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Abstract

In a Hilbert space setting, we consider new continuous gradient-like dynamical
systems for constrained multiobjective optimization. This type of dynamics was
first investigated by Cl. Henry, and B. Cornet, as a model of allocation of resources
in economics. Based on the Yosida regularization of the discontinuous part of the
vector field which governs the system, we obtain the existence of strong global
trajectories. We prove a descent property for each objective function, and in the
quasi-convex case, convergence of the trajectories to Pareto critical points. We give
an interpretation of the dynamic in terms of Pareto equilibration for cooperative
games. By time discretization, we make a link to recent studies of Svaiter et al.
on the algorithm of steepest descent for multiobjective optimization.

Keywords Multiobjective optimization · Continuous gradient systems · Asymptotic
behavior · Pareto critical · Pareto optimization · Cooperative games · Steepest descent.

Mathematics Subject Classifications (2010) 34E10 · 37L05 · 37L65 · 90B50 ·
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Introduction

In this paper, we study a continuous gradient-like dynamical system which enjoys re-
markable properties with respect to constrained Pareto optimization. It was first inves-
tigated by Henry [30] and Cornet [21], [22], [23] in the seventies, as a dynamical model
of allocation of resources in economics. We revisit it from a modern perspective. In
a general Hilbert space setting, we provide a new constructive proof of the existence
of strong global trajectories, and show their convergence in the case of quasi-convex
functions. We establish a link between this dynamical system and the steepest de-
scent algorithms for multiobjective optimization which have been recently introduced
by Svaiter et al. in [25], [26]. As a general rule, making a link between optimization
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algorithms and continuous dynamics has proved to be fruitful. For further research, it
may serve as a mathematical basis to study complex interactions in game theory (for ex-
ample by coupling cooperative dynamic and noncooperative dynamic). As well, it may
be adapted in order to fit with topics of current interest in multiobjective optimization
like, control, inertia, multiscale aspects, Newton methods.

Let us now describe the system. Throughout the paper, H is a real Hilbert space
with scalar product and norm denoted by 〈·, ·〉 and ‖·‖ =

√

〈·, ·〉 respectively. We make
the following standing assumptions on the multiple objective functions (fi)i=1,2,..,q,
(q ∈ N), and constraint K:

H0) K ⊂ H is a closed convex nonempty set.

For each i = 1, 2, ..., q, fi : H → R is a real-valued function which satisfies:

H1) fi is differentiable, its gradient ∇fi is Lipschitz continuous on bounded sets;

H2) fi : H → R is a quasi-convex function;

H3) fi is bounded from below on K.

The description of our dynamic involves the following convex sets in H: for u ∈ K,

NK(u) = {z ∈ H : 〈z, v − u〉 ≤ 0 for any v ∈ K}

is the normal cone to K at u. It is a closed convex cone which models the contact forces
which are attached to the constraint K. For u ∈ H,

Conv {∇fi(u); i = 1, 2, ..., q} = {

q
∑

i=1

λi∇fi(u) : 0 ≤ λi ≤ 1,

q
∑

i=1

λi = 1}

is the closed convex hull of the vectors {∇fi(u); i = 1, 2, ..., q}. It models the driving
forces which governs our system.
For any closed convex set C ⊂ H we denote by

C0 = projC0

the projection of the origin onto C, which is the element of minimal norm of C.
For any u ∈ K the set

NK(u) + Conv {∇fi(u); i = 1, 2, ..., q}

is a closed convex set, as being equal to the vectorial sum of two closed convex sets, one
of them being compact. Thus, it has a unique element of minimal norm, which allows
us to define the differential equation

(MCSD) u̇(t) +

(

NK(u(t)) + Conv {∇fi(u(t)); i = 1, 2, ..., q}

)0

= 0, (1)

called the Multiobjective Continuous Steepest Descent, (MCSD) for short. From the
point of view of modeling, it has the following properties:

a) It is a descent method, i.e., for each i = 1, 2, ..., q, t 7→ fi(u(t)) is nonincreasing.
b) Its trajectories converge to Pareto critical points.
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c) The scalarization of the multiobjective optimization problem is done endoge-
neously. At time t, the vector field which governs the system involves a convex combi-
nation

∑q
i=1 λi(t)∇fi(·) of the gradients ∇fi(·), with scalars λi(t) which are not fixed

in advance. They are part of the process, whence the decentralized features of this
dynamic. Indeed, this system and its companions provide a rich dynamical model of
the interaction between cooperating agents.

The mathematical analysis of (MCSD) is quite difficult, because the dynamic is
governed by a discontinuous vector field. Indeed, the multivalued operator v 7→ NK(v)
is discontinuous at the boundary of K. Trajectories of (MCSD) are lazy solutions (also
called slow solutions, see [9, Ch. 6, section 8]) of the differential inclusion

u̇(t) +NK(u(t)) + Conv {∇fi(u(t)); i = 1, 2, ..., q} ∋ 0, (2)

which is governed by the sum of the maximal monotone operator NK and the multival-
ued continuous operator v 7→ Conv {∇fi(v); i = 1, 2, ..., q}. Lazy solution means that
the trajectory chooses a velocity which has minimal norm among all the possible direc-
tions offered by the differential inclusion. This type of differential inclusion occurs in
various domains (mechanics, economics, control...), and has subsequently be the object
of active research, see for example [5], [8], [14], [20].

In this paper we provide several new results concerning (MCSD):
i) In a Hilbert space setting, in Theorem 1.5 we prove convergence of the trajectories

of (MCSD) to Pareto critical solutions of the multiobjective constrained problem

min {F (v) : v ∈ K}

where F : H → R
q, F (v) = (fi(v))i=1,2,...,q. We obtain this result under the assumption

of quasi-convexity of the fi and convexity of K. Our proof is in the line of the proof
of convergence of the steepest descent by Goudou-Munier [29] in the case of a single
objective function (scalar case); it makes use of Lyapunov analysis and Opial’s lemma.

ii) In Theorem 2.5, we prove the existence of strong global solutions of the more
general evolution equation

u̇(t) +

(

∂Φ(u(t)) + Conv {∇fi(u(t)); i = 1, 2, ..., q}

)0

= 0, (3)

where ∂Φ is the subdifferential of a closed convex proper function Φ : H → R ∪
{+∞}. (MCSD) corresponds to Φ = δK , the indicator function of K. We provide a
new constructive proof of the existence of strong (i.e., absolutely continuous on each
bounded time interval) global solutions. It is based on the Yosida regularization of ∂Φ,
and Peano existence theorem for differential equations. The difficult point is to pass
to the limit on the regularized differential equations, as the regularization parameter
goes to zero, because the vector field which governs our dynamic is not continuous,
nor monotone. This new approach is flexible: it can be easily adapted to the case
of non-autonomous equations with constraint and/or criteria which vary (changing
environment, uncertainty). From the modeling and numerical point of view, another
interesting aspect is the ability to handle the constraint by various ways, such as exterior
penalty, or interior point methods.
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iii) In Theorem 3.5 we provide an equivalent formulation of the steepest descent
direction for multiobjective constrained optimization, and its interpretation for co-
operative games. We briefly analyze the Pareto equilibration process associated to
(MCSD). Then, by time discretization of (MCSD), we establish the link with some
recent numerical algorithms for multiobjective optimization: the steepest descent of
Fliege and Svaiter [25], Grana Drummond and Svaiter [26], and the proximal methods
in vector optimization of Bonnel, Iusem and Svaiter [16].

The paper is organized following the three above items: in section 1, we show the
convergence to Pareto critical points of the trajectories of (MCSD), as t goes to infinity.
Then, in section 2, we prove the existence of strong global solutions to (MCSD). Finally,
in sections 4 and 5 we successively examine some natural connections between (MCSD),
cooperative games, and numerical algorithms for multiobjective optimization.

1 Asymptotic convergence to Pareto critical points

In this section, we study the asymptotic behavior (t → +∞) of the trajectories of
(MCSD). We take for granted the existence of strong global solutions of (MCSD). This
question will be examined into detail in the next section. Such solution u : [0,+∞) → H

is continuous, and absolutely continuous on each interval [0, T ], 0 < T < +∞, (see
Definition 2.4). In order to prove the weak convergence of the trajectories of (MCSD)
we use the classical Opial’s lemma [35]. We recall in its continuous form, and give a
short proof of it:

Lemma 1.1. Let S be a non empty subset of H and u : [0,+∞) → H a map. Assume
that

(i) for every z ∈ S, lim
t→+∞

‖u(t) − z‖ exists;

(ii) every weak limit point of the map u belongs to S.

Then
w − lim

t→+∞
u(t) = u∞ exists, for some element u∞ ∈ S.

