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AUGMENTED LAGRANGIAN AND PROXIMAL

ALTERNATING DIRECTION METHODS OF MULTIPLIERS IN

HILBERT SPACES. APPLICATIONS TO GAMES, PDE’S AND

CONTROL∗

H. Attouch and M. Soueycatt

Dedicated to Michel Théra on the occasion of his 60th birthday.

Abstract: We consider alternating minimization algorithms based on an augmented Lagrangian approach
in order to solve convex structured minimization problems. Our approach, which stems from the seminal
work of Glowinski and allied, relies on an alternate proximal minimization/maximization procedure applied
to the augmented Lagrangian formulation of the problem. We consider a splitting algorithm in which prox-
imal minimization steps are performed alternatively on the primal variables x and y and then a proximal
maximization step is performed on the dual variable z. The proximal regularization terms which asymp-
totically vanish, induce dissipative effects which are similar to friction in mechanics, anchoring and inertia
in decision sciences. They play a crucial role in the convergence of the process. Just assuming that the
set of equilibria is non empty, it is proved that, for each initial data, the proximal-like algorithm generates
a sequence which weakly converges to a saddle point of the augmented Lagrangian, or equivalently of the
Lagrangian function. So doing, one obtains both a solution of the problem and a corresponding Lagrange
multiplier of the constraint. Applications are given in best response dynamics for potential games, domain
decomposition for PDE’s, and optimal control of variational inequalities.
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1 Introduction

1.1 Problem Statement

All along the paper we use the following notations:

• X ,Y,Z are real Hilbert spaces. We write ‖x‖2 = 〈x, x〉, ‖y‖2 = 〈y, y〉, ‖z‖2 = 〈z, z〉
respectively for x ∈ X , y ∈ Y and z ∈ Z. Without ambiguity, we don’t use indexes to
specify which space and which scalar product is considered.

• f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} are closed convex proper functions.

• A : X → Z and B : Y → Z are linear continuous operators.

• λ > 0 is a positive real parameter.

∗with the support of the French ANR under grant ANR-05-BLAN-0248-01.



2 H. ATTOUCH AND M. SOUEYCATT

We develop an augmented Lagrangian-type algorithm for solving convex structured min-
imization problems of the form:

(P ) min {f(x) + g(y) : Ax − By = 0} .

This type of problem is frequently encountered in convex programming, variational analysis
and PDE, inverse problems from imaging and signal theory, optimal control, game theory.
For numerical purpose, it is important to design algorithms which preserve the separable
structure of the problem. Having in view applications to the above mentioned domains, for
example decomposition or splitting methods for PDE, we need to develop these algorithms
in a fairly general setting with (possibly) infinite dimensional spaces.

Our approach relies on an alternate proximal minimization/maximization procedure ap-
plied to the augmented Lagrangian function

Lλ(x, y, z) = f(x) + g(y) + 〈z, Ax − By〉 + λ
2 ‖ Ax − By ‖2

Z .

It can be traced back to the seminal work of Gabay and Mercier ([21], 1976) and Glowin-
ski and Marrocco ([24], 1975) on splitting methods for nonlinear variational problems. In
these two papers, is introduced the so-called alternating direction method of multipliers. A
detailed presentation of these methods can be found in Gabay ([20], 1983), Glowinski ([22],
1984), Glowinski and Le Tallec ([23], 1989).

Following R.T. Rockafellar [39], [40], [41] (1976), a decisive progress allowing a general
mathematical approch to these questions has been done by using proximal methods. Indeed,
when applying the proximal algorithm to the maximal monotone operator associated to the
saddle value formulation of problem (P ), one obtains the so-called proximal method of
multipliers. A rich literature has been then devoted to this important question, we shall
briefly review it, just after the introduction of the algorithm. As an other key ingredient, our
approach benefits from some recent progress on alternating proximal algorithms for weakly
coupled minimization problems, see Attouch, Bolte, Redont, and Soubeyran ([5], 2008).
This will allow us to develop these methods in a fairly general setting and with minimal
assumptions.

Let us first recall the proximal method of multipliers. A comprehensive introduction
to this subject can be found in Chen and Teboulle ([14], 1994) with comparison to other
existing methods. Problem (P ) can be equivalently formulated as a saddle value problem

min(x,y)∈X×Ymaxz∈Z {f(x) + g(y) + 〈z, Ax − By〉} .

The Lagrangian L : X × Y × Z → R ∪ {+∞} associated to this saddle value problem

L(x, y, z) = f(x) + g(y) + 〈z, Ax − By〉

is a convex-concave function (convex with respect to (x, y), concave with respect to z). A
pair (x, y) is optimal for (P ) and z is an optimal Lagrange multiplier if and only if (x, y, z)
is a saddle point of the Lagrangian function L. When writing the corresponding optimality
conditions for (x, y, z), we obtain the following inclusion

M(x, y, z) ∋ 0

where M is the set-valued mapping on X × Y × Z defined by

M(x, y, z) = (∂x,yL,−∂zL)(x, y, z) = (∂f(x) + Atz, ∂g(y) − Btz, By − Ax). (1.1)
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In the above description of M , we use the classical notions: ∂ is the subdifferential
operator in the sense of convex analysis. Given H a real Hilbert space, φ : H → R ∪ {+∞}
a closed convex proper function, and x ∈ dom φ (i.e., φ(x) < +∞), by definition

η ∈ ∂φ(x) ⇐⇒ ∀ξ ∈ H, φ(ξ) ≥ φ(x) + 〈η, ξ − x〉.

The operator At : Z → X is the transpose (also called adjoint) of A : X → Z. It is
defined by

∀x ∈ X , ∀z ∈ Z 〈Ax, z〉Z = 〈x,Atz〉X .

Similarly, the transpose of B : Y → Z is the operator Bt : Z → Y defined by

∀y ∈ Y, ∀z ∈ Z 〈By, z〉Z = 〈y, Btz〉Y .

The operator M is maximal monotone on X × Y × Z. This is a consequence of the
general properties relying convexity and monotonicity, as shown below. Let us introduce
F : X × Y × Z → R ∪ {+∞} the perturbation function of problem (P )

F (x, y, z) = f(x) + g(y) if Ax − By + z = 0, + ∞ otherwise.

The function F : X × Y × Z → R ∪ {+∞} is closed, convex, and proper. Its Lagrangian
l is defined to be the opposite of the partial Fenchel conjugate of F with respect to the
perturbation variable, namely

l(x, y, z) = infu {F (x, y, u) − 〈z, u〉} .

