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A parallel splitting method is proposed for solving systems of coupled monotone inclusions in Hilbert spaces and its convergence is established under the assumption that solutions exist. Unlike classical alternating algorithms, which are limited to two variables and linear coupling, our parallel method can handle an arbitrary number of variables as well as nonlinear coupling schemes. The breadth and flexibility of the proposed framework is illustrated through applications in the areas of evolution inclusions, variational problems, best approximation, and network flows.

Problem statement

This paper is concerned with the numerical solution of systems of coupled monotone inclusions in Hilbert spaces. A simple instance of this problem is to

find x 1 ∈ H, x 2 ∈ H such that 0 ∈ A 1 x 1 + x 1 -x 2 0 ∈ A 2 x 2 + x 2 -x 1 , (1.1) 
where (H, • ) is a real Hilbert space, and where A 1 and A 2 are maximal monotone operators acting on H. This formulation arises in various areas of nonlinear analysis [START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF]. For example, if A 1 = ∂f 1 and A 2 = ∂f 2 are the subdifferentials of proper lower semicontinuous convex functions f 1 and f 2 from H to ]-∞, +∞], (1.1) is equivalent to minimize

x 1 ∈H, x 2 ∈H f 1 (x 1 ) + f 2 (x 2 ) + 1 2 x 1 -x 2 2 . (1.2)
This joint minimization problem, which was first investigated in [START_REF] Acker | Convergence d'un schéma de minimisation alternée[END_REF], models problems in disciplines such as the cognitive sciences [START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs-to-move[END_REF], image processing [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF], and signal processing [START_REF] Goldburg | Signal synthesis in the presence of an inconsistent set of constraints[END_REF] (see also the references therein for further applications in mechanics, filter design, and dynamical games). In particular, if f 1 and f 2 are the indicator functions of closed convex subsets C 1 and C 2 of H, (1.2) reverts to the classical best approximation pair problem [START_REF] Bauschke | On the convergence of von Neumann's alternating projection algorithm for two sets[END_REF][START_REF] Bauschke | Finding best approximation pairs relative to two closed convex sets in Hilbert spaces[END_REF][START_REF] Cheney | Proximity maps for convex sets[END_REF][START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF] minimize

x 1 ∈C 1 , x 2 ∈C 2 x 1 -x 2 . (1.3) 
On the numerical side, a simple algorithm is available to solve (1.1), namely,

x 1,0 ∈ H and (∀n ∈ N)

x 2,n = (Id +A 2 ) -1 x 1,n x 1,n+1 = (Id +A 1 ) -1 x 2,n . (1.4) This alternating resolvent method produces sequences (x 1,n ) n∈N and (x 2,n ) n∈N that converge weakly to points x 1 and x 2 , respectively, such that (x 1 , x 2 ) solves (1.1) if solutions exist [START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF]Theorem 3.3].

In [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems -Applications to dynamical games and PDE's[END_REF], the variational formulation (1.2) was extended to minimize

x 1 ∈H 1 , x 2 ∈H 2 f 1 (x 1 ) + f 2 (x 2 ) + 1 2 L 1 x 1 -L 2 x 2 2 G , (1.5) 
where H 1 , H 2 , and G are Hilbert spaces, f 1 : H 1 → ]-∞, +∞] and f 2 : H 2 → ]-∞, +∞] are proper lower semicontinuous convex functions, and L 1 : H 1 → G and L 2 : H 2 → G are linear and bounded. This problem was solved in [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems -Applications to dynamical games and PDE's[END_REF] via an inertial alternating minimization procedure first proposed in [START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs-to-move[END_REF] for the case of the strongly coupled problem (1.2).

The above problems and their solution algorithms are limited to two variables which, in addition, must be linearly coupled. These are serious restrictions since models featuring more than two variables and/or nonlinear coupling schemes arise naturally in applications. The purpose of this paper is to address simultaneously these restrictions by proposing a parallel algorithm for solving systems of monotone inclusions involving an arbitrary number of variables and nonlinear coupling. The breadth and flexibility of this framework will be illustrated through applications in the areas of evolution inclusions, best approximation, and network flows.

We now state our problem formulation and our standing assumptions. Problem 1.1 Let (H i ) 1≤i≤m be real Hilbert spaces, where m ≥ 2. For every i ∈ {1, . . . , m}, let A i : H i → 2 H i be maximal monotone and let B i :

H 1 × • • • × H m → H i . It is assumed that there exists β ∈ ]0, +∞[ such that (∀(x 1 , . . . , x m ) ∈ H 1 × • • • × H m )(∀(y 1 , . . . , y m ) ∈ H 1 × • • • × H m ) m i=1 B i (x 1 , . . . , x m ) -B i (y 1 , . . . , y m ) | x i -y i ≥ β m i=1 B i (x 1 , . . . , x m ) -B i (y 1 , . . . , y m ) 2 . (1.6)
The problem is to

find x 1 ∈ H 1 , . . . , x m ∈ H m such that        0 ∈ A 1 x 1 + B 1 (x 1 , . . . , x m ) . . . 0 ∈ A m x m + B m (x 1 , . . . , x m ), (1.7) 
under the assumption that such points exist.

In abstract terms, the system of inclusions in (1.7) models an equilibrium involving m variables in different Hilbert spaces. The ith inclusion in this system is a perturbation of the basic inclusion 0 ∈ A i x i by addition of the coupling term B i (x 1 , . . . , x m ). Our analysis captures various linear and nonlinear coupling schemes. If (∀i ∈ {1, . . . , m}) H i = H and (∀x ∈ H) B i (x, . . . , x) = 0, (1.8) then Problem 1.1 is a relaxation of the standard problem [START_REF] Combettes | Construction d'un point fixe commun à une famille de contractions fermes[END_REF][START_REF] Lehdili | The barycentric proximal method[END_REF] of finding a common zero of the operators (A i ) 1≤i≤m , i.e., of solving the inclusion 0 ∈ m i=1 A i x. In particular, if m = 2, 

H 1 = H 2 = H, B 1 = -B 2 : (x 1 , x 2 ) → x 1 -x 2 ,
= 2, A 1 = ∂f 1 , A 2 = ∂f 2 , B 1 : (x 1 , x 2 ) → L * 1 (L 1 x 1 -L 2 x 2 ), B 2 : (x 1 , x 2 ) → -L * 2 (L 1 x 1 -L 2 x 2 ), and β = ( L 1 2 + L 2 2
) -1 , then Problem 1.1 reverts to (1.5). Generally speaking, (1.7) covers coupled problems involving minimizations, variational inequalities, saddle points, or evolution inclusions, depending on the type of the maximal monotone operators

(A i ) 1≤i≤m .
The paper is organized as follows. In Section 2, we present our algorithm for solving Problem 1.1 and prove its convergence. Applications to systems of evolution inclusions are treated in Section 3. Finally, Section 4 is devoted to variational formulations deriving from Problem 1.1 and features applications to best approximation and network flows. 

ι C : x → 0, if x ∈ C; +∞, if x / ∈ C, (1.9) 
and the distance from x ∈ H to C is d C (x) = inf y∈C x -y ; if C is nonempty closed and convex, the projection of x onto C is the unique point P C x in C such that x -P C x = d C (x). We denote by Γ 0 (H) the class of lower semicontinuous convex functions f : H → ]-∞, +∞] which are proper in the sense that dom

f = x ∈ H f (x) < +∞ = ∅. The subdifferential of f ∈ Γ 0 (H) is the maximal monotone operator ∂f : H → 2 H : x → u ∈ H (∀y ∈ H) y -x | u + f (x) ≤ f (y) . (1.10)
We denote by gra A = (x, u) ∈ H × H u ∈ Ax the graph of a set-valued operator A : H → 2 H , by dom A = x ∈ H Ax = ∅ its domain, and by J A = (Id +A) -1 its resolvent. If A is monotone, then J A is single-valued and nonexpansive and, furthermore, if A is maximal monotone, then dom J A = H. For complements and further background on convex analysis and monotone operator theory, see [START_REF] Aubin | Set-Valued Analysis[END_REF][START_REF] Brézis | Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert[END_REF][START_REF] Simons | From Hahn-Banach to Monotonicity[END_REF][START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF][START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II[END_REF].