Proof. By (i) and S 6= ∅, the trajectory u is bounded in H. In order to obtain its weak
convergence, we just need to prove that the trajectory has a unique weak limit point.
Let u(t1n) ⇀ z1 and u(t2n) ⇀ z2, with t1n → +∞, and t2n → +∞. By (ii), z1 ∈ S, and
z2 ∈ S. By (i), it follows that limt→+∞ ‖u(t) − z1‖ and limt→+∞ ‖u(t) − z2‖ exist.
Hence, limt→+∞(‖u(t) − z1‖2 − ‖u(t) − z2‖2) exists. Developing and simplifying this
last expression, we deduce that

lim
t→+∞

〈

u(t), z2 − z1
〉

exists.

Hence
lim

n→+∞

〈

u(t1n), z
2 − z1

〉

= lim
n→+∞

〈

u(t2n), z
2 − z1

〉

,

which gives ‖z2 − z1‖2 = 0, and hence z2 = z1.

The stationary points of our dynamic are Pareto critical points, as defined below.
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Definition 1.2. We say that ū is a Pareto critical point of the multiobjective optimiza-
tion problem {(fi)i=1,...,q; K} if there exists (λi)i=1,2,...,q such that

0 ≤ λi ≤ 1,

q
∑

i=1

λi = 1

q
∑

i=1

λi∇fi(ū) +NK(ū) ∋ 0. (4)

This notion has been considered by Smale in [38], Cornet in [21], see [11], [26], [40]
for recent account of this notion, and various extensions of it. Note that equivalent
formulations of this notion can be given, thanks to the positive homogeneity property
of the formula: the condition

∑q
i=1 λi = 1 can be dropped, just assuming the λi to be

nonnegative, and at least one of them positive. This notion is naturally linked to the
notion of Pareto optimality. Set F : H → R

q, F (v) = (fi(v))i=1,2,...,q. The order in R
q

is defined by y � z ⇔ yi ≤ zi for all i = 1, 2, ..., q. We also consider the strict order
relation y ≺ z ⇔ yi < zi for all i = 1, 2, ..., q.

Definition 1.3. i) An element u ∈ K is called Pareto optimal if there does not exist
v ∈ K such that F (v) � F (u) and F (v) 6= F (u). Equivalently, there there does not
exist v ∈ K such that fi(v) ≤ fi(u) for all i = 1, 2, ..., q, and fj(v) < fj(u) for one
j ∈ 1, 2, ..., q.
ii) An element u ∈ K is called weak Pareto optimal if there does not exist v ∈ K such
that F (v) ≺ F (u). Equivalently, there does not exist v ∈ K such that fi(v) < fi(u) for
all i = 1, 2, ..., q.

Let us respectively denote by P, Pw, and Pc the set of Pareto optima, weak Pareto
optima, and Pareto critical points. Indeed, Pareto criticality is a first-order necessary
optimality condition for (local) vectorial optimization. It is a multiobjective extension
of the Fermat rule. Let us state it in a precise way.

Proposition 1.4. i) The following inclusions hold:

P ⊂ Pw ⊂ Pc.

ii) The equality Pw = Pc is true when all functions fi, i = 1, 2, ..., q are convex.

Proof. The inclusion Pw ⊂ Pc in item i) is obtained by a direct application of the
Hahn-Banach separation theorem (see for example [21, Proposition 1.1], [40], [11]).
Item ii) treats the case where all functions fi, i = 1, 2, ..., q are convex. Let u ∈ Pc.
Then, u is a (global) solution of the convex minimization problem

min

{

q
∑

i=1

λifi(v) : v ∈ K

}

(5)

with λi which are all nonnegative, and at least one of them positive. Indeed, (5) forces
u to be a weak Pareto minima. Otherwise, there would exist some v ∈ K such that
fi(v) < fi(u) for all i = 1, 2, ..., q, which would imply (one uses the fact at least one of
the λi is positive)

∑q
i=1 λifi(v) <

∑q
i=1 λifi(u), a clear contradiction.

We can now state our main convergence result.
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Theorem 1.5. Let us make assumptions H0), H1), H2), H3). Then for any strong
global solution t ∈ [0,+∞[ 7→ u(t) ∈ H of (MCSD), the following properties hold:
i) Descent property: for each i = 1, 2, ..., q, t 7→ fi(u(t)) is nonincreasing, and for
almost all t > 0

‖u̇(t)‖2 +
d

dt
fi(u(t)) ≤ 0. (6)

ii) Finite energy property:
∫ +∞

0
‖u̇(t)‖2dt < +∞. (7)

iii) Weak convergence: Assume that the trajectory t ∈ [0,+∞[ 7→ u(t) ∈ H is bounded
in H. Then u(t) converges weakly in H as t→ +∞.

iv) Pareto optimization: Assume moreover that the trajectory t ∈ [0,+∞[ 7→ u(t) ∈ H

is relatively compact in H. Then u(t) converges strongly in H as t→ +∞ to a Pareto
critical point u∞.

Proof. By definition of (MCSD), −u̇(t) is the projection of the origin onto the closed
convex set C(t) := NK(u(t)) + Conv {∇fi(u(t))}. Hence, for any ξ ∈ C(t)

〈0 − (−u̇(t)), ξ − (−u̇(t))〉 ≤ 0, (8)

that is
〈u̇(t), ξ + u̇(t)〉 ≤ 0. (9)

Noticing that 0 ∈ NK(u(t)) and ∇fi(u(t)) ∈ Conv {∇fi(u(t))}, we can take ξ =
∇fi(u(t)) in (9), which yields

〈u̇(t),∇fi(u(t)) + u̇(t)〉 ≤ 0. (10)

The derivation chain rule is valid in our situation, see for example [19, Corollaire
VIII.10]. Hence

‖u̇(t)‖2 +
d

dt
fi(u(t)) ≤ 0. (11)

As a consequence, d
dt
fi(u(t)) ≤ 0, and for each i = 1, 2, ..., q the function t 7→ fi(u(t))

is nonincreasing. Moreover by integrating (11) and using that fi is bounded from below
on K we obtain

∫ +∞

0
‖u̇(t)‖2dt ≤ fi(u(0)) − infKfi. (12)

This proves points i) and ii).
Let us now prove the weak convergence of any bounded trajectory u of (MCSD).

To that end we use Opial’s Lemma 1.1 with

S =

{

v ∈ K : ∀i = 1, 2, ..., q fi(v) ≤ inf
t≥0

fi(u(t))

}

. (13)

Functions fi are continuous, quasi-convex, and hence lower semicontinuous for the weak
topology of H. As well, the closed convex set K is closed for the weak topology of H.
The trajectory t ∈ [0,+∞[ 7→ u(t) ∈ H has been assumed to be bounded in H. Hence,

6



any weak limit point of the trajectory belongs to S, which is a closed convex non empty
subset of H.

i) Take z ∈ S and set, for any t ≥ 0

hz(t) =
1

2
‖u(t) − z‖2. (14)

We have
ḣz(t) = 〈u(t) − z, u̇(t)〉 . (15)

Since u is a solution of (MCSD) there exists

η(t) ∈ NK(u(t)) and 0 ≤ λi(t) ≤ 1,

q
∑

i=1

λi(t) = 1 (16)

such that, for almost all t > 0

u̇(t) +

q
∑

i=1

λi(t)∇fi(u(t)) + η(t) = 0. (17)

By combining (15) and (17) we obtain

ḣz(t) +

q
∑

i=1

λi(t) 〈u(t) − z,∇fi(u(t))〉 + 〈u(t) − z, η(t)〉 = 0. (18)

On the one hand, since η(t) ∈ NK(u(t)) and z ∈ K

〈η(t), u(t) − z〉 ≥ 0. (19)

On the other hand, by quasi-convexity of fi, the set {v ∈ H : fi(v) ≤ fi(u(t))} is con-
vex. Since u(t) and z belong to this set, we have that, for any 0 ≤ θ ≤ 1, θz+(1−θ)u(t)
remains in this set. Hence

fi(u(t) + θ(z − u(t))) − fi(u(t)) ≤ 0. (20)

Dividing by θ > 0, and letting θ go to zero gives

〈∇fi(u(t)), z − u(t)〉 ≤ 0. (21)

As a consequence
q
∑

i=1

λi(t) 〈∇fi(u(t)), u(t) − z〉 ≥ 0. (22)

Combining (18) with (19) and (22) we obtain

ḣz(t) ≤ 0. (23)

Hence, hz is a decreasing function, which proves item i) of Lemma 1.1.
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Let us verify item ii) of Lemma 1.1. Let w − limu(tn) = z for some sequence
tn → +∞. Since u(tn) ∈ K and K is a closed convex subset of H, we have z ∈ K.
Moreover

inf
t≥0

fi(u(t)) = lim
t→+∞

fi(u(t)) (24)

= lim
n→+∞

fi(u(tn)) (25)

≥ fi(z) (26)

where the last inequality follows from the fact that fi is continuous and quasi-convex,
and hence lower semicontinuous for the weak topology of H. This being true for each
i = 1, 2, ..., q we conclude that z ∈ S. The two conditions of the Opial Lemma 1.1 are
satisfied, which gives the weak convergence of all bounded trajectory u of (MCSD).