An elementary computation yields l(x, y, z) = f(x) + g(y) + 〈z,Ax − By〉 , that is, l = L.

As a consequence of the general properties of this abstract duality scheme, see ([42]; Ex-
ample 12.27) and [39], we obtain that the operator M , whose components are the partial
subdifferentials of L, (∂x,yL,−∂zL), is maximal monotone.

The maximal monotonicity of M can also be obtained by using a direct argument:

Take (xi, yi, zi) ∈ X × Y × Z and (αi, βi, γi) ∈ M(xi, yi, zi), i = 1, 2, and prove that

〈α2 − α1, x2 − x1〉 + 〈β2 − β1, y2 − y1〉 + 〈γ2 − γ1, z2 − z1〉 ≥ 0. (1.2)

By definition of M , there exist ξi ∈ ∂f(xi) and ηi ∈ ∂g(yi) such that αi = ξi + Atzi,
βi = ηi − Btzi, and γi = Byi − Axi. It follows

〈α2 − α1, x2 − x1〉 + 〈β2 − β1, y2 − y1〉 + 〈γ2 − γ1, z2 − z1〉 =
〈ξ2 − ξ1, x2 − x1〉 + 〈Atz2 − Atz1, x2 − x1〉 + 〈η2 − η1, y2 − y1〉 − 〈Btz2 − Btz1, y2 − y1〉 +

〈By2 − Ax2 − (By1 − Ax1), z2 − z1〉.

By monotonicity of ∂f and ξi ∈ ∂f(xi), we have 〈ξ2 − ξ1, x2 − x1〉 ≥ 0. Similarly, by
monotonicity of ∂g and ηi ∈ ∂g(yi), 〈η2 − η1, y2 − y1〉 ≥ 0. It follows

〈α2 − α1, x2 − x1〉 + 〈β2 − β1, y2 − y1〉 + 〈γ2 − γ1, z2 − z1〉 ≥
〈Atz2 − Atz1, x2 − x1〉 − 〈Btz2 − Btz1, y2 − y1〉 + 〈By2 − Ax2 − (By1 − Ax1), z2 − z1〉,
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which, after reduction, gives (1.2).
By Minty’s theorem, the maximal monotonicity of M is equivalent to R(I + M) =

X × Y ×Z, where R(I + M) is the range of the sum of the identity operator I and M . By
definition of M , this is equivalent to prove that, for any (u, v, w) ∈ X × Y ×Z, there exists
(x, y, z) ∈ X × Y × Z such that















x + ∂f(x) + Atz ∋ u

y + ∂g(y) − Btz ∋ v

z + By − Ax = w

(1.3)

This is the first order optimality system for the convex-concave saddle value problem

min
(x,y)∈X×Y

max
z∈Z

{

f(x) + g(y) + 〈z, Ax − By〉 +
1

2
‖ x − u ‖2 +

1

2
‖ y − v ‖2 −

1

2
‖ z − w ‖2

}

(1.4)
which has a unique solution by the min-max theorem, see Aubin and Ekeland ([7] ; chap 6,
theorem 8).

Let us apply the classical proximal algorithm to the maximal monotone operator M and
describe the iteration

(xk, yk, zk) → (xk+1, yk+1, zk+1) = (I + λM)−1(xk, yk, zk) k = 0, 1, 2, ...

A similar computation as (1.3) gives















1
λ (xk+1 − xk) + ∂f(xk+1) + Atzk+1 ∋ 0

1
λ (yk+1 − yk) + ∂g(yk+1) − Btzk+1 ∋ 0

1
λ (zk+1 − zk) + Byk+1 − Axk+1 = 0

(1.5)

Equivalently,















1
λ (xk+1 − xk) + ∂f(xk+1) + At [zk + λ (Axk+1 − Byk+1)] ∋ 0

1
λ (yk+1 − yk) + ∂g(yk+1) − Bt [zk + λ (Axk+1 − Byk+1)] ∋ 0

1
λ (zk+1 − zk) + Byk+1 − Axk+1 = 0

(1.6)

An elementary computation shows that the two first equations give the optimality system
of the convex minimization problem















(xk+1, yk+1) = argmin(ξ,η)∈X×Y{f(ξ) + g(η) + 〈zk, Aξ − Bη〉 + λ
2 ‖ Aξ − Bη ‖2

Z

+ 1
2λ ‖ ξ − xk ‖2

X + 1
2λ ‖ η − yk ‖2

Y}

zk+1 = zk + λ(Axk+1 − Byk+1).

A striking feature of the above approach is that it makes appear in a natural way the
augmented Lagrangian function Lλ : X × Y × Z 7→ R ∪ {+∞}

Lλ(x, y, z) = f(x) + g(y) + 〈z, Ax − By〉 + λ
2 ‖ Ax − By ‖2

Z

which is a convex-concave function. In this convex setting, the Lagrangian formulation is
equivalent to the augmented Lagrangian formulation
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min(x,y)∈X×Ymaxz∈Z
{

f(x) + g(y) + 〈z,Ax − By〉 + λ
2 ‖ Ax − By ‖2

Z
}

.

The proximal method of multipliers can be interpreted with the help of the augmented
Lagrangian function in the following way: at each iteration of this algorithm, given (xk, yk, zk)
one performs a proximal minimization step of the augmented Lagrangian with respect to
(x, y) to obtain the next iterate (xk+1, yk+1). Then, one updates the multiplier by the iter-
ation zk+1 = zk + λ(Axk+1 − Byk+1), which is nothing but a proximal maximization step
of the augmented Lagrangian with respect to z. A nice feature of this algorithm is that it
always (weakly) converges to a saddle point of L, and hence an optimal solution of (P ). One
just needs to assume that the set of saddle points of L is non empty. The main disadvantage
of this method is that, when performing the proximal minimization step in order to find
(xk+1, yk+1),

min{f(ξ) + g(η) + 〈zk, Aξ − Bη〉 + λ
2 ‖ Aξ − Bη ‖2

Z + 1
2λ ‖ ξ − xk ‖2

X + 1
2λ ‖ η − yk ‖2

Y : ξ ∈
X , η ∈ Y}

one is faced with a minimization problem which is no more separable, because of the presence
of the quadratic coupling term ‖ Aξ − Bη ‖2.