Algorithm

Let us start with a characterization of the solutions to Problem 1.1. 

Proposition 2.1 Let (x i ) 1≤i≤m ∈ H 1 × • • • × H m , let (λ i ) 1≤i≤m ∈ [0,
(∀i ∈ {1, . . . , m}) x i = λ i x i + (1 -λ i )J γA i x i -γB i (x 1 , . . . , x m ) . (2.1) 
Proof. Let i ∈ {1, . . . , m}. Then, since B i is single-valued, 0 ∈ A i x i + B i (x 1 , . . . , x m ) ⇔ x i -γB i (x 1 , . . . , x m ) ∈ x i + γA i x i ⇔ x i = J γA i x i -γB i (x 1 , . . . , x m ) ⇔ x i = x i + (1 -λ i ) J γA i x i -γB i (x 1 , . . . , x m ) -x i , (2.2)
and we obtain (2.1).

The above characterization suggests the following algorithm, which constructs m sequences ((x i,n ) n∈N ) 1≤i≤m . Recall that β is the constant appearing in (1.6).

Algorithm 2.2 Fix ε ∈ ]0, min{1, β}[, (γ n ) n∈N in [ε, 2β -ε], (λ n ) n∈N in [0, 1 -ε], and (x i,0 ) 1≤i≤m ∈ H 1 × • • • × H m . Set, for every n ∈ N,          x 1,n+1 = λ 1,n x 1,n + (1 -λ 1,n ) J γnA 1,n x 1,n -γ n (B 1,n (x 1,n , . . . , x m,n ) + b 1,n ) + a 1,n . . . x m,n+1 = λ m,n x m,n + (1 -λ m,n ) J γnAm,n x m,n -γ n (B m,n (x 1,n , . . . , x m,n ) + b m,n ) + a m,n , (2.3 
) where, for every i ∈ {1, . . . , m}, the following hold.

(i) (A i,n ) n∈N are maximal monotone operators from H i to 2 H i such that (∀ρ ∈ ]0, +∞[) n∈N sup y ≤ρ J γnA i,n y -J γnA i y < +∞. (2.4) (ii) (B i,n ) n∈N are operators from H 1 × • • • × H m to H i such that (a) the operators (B i,n -B i ) n∈N are Lipschitz-continuous with respective constants (κ i,n ) n∈N in ]0, +∞[ satisfying n∈N κ i,n < +∞; and (b) there exists z ∈ H 1 × • • • × H m , independent of i, such that (∀n ∈ N) B i,n z = B i z. (iii) (a i,n ) n∈N and (b i,n ) n∈N are sequences in H i such that n∈N a i,n < +∞ and n∈N b i,n < +∞. (iv) (λ i,n ) n∈N is a sequence in [0, 1[ such that n∈N |λ i,n -λ n | < +∞.
Conditions (i) and (ii) describe the types of approximations to the original operators (A i ) 1≤i≤m and (B i ) 1≤i≤m which can be utilized. Condition (iii) quantifies the tolerance which is allowed in the implementation of these approximations (see [START_REF] Combettes | Proximal methods for cohypomonotone operators[END_REF][START_REF] He | Self-adaptive operator splitting methods for monotone variational inequalities[END_REF][START_REF] Kaplan | Proximal point approach and approximation of variational inequalities[END_REF] for specific examples), while (iv) quantifies that allowed in the agent-dependent departure from the global relaxation scheme. The parallel nature of Algorithm 2.2 stems from the fact that the m evaluations of the resolvent operators in (2.3) can be performed independently and, therefore, simultaneously on concurrent processors.

Our asymptotic analysis of Algorithm 2.2 will be based on Theorem 2.8 below on the convergence of the forward-backward algorithm. First, we need to introduce the notion of demiregularity. This notion captures various properties typically used to establish the strong convergence of dynamical systems, e.g., compactness [START_REF] Cheney | Proximity maps for convex sets[END_REF], bounded compactness [START_REF] Bauschke | On the convergence of von Neumann's alternating projection algorithm for two sets[END_REF][START_REF] Combettes | Hilbertian convex feasibility problem: Convergence of projection methods[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF], uniform monotonicity [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Combettes | Approximating curves for nonexpansive and monotone operators[END_REF][START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II[END_REF], uniform convexity [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF][START_REF] Levitin | Constrained minimization methods[END_REF][START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF], compactness of resolvents [START_REF] Haraux | Nonlinear Evolution Equations: Global Behavior of Solutions[END_REF], and demicompactness [START_REF] Petryshyn | Construction of fixed points of demicompact mappings in Hilbert space[END_REF][START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications I[END_REF]. In the case of at most single-valued operators, demiregularity captures standard regularity properties used in nonlinear analysis [48, (i) A is uniformly monotone at y, i.e., there exists φ ∈ C such that

(∀v ∈ Ay)(∀(x, u) ∈ gra A) x -y | u -v ≥ φ( x -y ). (2.6) 
(ii) A is uniformly monotone, i.e., there exists φ ∈ C such that (2.6) holds for every y ∈ dom A.

(iii) A is strongly monotone, i.e., there exists ρ ∈ ]0, +∞[ such that A -ρ Id is monotone.

(iv) A = ∂f , where f ∈ Γ 0 (H) is uniformly convex at y [46, Section 3.4], i.e., there exists φ ∈ C such that

(∀α ∈ ]0, 1[)(∀x ∈ dom f ) f αx + (1 -α)y + α(1 -α)φ( x -y ) ≤ αf (x) + (1 -α)f (y). (2.7) (v) A = ∂f
, where f ∈ Γ 0 (H) is uniformly convex, i.e., there exists φ ∈ C such that (2.7) holds for every y ∈ dom f .

(vi) A = ∂f , where f ∈ Γ 0 (H) is strongly convex, i.e., there exists ρ ∈ ]0, +∞[ such that f -ρ • 2 /2 is convex.

(vii) A = ∂f , where f ∈ Γ 0 (H) and the lower level sets of f are boundedly compact.

(viii) J A is compact, i.e., for every bounded set C ⊂ H, the closure of J A (C) is compact.

(ix) dom A is boundedly relatively compact, i.e., the intersection of its closure with every closed ball is compact.

(x) H is finite-dimensional.

(xi) A : H → H is single-valued with a single-valued continuous inverse.

(xii) A is single-valued on dom A and Id -A demicompact [START_REF] Petryshyn | Construction of fixed points of demicompact mappings in Hilbert space[END_REF], [47, Section 10.4], i.e., for every bounded sequence (x n ) n∈N in dom A such that (Ax n ) n∈N converges strongly, (x n ) n∈N admits a strong cluster point.

Then A is demiregular at y.

Proof. Let ((y n , v n )) n∈N be a sequence in gra A and let v ∈ Ay be such that y n ⇀ y and v n → v.

We must show that y n → y.

(i): By (2.6), there exists φ ∈ C such that (∀n ∈ N) y n -y | v n -v ≥ φ( y n -y ). However, since y n ⇀ y and v n → v, we have y n -y | v n -v → 0. Therefore, appealing to the properties of φ, we conclude that y n -y → 0. (vi)⇒(v): Indeed, f is uniformly convex with φ : t → ρt 2 /2.

(vii): Since y n -y | v n → 0, there exists ρ ∈ ]0, +∞[ such that sup n∈N y n -y | v n ≤ ρ. Hence, since y ∈ dom ∂f ⊂ dom f , (1.10) yields (∀n ∈ N) f (y n ) ≤ f (y) + y n -y | v n ≤ f (y) + ρ < +∞.
Altogether, (y n ) n∈N is bounded and lies in a lower level set of f . It therefore lies in a compact set. However, since weak convergence and strong convergence coincide for sequences in compact sets, we conclude that y n → y.