Let us now assume that the trajectory t 7→ u(t) is relatively compact. As a con-
sequence, it is bounded, and by iii) it converges weakly, and hence strongly in H

as t → +∞ (on relatively compact sets weak and strong convergence are equivalent
notions). Set

u(t) → u∞ strongly in H, (27)

and show that u∞ is a Pareto critical point. Clearly, the finite energy property (7)

∫ +∞

0
‖u̇(t)‖2dt < +∞

implies
liminfesst→+∞‖u̇(t)‖ = 0.

Equivalently, there exists a sequence tn → +∞ such that

u̇(tn) → 0. (28)

By (16) and (17)

u̇(tn) +

q
∑

i=1

λi(tn)∇fi(u(tn)) + η(tn) = 0, (29)

with

η(tn) ∈ NK(u(tn)), and 0 ≤ λi(tn) ≤ 1,

q
∑

i=1

λi(tn) = 1. (30)

By compactness of the unit simplex in R
q, we can extract a further subsequence (still

noted tn to simplify the notation) such that, for each i = 1, 2, ..., q

λi(tn) → λi,∞, (31)

with

0 ≤ λi,∞ ≤ 1,

q
∑

i=1

λi,∞ = 1. (32)

By (27), u(tn) → u∞ strongly in H. By continuity of ∇fi : H → H,

∇fi(u(tn)) → ∇fi(u∞). (33)
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We can now pass to the limit on (29). By (27), (28), (31), (33)

η(tn) ∈ NK(u(tn))

u(tn) → u∞ strongly in H

η(tn) = −u̇(tn) −

q
∑

i=1

λi(tn)∇fi(u(tn)) → −

q
∑

i=1

λi,∞∇fi(u∞).

By closedness of the graph of the set-valued mapping v 7→ NK(v) (it is a maximal
monotone operator), we finally obtain

q
∑

i=1

λi,∞∇fi(u∞) +NK(u∞) ∋ 0 (34)

which, with (32), expresses that u∞ is a Pareto critical point.

When the objective functions fi are convex, one can get rid of the compactness
assumption on the trajectory, and, at the limit, still obtain Pareto optimality.

Proposition 1.6. Assume that all the functions fi, i = 1, 2, ..., q are convex. Let
t ∈ [0,+∞[ 7→ u(t) ∈ H be a strong global solution of (MCSD). Let us assume that u is
bounded. Then u(t) converges weakly in H as t→ +∞ to a weak Pareto minimum.

Proof. By Theorem 1.5 iii), we know that u(t) converges weakly in H as t → +∞ to
some u∞. We want to prove that u∞ is a Pareto critical point. We just need to adapt
the end of the proof of Theorem 1.5 iii). Let us show how, thanks to convexity, we
can get rid of the strong compactness assumption on the trajectory, and instead, use a
weak compactness argument. We have

u̇(tn) → 0 strongly in H; (35)

u(tn) → u∞ weakly in H; (36)

− u̇(tn) ∈

q
∑

i=1

λi(tn)∇fi(u(tn)) +NK(u(tn)). (37)

We can rewrite the above inclusion as

−u̇(tn) ∈ ∂Gn(u(tn)) (38)

with Gn : H → R ∪ {+∞} defined by

Gn(v) =

q
∑

i=1

λi(tn)fi(v) + δK(v)

(δK is the indicator function of K). By using (31), it can be easily verified that the
sequence of closed convex functions (Gn)n Mosco-epiconverges to G : H → R ∪ {+∞}

G(v) =

q
∑

i=1

λi,∞fi(v) + δK(v).
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We now use the equivalence between Mosco-epiconvergence of a sequence of closed
convex functions, and the graph-convergence of their subdifferentials, [3, Theorem 3.66,
Proposition 3.59], see also [2], [13, Theorem 8.3.9]. We obtain the graph-convergence of
the sequence of maximal monotone operators ∂Gn to ∂G, and by [3, Proposition 3.59],
their convergence in the weak − H × strong − H topology. By applying this result to
(38), and taking account of (35), we obtain 0 ∈ ∂G(u∞). Equivalently,

q
∑

i=1

λi,∞∇fi(u∞) +NK(u∞) ∋ 0,

which, with (32), expresses that u∞ is a Pareto critical point. By Proposition 1.4, and
the convexity of the fi, it follows that u∞ is a weak Pareto minimum.

Remark 1.7. a) In the unconstrained single criteria case, it is proven in [29] that
the trajectory converges towards a critical (Pareto) point as soon as the set of optimal
(Pareto) points is non empty. This is an open question in our multiobjective framework.

b) Since each function t 7→ fi(u(t)) is nonincreasing, a natural condition insuring
that the trajectory remains bounded (respectively relatively compact) is that one of
the function fi has bounded (respectively relatively compact) sublevel sets.

2 Existence of strong global solutions

In this section, we consider the abstract evolution equation

u̇(t) +

(

∂Φ(u(t)) −B(u(t))

)0

= 0. (39)

As a particular case, (MCSD) is obtained by taking Φ = δK the indicator function of
K, and B(v) = −Conv {∇fi(v); i = 1, 2, ..., q} (the minus sign before B is introduced
for convenience of mathematical analysis).

2.1 Statement of the results

We make the standing assumptions:

• A1) H = R
d is a finite dimensional Euclidian space.

• A2) Φ : H → R ∪ {+∞} is a closed convex proper function, and ∂Φ : dom∂Φ ⊂
H → 2H is the subdifferential of Φ.

• A3) B : H → 2H is a continuous set-valued mapping with convex compact values,
which satisfies the growth condition: there exists some c > 0 such that

for all x ∈ H, and all y ∈ B(x), ‖y‖ ≤ c(1 + ‖x‖). (40)

The continuity of the set-valued mapping x 7→ B(x) is taken in the Hausdorff sense.
It means that, whenever xn → x then haus(B(xn), B(x)) → 0. Recall the definition of
the Hausdorff distance.
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Definition 2.1. The Hausdorff distance between two closed convex subsets C and D
of H is defined by

haus(C,D) = max {e(C,D); e(D,C)} (41)

where e(C,D) = supx∈C d(x,D) is the excess of C on D, and e(D,C) = supx∈D d(x,C)
is the excess of C on D. Equivalently (see [13, Lemma 1.5.1; Definition 3.2.1.])

haus(C,D) = sup
x∈H

|d(x,C) − d(x,D|. (42)

Assumptions A2) and A3) are satisfied in the case of the (MCSD) dynamic. The conti-
nuity of the set-valued mapping B : v ∈ H 7→ B(v) = −Conv {∇fi(v); i = 1, 2, ..., q} ∈
2H is a consequence of the following

Lemma 2.2. Set L(R) = max {Li(R); i = 1, 2, ..., q}, where Li(R) is the Lipschitz
constant of ∇fi on the ball B(0, R). Then for any u, v ∈ B(0, R)

haus(B(u), B(v)) ≤ L(R)‖u− v‖.

Proof. Let ξ ∈ B(v), i.e., ξ = −
∑q

i=1 λi∇fi(v), with
∑q

i=1 λi = 1, λi ≥ 0. Since
−
∑q

i=1 λi∇fi(u) ∈ B(u) we infer

d(ξ,B(u)) ≤ ‖ξ +

q
∑

i=1

λi∇fi(u)‖

≤ ‖

q
∑

i=1

λi∇fi(v) −

q
∑

i=1

λi∇fi(u)‖

≤

q
∑

i=1

λi‖∇fi(v) −∇fi(u)‖

≤ L(R)‖u− v‖.

This being true for any ξ ∈ B(v), it follows that e(B(v), B(u)) ≤ L(R)‖u − v‖, and
from the symmetry of the role played by u and v, we obtain the result.

Our proof of the existence of solutions to (39) relies on Peano, and not on Cauchy-
Lipschitz theorem. This explains assumption A1), and why in this section we restrict
our analysis to the finite dimensional case.

In order to define the notion of strong solution, let us first recall some notions con-
cerning vector-valued functions of real variables (see [18, Appendix] for more details).