Various strategies have been developed in order to overcome the difficulties attached to
the nonseparability of the augmented Lagrangian Lλ. They mostly rely on using splitting
methods for the minimization step of the augmented Lagrangian, they are either parallel
or alternate splitting methods. We don’t discuss here parallel splitting methods, which rely
on different technics with their own interest, see for example [14] with the corresponding
literature. The alternate splitting method consists in alternating the minimization with
respect to x and y and then updating the multiplier z. This approach, known as the
“alternating direction method of multipliers”, has been initiated in [21] and [24]. It is
patterned after splitting methods in numerical analysis, convex optimization and monotone
variational inequalities, see among the many contributions which have been devoted to this
important subject, Eckstein [16], Eckstein and Bertsekas [17], Fukushima [19], Gabay [20],
He and Yang [25], Mahey Dussault and Hamdi [33], Spingarn [43], Tseng [44]... and the
references herein. Convergence of this algorithm requires some restrictive assumptions on
the data like strong convexity or full rank properties.

Indeed, some recent progress has been made in [5] on the convergence properties of
the alternating minimization for weakly coupled convex minimization problems. In this
situation, as in the parallel splitting approach [14] , it has been appearing that an essential
ingredient to obtain convergence of the algorithm, without any restrictive assumptions on
the data, is to perform the successive minimization steps in a proximal way. So doing,
convergence is proved for a general convex quadratic coupling function, which includes the
case of the coupling ‖ Aξ − Bη ‖2.

Thus, combining the two ideas, “alternating direction method of multipliers” and “prox-
imal method of multipliers” leads to the alternating proximal minimization/maximization of
the augmented Lagrangian function Lλ. That’s precisely the algorithm that we are going to
consider. A closely related approach and clever study has been developed by Xu [46] in finite
dimensional spaces, the algorithm being called the quadratic proximal alternating direction
method, QPADM in short (QP makes reference to the fact that the proximal regularization
term is quadratic). Indeed, considering the infinite dimensional problem drastically changes
the perspective both from a theoretical point of view (weak convergences come naturally
into play as well as semicontinuity properties...) and with respect to applications (PDE’s,
control of infinite dimensional systems,...).
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1.2 Algorithm

Let us fix λ > 0 a positive parameter.
Let us first state the algorithm in a variational form. Starting with an initial arbitrary triple
(x0, y0, z0) ∈ X ×Y ×Z, the sequence (xk, yk, zk) ∈ X ×Y ×Z is generated by the following
iterative scheme:

(xk, yk, zk) → (xk+1, yk+1, zk+1), k = 0, 1, 2, ...















xk+1 = argmin{f(ξ) + 〈zk, Aξ〉 + λ
2 ‖ Aξ − Byk ‖2

Z + 1
2λ ‖ ξ − xk ‖2

X : ξ ∈ X}

yk+1 = argmin{g(η) − 〈zk, Bη〉 + λ
2 ‖ Bη − Axk+1 ‖2

Z + 1
2λ ‖ η − yk ‖2

Y : η ∈ Y}

zk+1 = zk + λ(Axk+1 − Byk+1)

Because of the proximal quadratic terms ‖ ξ−xk ‖2
X and ‖ η−yk ‖2

Y , the two above con-
vex minimization problems have unique respective solutions, xk+1 and yk+1. As explained
before, the above algorithm can be seen as performing alternate proximal minimization
(consecutive) steps on the augmented Lagrangian.

Hence, owing to the classical terminology, and without ambiguity on the quadratic char-
acter of the proximal regularization term, we slightly modify the terminology of Xu [46], and
call this algorithm the “Proximal Alternating Direction Method of Multipliers” (PADMM)
in short.

Writing optimality conditions gives the equivalent form of the algorithm

(PADMM)















1
λ (xk+1 − xk) + ∂f(xk+1) + At [zk + λ(Axk+1 − Byk)] ∋ 0

1
λ (yk+1 − yk) + ∂g(yk+1) + Bt [−zk + λ(Byk+1 − Axk+1)] ∋ 0

zk+1 = zk + λ(Axk+1 − Byk+1)

where ∂f and ∂g stand for the convex subdifferentials of the closed convex proper functions f

and g. Let us recall the fundamental property, which is the maximal monotonicity property
of these operators, see [12]. At and Bt are the transpose (adjoint) operators of the linear
continuous operators A and B.

Note that the first equation (inclusion) holds in X , the second in Y, and the third in Z.
Let us denote by S the set of equilibria, where (x, y, z) ∈ S iff (x, y) is an optimal solution

of (P ) and z is a corresponding Lagrange multiplier. Indeed, this is equivalent to say that
(x, y, z) is a saddle point of the Lagrangian function L with the corresponding optimality
conditions:

(S)















∂f(x) + Atz ∋ 0

∂g(y) − Btz ∋ 0

Ax − By = 0

It will be useful to formulate the equilibria with the help of the maximal monotone
operator M

M(x, y, z) = (∂f(x) + Atz, ∂g(y) − Btz, By − Ax)
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and notice that (x, y, z) is an equilibrium iff it satisfies M(x, y, z) ∋ 0. In the next
section, we are going to prove that any sequence generated by the (PADMM) algorithm
(weakly) converges to an equilibrium.

2 Convergence of the PADMM Algorithm

We are going to study the convergence properties of the (PADMM) algorithm and prove,
under the sole assumption S 6= ∅, that any sequence produced by the algorithm weakly
converges to an equilibrium (i.e., an element of S).

Theorem 2.1. Let us assume that the set S of equilibria is non empty. Let us start
from an arbitrary point (x0, y0, z0) in X × Y × Z and consider the corresponding sequence
(xk, yk, zk)k∈N generated by the “proximal alternating direction method of multipliers” algo-
rithm (PADMM). Then, the following holds:

i) (xk, yk, zk) converges weakly in X × Y × Z to an equilibrium (x∞, y∞, z∞) ∈ S as
k → +∞.

ii) (xk, yk) is a minimizing sequence for problem (P ), with f(xk) → f(x∞), g(yk) →
g(y∞) as k → +∞.

iii) Axk − Byk converges strongly to zero in Z as k → +∞.
iv) ‖ xk+1 − xk ‖→ 0, ‖ yk+1 − yk ‖→ 0, ‖ zk+1 − zk ‖→ 0 as k → +∞.

Proof. Following the standard proof of convergence for proximal algorithms in Hilbert
spaces, we are going to use an Opial type lemma. The difficulty comes from the dissymmetry
on the variables x and y, which is a key feature of the alternate approach. This leads to
apply Opial’s argument with a metric on the product space X × Y × Z which is different
from the canonical one, and where the variables x and y play a dissymetric role. Let us fix
(x, y, z) ∈ S.

a) Let us write the monotonicity of the subdifferential operator ∂f at points x and xk+1:

〈∂f(x) − ∂f(xk+1), x − xk+1〉 ≥ 0 (2.1)

(the above inequality means that 〈η − ξ, x − xk+1〉 ≥ 0 holds true for any η ∈ ∂f(x)
and any ξ ∈ ∂f(xk+1)). In particular, by using (S), −Atz ∈ ∂f(x) and (PADMM),
− 1

λ (xk+1 − xk) − At [zk + λ(Axk+1 − Byk)] ∈ ∂f(xk+1), we obtain :

〈−Atz + 1
λ (xk+1 − xk) + At [zk + λ(Axk+1 − Byk)] , x − xk+1〉 ≥ 0.

