+1|2 ≥ C3 > 0,
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so that (4) implies that

f(xk+1) ≤ f(xk) −
1

2λk
|xk+1 − xk|2 ≤ f(xk) − C3

λ−

2
.

Since f(xk) is known to converge to zero the above inequality clearly implies that I is finite and (i) follows
immediately. �
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Équations aux Dérivées Partielles, pp. 87–89, Éditions du Centre National de la Recherche Sci-
entifique, Paris 1963.
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