Definition 2.3. Given T ∈ R
+, a function f : [0, T ] −→ H is said to be absolutely

continuous if one of the following equivalent properties holds:
i) there exists an integrable function g : [0, T ] −→ H such that

f (t) = f (0) +

∫ t

0
g (s) ds ∀t ∈ [0, T ] ;

ii) f is continuous and its distributional derivative belongs to the Lebesgue space
L1 ([0, T ] ;H);

iii) for every ǫ > 0, there exists some η > 0 such that for any finite family of
intervals Ik = (ak, bk)

Ik ∩ Ij = ∅ for i 6= j and
∑

k |bk − ak| ≤ η =⇒
∑

k ‖f (bk) − f (ak) ‖ ≤ ǫ.
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Moreover, an absolutely continuous function is differentiable almost everywhere, its
derivative coincide with its distributional derivative almost everywhere, and one can
recover the function from its derivative f ′ = g using the integration formula (i) .

Definition 2.4. We say that u(·) is a strong global solution of (39) if the following
properties are satisfied:

(i) u : [0,+∞) → H is continuous, and absolutely continuous on each interval [0, T ],
0 < T < +∞;

(ii) there exists v : [0,+∞) → H and w : [0,+∞) → H which satisfy

v ∈ L2(0, T ; H), w ∈ L2(0, T ; H) for all T > 0; (43)

v(t) ∈ ∂Φ(u(t)), w(t) ∈ B(u(t)) for almost all t > 0; (44)

v(t) − w(t) =

(

∂Φ(u(t)) −B(u(t))

)0

for almost all t > 0; (45)

u̇(t) + v(t) − w(t) = 0 for almost all t > 0. (46)

Theorem 2.5. Let us make assumptions A1), A2), A3). Then, for any u0 ∈ dom∂Φ
there exists a strong global solution u : [0,+∞) → H of the Cauchy problem











u̇(t) +

(

∂Φ(u(t)) −B(u(t))

)0

= 0,

u(0) = u0.

(47)

In the above theorem, we only claim existence. Without any further assumptions,
uniqueness is not guarantied. As we already claimed, the following proof of existence
relies on Peano, not on Cauchy-Lipschitz theorem.

2.2 Approximate equations

The main difficulty comes from the discontinuity of the multivalued operator ∂Φ, and
hence of the vector field which governs the differential equation (39). As a main in-
gredient of our approach, we use the Yosida approximation of the maximal monotone
operator ∂Φ. This regularization method is widely used in nonsmooth convex anal-
ysis, see [3], [9], [12], [18], [41] for a detailed presentation. Its main properties are
summarized in the following

Proposition 2.6. For any λ > 0, the Moreau-Yosida approximation of index λ of Φ
is the function Φλ : H → R which is defined for all x ∈ H by

Φλ(x) = inf

{

Φ(ξ) +
1

2λ
‖x− ξ‖2 : ξ ∈ H

}

. (48)

1. The infimum in (48) is attained at a unique point Jλx ∈ H, which satisfies

Φλ(x) = Φ(Jλx) +
1

2λ
‖x− Jλx‖

2; (49)

Jλx+ λ∂Φ(Jλx) ∋ x. (50)

Jλ = (I + λ∂Φ)−1 : H → H is everywhere defined and nonexpansive. It is is
called the resolvent of index λ of A = ∂Φ.

12



2. Φλ is convex, and continuously differentiable. Its gradient at x ∈ H is equal to

∇Φλ(x) =
1

λ
(x− Jλx). (51)

3. The operator Aλ = ∇Φλ = 1
λ
(I − Jλ) is called the Yosida approximation of index

λ of the maximal monotone operator A = ∂Φ. It is Lipschitz continuous with
Lipschitz constant 1

λ
.

We are going to adapt to our situation the classical proof of the existence of strong
solutions to evolution equations governed by maximal monotone operators, see [18].
For each λ > 0, we consider the Cauchy problem which is obtained by replacing in (47)
∂Φ by its Yosida approximation ∇Φλ. Firstly, we are going to show the existence of a
global classical solution uλ : [0,+∞) → H of the Cauchy problem











u̇λ(t) +

(

∇Φλ(uλ(t)) −B(uλ(t))

)0

= 0,

uλ(0) = u0.

(52)

We now use the following elementary result

Lemma 2.7. Let C be a closed convex set in H. Then for any z ∈ H

(

z − C

)0

= z − projCz.

Proof. We have

(

z − C

)0

= {z − x : x ∈ C, ‖z − x‖ ≤ ‖z − ξ‖ for all ξ ∈ C} .

This uniquely defines x = projCz, which gives the result.

Taking z = ∇Φλ(uλ(t)), and C = B(uλ(t)) in Lemma 2.7, we can equivalently
rewrite (52) as

{

u̇λ(t) + ∇Φλ(uλ(t)) − projB(uλ(t))∇Φλ(uλ(t)) = 0,

uλ(0) = u0.
(53)

To study (53), we need the following result on the Hölder-continuity of the mapping
C 7→ projC(x). The family of the closed convex bounded subsets C of H is equipped
with the Hausdorff metric. The following classical result can be found in [1, Theorem
2], [7, Proposition 5.1], [36, Theorem 3.1].

Proposition 2.8. Let C and D be two closed convex subsets of H. Then, for any
x ∈ H the mapping C 7→ projC(x) is Hölder-continuous. More precisely, for any two
closed convex subsets C and D of H

‖projC(x) − projD(x)‖ ≤ ρ(‖x‖)haus(C,D)
1

2 (54)

where ρ(‖x‖) = (‖x‖ + d(x,C) + d(x,D))
1

2 .
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In the above result, the Hölder exponent 1
2 is sharp, see [7, Proposition 5.1] and

the accompanying example. We easily derive from these results the continuity of the
vector field

Fλ : x ∈ H 7→ Fλ(x) = ∇Φλ(x) − projB(x)∇Φλ(x) (55)

which governs (53). More precisely,

Lemma 2.9. For any x, y ∈ H, for any λ > 0,

‖Fλ(x) − Fλ(y)‖ ≤
2

λ
‖x− y‖ + ρ(‖∇Φλ(y)‖)haus(B(x), B(y))

1

2 . (56)

Proof.

Fλ(x) − Fλ(y) = ∇Φλ(x) −∇Φλ(y) −
(

projB(x)∇Φλ(x) − projB(y)∇Φλ(y)
)

. (57)

By the Lipschitz continuity property of ∇Φλ (with Lipschitz constant 1
λ
) we obtain

‖Fλ(x) − Fλ(y)‖ ≤
1

λ
‖x− y‖ + ‖projB(x)∇Φλ(x) − projB(y)∇Φλ(y)‖. (58)

Let us set
Bλ(x) = projB(x)∇Φλ(x). (59)

We have

‖Bλ(x) −Bλ(y)‖ ≤ ‖projB(x)∇Φλ(x) − projB(x)∇Φλ(y)‖

+ ‖projB(x)∇Φλ(y) − projB(y)∇Φλ(y)‖

≤ ‖∇Φλ(x) −∇Φλ(y)‖ + ‖projB(x)∇Φλ(y) − projB(y)∇Φλ(y)‖

≤
1

λ
‖x− y‖ + ρ(‖∇Φλ(y)‖)haus(B(x), B(y))

1

2 ,

where we successively use the triangle inequality, the nonexpansive property of the
projection mapping x 7→ projC(x), and the Hölder-continuity of the mapping C 7→
projC(x). Combining (58) and the above inequality we obtain (56).

Even if the mapping x 7→ B(x) is Lipschitz continuous with respect to the Hausdorff
metric, Lemma 2.9 tells us that the vector field Fλ which governs (53) is only locally
Hölder continuous with exponent 1

2 . Thus we cannot apply Cauchy-Lipschitz theorem.
Instead, the classical assumptions of Peano theorem are satisfied:

i) By Lemma 2.9 and assumption A3), the vector field Fλ is continuous.
ii) The space H has been assumed to be finite dimensional.