Equivalently,

〈zk − z + λ(Axk+1 − Byk), A(x − xk+1)〉 ≥
1

λ
〈xk+1 − xk, xk+1 − x〉. (2.2)

Let us use the elementary relation

〈ξ, η〉 =
1

2
‖ ξ ‖2 +

1

2
‖ η ‖2 −

1

2
‖ ξ − η ‖2 (2.3)

with ξ = xk+1 − xk and η = xk+1 − x to obtain

〈xk+1 − xk, xk+1 − x〉 =
1

2
‖ xk+1 − xk ‖2 +

1

2
‖ xk+1 − x ‖2 −

1

2
‖ xk − x ‖2 . (2.4)
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Collecting (2.2) and (2.4) we obtain

〈zk−z+λ(Axk+1−Byk), A(x−xk+1)〉 ≥
1

2λ

[

‖ xk+1 − x ‖2 − ‖ xk − x ‖2 + ‖ xk+1 − xk ‖2
]

.

(2.5)
b) Similarly, by the monotonicity of the subgradient operator ∂g at points y and yk+1,

we have

〈∂g(y) − ∂g(yk+1), y − yk+1〉 ≥ 0. (2.6)

〈Btz + 1
λ (yk+1 − yk) + Bt [−zk + λ(Byk+1 − Axk+1)] , y − yk+1〉 ≥ 0.

Equivalently,

〈z − zk + λ(Byk+1 − Axk+1), B(y − yk+1)〉 ≥
1
λ 〈yk+1 − yk, yk+1 − y〉

〈z−zk+λ(Byk+1−Axk+1), B(y−yk+1)〉 ≥
1

2λ

[

‖ yk+1 − y ‖2 − ‖ yk − y ‖2 + ‖ yk+1 − yk ‖2
]

.

(2.7)
c) Adding inequalities (2.5) and (2.7) we obtain

1

2λ

[

‖ xk+1 − x ‖2 + ‖ yk+1 − y ‖2
]

+
1

2λ

[

‖ xk+1 − xk ‖2 + ‖ yk+1 − yk ‖2
]

≤
1

2λ

[

‖ xk − x ‖2 + ‖ yk − y ‖2
]

+ 〈zk − z + λ(Axk+1 − Byk), A(x − xk+1)〉

+ 〈z − zk + λ(Byk+1 − Axk+1), B(y − yk+1)〉. (2.8)

Let us denote by Qk this last expression:

Qk =〈zk − z + λ(Axk+1 − Byk), A(x − xk+1)〉

+ 〈z − zk + λ(Byk+1 − Axk+1), B(y − yk+1)〉.

Noticing that Ax − By = 0,

Qk =〈z − zk, Axk+1 − Byk+1〉 + λ〈(Axk+1 − Byk), A(x − xk+1)〉

+ λ〈Byk+1 − Axk+1, B(y − yk+1)〉.

Qk =〈z − zk, Axk+1 − Byk+1〉 + λ [〈A(xk+1 − x), A(x − xk+1)〉 + 〈B(y − yk), A(x − xk+1)〉]

+ λ [〈B(yk+1 − y), B(y − yk+1)〉 + 〈A(x − xk+1), B(y − yk+1)〉] .

Let us transform the scalar products into squares of norms with the help of formula (2.3)
to obtain

Qk = 〈z − zk, Axk+1 − Byk+1〉

+ λ

[

− ‖ A(xk+1 − x) ‖2 +
1

2
‖ A(xk+1 − x) ‖2 +

1

2
‖ B(yk − y) ‖2 −

1

2
‖ Axk+1 − Byk ‖2

]

+ λ

[

− ‖ B(yk+1− y) ‖2 +
1

2
‖ B(yk+1− y) ‖2 +

1

2
‖ A(xk+1− x) ‖2−

1

2
‖ Axk+1 − Byk+1 ‖2

]

.
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After simplification,

Qk =〈z − zk, Axk+1 − Byk+1〉 +
λ

2

[

‖ B(yk − y) ‖2 − ‖ B(yk+1 − y) ‖2
]

−
λ

2

[

‖ Axk+1 − Byk ‖2 + ‖ Axk+1 − Byk+1 ‖2
]

.

Set

Ek =
1

2λ

[

‖ xk − x ‖2 + ‖ yk − y ‖2
]

+
λ

2
‖ B(yk − y) ‖2 . (2.9)

Then we obtain from (2.8) that

Ek+1+ 1
2λ

[

‖ xk+1 − xk ‖2 + ‖ yk+1 − yk ‖2
]

+ λ
2

[

‖ Axk+1 − Byk ‖2 + ‖ Axk+1 − Byk+1 ‖2
]

≤ Ek + 〈z − zk, Axk+1 − Byk+1〉. (2.10)

d) The next step consists in using the dynamics on the dual variables, namely

zk+1 = zk + λ(Axk+1 − Byk+1) (2.11)

in order to treat the above last expression 〈z − zk, Axk+1 − Byk+1〉 and write it in an
incremental form. Let us rewrite (2.11) as

zk+1 − z = zk − z + λ(Axk+1 − Byk+1).

Hence,

‖ zk+1 − z ‖2=‖ zk − z ‖2 +λ2 ‖ Axk+1 − Byk+1 ‖2 +2λ〈zk − z,Axk+1 − Byk+1〉.