(viii): We have (∀n ∈ N) (y n , v n ) ∈ gra A ⇒ (v n + y n ) -y n ∈ Ay n ⇒ y n = J A (v n + y n ). Since (v n + y n ) n∈N converge weakly, it lies in a bounded set C. Thus, (y n ) n∈N lies in J A (C), which has compact closure. Hence y n ⇀ y ⇒ y n → y. (ix)⇒(viii): Let C ⊂ H be bounded. Then J A (C) ⊂ J A (H) = dom A and, by nonexpansivity of J A [5, Proposition 3.5.3], J A (C) is bounded. Altogether, J A (C) has compact closure. (x)⇒(ix): Clear. (xi): Since Ay n = v n → v = Ay, we have y n = A -1 v n → A -1 v = y.
(xii): Since (y n ) n∈N converges weakly, it is bounded. In addition, (Ay n ) n∈N = (v n ) n∈N converges strongly. Hence, by demicompactness of Id -A, (y n ) n∈N has a strong cluster point x and, since y n ⇀ y, we must have x = y. Now suppose that y n → y. Then, there exist ε ∈ ]0, +∞[ and a subsequence (y kn ) n∈N such that (∀n ∈ N) y kn -y ≥ ε.

(2.8)

However, since y kn ⇀ y and (Ay kn ) n∈N converges strongly, arguing as above, we can extract a further subsequence (y l kn ) n∈N such that y l kn → y, which contradicts (2.8). Therefore, y n → y.

Next, we recall the notion of cocoercivity.

Definition 2.5 Let χ ∈ ]0, +∞[. An operator B : H → H is χ-cocoercive if χB is firmly nonex- pansive, i.e., (∀x ∈ H)(∀y ∈ H) x -y | Bx -By ≥ χ Bx -By 2 .
(2.9)

Firmly nonexpansive operators include resolvents of maximal monotone operators, proximity operators, and projectors onto nonempty closed convex sets. In addition, the Yosida approximation of a maximal monotone operator of index χ is χ-cocoercive [START_REF] Attouch | Variational Convergence for Functions and Operators[END_REF] (further examples of cocoercive operators can be found in [START_REF] Zhu | Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities[END_REF]). It is clear from (2.9) that, if B is χ-cocoercive, then it is χ -1 -Lipschitz continuous. The next lemma, which provides a converse implication, supplies us with another important instance of cocoercive operator (see also [START_REF] Dunn | Convexity, monotonicity, and gradient processes in Hilbert space[END_REF]).

Lemma 2.6 [7, Corollaire 10] Let ϕ : H → R be a differentiable convex function and let τ ∈ ]0, +∞[. Suppose that ∇ϕ is τ -Lipschitz continuous. Then ∇ϕ is τ -1 -cocoercive.
We shall also use the following fact. We are now ready to record some convergence properties of the forward-backward algorithm, which are of interest in their own right. The forward-backward algorithm finds its roots in the projected gradient method [START_REF] Levitin | Constrained minimization methods[END_REF] and certain methods for solving variational inequalities [START_REF] Auslender | Problèmes de Minimax via l'Analyse Convexe et les Inégalités Variationnelles: Théorie et Algorithmes[END_REF][START_REF] Brézis | Méthodes d'approximation et d'itération pour les opérateurs monotones[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Sibony | Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone[END_REF] (see also the bibliography of [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] for more recent developments).

Theorem 2.8 Let (H, ||| • |||) be a real Hilbert space, let χ ∈ ]0, +∞[, let A : H → 2 H be
a maximal monotone operator, and let B : H → H be a χ-cocoercive operator such that

Z = (A + B) -1 (0) = ∅.
(2.10)

Fix ε ∈ ]0, min{1, χ}[ , let (γ n ) n∈N be a sequence in [ε, 2χ -ε], let (λ n ) n∈N be a sequence in [0, 1 -ε],
and let (a n ) n∈N and (b n ) n∈N be sequences in H such that n∈N |||a n ||| < +∞ and n∈N |||b n ||| < +∞. Fix x 0 ∈ H and, for every n ∈ N, set

x n+1 = λ n x n + (1 -λ n ) J γnA (x n -γ n (Bx n + b n )) + a n . (2.11)
Then the following hold for some x ∈ Z.

(i) x n ⇀ x. (ii) Bx n → Bx. (iii) x n -J γnA (x n -γ n Bx n ) → 0.
(iv) Suppose that one of the following is satisfied.

(a) A is demiregular at x (see Proposition 2.4 for special cases).

(b) B is demiregular at x (see Proposition 2.4 for special cases).

(c) int Z = ∅.

Then x n → x.
Proof. For every n ∈ N, set 

T 1,n = J γnA , T 2,n = Id -γ n B, e 1,n = a n , e 2,n = -γ n b n , µ n = 1 -λ n , β 1,n = 2,
], Z = n∈N Fix T 1,n T 2,n . Moreover, as seen in [22, Section 6], (1 -β 1,n )Id + β 1,n T 1,n and (1 -β 2,n )Id + β 2,n T 2,
n are nonexpansive, and (2.11) can be rewritten as 

x n+1 = x n + µ n T 1,n T 2,n x n + e 2,n + e 1,n -x n , (2.13 
) n∈N that (Id -T 2,n )x n -(Id -T 2,n )x → 0 and, in turn, that Bx n → Bx. Likewise, [22, Remark 3.4] yields x n -T 1,n T 2,n x n → 0 and, therefore, x n -J γnA (x n -γ n Bx n ) → 0. (iv)(a): Set v = -Bx and (∀n ∈ N) y n = J γnA x n -γ n Bx n v n = γ -1 n (x n -y n ) -Bx n .
(2.14)

On the one hand, we have (∀n ∈ N) (y n , v n ) ∈ gra A. On the other hand, we derive from (i) and (iii) that y n ⇀ x. Furthermore, since

(∀n ∈ N) |||v n -v||| ≤ |||x n -y n ||| γ n + |||Bx n -Bx|||, (2.15) 
it follows from (ii), (iii), and the condition inf n∈N γ n > 0 that v n → v. It then results from Definition 2.3 that y n → x and, in turn, from (iii) that x n → x.

(iv)(b): Set v = Bx and (∀n ∈ N) v n = Bx n . Then (i) yields x n ⇀ x and (ii) yields v n → v. It thus follows from Definition 2.3 that x n → x.

(iv)(c): This follows from (i) and [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]Theorem 3.3

(i) & Lemma 2.8(iv)].
The main results of this section are the following theorems. Let us start with weak convergence. Theorem 2.9 Let ((x i,n ) n∈N ) 1≤i≤m be sequences generated by Algorithm 2.2. Then, for every i ∈ {1, . . . , m}, (x i,n ) n∈N converges weakly to a point x i ∈ H i , and (x i ) 1≤i≤m is a solution to Problem 1.1.