Hence, there exists of a local solution uλ to the Cauchy problem (53) (it is not neces-
sarily unique). In order to prove global existence, we first establish energy estimates:
Let us write the differential equation (53) as

u̇λ(t) + ∇Φλ(uλ(t)) −Bλ(uλ(t)) = 0. (60)

By definition (59) of Bλ and assumption A3), for any x ∈ H

‖Bλ(x)‖ ≤ sup {‖y‖ : y ∈ B(x)} (61)

≤ c(1 + ‖x‖). (62)
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Lemma 2.10. Let uλ be a solution of the Cauchy problem (53) on some interval [0, T ].
Let x0 be a given element in dom∂Φ. Then, for any t ∈ [0, T ]

‖uλ(t) − x0‖ ≤ e(
1

2
+c)t (‖u0 − x0‖ + ‖∂Φ0(x0)‖ + c‖x0‖ + c

)

; (63)

1

2

∫ T

0
‖u̇λ(τ)‖

2dτ + Φλ(uλ(T )) ≤ Φ(u0) +
c2

2

∫ T

0
(1 + ‖uλ(τ)‖

2)dτ. (64)

Proof. By taking the scalar product with uλ(t) − x0 in (60) we obtain

1

2

d

dt
‖uλ(t) − x0‖

2 + 〈∇Φλ(uλ(t)), uλ(t) − x0〉 −
〈

Bλ(uλ(t)), uλ(t) − x0

〉

= 0. (65)

By using the monotonicity property of ∇Φλ

〈∇Φλ(uλ(t)) −∇Φλ(x0), uλ(t) − x0〉 ≥ 0, (66)

and Cauchy-Schwarz inequality in (65), we deduce that

1

2

d

dt
‖uλ(t) − x0‖

2 ≤ ‖∇Φλ(x0)‖‖uλ(t) − x0‖ + ‖Bλ(uλ(t))‖‖uλ(t) − x0‖. (67)

By using the majorization ‖∇Φλ(x0)‖ ≤ ‖∂Φ0(x0)‖ ([18, Proposition 2.6]), where
∂Φ0(x0) denotes the element of minimal norm of the nonempty closed convex set
∂Φ(x0), and the growth property (61) on Bλ, we obtain

1

2

d

dt
‖uλ(t) − x0‖

2 ≤
(

‖∂Φ0(x0)‖ + c‖x0‖ + c
)

‖uλ(t) − x0‖ + c‖uλ(t) − x0‖
2. (68)

By integration of the above inequality (Gronwall type argument) and elementary ma-
jorization we obtain

‖uλ(t) − x0‖ ≤ e(
1

2
+c)t (‖u0 − x0‖ + ‖∂Φ0(x0)‖ + c‖x0‖ + c

)

.

Let us now estimate u̇λ. By taking the scalar product with u̇λ in (60) we obtain

‖u̇λ(t)‖
2 +

d

dt
Φλ(uλ(t)) =

〈

Bλ(uλ(t)), u̇λ(t)
〉

. (69)

After elementary majorization, and by integration on [0, T ] we obtain

1

2

∫ T

0
‖u̇λ(τ)‖

2dτ + Φλ(uλ(T )) ≤ Φ(u0) +
c2

2

∫ T

0
(1 + ‖uλ(τ)‖

2)dτ,

where we have used that Φλ(u0) ≤ Φ(u0) ([18, Proposition 2.11]).

We have all the ingredients for the global existence of solutions for approximated
equations (53).

Proposition 2.11. For any λ > 0, and any u0 ∈ dom∂Φ there exists a classical global
solution uλ : [0,+∞) → H of the Cauchy problem

{

u̇λ(t) + ∇Φλ(uλ(t)) − projB(uλ(t))∇Φλ(uλ(t)) = 0,

uλ(0) = u0.
(70)
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Proof. From estimations (63) and (64), by a standard argument, let us show the exis-
tence of a global solution uλ to the Cauchy problem (53), which is defined on the whole
interval [0,+∞[. By Zorn’s lemma, let uλ be a maximal solution, and suppose that it
is defined on a bounded interval [0, Tmax[ with Tmax < +∞. Since Tmax < +∞, by (63)
we have that the trajectory remains bounded on [0, Tmax[. Using this estimation in (64)

we deduce that
∫ Tmax

0 ‖u̇λ(t)‖
2dt < +∞. Note that Φλ(uλ(t)) remains bounded, be-

cause Φλ is continuous and uλ(t) remains bounded. Since
∫ Tmax

0 ‖u̇λ(t)‖
2dt < +∞ and

Tmax < +∞ we easily obtain, by Cauchy-Schwarz inequality, that limt→Tmax
uλ(t) := z

exists. By applying again the local existence result with z as a new Cauchy data at
time Tmax, we obtain the existence of a solution which is defined on an interval which
is strictly larger than Tmax, a clear contradiction.

2.3 Estimations on the sequence (uλ)

Let us prove that the preceding estimations on the sequence (uλ)λ are uniform with
respect to λ. By (63), for any 0 < T <∞

sup
λ>0

‖uλ‖L∞(0,T ;H) ≤ ‖x0‖ + e(
1

2
+c)T (‖u0 − x0‖ + ‖∂Φ0(x0)‖ + c‖x0‖ + c

)

. (71)

Hence for any 0 < T <∞

sup
λ>0

‖uλ‖L∞(0,T ;H) < +∞. (72)

On the other hand, by (64)

1

2

∫ T

0
‖u̇λ(t)‖

2dt+ Φλ(uλ(T )) ≤ Φ(u0) +
Tc2

2
(1 + ‖uλ‖

2
L∞(0,T ;H)). (73)

Let us minorize Φλ(uλ(t)). Let take some y0 ∈ ∂Φ(x0). We have x0 = Jλ(x0 +λy0). By
(49), which is a direct consequence of the definition of Φλ, and the convex subdifferential
inequality at x0

Φλ(uλ(t)) ≥ Φ(Jλ(uλ(t)), (74)

≥ Φ(x0) + 〈y0, Jλ(uλ(t)) − x0〉 (75)

≥ Φ(x0) − ‖y0‖‖Jλ(uλ(t)) − x0‖. (76)

Since Jλ is nonexpansive, and x0 = Jλ(x0 + λy0), we have

‖Jλ(uλ(t)) − x0‖ = ‖Jλ(uλ(t)) − Jλ(x0 + λy0)‖ (77)

≤ ‖uλ(t) − (x0 + λy0)‖. (78)

Combining (74) and (77) we obtain

Φλ(uλ(t)) ≥ Φ(x0) − ‖y0‖ (‖uλ(t) − (x0 + λy0)‖) . (79)

Combining (73) and (79) we obtain

1

2

∫ T

0
‖u̇λ(t)‖

2dt ≤ Φ(u0)−Φ(x0)+
Tc2

2
(1+‖uλ‖

2
L∞(0,T ))+‖y0‖

(

‖uλ‖L∞(0,T ) + ‖x0 + λy0‖
)

.

(80)
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By (72) we obtain
sup
λ>0

‖u̇λ‖L2(0,T ;H) < +∞. (81)

Returning to (73) we obtain

sup
λ>0, 0<t<T

Φλ(uλ(t)) < +∞. (82)

Finally, by (60) and the growth condition (61)

‖∇Φλ(uλ(t))‖ ≤ ‖Bλ(uλ(t))‖ + ‖u̇λ(t)‖ (83)

≤ ‖u̇λ(t)‖ + c(1 + ‖uλ(t)‖), (84)

which, by (72)) and (81) gives

sup
λ>0

‖∇Φλ(uλ)‖L2(0,T ;H) < +∞. (85)

Of course, in (72), (81), (82) and (85) the bounds depend on T .

2.4 Passing to the limit, λ → 0

As we have already pointed out, the difficulty comes from the discontinuous nature of
the multivalued operator ∂Φ, and hence of the vector field which governs the differential
equation (39). Indeed, we are going to play on the monotonicity property of some
components of this vector field, and hence of the closedness property of their graphs
for the strong×weak topology (demiclosedness property).

By estimations (72),(81), and the fact that H is finite dimensional, we deduce from
Ascoli’s theorem that, for any 0 < T < +∞, the generalized sequence (uλ) is relatively
compact for the uniform convergence topology on [0, T ]. Thus, by a diagonal argument
(we keep the notation (uλ) for simplicity) we get the existence of u ∈ C(0,+∞; H), and
v, w ∈ L2

loc(0,+∞; H) such that, for any 0 < T < +∞,

uλ → u strong − C(0, T ; H) (86)

u̇λ ⇀ u̇ weak − L2(0, T ; H) (87)

∇Φλ(uλ) ⇀ v weak − L2(0, T ; H) (88)

Bλ(uλ) ⇀ w weak − L2(0, T ; H). (89)

By passing to the limit on (60) we obtain

u̇+ v − w = 0. (90)

Let us identify v and w. From now on we argue on [0, T ] with an arbitrary fixed
0 < T < +∞.

a) By (51), we have ∇Φλ(x) = 1
λ
(x− Jλx). Hence

‖uλ − Jλ(uλ)‖L2(0,T ;H) ≤ λ‖∇Φλ(uλ)‖L2(0,T ;H). (91)

By (85), the generalized sequence (∇Φλ(uλ)) is bounded in L2(0, T ; H). Hence

lim
λ→0

(uλ − Jλ(uλ)) = 0 in L2(0, T ; H). (92)
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By (86), uλ → u strongly in C(0, T ; H), and hence strongly in L2(0, T ; H). Hence

Jλ(uλ) → u strongly in L2(0, T ; H). (93)

Let us summarize the previous results:

∇Φλ(uλ) ∈ ∂Φ(Jλ(uλ)), (94)

Jλ(uλ) → u strong − L2(0, T ; H), (95)

∇Φλ(uλ) ⇀ v weak − L2(0, T ; H). (96)

Let us consider the canonical extension to L2(0, T ; H) of the maximal monotone oper-
ator ∂Φ:

A =
{

(ξ, η) ∈ L2(0, T ; H) × L2(0, T ; H) : η(t) ∈ ∂Φ(ξ(t)) a.e. t ∈ (0, T ).
}

(97)

Classically, A is maximal monotone in L2(0, T ; H). Indeed, it is the subdifferential of the
canonical extension of Φ to L2(0, T ; H), see [18, Proposition 2.16]. As a consequence,
it is closed for the strong-L2(0, T ; H)×weak-L2(0, T ; H) topology. From (94)-(95)-(96)
we deduce that

v(t) ∈ ∂Φ(u(t) a.e. t ∈ (0, T ), (98)

which, combined with (90) gives

u̇(t) + ∂Φ(u(t)) − w(t) ∋ 0 a.e. t ∈ (0, T ). (99)

Since Φ is a closed convex function, its subdifferential is maximal monotone. As a con-
sequence, given w ∈ L2(0, T ; H), the unique solution of the above differential inclusion
is the lazy solution, see [9, Theorem 1, ch.6, sec.8 ], [18, Remark 3.9], which means

u̇(t) +

(

∂Φ(u(t)) − w(t)

)0

= 0 a.e. t ∈ (0, T ). (100)

Equivalently
u̇(t) + proj∂Φ(u(t))w(t) − w(t) = 0 a.e. t ∈ (0, T ). (101)

Comparing (101) with (90) we obtain

v(t) = proj∂Φ(u(t))w(t) a.e. t ∈ (0, T ). (102)

b) Let us now introduce the operator B : L2(0, T ; H) → L2(0, T ; H) which is the
canonical extension to L2(0, T ; H) of the multivalued operator B:

B =
{

(ξ, η) ∈ L2(0, T ; H) × L2(0, T ; H) : η(t) ∈ B(ξ(t)) a.e. t ∈ (0, T ).
}

(103)

The operator B is demiclosed in L2(0, T ; H) × L2(0, T ; H), (see [5, Proposition 3.4]).
Since

Bλ(uλ) ∈ B(uλ)

uλ → u strong − L2(0, T ; H)

Bλ(uλ) ⇀ w weak − L2(0, T ; H) .
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we deduce that
w(t) ∈ B(u(t)) a.e. t ∈ (0, T ). (104)

c) Suppose a moment that we have proved

w(t) = projB(u(t))v(t) a.e. t ∈ (0, T ). (105)

Putting together (102) and (105), we have

v(t) = proj∂Φ(u(t))w(t) a.e. t ∈ (0, T ), (106)

w(t) = projB(u(t))v(t) a.e. t ∈ (0, T ), (107)

and the proof can be easily completed thanks to the following lemma.

Lemma 2.12. Let C and D be closed convex sets in H. Suppose that one of the two
sets is bounded. Then their vectorial difference C−D is a closed convex set. Its unique
element of minimal norm (C −D)0 is characterized by

(C −D)0 = v − w : v = projCw and w = projDv. (108)

Proof. The element of minimal norm of C −D is equal to v − w, with (v, w) solution
of the convex minimization problem

min
{

‖v − w‖2 + δC(v) + δD(w) : v ∈ H, w ∈ H
}

. (109)

Writing down the necessary and sufficient optimality conditions of this convex mini-
mization problem gives the result.

Note that, in the above writing, v and w are not necessarily unique. The important
point is that the property (v = projCw, w = projDv) implies that (C −D)0 = v − w.
By taking v = v(t), w = w(t) , C = ∂Φ(u(t)), and D = B(u(t)), (106)-(107) tells us
that we are in the situation described in Lemma 2.12. Hence,

v(t) − w(t) = (∂Φ(u(t)) −B(u(t)))0 a.e. t ∈ (0, T ) (110)

which combined with (90) gives

u̇(t) + (∂Φ(u(t)) −B(u(t))0 = 0 a.e. t ∈ (0, T ) (111)

the desired result.
d) Thus, the last point we have to prove in order to complete the proof of Theorem

2.5 is
w(t) = projB(u(t))v(t) a.e. t ∈ (0, T ). (112)

To that end, we use the following demiclosedness property (see [12, Theorem 4.17]).

Lemma 2.13. Let C be a closed convex set in H. Then, the operator I − projC is
firmly nonexpansive. In particular, it is monotone, Lipschitz continuous, hence max-
imal monotone. As a consequence, it is demiclosed, i.e., its graph is closed for the
strong-L2(0, T ; H)×weak-L2(0, T ; H) topology.
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By Proposition 2.8

‖projB(uλ(t))∇Φλ(uλ(t))−projB(u(t))∇Φλ(uλ(t))‖ (113)

≤ ρ(‖∇Φλ(uλ(t))‖)haus(B(uλ(t)), B(u(t)))
1

2 (114)

where ρ(‖x‖) = (‖x‖ + d(x,B(uλ(t))) + d(x,B(u(t))))
1

2 . Since uλ → u C(0, T ; H),
and B is continuous for the Hausdorff metric, it follows from (113) and the Lebesgue
dominated convergence theorem that

projB(uλ(t))∇Φλ(uλ(t)) − projB(u(t))∇Φλ(uλ(t)) → 0 L2(0, T ; H). (115)

Thus we can rewrite (53) as

u̇λ(t) + ∇Φλ(uλ(t)) − projB(u(t))∇Φλ(uλ(t)) = ǫλ(t), (116)

with ǫλ → 0 strongly in L2(0, T ; H) as λ→ 0.
For each t > 0, let us introduce the operator M(t) : H → H

M(t) = I − projB(u(t)) (117)

i.e., for every x ∈ H, M(t)(x) = x − projB(u(t))(x). By Lemma 2.13, it is maximal

monotone. One can easily verify that its canonical extension to L2(0, T ; H)

M =
{

(u, v) ∈ L2(0, T ; H) × L2(0, T ; H) : v(t) = M(t)(u(t)) a.e. t ∈ (0, T )
}

(118)

is still maximal monotone. Let us reformulate our results with the help of M.

ǫλ − u̇λ = M(∇Φλ(uλ)) (119)

ǫλ − u̇λ → −u̇ weak − L2(0, T ; H), (120)

∇Φλ(uλ) ⇀ v weak − L2(0, T ; H). (121)

Suppose for a moment that we have been able to prove that u̇λ → u̇ strongly in
L2(0, T ; H). Then ǫλ − u̇λ → −u̇ strong − L2(0, T ; H) and, by the demiclosedness
property of M we obtain

u̇(t) +M(t)(v(t)) = 0 a.e. t ∈ (0, T ) (122)

that is
u̇(t) + v(t) − projB(u(t))(v(t)) = 0 a.e. t ∈ (0, T ). (123)

Comparing with (90), we obtain w(t) = projB(u(t))(v(t)), which is the desired result
(recall (112)). Thus, in order to complete the proof, we need to show that the filtered
sequence of derivatives (u̇λ) converges strongly in L2(0, T ; H). This is the last step of
the proof, this result is not only technical, it has its own interest.
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2.5 Strong L
2 convergence of the sequence (u̇λ)

The idea is to prove that

∫ T

0
‖u̇λ(t)‖

2dt→

∫ T

0
‖u̇(t)‖2dt. (124)

This property and the weak-L2 convergence of the sequence (u̇λ) will clearly imply the
strong convergence of the sequence. To this end, we follow an argument which is in
line with that developed in [2, Theorem 2.1] and [10]. We use the following elementary
argument.

Lemma 2.14. Let (an,1)n∈N, (an,2)n∈N, ..., (an,l)n∈N be a finite family of sequences of
real numbers which satisfy:

l
∑

k=1

an,k ≤ 0 for each n ∈ N;

ak ≤ lim inf
n

an,k for each k = 1, 2, ..., l;

l
∑

k=1

ak = 0.

Then, an,k → ak for each k = 1, 2, ..., l.