Equivalently,

〈z−zk, Axk+1−Byk+1〉 =
1

2λ

[

‖ zk − z ‖2 − ‖ zk+1 − z ‖2
]

+
λ

2
‖ Axk+1−Byk+1 ‖2 . (2.12)

Collecting (2.10) and (2.12) and setting

Fk =
1

2λ

[

‖ xk − x ‖2 + ‖ yk − y ‖2 + ‖ zk − z ‖2
]

+
λ

2
‖ B(yk − y) ‖2, (2.13)

we finally obtain

Fk+1 +
1

2λ

[

‖ xk+1 − xk ‖2 + ‖ yk+1 − yk ‖2
]

+
λ

2
‖ Axk+1 − Byk ‖2≤ Fk. (2.14)

e) Whence we draw the following consequences:
a. the sequence (xk, yk, zk) is bounded in X × Y × Z;
b. the sequence k → 1

2λ

[

‖ xk − x ‖2 + ‖ yk − y ‖2 + ‖ zk − z ‖2
]

+ λ
2 ‖ B(yk − y) ‖2 is

nonincreasing;
c. the quantities ‖ xk+1 − xk ‖, ‖ yk+1 − yk ‖ and ‖ Axk+1 − Byk ‖ vanish as k goes to

+∞. As a consequence, because of the continuity of the linear operator B, zk+1 − zk, which
is equal to λ(Axk+1 − Byk+1), also norm converges to zero.
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Let us rewrite algorithm (PADMM) with the help of the maximal monotone operator
M

M(x, y, z) = (∂f(x) + Atz, ∂g(y) − Btz, By − Ax).

We have

M(xk+1, yk+1, zk+1) ∋ (
1

λ
(xk − xk+1) − AtB(yk+1 − yk),

1

λ
(yk − yk+1), Byk+1 − Axk+1).

From c. and the continuity of the operators A and B, the second member of the above
expression norm converges to zero in X ×Y×Z. By using the closedness of the graph of the
maximal monotone operator M in w−(X×Y×Z)×s−(X×Y×Z), [12], we deduce that any
weak limit point (x∞, y∞, z∞) of the sequence (xk, yk, zk) does satisfy M(x∞, y∞, z∞) ∋ 0,
i.e., is an equibrium.

Let us now consider the norm N on X × Y × Z

N(u, v, w) =

[

1

2λ
(‖ u ‖2 + ‖ v ‖2 + ‖ w ‖2) +

λ

2
‖ Bv ‖2

]1/2

which is derived from the inner product

((u1, v1, w1), (u2, v2, w2)) ∈ (X×Y×Z)2 →
1

2λ
[〈u1, u2〉 + 〈v1, v2〉 + 〈w1, w2〉]+

λ

2
〈Bv1, Bv2〉.

Since B is continuous, the norm N is equivalent to the canonical norm. Moreover
N((xk, yk, zk) − (x, y, z)) does have a limit (point b).

Opial’s lemma [38] then shows that (xk, yk, zk) converges weakly to some limit, still
denoted (x∞, y∞, z∞), which is an equilibrium.

f) The last point consists proving that (xk, yk) is a minimizing sequence for problem (P ),
with f(xk) → f(x∞), g(yk) → g(y∞).

Let us start with the convex subdifferential inequalities

f(x∞) ≥ f(xk+1) + 〈∂f(xk+1), x∞ − xk+1〉

g(y∞) ≥ g(yk+1) + 〈∂g(yk+1), y∞ − yk+1〉.

Let us select

−
1

λ
(xk+1 − xk) − At [zk + λ(Axk+1 − Byk)] ∈ ∂f(xk+1)

and

−
1

λ
(yk+1 − yk) − Bt [−zk + λ(Byk+1 − Axk+1)] ∈ ∂g(yk+1)

as given by algorithm (PADMM) and add the two inequalities. One obtains

f(x∞)+g(y∞) ≥ f(xk+1)+g(yk+1)+〈 1
λ (xk+1−xk)+At [zk + λ(Axk+1 − Byk)] , xk+1−x∞〉

+〈 1
λ (yk+1 − yk) + Bt [−zk + λ(Byk+1 − Axk+1)] , yk+1 − y∞〉.

After simplification and using that the quantities ‖ xk+1 − xk ‖, ‖ yk+1 − yk ‖ and
‖ Axk+1 − Byk ‖ vanish as k goes to +∞, we obtain
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f(x∞) + g(y∞) ≥ f(xk+1) + g(yk+1) + 〈Atzk, xk+1 − x∞〉 − 〈Btzk, yk+1 − y∞〉 + ǫk

for some sequence (ǫk) converging to zero as k → ∞. Equivalently

f(x∞) + g(y∞) ≥ f(xk+1) + g(yk+1) + 〈zk, Axk+1 − Ax∞〉 − 〈zk, Byk+1 − By∞〉 + ǫk.

Since Ax∞ − By∞ = 0 and Axk+1 − Byk+1 norm converge to zero, we finally infer

f(x∞) + g(y∞) ≥ limsupk→∞ (f(xk+1) + g(yk+1)) .

Noticing that f(x∞) ≤ liminfk→∞f(xk+1), g(y∞) ≤ liminfk→∞g(yk+1) , we easily infer
f(xk) → f(x∞), g(yk) → g(y∞), which ends the proof of theorem 2.1.

Comments

1. Without any further assumptions, we only obtain weak convergence of the sequence
(xk, yk, zk). Indeed, with respect to numerical applications, strong convergence is
often a desirable property. A favorable case is when (P ) is a strongly convex problem.
This means that the function Φ : X × Y → R ∪ {+∞} which is defined by Φ(x, y) =
f(x)+g(y)+δC(x, y) is strongly convex, where δC is the indicator function of the closed
convex constraint C = {(x, y) ∈ X×Y : Ax = By}. In that case, by using that (xk, yk)
is a minimizing sequence for problem (P ) (point ii) of theorem 2.1), one classically
infers that (xk, yk) strongly converges to the unique minimizer of problem (P ). Closely
related questions concerning the convergence of the sequence of multipliers (zk) have
been considered in Bauschke, Combettes and Reich [9] and Frankel [18] .

When problem (P ) is not strongly convex, one may use a Tikhonov regularization-
viscosity procedure in order to generate a sequence which strongly converges to a
solution with minimal norm. We recall that the Tikhonov regularization-viscosity
method consists in slightly modifying the algorithm by adding in the variational for-
mulation a viscosity term (in the classical case it is the square of the norm) with an
adapted scaling factor which tends to zero. One may consult Cabot [13], Hirstoaga
[27], Mainge and Moudafi [34], and Moudafi [35] for some recent developments of this
method in the case of general equilibrium (hierarchical minimization, fixed point prob-
lems, variational inequalities). This method has been successfully applied to various
proximal-like algorithms. In our situation, as far as we know, this is an open question.