Proof. Throughout the proof, a generic element x in the Cartesian product H 1 × • • • × H m will be expressed in terms of its components as x = (x i ) 1≤i≤m . We shall show that our algorithmic setting reduces to the situation described in Theorem 2.8(i) in the Hilbert direct sum

H = H 1 ⊕ • • • ⊕ H m obtained by endowing H 1 × • • • × H m with the scalar product • | • : (x, y) → m i=1 x i | y i , (2.16) 
with associated norm

||| • ||| : x → m i=1 x i 2 .
(2.17)

To this end, we shall show that the iterations (2.3) can be cast in the form of (2.11). First, define 

A : H → 2 H : x → m × i=1 A i x i and (∀n ∈ N) A n : H → 2 H : x → m × i=1 A i,n x i . ( 2 
J γnA i,n y i -J γnA i y i 2 ≤ n∈N sup |||y|||≤ρ m i=1 J γnA i,n y i -J γnA i y i ≤ m i=1 n∈N sup y i ≤ρ J γnA i,n y i -J γnA i y i < +∞. (2.21) Now define B : H → H : x → (B i x) 1≤i≤m and (∀n ∈ N) B n : H → H : x → (B i,n x) 1≤i≤m . (2.22) Then (1.7) is equivalent to find x ∈ Z = (A + B) -1 (0). ( 2 
|||Λ n ||| = max 1≤i≤m λ i,n ≤ 1 and |||Id -Λ n ||| = 1 -min 1≤i≤m λ i,n ≤ 1. (2.29) Hence, |||Λ n ||| + |||Id -Λ n ||| = 1 + max 1≤i≤m (λ i,n -λ n ) -min 1≤i≤m (λ i,n -λ n ) ≤ 1 + τ n , (2.30) 
where

τ n = 2 max 1≤i≤m |λ i,n -λ n |. (2.31) 
We observe that, by virtue of condition (iv) in Algorithm 2.2,

k∈N τ k = 2 k∈N max 1≤i≤m |λ i,k -λ k | ≤ 2 m i=1 k∈N |λ i,k -λ k | < +∞. (2.32)
Moreover, in view of (2.20), (2.22), (2.25), and (2.28), the iterations (2.3) are equivalent to

x n+1 = Λ n x n + (Id -Λ n ) J γnAn x n -γ n (B n x n + d n ) + c n . (2.33) 
Now define 

D n = B n -B. ( 2 
κ k = k∈N m i=1 κ 2 i,k ≤ m i=1 k∈N κ i,k < +∞. (2.35) Furthermore, set b n = D n x n + d n (2.36)
and let x ∈ Z. Then

|||b n ||| ≤ |||D n x n ||| + |||d n ||| ≤ |||D n x n -D n x||| + |||D n x -D n z||| + |||d n ||| ≤ κ n (|||x n -x||| + |||x -z|||) + |||d n |||, (2.37) 
where z is provided by assumption (ii)(b) in Algorithm 2.2. We now set 

T n = Id -γ n B and e n = J γnAn T n x -x. ( 2 
|||e k ||| = k∈N |||J γ k A k (T k x) -x||| = k∈N |||J γ k A k (T k x) -J γ k A (T k x)||| < +∞. (2.41)
In addition, (2.34), (2.36), and (2.38) yield

J γnAn x n -γ n (B n x n + d n ) -x = J γnAn T n x n -γ n b n -J γnAn (T n x) + e n . (2.42) 
Since J γnA is nonexpansive as a resolvent (see [ 

|||J γnAn x n -γ n (B n x n + d n ) -x||| ≤ |||J γnAn T n x n -γ n b n -J γnAn (T n x)||| + |||e n ||| ≤ |||T n x n -γ n b n -T n x||| + |||e n ||| ≤ |||x n -x||| + γ n |||b n ||| + |||e n ||| ≤ |||x n -x||| + 2β|||b n ||| + |||e n ||| ≤ (1 + 2βκ n )|||x n -x||| + 2βκ n |||x -z||| + 2β|||d n ||| + |||e n |||. ( 2 
|||x n+1 -x||| = |||Λ n (x n -x) + (Id -Λ n ) J γnAn x n -γ n (B n x n + d n ) -x + c n ||| ≤ |||Λ n ||| |||x n -x||| + |||Id -Λ n ||| |||c n ||| + |||Id -Λ n ||| |||J γnAn x n -γ n (B n x n + d n ) -x||| ≤ |||Λ n ||| |||x n -x||| + |||Id -Λ n ||| |||c n ||| + |||Id -Λ n ||| (1 + 2βκ n )|||x n -x||| + 2βκ n |||x -z||| + 2β|||d n ||| + |||e n ||| ≤ |||Λ n ||| + |||Id -Λ n ||| |||x n -x||| + |||Id -Λ n ||| |||c n ||| + 2βκ n |||x n -x||| + 2βκ n |||x -z||| + 2β|||d n ||| + |||e n ||| ≤ (1 + τ n )|||x n -x||| + |||c n ||| + 2βκ n |||x n -x||| + 2βκ n |||x -z||| + 2β|||d n ||| + |||e n ||| ≤ (1 + α n )|||x n -x||| + δ n , (2.44 
x n+1 = Λ n x n + (Id -Λ n ) J γnA (T n x n -γ n b n ) + h n , (2.48) 
where 

h n = J γnAn (T n x n -γ n b n ) -J γnA (T n x n -γ n b n ) + c n . ( 2 
|||T n x n -γ n b n ||| ≤ |||T n x n -T n x||| + |||T n x||| + 2β|||b n ||| ≤ |||x n -x||| + ρ + 2β|||b n ||| ≤ µ. ( 2 
a n = h n + 1 1 -λ n (Λ n -λ n Id ) x n -J γnA (T n x n -γ n b n ) -h n , (2.52) 
we can rewrite (2.48) in the equivalent form (2.11), namely

x n+1 = λ n x n + (1 -λ n ) J γnA (x n -γ n (Bx n + b n )) + a n . (2.53) 
Using (2.40) and the nonexpansivity of J γnA and T n , we get 

|||x n -J γnA (T n x n -γ n b n ) -h n ||| ≤ |||x n -x||| + |||J γnA (T n x) -J γnA (T n x n -γ n b n )||| + |||h n ||| ≤ 2|||x n -x||| + 2β|||b n ||| + |||h n |||. ( 2 
ν = sup k∈N |||x k -J γ k A (T k x k -γ k b k ) -h k ||| < +∞, (2.55) 
and hence, from (2.52) and the inequality λ n ≤ 1 -ε, that We conclude this section with the following theorem, in which we describe instances of strong convergence derived from Theorem 2.8. Theorem 2.10 Let ((x i,n ) n∈N ) 1≤i≤m and (x i ) 1≤i≤m be as in Theorem 2.9. Then the following hold.

|||a n ||| ≤ |||h n ||| + 1 1 -λ n |||Λ n -λ n Id ||| |||x n -J γnA (T n x n -γ n b n ) -h n ||| ≤ |||h n ||| + ν ε max 1≤i≤m |λ i,n -λ n |. ( 2 
(i) Suppose that, for some i ∈ {1, . . . , m}, A i is demiregular at x i (see Proposition 2.4 for special cases). Then x i,n → x i .

(ii) Suppose that the operator (y j ) 1≤j≤m → B i (y j ) 1≤j≤m 1≤i≤m is demiregular at (x i ) 1≤i≤m (see Proposition 2.4 for special cases). Then, for every i ∈ {1, . . . , m}, x i,n → x i .

(iii) Suppose that the set of solutions to Problem 1.1 has a nonempty interior. Then, for every i ∈ {1, . . . , m}, x i,n → x i .

Proof. We use the same product space setting and notation as in the proof of Theorem 2.9. In particular, we set x = (x 1 , . . . , x m ) and

H = H 1 ⊕ • • • ⊕ H m ,

and we define

A : H → 2 H : y → m × i=1
A i y i and B : H → H : y → (B i y) 1≤i≤m .

(2.58)

(i): Set v i = -B i (x 1 , . . . , x m ) and (∀n ∈ N) y i,n = J γnA i x i,n -γ n B i (x 1,n , . . . , x m,n ) v i,n = γ -1 n (x i,n -y i,n ) -B i (x 1,n , . . . , x m,n ).
(2.59)

It follows from Theorem 2.8(i) that x i,n ⇀ x i , (2.60) 
from Theorem 2.8(ii) that (ii)&(iii): As seen in the proof of Theorem 2.9, the convergence properties of (x n ) n∈N = ((x i,n ) n∈N ) 1≤i≤m follow from those listed in Theorem 2.8 and applied to the operators defined in (2.58); moreover, the set of solutions to Problem 1.1 is Z = (A + B) -1 (0). Therefore, (ii) follows from Theorem 2.8(iv)(b), and (iii) from Theorem 2.8(iv)(c).

B i (x 1,n , . . . , x m,n ) -B i (x 1 , . . . , x m ) = B i x n -B i x ≤ |||Bx n -Bx||| → 0, ( 2 

Coupling evolution inclusions

Evolution inclusions arise in various fields of applied mathematics [START_REF] Haraux | Nonlinear Evolution Equations: Global Behavior of Solutions[END_REF][START_REF] Showalter | Monotone Operators in Banach Space and Nonlinear Partial Differential Equations[END_REF]. In this section, we address the problem of solving systems of coupled evolution inclusions with periodicity conditions.