By (104) we have
w(t) ∈ B(u(t)) a.e. t ∈ (0, T ). (125)

Since uλ → u strongly in L2, and B is a continuous multivalued mapping, by taking

zλ(t) = projB(uλ(t))w(t) a.e. t ∈ (0, T ). (126)

we obtain
zλ → projB(u)w = w strongly in L2(0, T ; H). (127)

By definition (59) of Bλ(uλ(t)) = projB(uλ(t))∇Φλ(uλ(t)), zλ(t) ∈ B(uλ(t)) and the
obtuse-angle property

〈

∇Φλ(uλ(t)) −Bλ(uλ(t)), zλ(t) −Bλ(uλ(t))
〉

≤ 0. (128)

By (60)
∇Φλ(uλ(t)) −Bλ(uλ(t)) = −u̇λ(t). (129)

Hence
〈

−u̇λ(t), zλ(t) −Bλ(uλ(t))
〉

≤ 0. (130)

On the other hand, after scalar multiplication of (60) by u̇λ(t), and integration on
(0, T ), we obtain

∫ T

0
‖u̇λ(t)‖

2dt+ Φλ(uλ(T )) − Φλ(u0) −

∫ T

0

〈

u̇λ(t), B
λ(uλ(t))

〉

= 0. (131)
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By combining (130) and (131) we obtain

∫ T

0
‖u̇λ(t)‖

2dt+ Φλ(uλ(T )) − Φλ(u0) −

∫ T

0
〈u̇λ(t), zλ(t)〉 ≤ 0. (132)

We are now in position to apply Lemma 2.14. By using the lower semicontinuity for the
weak topology of the square of the norm, and the respective weak/strong convergence
properties of u̇λ and zλ, we have



















∫ T

0 ‖u̇(t)‖2dt ≤ lim inf
∫ T

0 ‖u̇λ(t)‖
2dt;

Φ(u(T )) − Φ(u0) ≤ lim inf (Φλ(uλ(T )) − Φλ(u0)) ;

−
∫ T

0 〈u̇(t), w(t)〉 = lim
(

−
∫ T

0 〈u̇λ(t), zλ(t)〉
)

.

(133)

On the other hand, by (99)

u̇(t) + v(t) − w(t) = 0 a.e. t ∈ (0, T ), (134)

with v(t) ∈ ∂Φ(u(t)) a.e. t ∈ (0, T ) and v ∈ L2(0, T ; H).
After scalar multiplication of (134) by u̇(t), and integration on (0, T ), and by using the
generalized derivation chain rule (see [18, Lemma 3.3]) we have

∫ T

0
‖u̇(t)‖2dt+ Φ(u(T )) − Φ(u0) −

∫ T

0
〈u̇(t), w(t)〉 ≤ 0. (135)

By combining (133) with (134), and applying Lemma 2.14 we finally obtain

∫ T

0
‖u̇λ(t)‖

2dt→

∫ T

0
‖u̇(t)‖2dt.

which ends the proof of Theorem 2.5.

3 Multiobjective gradient processes and steepest descent

3.1 Multiobjective gradient processes

Following Smale [38], let us define a notion of gradient process for a multiobjective
optimization problem

(P ) min {F (v) : v ∈ K} (136)

with F : v ∈ H → (fi(v))i=1,2,...,q ∈ R
q, K ⊂ H. Let us recall (see Definition 1.2) that

Pc =

{

v ∈ H : there exist 0 ≤ λi ≤ 1,

q
∑

i=1

λi = 1

q
∑

i=1

λi∇fi(v) +NK(v) ∋ 0

}

is the set of Pareto critical points. For all u ∈ K, set

C(u) =







{v ∈ TK(u) : 〈∇fi(u), v〉 < 0 for all i = 1, 2, ..., q} if u /∈ Pc

{0} if u ∈ Pc

(137)

where TK(u) is the closed convex tangent cone to K at u ∈ K.
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Definition 3.1. A gradient process for the multiobjective optimization (P ) is a differ-
ential equation

u̇(t) = φ(u(t)) (138)

where φ : K → H is a mapping such that φ(u) ∈ C(u) for all u ∈ K.

In [38], the vector field φ is continuous, and K is a manifold in R
q. In the above defi-

nition, these assumptions have been extended in order to cover the (MCSD) dynamic,
which involves a discontinuous vector field on a general Hilbert space.
In what follows we will make frequent use of the Moreau decomposition theorem [34]:

Theorem 3.2. (Moreau) Let T be a closed convex cone of a real Hilbert space H, and
N be the polar cone, i.e., N = {v ∈ H : 〈v, ξ〉 ≤ 0 for all ξ ∈ T}. Then, for all v ∈ H

there exists a unique decomposition

v = vT + vN , vT ∈ T, vN ∈ N ;

〈vT , vN 〉 = 0.

Moreover, vT = projT (v), and vN = projN (v).

Proposition 3.3. The (MCSD) dynamic is a multiobjective gradient process. It is
governed by the vector field u 7→ s(u), where

s(u) =

(

−NK(u) − Conv {∇fi(u); i = 1, 2, ..., q}

)0

is called the multiobjective steepest descent direction at u ∈ K.

Proof. We follow an argument which is similar to the proof of the descent prop-

erty in Theorem 1.5. By definition of s(u), s(u) =

(

z − NK(u)

)0

for some z ∈

−Conv {∇fi(u); i = 1, 2, ..., q}. By Moreau decomposition theorem,

(

z −NK(u)

)0

= z − projNK(u)z (139)

= projTK(u)z (140)

and hence s(u) ∈ TK(u).
Let us now show that v = s(u) is a descent direction, i.e.,

〈∇fi(u), s(u)〉 < 0 for all i = 1, 2, ..., q if u /∈ Pc. (141)

By definition, −s(u) is the projection of the origin onto the closed convex set C :=
NK(u) + Conv {∇fi(u)}. Hence, for any ξ ∈ C

〈0 − (−s(u)), ξ − (−s(u))〉 ≤ 0, (142)

that is
〈s(u), ξ + s(u)〉 ≤ 0. (143)
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Noticing that 0 ∈ NK(u(t)) and ∇fi(u) ∈ Conv {∇fi(u)}, we can take ξ = ∇fi(u) in
(143 ), which yields

‖s(u)‖2 + 〈s(u),∇fi(u)〉 ≤ 0. (144)

Hence as long as s(u) 6= 0 we have, for all i = 1, 2, ..., q

〈s(u),∇fi(u)〉 < 0.

Let us now notice that s(u) 6= 0 is equivalent to say that 0 /∈ NK(u) + Conv {∇fi(u))},
which is equivalent to say that u is not a critical point. This proves (141), which
completes the proof.

Remark 3.4. The above result has a simple geometrical interpretation. Take for
simplicity the unconstrained problem, i.e., K = H and two criteria f1, f2. Then −s(u)
is the orthogonal projection of the origin on the vectorial segment [∇f1(u),∇f2(u)]. By
the classical result on the sum of the angles of a triangle, this forces the angles bewteen
−s(u) and ∇fi(u), i = 1, 2 to be accute and hence 〈s(u),∇fi(u)〉 ≤ 0.

3.2 The multiobjective steepest descent direction

In the case of a single criteria f , and a constraint K, the steepest descent direction
s(u) at u ∈ K is given by

s(u) =

(

−NK(u) −∇f(u))

)0

, (145)

= projTK(u)(−∇f(u)). (146)

It is associated to the lazy solution property (see [18, Theorem 3.2]) of the trajectories
of the differential inclusion

u̇(t) +NK(u(t)) + ∇f(u(t)) ∋ 0.

Equivalently ψ(u) = s(u)
‖s(u)‖ is the solution of the minimization problem:

min {〈∇f(u), v〉 : v ∈ TK(u), ‖v‖ = 1} .

The equivalence between these two formulations of the direction of steepest descent can
be generalized to the case of multiple objectives as follows:

Theorem 3.5. For any u ∈ K, u /∈ Pc, the minimization problem

min
v∈TK(u), ‖v‖=1

max
i=1,2,...,q

〈∇fi(u), v〉 (147)

admits a unique solution ψ(u) which is related to the multiobjective steepest descent
direction s(u) by

ψ(u) =
s(u)

‖s(u)‖
.
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Proof. Our proof is an extension to the case of a Hilbert space of the proof of [21,
Proposition 3.1]. In all that follows, u is a fixed element of K, with u /∈ Pc. By a
positive homogeneity argument, (147) can be reformulated as

min
v∈K

max
i=1,2,...,q

〈∇fi(u), v〉 , (148)

where
K = {v ∈ TK(u), ‖v‖ ≤ 1} . (149)

Since K is a closed convex bounded set in H, and v 7→ maxi=1,2,...,q 〈∇fi(u), v〉 is
a convex continuous function, (148) admits at least a solution v̄. Let us show that

this solution is unique, and equal to ψ(u) = s(u)
‖s(u)‖ . We use a duality argument, and

reformulate (148) as a convex-concave saddle value problem. We first notice that

max
i=1,2,...,q

〈∇fi(u), v〉 = max
Λ=(λi)∈S

〈

∑

i

λi∇fi(u), v

〉

, (150)

where S = {Λ = (λi) ∈ R
q : 0 ≤ λi ≤ 1,

∑q
i=1 λi = 1} is the unit simplex in R

q.
Thus, problem (148) is equivalent to the saddle value problem on K × S

min
v∈K

max
Λ=(λi)∈S

〈

∑

i

λi∇fi(u), v

〉

, (151)

associated to the bilinear Lagrangian function

L(v,Λ) =

〈

∑

i

λi∇fi(u), v

〉

.