2. One can reasonably conjecture that the preceding analysis and convergence results
still hold in the case of general maximal monotone operators (subdifferentials of closed
convex functions are particular instances). In that case, given T1 and T2 two maximal
monotone operators, one considers the following coupled variational system















T1x + Atz ∋ 0

T2y − Btz ∋ 0

Ax − By = 0

The ingredients of the proof remain valid: the proximal algorithm holds for a maximal
monotone operator and the alternate proximal argument still holds in the case of
maximal monotone operators, see ([5], theorem 2.2).
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3. The choice of the parameter λ in the algorithm is a sensitive question. Note that, in
the algorithm (PADMM),

(PADMM)















1
λ (xk+1 − xk) + ∂f(xk+1) + At [zk + λ(Axk+1 − Byk)] ∋ 0

1
λ (yk+1 − yk) + ∂g(yk+1) + Bt [−zk + λ(Byk+1 − Axk+1)] ∋ 0

zk+1 = zk + λ(Axk+1 − Byk+1)

the parameter λ > 0 is fixed and appears in a particular form in each of the three lines.
Indeed, one can fix arbitrary positive constants r and s in front of the proximal terms
(xk+1 − xk) and (yk+1 − yk), this does not change substantially the argument. By
contrast, it is important in the proof to have the same coefficient λ > 0 in the three
terms which come from the coupling constraint, namely At [zk + λ(Axk+1 − Byk)],
Bt [−zk + λ(Byk+1 − Axk+1)] and zk+1 = zk + λ(Axk+1 − Byk+1).

In order to improve the convergence rate of the algorithm, the following variant has
been first considered by Glowinski in [22]: when updating the dual variables, take

zk+1 = zk + γλ(Axk+1 − Byk+1)

where 0 < γ < 1+
√

5
2 is a relaxation parameter. Numerical experiments show that

taking γ larger than 1 improves the performance of the algorithm. The same upper
bound on the (admissible) relaxation parameter has been obtained by Xu [46] in the
case of proximal alternating direction methods. In [33] Mahey, Dussault and Hamdi use
an adaptative scaling method, where the parameter is no more a penalty parameter like
in the classical augmented Lagrangian method, but a scaling parameter with adaptated
updating.

3 Applications

We briefly survey some important domains of application of our results. Each of these
applications involves specific concepts and technics, which make a precise study out of the
scope of the present article.

3.1 Best Response Dynamics for Potential Games

The general context is that of noncooperative dynamical games. Consider the potential
game (here team game) with two players 1 and 2 whose respective static loss functions are



























F1 : (x1, x2) ∈ X1 ×X2 → F1(x1, x2) = f1(x1) + φ(x1, x2)

if L1x1 − L2x2 = 0, + ∞ elsewhere

F2 : (x1, x2) ∈ X1 ×X2 → F2(x1, x2) = f2(x2) + φ(x1, x2)

if L1x1 − L2x2 = 0, + ∞ elsewhere

The fi(.) represent the individual payoffs of the agents, φ(., .) is their joint payoff and
L1x1 −L2x2 = 0 is a constraint fixing in a coupled way a limit to the resources, decisions of
the agents. In our presentation, individual payoffs f1 and f2 are cost functions (unsatisfied
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needs to be minimized) and φ(., .) is a joint cost function. The above formulation has
been given in terms of costs in order to fit better with the literature concerning algorithms.
Economics, Decision and Game theories use utility or benefit (profit) functions, which are
to maximize.

In this context, the (PADMM) algorithm, when viewed as a discrete in time dynamical
system, has a rich behavioral interpretation in terms of dynamical game theory. It is a best
response dynamical system with inertial features and marginal analysis aspects. It is an
“Inertial Nash equilibration process” thanks to the convergence properties of its trajectories
to equilibria (saddle point of the Lagrange function). Let us assume that

• f1 : X1 → R ∪ {+∞} and f2 : X2 → R ∪ {+∞} are closed convex proper functions;

• L1 : X1 → Z and L2 : X2 → Z are linear continuous operators;

• φ : X1 ×X2 → R is a convex, continuously differentiable function.

The Nash equilibria are the solutions of the convex optimization problem:

min {f1(x1) + f2(x2) + φ(x1, x2) : L1x1 − L2x2 = 0} .

The (PADMM) algorithm is a “Best reply dynamic with cost to change”, (players 1
and 2 play alternatively):

Let us fix arbitrary positive parameters α and ν. Given the multiplier zk ∈ Z

(x1,k, x2,k) → (x1,k+1, x2,k) → (x1,k+1, x2,k+1)

{

x1,k+1 = argmin{f1(ξ) + φ(ξ, x2,k) + 〈zk, L1ξ〉 + α
2 ‖ ξ − x1,k ‖2

X : ξ ∈ X}

x2,k+1 = argmin{f2(η) + φ(x1,k+1, η) − 〈zk, L2η〉 + ν
2 ‖ η − x2,k ‖2

Y : η ∈ Y}

Then update the multiplier zk → zk+1:

zk+1 = zk + λ(L1x1,k+1 − L2x2,k+1).

The “primal” aspects of this dynamic (without multiplers) have been described in an
extended form in a series of papers by Attouch, Bolte, Redont, and Soubeyran [4], [5], [6].
In these papers, the new striking property is the interpretation of the quadratic proximal
regularization terms as “cost to change” or “cost to move” terms, here low local cost to move
terms. Indeed, the nice convergence properties of proximal-like algorithms reflect the impor-
tance of the inertial features in real life decision processes. In the above mentioned papers
is considered the case of a nonnegative quadratic (hence convex, but possibly nondefinite)
coupling function φ.

In our “primal-dual” context, with a coupling constraint L1x1−L2x2 = 0, it is interesting
to extend theorem 2.1 so as to contain the case of a coupling function φ, and to interpret the
dynamic on the dual variables, which clearly have an economical “price” flavor. Note that
the algorithm does not work apriori for every convex and continuous differentiable function
φ. These modeling and mathematical aspects will be the subject of further studies.
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3.2 Domain Decomposition for PDE’s

As a model example, let us consider the Dirichlet problem on a domain Ω which naturally
splits into two elementary non overlapping subdomains Ω1 and Ω2 with a common interface
Γ. Solving the Laplace (or Poisson) equation on Ωi (i = 1, 2) with various boundary condi-
tions is considered to be an elementary problem that can be solved by using classical tools.
The question is how to use these (two) elementary blocks in order to solve the problem on
the whole domain Ω with “complex” geometrical structure. This method know as “Domain
decomposition for PDE’s” has a long history, see for example Le Tallec [31], Glowinski and
Le Tallec [23] for an introduction to this problem via variational technics.