Let us recall some standard notation [START_REF] Brézis | Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert[END_REF][START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II[END_REF]. 

= x ′ . Moreover, W 1,2 ([0, T ]; H) = x ∈ L 2 ([0, T ]; H) x ′ ∈ L 2 ([0, T ]; H) , (3.1) 
equipped with the scalar product (x, y)

→ T 0 x(t) | y(t) H dt + T 0 x ′ (t) | y ′ (t) H dt, is a Hilbert space.
Problem 3.1 Let (H i ) 1≤i≤m be real Hilbert spaces and let T ∈ ]0, +∞[. For every i ∈ {1, . . . , m}, set

W i = x ∈ C([0, T ]; H i ) ∩ W 1,2 ([0, T ]; H i ) x(T ) = x(0) , (3.2) let f i ∈ Γ 0 (H i ), and let B i : H 1 × • • • × H m → H i . It is assumed that there exists β ∈ ]0, +∞[ such that (∀(x 1 , . . . , x m ) ∈ H 1 × • • • × H m )(∀(y 1 , . . . , y m ) ∈ H 1 × • • • × H m ) m i=1 B i (x 1 , . . . , x m ) -B i (y 1 , . . . , y m ) | x i -y i H i ≥ β m i=1 B i (x 1 , . . . , x m ) -B i (y 1 , . . . , y m ) 2 H i . (3.
3

)
The problem is to

find x 1 ∈ W 1 , . . . , x m ∈ W m such that (∀i ∈ {1, . . . , m}) 0 ∈ x ′ i (t) + ∂f i (x i (t)) + B i (x 1 (t), . . . , x m (t)
) a.e. on ]0, T [ , (3.4) under the assumption that such solutions exist.

Algorithm 3.2 Fix ε ∈ ]0, min{1, β}[, (γ n ) n∈N in [ε, 2β -ε], and (λ n ) n∈N in [0, 1 -ε].
Let, for every n ∈ N and every i ∈ {1, . . . , m}, y i,n be the unique solution in W i to the inclusion and set

x i,n (t) -y i,n (t) γ n -B i (x 1,n (t), . . . , x m,n (t)) + b i,n (t) ∈ y ′ i,n (t) + ∂f i (y i,n (t)) + e i,n ( 
x i,n+1 = λ i,n x i,n + (1 -λ i,n )y i,n (3.6) 
where, for every i ∈ {1, . . . , m}, the following hold.

(i) x i,0 ∈ W 1,2 ([0, T ]; H i ). (ii) (b i,n ) n∈N and (e i,n ) n∈N are sequences in L 2 ([0, T ]; H i ) such that n∈N T 0 b i,n (t) 2 H i dt < +∞ and n∈N T 0 e i,n (t) 2 H i dt < +∞. (3.7) (iii) (λ i,n ) n∈N is a sequence in [0, 1[ such that n∈N |λ i,n -λ n | < +∞.
In (3.5), b i,n (t) models the error tolerated in the computation of B i (x 1,n (t), . . . , x m,n (t)), while e i,n (t) models the error tolerated in solving the inclusion with respect to ∂f i (y i,n (t)).

We now examine the weak convergence properties of Algorithm 3.2 (strong convergence conditions can be derived from Theorem 2.10).

Theorem 3.3 Let ((x i,n ) n∈N ) 1≤i≤m be sequences generated by Algorithm 3.2. Then, for every i ∈ {1, . . . , m}, (x i,n ) n∈N converges weakly in W 1,2 ([0, T ]; H i ) to a point x i ∈ W i , and (x i ) 1≤i≤m is a solution to Problem 3.1.

Proof. For every i ∈ {1, . . . , m}, set H i = L 2 ([0, T ]; H i ) and

A i : H i → 2 H i x → u ∈ H i u(t) ∈ x ′ (t) + ∂f i (x(t)) a.e. in ]0, T [ , if x ∈ W i ; ∅, otherwise. (3.8)
Let us first show that the operators (A i ) 1≤i≤m are maximal monotone. For this purpose, let i ∈ {1, . . . , m}, (x, u) ∈ gra A i , and (y, v) ∈ gra A i . It follows from (3.8) that, almost everywhere on ]0, T [, u(t) -x ′ (t) ∈ ∂f i (x(t)) and v(t) -y ′ (t) ∈ ∂f i (y(t)). Therefore, by monotonicity of ∂f i , we have

T 0 x(t) -y(t) | u(t) -x ′ (t) -v(t) -y ′ (t) H i dt ≥ 0. (3.9)
Hence,

x -y | u -v = T 0 x(t) -y(t) | u(t) -v(t) H i dt = T 0 x(t) -y(t) | u(t) -x ′ (t) -v(t) -y ′ (t) H i dt + T 0 x(t) -y(t) | x ′ (t) -y ′ (t) H i dt ≥ 1 2 T 0 d x(t) -y(t) 2 H i dt dt = 1 2 x(T ) -y(T ) 2 H i -x(0) -y(0) 2 H i = 0. (3.10)
Thus, A i is monotone. To prove maximality, set

g i = (1/2) • 2 H i + f i . Then g i ∈ Γ 0 (H i
) and ∂g i = Id +∂f i . Moreover, since f i ∈ Γ 0 (H i ), it follows from the Fenchel-Moreau theorem that it is minorized by a continuous affine functional, say f i ≥ • | v H i + η for some v ∈ H i and η ∈ R. Now, let y ∈ dom f i = dom g i and take (x, u) ∈ gra ∂g i . Then (1.10) and Cauchy-Schwarz imply the coercivity property

x -y | u H i x H i ≥ g i (x) -g i (y) x H i = x H i 2 + f i (x) -g i (y) x H i ≥ x H i 2 -v H i + η -g i (y) x H i → +∞ as x H i → +∞. (3.11) 
Therefore, [START_REF] Brézis | Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert[END_REF]Corollaire 3.4] asserts that for every w ∈ H i there exists z ∈ W i such that

w(t) ∈ z ′ (t) + ∂g i (z(t)) = z ′ (t) + z(t) + ∂f i (z(t)) a.e. on ]0, T [ , (3.12) 
i.e., by (3.8), such that w -z ∈ A i z. This shows that the range of Id +A i is H i and hence, by Minty's theorem [5, Theorem 3.5.8], that A i is maximal monotone.

Next, for every i ∈ {1, . . . , m} and every (x 1 , . . . ,

x m ) ∈ H 1 × • • • × H m , define almost everywhere B i (x 1 , . . . , x m ) : [0, T ] → H i : t → B i (x 1 (t), . . . , x m (t)). (3.13) Now let (x 1 , . . . , x m ) ∈ H 1 × • • • × H m and set (∀i ∈ {1, . . . , m}) b i = B i (0, . . . , 0). Then it follows from (3.
3) and Cauchy-Schwarz that, almost everywhere on [0, T ],

β m j=1 B j (x 1 (t), . . . , x m (t)) -b j 2 H j ≤ m j=1 B j (x 1 (t), . . . , x m (t)) -b j | x j (t) -0 H j ≤ m j=1 B j (x 1 (t), . . . , x m (t)) -b j H j x j (t) H j ≤ m j=1 B j (x 1 (t), . . . , x m (t)) -b j 2 H j m j=1 x j (t) 2 H j . (3.14)
Therefore, for every i ∈ {1, . . . , m},

B i (x 1 , . . . , x m )(t) 2 H i ≤ 2 b i 2 
H i + B i (x 1 , . . . , x m )(t) -b i 2 H i ≤ 2 b i 2 
H i + m j=1 B j (x 1 (t), . . . , x m (t)) -b j 2 H j ≤ 2 b i 2 H i + 1 β 2 m j=1 x j (t) 2 H j a.e. on ]0, T [ , (3.15) 
which yields

T 0 B i (x 1 , . . . , x m )(t) 2 H i dt ≤ 2T b i 2 H i + 2 β 2 m j=1 x j 2 , (3.16) 
so that we can now claim that B i :

H 1 × • • • × H m → L 2 ([0, T ]; H i ) = H i .
In addition, upon integrating, we derive from (3.3) and (3.13) that, for every (y 1 , . . . ,

y m ) ∈ H 1 × • • • × H m , m i=1 B i (x 1 , . . . , x m ) -B i (y 1 , . . . , y m ) | x i -y i ≥ β m i=1 B i (x 1 , . . . , x m ) -B i (y 1 , . . . , y m ) 2 . (3.17) 
We have thus established (1.6).