Note that K and S are two closed convex bounded sets in reflexive Banach spaces.
Hence, by the Von Neumann’s minimax theorem, see [4, Theorem 9.7.1], there exists
Λ̄ = (λ̄i) ∈ S such that (v̄, Λ̄) is a saddle point of (151). Set

ψ̄(u) = projTK(u)

(

−
∑

i

λ̄i∇fi(u)

)

. (152)

a) Let us first prove that the solution v̄ of (148) is unique, and equal to

v̄ =
ψ̄(u)

‖ψ̄(u)‖
. (153)

To that end, we use one of the two conditions of the saddle value property (151),
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(namely L(v̄, Λ̄) = infv∈KL(v, Λ̄)), and Moreau theorem, to obtain

〈

ψ̄(u), v̄
〉

= −

〈

∑

i

λ̄i∇fi(u), v̄

〉

−

〈

projNK(u)

(

−
∑

i

λ̄i∇fi(u)

)

, v̄

〉

≥ −

〈

∑

i

λ̄i∇fi(u), v̄

〉

because v̄ ∈ TK(u)

≥ −

〈

∑

i

λ̄i∇fi(u),
ψ̄(u)

‖ψ̄(u)‖

〉

because
ψ̄(u)

‖ψ̄(u)‖
∈ K

≥

〈

projTK(u)

(

−
∑

i

λ̄i∇fi(u)

)

,
ψ̄(u)

‖ψ̄(u)‖

〉

+

1

‖ψ̄(u)‖

〈

projNK(u)

(

−
∑

i

λ̄i∇fi(u)

)

,projTK(u)

(

−
∑

i

λ̄i∇fi(u)

)〉

≥

〈

ψ̄(u),
ψ̄(u)

‖ψ̄(u)‖

〉

= ‖ψ̄(u)‖.

Hence,
〈

ψ̄(u)

‖ψ̄(u)‖
, v̄
〉

≥ 1, which immediately gives

‖v̄ −
ψ̄(u)

‖ψ̄(u)‖
‖2 = ‖v̄‖2 + ‖

ψ̄(u)

‖ψ̄(u)‖
‖2 − 2

〈

ψ̄(u)

‖ψ̄(u)‖
, v̄

〉

≤ 1 + 1 − 2 ≤ 0.

Hence v̄ = ψ̄(u)

‖ψ̄(u)‖
‖, that’s precisely (153).

b) In order to complete the proof we are going to show that

ψ̄(u) = s(u),

which combined with (153), will clearly imply v̄ = s(u)
‖s(u)‖ .

Thus, we have to prove that ψ̄(u) is the element of minimal norm of the convex set

C :=

{(

−
∑

i

λi∇fi(u)

)

− η : Λ = (λi) ∈ S, and η ∈ NK(u)

}

.

By definition (152) and Moreau theorem, we have ψ̄(u) ∈ C. Moreover, by (153) and
Moreau theorem

‖ψ̄(u)‖ =

〈

ψ̄(u),
ψ̄(u)

‖ψ̄(u)‖

〉

=
〈

ψ̄(u), v̄
〉

=

〈(

−
∑

i

λ̄i∇fi(u)

)

, v̄

〉

.
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As a consequence, by using the other condition of the saddle value property (151),
(namely L(v̄, Λ̄) = supΛ∈S L(v̄,Λ)), and Moreau theorem, we obtain

‖ψ̄(u)‖ ≤ −

〈

∑

i

λi∇fi(u), v̄

〉

for all Λ ∈ S

≤

〈

projTK(u)

(

−
∑

i

λi∇fi(u)

)

, v̄

〉

for all Λ ∈ S

≤ ‖projTK(u)

(

−
∑

i

λi∇fi(u)

)

‖ for all Λ ∈ S

≤ ‖

(

−
∑

i

λi∇fi(u)

)

− η‖ for all Λ ∈ S, and η ∈ NK(u).

Hence, if u is not a Pareto critical point, ψ̄(u) is the element of minimal norm of the

convex set C that is, ψ̄(u) = s(u). Combining with (153) we obtain v̄ = s(u)
‖s(u)‖ . The

argument being valid for any solution v̄ of (148), we conclude that (148) admits a

unique solution ψ(u) which satisfies ψ(u) = s(u)
‖s(u)‖ .

4 Links with cooperative game theory

Let us consider q agents (consumers, social actors, deciders,...). The agent i acts on a
decision space Hi, and takes decision vi ∈ Hi, i = 1, 2, ..., q. Let K be a given closed
subset of H = H1 × H2 × ... × Hq, which reflects the limitation of ressources, and/or
various constraints. Feasible decisions v ∈ H satisfy

v = (v1, v2, ..., vq) ∈ K.

Each agent i has a disutility (loss) function fi : H → R which associates to each
feasible decision v ∈ K the scalar fi(v). The game in normal form is given by the
triplet (H,K, (fi)i=1,...q). The (MCSD) dynamic has been designed in order to satisfy
some desirable properties with respect to Pareto equilibration: each trajectory t 7→ u(t)
of (MCSD) satisfies

i) for each i = 1, 2, ..., q, t 7→ fi(u(t)) is nonincreasing (Theorem 1.5, item i));
ii) u(t) converges to a Pareto critical point as t→ +∞ (Theorem 1.5, item iii));
iii) at each time t > 0, the multiobjective steepest descent direction followed by u

is a Pareto optimal solution of the linearized tangent game.
Item iii) is proved below. It is related to the following notion of tangent game,

which extends the classical linearization idea to the multiobjective constrained case.
To our knowledge, it has been first considered in [21, chaper 3, section 4].

Definition 4.1. Let us give a game G in normal form (H,K, (fi)i=1,...q). The tangent
game of G at u ∈ K is the game (H,K(u), (〈∇fi(u), ·〉)i=1,...q) with

• K(u) = {v ∈ TK(u) : ‖v‖ ≤ 1};

• v 7→ 〈∇fi(u), v〉 is the directional derivative of fi at u in the direction v.
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Proposition 4.2. The multiobjective steepest descent direction at u ∈ K is a Pareto
optimal solution of the tangent game of G at u ∈ K.

Proof. In the proof of Theorem 3.5, we showed that the steepest descent direction is
solution of a minimization problem

min

{〈

∑

i

λi∇fi(u), v

〉

: v ∈ K(u)

}

for some λ = (λi)i belonging to the unit simplex of R
q. This implies Pareto criticality

with respect to the tangent game of G at u. The tangent game of G at u ∈ K is
associated to convex objective functions (〈∇fi(u), ·〉)i=1,...q). Hence, by Proposition 1.4
we obtain weak Pareto optimality. Indeed, following [21], one can show the stronger
property of Pareto optimality.

Remark 4.3. As we already stressed, in the (MCSD) dynamic we do not scalarize
the original vector optimization problem. Neither ordering information nor weighting
factors for the different objective functions are assumed to be known. That’s what we
call the endogenous property of the system. There is much to say about the interpreta-
tion of the steepest descent in decision sciences. Taking the worst directional derivative
(indeed, in view of minimization, it is the largest one), confers to (MCSD) robustness
(minimization in the worst case), and nice convergence properties.

5 Numerical descent methods for multiobjective opti-

mization

In [25], Fliege and Svaiter analyze the convergence properties of various descent meth-
ods for multiobjective optimization in the unconstrained, finite dimensional setting.
Let us recall the formulation of the multiobjective steepest descent direction, which
has been given in Theorem 3.5. We have that ψ(u) = s(u)

‖s(u)‖ is the solution of the
convex minimization problem

min
v∈TK(u), ‖v‖=1

max
i=1,2,...,q

〈∇fi(u), v〉 . (154)

This formulation is close to the notion of multiobjective steepest descent direction, in
the unconstrained case, which has been introduced in [25]. It is the solution of the
strongly convex problem

min
v∈H

{

1

2
‖v‖2 + max

i=1,2,...,q
〈∇fi(u), v〉

}

.

Indeed, in the same paper, the authors mention the possibility to replace 1
2‖v‖

2 by
other functions, including our choice which is the indicator function of the unit ball
in H. They indicate that a quite similar analysis can be developed in these various
situations.

Thus, the algorithms developed in [25], [26], and [28] are close to the explicit time
discretization of our dynamic. As well, the proximal algorithm, as developed in [16], is
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close to its implicit discretization. In turn, these algorithmic results suggest that there
is a large class of continuous dynamics which contains (MCSD), and having similary
properties with respect to Pareto equilibration. Similarly, the recent Newton method
for vector optimization which has been developed in [27] suggests the existence of cor-
responding continuous dynamics (see for example [6] in the case of a single objective).
Enriching the class of dynamics can be a useful approach for understanding the com-
plex interactions in Pareto equilibration (coalitions, negociating, bargaining, dealing
with uncertainty, changing environment, psychological aspects). These are interesting
subjects for further research.
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