Ω1 Ω2Γ

Given some h ∈ L2(Ω) , the Dirichlet problem on Ω consists in finding u : Ω → R

solution of

{

−∆u = h on Ω

u = 0 on ∂Ω

The classical variational formulation of the Dirichlet problem is the minimization prob-
lem:

min

{

1

2

∫

Ω

|∇u|2 −

∫

Ω

hu : u ∈ H1
0 (Ω)

}

. (3.1)

In order to formulate (3.1) as a structured problem of type (P ), let us introduce the
following functional setting and make precise the regularity assumptions on the data:

Ω1 and Ω2 are two disjoint open sets with Lipschitz continuous boundaries ∂Ω1 and
∂Ω2, included in an open bounded subset Ω of R

N such that Ω = Ω1 ∪ Ω2. The interface
Γ = ∂Ω1 ∩ ∂Ω2 has a positive (N − 1)-Hausdorff measure, HN−1(Γ) > 0.

For i = 1, 2 we introduce the function space

Xi = {u ∈ H1(Ωi), u = 0 on ∂Ω ∩ ∂Ωi}

which is equipped with the scalar product

〈ui, vi〉 =
∫

Ωi
∇ui.∇vi

and the corresponding norm

‖ ui ‖
2
Xi

=
∫

Ωi
|∇ui|

2.
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By Poincaré inequality, when HN−1(∂Ω ∩ ∂Ωi) > 0, this scalar product induces on Xi

the usual topology of the Sobolev space H1(Ωi), and confers to it a Hilbert structure.
The variational problem (3.1) can be reformulated in a splitted form as

min

{

1

2

∫

Ω1

|∇u1|
2 −

∫

Ω1

hu1 +
1

2

∫

Ω2

|∇u2|
2 −

∫

Ω2

hu2 : u1 ∈ X1, u2 ∈ X2, [u] = 0 on Γ

}

(3.2)
by using

u ∈ H1(Ω) ⇐⇒ u1 ∈ H1(Ω1), u2 ∈ H1(Ω2), [u] = 0 on Γ (3.3)

where ui is the restriction of u to Ωi and [u] is the jump of u through the interface Γ.

The equivalence (3.3) is a consequence of the following formula (see [3]; Example 10.2.1).
Under the above general assumptions on the Ωi and Γ, the function u, which is equal to u1

on Ω1 and u2 on Ω2, belongs to BV (Ω) and its distributional derivative Du is equal to

Du = Du1⌊Ω1 + Du2⌊Ω2 + [u] νHN−1⌊Γ (3.4)

where ν(x) is the unit normal at x to Γ.

One can identify (3.2) as a structured problem of type (P )

min {f1(u1) + f2(u2) : u1 ∈ X1, u2 ∈ X2, A1(u1) − A2(u2) = 0}

by taking

• fi : Xi → R, fi(ui) = 1
2

∫

Ωi
|∇ui|

2 −
∫

Ωi
hui, i = 1, 2.

• Ai : Xi ⊂ H1(Ωi) → Z = L2(Γ) is the trace operator, i = 1, 2.

• [u] = A1(u1) − A2(u2) is the jump of u through the interface Γ.

With this choice of the functional setting the functions fi : Xi → R are convex continuous
and the operators Ai are linear and continuous.

Let us explicit the algorithm (PADMM). At step k, the current point uk = (u1,k, u2,k,

zk) ∈ X1 ×X2 ×Z satisfies



































u1,k+1 = argmin{f1(v1) + 〈zk, A1v1〉 + λ
2 ‖ A1v1 − A2u2,k ‖2

Z

+ 1
2λ ‖ v1 − u1,k ‖2

X1
: v1 ∈ X1}

u2,k+1 = argmin{f2(v2) − 〈zk, A2v2〉 + λ
2 ‖ A1u1,k+1 − A2v2 ‖2

Z

+ 1
2λ ‖ v2 − u2,k ‖2

X2
: v2 ∈ X2}

zk+1 = zk + λ (A1u1,k+1 − A2u2,k+1)

(3.5)

Let us write the optimality conditions (Euler equations) of the above variational prob-
lems. Let us denote by Q : X1 ×X2 → Z = L2(Γ)

Q(v) =
1

2
‖A1v1 − A2v2‖

2
L2(Γ) =

1

2

∫

Γ

|A1v1 − A2v2|
2

the convex quadratic coupling function.
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An elementary directional derivative computation yields

lim
t→0

1

t
[Q(u + tv) − Q(u)] =

∫

Γ

(A1u1 − A2u2)(A1v1 − A2v2).

With a similar directional compution as above we obtain the weak variational formulation
of (PADMM) :























∀v1 ∈ X1

∫

Ω1
∇u1,k+1.∇v1 +

∫

Γ
[zk + λ(A1u1,k+1 − A2u2,k)]A1v1

+ 1
λ

∫

Ω1
(∇u1,k+1 −∇u1,k)∇v1 =

∫

Ω1
hv1

∀v2 ∈ X2

∫

Ω2
∇u2,k+1.∇v2 +

∫

Γ
[−zk + λ(A2u2,k+1 − A1u1,k+1)]A2v2

+ 1
λ

∫

Ω2
(∇u2,k+1 −∇u2,k)∇v2 =

∫

Ω2
hv2.

These are the variational weak formulations of the following Dirichlet-Neumann bound-
ary value problems respectively on Ω1















−(1 + 1
λ )∆u1,k+1 = h − 1

λ∆u1,k on Ω1

(1 + 1
λ )

∂u1,k+1

∂ν1
+ λu1,k+1 = 1

λ
∂u1,k

∂ν1
+ λu2,k − zk on Γ

u1,k+1 = 0 on ∂Ω1 ∩ ∂Ω

and Ω2















−(1 + 1
λ )∆u2,k+1 = h − 1

λ∆u2,k on Ω2

(1 + 1
λ )

∂u2,k+1

∂ν2
+ λu2,k+1 = 1

λ
∂u2,k

∂ν2
+ λu1,k+1 + zk on Γ

u2,k+1 = 0 on ∂Ω2 ∩ ∂Ω

which, after solving, give the actualization of the Lagrange multiplier zk:

zk+1 = zk + λ (A1u1,k+1 − A2u2,k+1) .

We have adopted the classical notations, ∂ui

∂νi
is the derivative of ui in the direction of νi

which is the normal to Γ oriented outwards of Ωi.
Starting with an initial arbitrary triple (x0, y0, z0) ∈ X1 ×X2 × L2(Γ), theorem 2.1 tells

us that the above algorithm converges. Indeed, we have both weak convergence of the
sequences (u1,k), (u2,k) and convergence of the corresponding Dirichlet energy integrals. As
a result, the sequence (u1,k, u2,k) strongly converges in H1(Ω1) × H1(Ω2) to a minimum
point (u1, u2) of problem (3.2). It is an interesting question to know if one has better than
weak convergence in L2(Γ) of the sequence of multipliers (zk).