Let us now make the connection between Algorithm 3.2 and Algorithm 2.2. For every n ∈ N and every i ∈ {1, . . . , m}, it follows from (3.5), (3.8), (3.13), and the maximal monotonicity of A i that y i,n is uniquely defined and can be expressed as

y i,n = J γnA i x i,n -γ n B i (x 1,n , . . . , x m,n ) + b i,n + a i,n , (3.18) 
where

a i,n = J γnA i -γ n e i,n + x i,n -γ n B i (x 1,n , . . . , x m,n ) + b i,n -J γnA i x i,n -γ n B i (x 1,n , . . . , x m,n ) + b i,n , (3.19) 
and we therefore deduce from (3.5) and (3.6) that

x i,n+1 = λ i,n x i,n + (1 -λ i,n ) J γnA i x i,n -γ n B i (x 1,n , . . . , x m,n ) + b i,n + a i,n . (3.20) 
We observe that (3.20) As a result, all the hypotheses of Algorithm 2.2 are satisfied and hence Theorem 2.9 asserts that, for every i ∈ {1, . . . , m}, (x i,n ) n∈N converges weakly in

H i = L 2 ([0, T ]; H i ) to a point x i , and (x i ) 1≤i≤m satisfies (∀i ∈ {1, . . . , m}) 0 ∈ A i x i + B i (x 1 , . . . , x m ). (3.22) 
Accordingly, σ = max

1≤i≤m sup n∈N x i,n < +∞ (3.23)
and (∀i ∈ {1, . . . , m}) x i ∈ dom A i ⊂ W i . Moreover since, in view of (3.8) and (3.13), (3.22) reduces to (3.4), (x i ) 1≤i≤m is a solution to Problem 3.1.

To complete the proof, let i ∈ {1, . . . , m}. To show that (x i,n ) n∈N converges weakly to

x i in W 1,2 ([0, T ]; H i ), it remains to show that (x ′ i,n ) n∈N converges weakly to x ′ i in L 2 ([0, T ]; H i ). We first observe that (x i,n ) n∈N lies in W 1,2 ([0, T ]; H i ). Indeed, it follows from (3.8) that (∀n ∈ N)(∀z ∈ H i ) J γnA i z ∈ dom(γ n A i ) ⊂ W i ⊂ W 1,2 ([0, T ]; H i ). (3.24) 
As a result, we deduce from (3.19) that (a i,n ) n∈N lies in W On the other hand, since y i,n ∈ W i , we have y i,n (T ) = y i,n (0). Therefore

T 0 w i,n (t) | y ′ i,n (t) H i dt = T 0 d(f i • y i,n )(t) dt dt = f i (y i,n (T )) -f i (y i,n (0)) = 0 (3.28)
and, furthermore,

T 0 y i,n (t) | y ′ i,n (t) H i dt = 1 2 T 0 d y i,n (t) 2 H i dt dt = y i,n (T ) 2 H i -y i,n (0) 2 H i 2 = 0. (3.29)
We deduce from (3.28), (3.25), and (3.29) that

0 = T 0 x i,n (t) γ n y ′ i,n (t) 
H i dt - T 0 B i (x 1,n (t), . . . , x m,n (t)) | y ′ i,n (t) H i dt - T 0 b i,n (t) | y ′ i,n (t) H i dt - T 0 y ′ i,n (t) 2 H i dt - T 0 e i,n (t) | y ′ i,n (t) H i dt.
(3.30)

Thus, using Cauchy-Schwarz, the inequality γ n ≥ ε, and (3.13), we obtain

y ′ i,n 2 ≤ 1 ε x i,n + B i (x 1,n , . . . , x m,n ) + b i,n + e i,n y ′ i,n . (3.31) 
In turn, it follows from (3.6) that

x ′ i,n+1 ≤ λ i,n x ′ i,n + (1 -λ i,n ) 1 ε x i,n + B i (x 1,n , . . . , x m,n ) + b i,n + e i,n . (3.32) 
On the other hand, arguing as in (3.16), we derive from (3.23) that

B i (x 1,n , . . . , x m,n ) ≤ 2T b i 2 H i + 2mσ 2 β 2 ≤ √ 2T b i H i + √ 2m σ β . (3.33) 
Hence, using (ii) in Algorithm 3.2, we derive by induction from (3.32) that

x ′ i,n ≤ max x ′ i,0 , σ ε + √ 2T b i H i + √ 2m σ β + sup k∈N b i,k + e i,k . (3.34)
This shows the boundedness of (x ′ i,n ) n∈N in L 2 ([0, T ]; H i ). Now let z be the weak limit in L 2 ([0, T ]; H i ) of an arbitrary weakly convergent subsequence of (x ′ i,n ) n∈N . Since (x i,n ) n∈N converges weakly in L 2 ([0, T ]; H i ) to x i , it therefore follows from [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II[END_REF]Proposition 23.19] that z = x ′ i . In turn, this shows that (x ′ i,n ) n∈N converges weakly in L 2 ([0, T ]; H i ) to x ′ i .

The variational case

We study a special case of Problem 1.1 which yields a variational formulation that extends (1.5).

Recall that, for every f ∈ Γ 0 (H) and every x ∈ H, the function y → f (y) + x -y 2 /2 admits a unique minimizer, which is denoted by prox f x. The proximity operator thus defined can be expressed as prox f = J ∂f [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. 

f i (x i ) + p k=1 ϕ k m i=1 L ki x i , (4.1) 
under the assumption that solutions exist.

Algorithm 4.2 Set β = 1 p max 1≤k≤p τ k m i=1 L ki 2 . (4.2) Fix ε ∈ ]0, min{1, β}[, (γ n ) n∈N in [ε, 2β -ε], (λ n ) n∈N in [0, 1 -ε], and (x i,0 ) 1≤i≤m ∈ H 1 × • • • × H m . Set, for every n ∈ N,                            x 1,n+1 = λ 1,n x 1,n + (1 -λ 1,n ) prox γnf 1,n x 1,n -γ n p k=1 L * k1 ∇ϕ k m j=1 L kj x j,n + b 1,n + a 1,n , . . . x m,n+1 = λ m,n x m,n + (1 -λ m,n ) prox γnfm,n x m,n -γ n p k=1 L * km ∇ϕ k m j=1 L kj x j,n + b m,n + a m,n , (4.3) 
where, for every i ∈ {1, . . . , m}, the following hold.

(i) (f i,n ) n∈N are functions in Γ 0 (H i ) such that (∀ρ ∈ ]0, +∞[) n∈N sup y ≤ρ prox γnf i,n y -prox γnf i y < +∞. (4.4) (ii) (a i,n ) n∈N and (b i,n ) n∈N are sequences in H i such that n∈N a i,n < +∞ and n∈N b i,n < +∞. (iii) (λ i,n ) n∈N is a sequence in [0, 1[ such that n∈N |λ i,n -λ n | < +∞.
We now turn our attention to the asymptotic behavior of Algorithm 4.2 (strong convergence conditions can be derived from Theorem 2.10).

Theorem 4.3 Let ((x i,n ) n∈N ) 1≤i≤m be sequences generated by Algorithm 4.2. Then, for every i ∈ {1, . . . , m}, (x i,n ) n∈N converges weakly to a point x i ∈ H i , and (x i ) 1≤i≤m is a solution to Problem 4.1.