The (PADMM) algorithm leads to solving separately the Dirichlet problem on Ω1 and
Ω2 with Dirichlet-Neumann transmission conditions on the interface Γ. Note that the above
approach allows to solve problems possibly having an infinite number of equilibria (like semi-
coercive Neumann problems satisfying a compatibility condition). It also allows to consider
nonlinear variational problems (for example, with unilateral or bilateral constraints).

3.3 Optimal Control

Optimal control problems can be equivalently formulated as optimization problems with
constraints. The state equation {Ay = Bu} which associates to the control u the
corresponding state(s) y(u) is viewed as a constraint (we use the traditional notations in
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optimal control theory). In that case, the criteria, which is to minimize, naturally splits
into the sum of two costs: the cost f(y) to be far from a desired state yd (for example
f(y) = ‖y − yd‖

2) and the cost g(u) of the control u. Thus, optimal control problems are
structured optimization problems of type (P )

(P ) min {f(y) + g(u) : Ay − Bu = 0} .

This formulation is flexible and allows to handle possibly singular or non well-posed
systems, see for example J.L. Lions [32]. When the state equation is a well-posed problem,
denoting by y(u) the unique state associated to the control u, the reduced model is

(P ) min {f(y(u)) + g(u) : u ∈ Uad}

where Uad is the set of admissible controls.
Indeed, a great number of variational problems can be equivalently written in the form

(P ), for example least square problems, many inverse problems, see [22], [30].
Thus, when the problem is convex, one can apply the “proximal alternating direction

method of multipliers” (PADMM) to obtain, with great generality, a primal-dual conver-
gent algorithm. Let us stress the fact that f and g are extended real-valued functions, which
allows us to consider control problems with constraints on the control and/or the state. As
an illustration, let us consider the following optimal control problems (see Bergounioux, Ito
and Kunisch [10], Kunisch [30], Ito and Kunisch [28], [29]). We just give some indications
concerning the choice of the functional setting. This question requires some attention, it
depends on the existence and regularity of the multipliers.

1. With constraint on the control:

Given Ω a bounded open set in R
N with C1,1 boundary, yd ∈ L2(Ω), α > 0 a positive

parameter, and Ψ ∈ L∞(Ω), let us consider the distributed optimal control problem:















min J(y, u) = 1
2‖y − yd‖

2
L2(Ω) + α

2 ‖u‖
2
L2(Ω)

− ∆y = u on Ω, y = 0 on ∂Ω

u ≤ Ψ on Ω

A natural functional setting allowing to apply the (PADMM) algorithm is given by

• X = H1
0 (Ω), f(y) = 1

2‖y − yd‖
2
L2(Ω);

• Y = L2(Ω), g(u) = α
2 ‖u‖

2
L2(Ω) + δC(u) where C = {u ∈ L2(Ω) : u(x) ≤

Ψ(x) a.e. in Ω};

• A = −∆ : X = H1
0 (Ω) → Z = H−1(Ω);

• B : Y = L2(Ω) → H−1(Ω) is the canonical injection (identity).

The set S of equilibria is defined by the following system















−∆y∗ = u∗ in Ω, y∗ ∈ H1
0 (Ω)

− ∆p∗ = −(y∗ − yd) in Ω, p∗ ∈ H1
0 (Ω)

αu∗ + ∂δC(u∗) ∋ p∗
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with the corresponding Lagrange multiplier z∗ = −∆p∗. Note that ∂δC(u∗) is the
outward normal cone to C at u∗, and that the last above inclusion is equivalent to
u∗ = projC(p∗

α ). The operator projC is the projection on the closed convex set C in
the space L2(Ω).

This system has a (unique) solution (see [10]). As a consequence, the (PADMM)
algorithm provides a sequence of primal and dual variables which weakly converges to
the unique equilibrium.

2. With constraint on the state:















min J(y, u) = 1
2‖y − yd‖

2
L2(Ω) + α

2 ‖u‖
2
L2(Ω)

− ∆y = u on Ω, y = 0 on ∂Ω

y ≤ Ψ on Ω

In that case, take f(y) = 1
2‖y − yd‖

2
L2(Ω) + δC(y) where C = {y ∈ H1

0 (Ω) : y(x) ≤

Ψ(x) a.e. in Ω}.

Let us assume that the set C is nonempty. Then, one can develop the (PADMM)
algorithm in a similar functional setting as above. In this situation, the Lagrange
multiplier which is attached to the state constraint is to be found in the family of
Radon measures on Ω (see [10]).
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algorithme alterné, Mémoire Magistère Université Montpellier II, 2008.
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[36] A. Moudafi and M. Théra, Finding a zero of the sum of two maximal monotone oper-
ators, J. Optim. Theory Appl. 94 (1997) 425–448.

[37] J. von Neumann, Functional Operators, Annals of Mathematics Studies 22, Princeton
University Press, 1950.

[38] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpan-
sive mappings, Bull. Amer. Math. Soc 73 (1967) 591–597.

[39] R.T. Rockafellar, Monotone operators associated with saddle-functions and mini-max
problems, in Nonlinear Functional Analysis, F. Browder (ed.), Proceedings of Symposia
in Pure Mathematics, American Mathematical Society, 18, n◦ 1, 1976, pp. 241–250.

[40] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con-
trol Optim. 14 (1976) 877–898.

[41] R.T. Rockafellar, Augmented lagrangians and applications of the proximal point algo-
rithm in convex programming, Mathematics of Operations Research 1 (1976) 97–116.

[42] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Grundlehren der Mathema-
tischen Wissenschaften 317, Springer, Berlin, 1998.



AUGMENTED LAGRANGIAN AND PROXIMAL ALTERNATING ALGORITHM 21

[43] J.E. Spingarn, Applications of the method of partial inverses to convex programming:
decomposition, Math. Program. 32 (1985) 199–223.

[44] P. Tseng, Applications of splitting algorithm to decomposition in convex programming
and variational inequalities, SIAM J. Control Optim. 29 (1991) 119–138.

[45] P. Tseng, Alternating projection-proximal methods for convex programming and vari-
ational inequalities, SIAM J. Optim. 7 (1997) 951–965.

[46] M.H. Xu, Proximal alternating directions method for structured variational inequalities,
J. Optim. Theory Appl. 134 (2007) 107–117.

Manuscript received
revised

accepted for publication

H. Attouch

Institut de Mathématiques et de Modélisation de Montpellier
UMR CNRS 5149, CC 51, Université Montpellier II
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