Proof. Problem 4.1 is a special case of Problem 1.1 where, for every i ∈ {1, . . . , m},

A i = ∂f i and B i : (x j ) 1≤j≤m → p k=1 L * ki ∇ϕ k m j=1 L kj x j . (4.5) 
Indeed, define H as in the proof of Theorem 2.9 and set

f : H → ]-∞, +∞] : (x i ) 1≤i≤m → m i=1 f i (x i ) (4.6)
and

g : H → R : (x i ) 1≤i≤m → p k=1 ϕ k m i=1 L ki x i . (4.7) 
Then f and g are in Γ 0 (H) and it follows from Fermat's rule and elementary subdifferential calculus that, for every (x 1 , . . . , x m ) ∈ H, 

(x 1 , . . . , x m ) solves (4.1) ⇔ (0, . . . , 0) ∈ ∂(f + g)(x 1 , . . . , x m ) ⇔ (0, . . . , 0) ∈ ∂f (x 1 , . . . , x m ) + ∇g(x 1 , . . . , x m ) ⇔ (∀i ∈ {1, . . . , m}) 0 ∈ ∂f i (x i ) + p k=1 L * ki ∇ϕ k m j=1 L kj x j ⇔ (∀i ∈ {1, . . . , m}) 0 ∈ A i x i + B i (x 1 , . . . , x m ). ( 4 
B i (x 1 , . . . , x m ) -B i (y 1 , . . . , y m ) | x i -y i = m i=1 p k=1 L * ki ∇ϕ k m j=1 L kj x j -∇ϕ k m j=1 L kj y j x i -y i = m i=1 p k=1 ∇ϕ k m j=1 L kj x j -∇ϕ k m j=1 L kj y j L ki (x i -y i ) = p k=1 ∇ϕ k m j=1 L kj x j -∇ϕ k m j=1 L kj y j m i=1 L ki x i - m i=1 L ki y i ≥ p k=1 1 τ k ∇ϕ k m j=1 L kj x j -∇ϕ k m j=1 L kj y j 2 = p k=1 1 τ k m i=1 L ki 2 m i=1 L ki 2 ∇ϕ k m j=1 L kj x j -∇ϕ k m j=1 L kj y j 2 ≥ pβ p k=1 m i=1 L ki 2 ∇ϕ k m j=1 L kj x j -∇ϕ k m j=1
L kj y j This shows that (1.6) holds. Furthermore, upon setting

(∀i ∈ {1, . . . , m})(∀n ∈ N) A i,n = ∂f i,n and B i,n = B i , (4.10) 
we deduce from (4.4) that Algorithm 4.2 is a particular case of Algorithm 2.2. Altogether, Theorem 4.3 follows from Theorem 2.9.

Here are a couple of applications of Problem 4.1. For every i ∈ {1, . . . , m} and l ∈ {1, . . . , N }, let ξ il ∈ R be the flux of user i on path l and let x i = (ξ il ) 1≤l≤N be the flow associated with user i. A standard problem in traffic theory is to find a Wardrop equilibrium [START_REF] Wardrop | Some theoretical aspects of road traffic research[END_REF] of the network, i.e., flows (x i ) 1≤i≤m such that the costs in all paths actually used are equal and less than those a single user would face on any unused path. Such an equilibrium can be obtained by solving the variational problem [START_REF] Beckmann | Studies in Economics of Transportation[END_REF][START_REF] Patriksson | The Traffic Assignment Problem: Models and Methods[END_REF][START_REF] Sheffi | Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods[END_REF] minimize

x 1 ∈C 1 ,..., xm∈Cm M j=1 h j (x 1 ,...,xm) 0 φ j (h)dh, (4.11) 
where φ j : R → [0, +∞[ is a strictly increasing τ -Lipschitz continuous function modeling the cost of transiting on link j and h j (x 1 , . . . , x m ) is the total flow through link j, which can be expressed as h j (x 1 , . . . , x m ) = m i=1 (Lx i ) ⊤ e j , where e j is the jth canonical basis vector of R M and L is an M × N binary matrix with jlth entry equal to 1 or 0, according as link j belongs to path l or not. Furthermore, each closed and convex constraint set C i in (4.11) is defined as C i = (η l ) 1≤l≤N ∈ [0, +∞[ N (∀k ∈ {1, . . . , Q}) l∈N k η l = δ ik , where ∅ = N k ⊂ {1, . . . , N } is the set of paths linking the pair k and δ ik ∈ [0, +∞[ is the flow of user i that must transit from the origin to the destination of pair k (for more details on network flows, see [START_REF] Rockafellar | Network Flows and Monotropic Optimization[END_REF][START_REF] Sheffi | Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods[END_REF]). Upon setting where (ρ 1,n , . . . , ρ M,n ) = m j=1 Lx j,n . In the special case when m = 1 the algorithm described in (4.14) is proposed in [START_REF] Bertsekas | Projection methods for variational inequalities with application the traffic assignment problem[END_REF]. Let us note that, as an alternative to ϕ 1 in (4.12), we can consider the function ϕ 1 : R M → R : (ν j ) 1≤j≤M → M j=1 ν j φ j (ν j ), (4.15) under suitable assumptions on (φ j ) 1≤j≤M . In this case, (4.13) reduces to the problem of finding the social optimum in the network [START_REF] Sheffi | Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods[END_REF], that is minimize which can also be solved with Algorithm 4.2.

Example 4.5 (best approximation)

The convex feasibility problem is to find a point in the intersection of closed convex subsets (C i ) 1≤i≤m of a real Hilbert space H [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Combettes | Hilbertian convex feasibility problem: Convergence of projection methods[END_REF]. This problem arises in many applications in engineering and the physical sciences [START_REF] Censor | Parallel Optimization: Theory, Algorithms, and Applications[END_REF][START_REF] Combettes | The foundations of set theoretic estimation[END_REF]. In many instances, the intersection of the sets (C i ) 1≤i≤m may turn out to be empty and a relaxation of this problem in the presence of a hard constraint represented by C 1 is to [START_REF] Combettes | Hard-constrained inconsistent signal feasibility problems[END_REF] minimize

x 1 ∈C 1 1 2 m i=2 ω i d 2 C i (x 1 ), (4.17) 
where (ω i ) 2≤i≤m are strictly positive weights such that max 2≤i≤m ω i = 1. We assume that this problem admits at least one solution, as is the case when one of the sets in (C i ) 1≤i≤m is bounded [START_REF] Combettes | Hard-constrained inconsistent signal feasibility problems[END_REF]Proposition 4]. Since, for every i ∈ {2, . . . , m} and every x 1 ∈ C 1 , d 2 C i (x 1 ) = min x i ∈C i x 1 -x i 2 , (4.17) can be reformulated as minimize We can derive from Algorithm 4.2 an algorithm which, by Theorem 4.3, generates orbits that are guaranteed to converge weakly to a solution to (4.18). Indeed, in this case, (4.2) yields β = 1/(2(m-1)). For example, upon setting γ n ≡ γ ∈ ]0, 1/(m -1)[, λ n ≡ 0, λ i,n ≡ 0, a i,n ≡ 0, b i,n ≡ 0, and f i,n = ι C i for simplicity, Algorithm 4.2 becomes

x 1,n+1 = P C 1 (1 -γ m i=2 ω i )x 1,n + γ m i=2 ω i x i,n (∀i ∈ {2, . . . , m}) x i,n+1 = P C i γω i x 1,n + (1 -γω i )x i,n .

(4.20)

In the particular case when m = 2 and γ = 1/2, then ω 2 = 1, (4.18) is equivalent to finding a best approximation pair relative to (C 1 , C 2 ) [START_REF] Bauschke | Dykstra's alternating projection algorithm for two sets[END_REF][START_REF] Bauschke | Finding best approximation pairs relative to two closed convex sets in Hilbert spaces[END_REF], and (4.20) reduces to

x 1,n+1 = P C 1 (x 

  and β = 1/2, then Problem 1.1 reverts to (1.1). On the other hand, if m

  Notation. Throughout, H and (H i ) 1≤i≤m are real Hilbert spaces. Their scalar products are denoted by • | • and the associated norms by • . The symbols ⇀ and → denote respectively weak and strong convergence, Id denotes the identity operator, and L * denotes the adjoint of a bounded linear operator L. The indicator function of a subset C of H is

(

  ii)⇒(i): Clear. (iii)⇒(ii): Indeed, A is uniformly monotone with φ : t → ρt 2 . (iv)⇒(i): See [46, Section 3.4]. (v)⇒(iv): Clear.

Lemma 2 . 7 [ 22 ,

 2722 Lemma 2.3] Let χ ∈ ]0, +∞[, let B : H → H be a χ-cocoercive operator, and let γ ∈ ]0, 2χ[. Then Id -γB is nonexpansive.

  Fix T ∈ ]0, +∞[ and p ∈ [1, +∞[. Then D(]0, T [) is the set of infinitely differentiable functions from ]0, T [ to R with compact support in ]0, T [. Given a real Hilbert space H, C([0, T ]; H) is the space of continuous functions from [0, T ] to H and L p ([0, T ]; H) is the space of classes of equivalences of Borel measurable functions x : [0, T ] → H such that T 0 x(t) p H dt < +∞. L 2 ([0, T ]; H) is a Hilbert space with scalar product (x, y) → T 0 x(t) | y(t) H dt. Now take x and y in L 1 ([0, T ]; H). Then y is the weak derivative of x if T 0 φ(t)y(t)dt = -T 0 (dφ(t)/dt)x(t)dt for every φ ∈ D(]0, T [), in which case we use the notation y

  t) a.e. on ]0, T [(3.5) 

Problem 4 . 1

 41 Let (H i ) 1≤i≤m and (G k ) 1≤k≤p be real Hilbert spaces. For every i ∈ {1, . . . , m}, let f i ∈ Γ 0 (H i ) and, for every k ∈ {1, . . . , p}, letτ k ∈ ]0, +∞[, let ϕ k : G k → R be a τ k -Lipschitzdifferentiable convexfunction, and let L ki : H i → G k be linear and bounded. It is assumed that min 1≤k≤p m i=1 L ki 2 > 0. The problem is to minimize x 1 ∈H 1 ,..., xm∈Hm m i=1

L kj y j 2 .

 2 

Example 4 . 4 (

 44 traffic theory) Consider a network with M links indexed by j ∈ {1, . . . , M } and N paths indexed by l ∈ {1, . . . , N }, linking a subset of Q origin-destination node pairs indexed by k ∈ {1, . . . , Q}. There are m types of users indexed by i ∈ {1, . . . , m} transiting on the network.

ϕ 1 :

 1 R M → R : (ν j ) 1≤j≤M → 11) can be written as minimizex 1 ∈R N ,..., xm∈R N m i=1 ι C i (x i ) + ϕ 1 m i=1 Lx i . (4.13)Since ϕ 1 is strictly convex and τ -Lipschitz-differentiable, (4.13) is a particular instance of Problem 4.1 with p = 1, G 1 = R M and (∀i ∈ {1, . . . , m})H i = R N , f i = ι C i ,and L 1i = L. Accordingly, Theorem 4.3 asserts that (4.13) can be solved by Algorithm 4.2 which, with the choice of parameters γ n ≡ γ ∈ ]0, 2/τ [, λ i,n ≡ 0, λ n ≡ 0, a i,n ≡ 0, and b i,n ≡ 0, yields (∀i ∈ {1, . . . , m}) x i,n+1 = P C i x i,n -γL ⊤ φ 1 (ρ 1,n ), . . . , φ M (ρ M,n ) , (4.14)

x 1

 1 ∈C 1 ,..., xm∈Cm M j=1 h j (x 1 , . . . , x m )φ j h j (x 1 , . . . , x m ) ,(4.16)

x 1 ∈C 1 , 18 ) 2 • 2

 111822 This is a special instance of Problem 4.1 with p = m -1 and, for every i ∈ {1, . . . , m}, f i = ι C i and (∀k ∈ {1, . . . , m -1}) ϕ k = ω k+1 and L ki =

  Definition 27.1]. An operator A : H → 2 H is demiregular at y ∈ dom A if, for every sequence ((y n , v n )) n∈N in gra A and every v ∈ Ay, we have Let A : H → 2 H , let y ∈ dom A, and let C be the set of all nondecreasing functions from [0, +∞[ to [0, +∞] that vanish only at 0. Suppose that one of the following holds.

	Definition 2.3 y n ⇀ y v n → v	⇒ y n → y.	(2.5)
	Proposition 2.4		

  .38) On the one hand, the inequality sup k∈N γ k ≤ 2β yields |||T n x||| ≤ ρ, where ρ = |||x||| + 2β|||Bx|||. (2.39) On the other hand, since x is a solution to Problem 1.1, Proposition 2.1, (2.20), and (2.22) supply x = J γnA (T n x).

	(2.40)
	Therefore, (2.38), (2.39), and (2.21) imply that
	k∈N

  In turn, it follows from (2.32), (2.35), (2.26), (2.27), and (2.41) that k∈N α k < +∞ and k∈N δ k <

	+∞. Thus, (2.44) and [39, Lemma 2.2.2] yield
	sup k∈N	|||x k -x||| < +∞	(2.46)
	and, using (2.35) and (2.27), we derive from (2.37) that
	k∈N	|||b k ||| < +∞.	(2.47)
	In view of (2.36) and (2.38), (2.33) is equivalent to

) where α n = τ n + 2βκ n and δ n = |||c n ||| + 2βκ n |||x -z||| + 2β|||d n ||| + |||e n |||. (2.45)

  .49) Now set µ = sup k∈N |||x k -x||| + ρ + 2β sup k∈N |||b k |||. Then it follows from (2.46), and (2.47) that µ < +∞. Moreover, we deduce from the nonexpansivity of T n and (2.39) that

  derives from(2.3), where A i,n ≡ A i and B i,n ≡ B i . On the other hand, for every i ∈ {1, . . . , m}, by nonexpansivity of the operators (J γnA i ) n∈N , we deduce from(3.

							19) and
	(3.7) that						
	n∈N	a i,n ≤	n∈N	γ n e i,n ≤ 2β	n∈N	e i,n < +∞.	(3.21)

  1,2 ([0, T ]; H i ). On the other hand, by construction, (y i,n ) n∈N lies inW i ⊂ W 1,2 ([0, T ]; H i ). In view of (3.6) and (i) in Algorithm 3.2, (x i,n ) n∈N is therefore in W 1,2 ([0, T ]; H i ). Next, let us show that (x ′ i,n ) n∈N is bounded in L 2 ([0, T ]; H i ).To this end, let n ∈ N and setw i,n (t) = x i,n (t) -y i,n (t) γ n -B i (x 1,n (t), . . . , x m,n (t)) -b i,n (t) -y ′ i,n(t) -e i,n (t) a.e. on ]0, T [ . (3.25)

	Then we derive from (3.5) that			
	w i,n (t) ∈ ∂f i (y i,n (t)) a.e. on ]0, T [ .	(3.26)
	Hence, since w i,n ∈ H i , it follows from [15, Lemme 3.3] that		
	d(f i • y i,n )(t) dt	= w i,n (t) | y ′ i,n (t) H i	a.e. on ]0, T [ .	(3.27)

  {1, . . . , m}, x i ∈ H i , and y i ∈ H i , it follows from (4.5), (4.2), and the convexity of • 2 that

	m
	i=1

.8)

Next, let us show that the family (B i ) 1≤i≤m in (4.5) satisfies (1.6) with β as in (4.2). First, Lemma 2.6 asserts that, for every k ∈ {1, . . . , p}, ∇ϕ k is τ -1 k -cocoercive. Hence, for every i ∈

  1,n + x 2,n )/2 x 2,n+1 = P C 2 (x 1,n + x 2,n )/2 .(4.21)
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