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We study the convergence properties of an alternating proximal minimization algorithm for nonconvex structured functions of the type: L(x, y) = f (x)+Q(x, y)+g(y), where f : R n → R∪{+∞} and g : R m → R∪{+∞} are proper lower semicontinuous functions, and Q : R n × R m → R is a smooth C 1 function which couples the variables x and y. The algorithm can be viewed as a proximal regularization of the usual Gauss-Seidel method to minimize L.

We work in a nonconvex setting, just assuming that the function L satisfies the Kurdyka-Lojasiewicz inequality. An entire section illustrates the relevancy of such an assumption by giving examples ranging from semialgebraic geometry to "metrically regular" problems.

Our main result can be stated as follows: Assume that L has the Kurdyka-Lojasiewicz property. Then either (x k , y k ) → ∞, or the sequence (x k , y k ) k∈N converges to a critical point of L. This result is completed by the study of the convergence rate of the algorithm, which depends on the geometrical properties of the function L around its critical points. When specialized to Q(x, y) = xy 2 an to f , g indicator functions, the algorithm is an alternating projection mehod (a variant of Von Neumann's) that converges for a wide class of sets including semialgebraic and tame sets, transverse smooth manifolds or sets with "regular "intersection. Some illustrative applications to compressive sensing and rank reduction are given.

Introduction

Presentation of the algorithm. In this paper, we will be concerned with the convergence analysis of alternating minimization algorithms for (nonconvex) functions L : R n × R m → R ∪ {+∞} of the following type:

(H)         
L(x, y) = f (x) + Q(x, y) + g(y), f : R n → R ∪ {+∞}, g : R m → R ∪ {+∞} are proper lower semicontinuous, Q : R n × R m → R is a C 1 function, ∇Q is Lipschitz continuous on bounded subsets of R n × R m . Assumption (H) will be needed throughout the paper. We aim at finding critical points of L(x, y) = f (x) + Q(x, y) + g(y)

(1)

and possibly solve the corresponding minimization problem. The specific structure of L allows in particular to tackle problems of the form min{f (z) + g(z) :

z ∈ R n }. (2) 
1 It suffices indeed to set L ρ (x, y) = f (x) + ρ 2 ||x -y|| 2 + g(y), ρ being a positive penalization (or relaxation) parameter, and to minimize L ρ over R n ×R n . Feasibility problems involving two closed sets are particular cases of the above problem: just specialize f and g to be the indicator functions. (In a convex setting, the square of the euclidean distance may be replaced by a Bregman distance, see [START_REF] Bauschke | Joint minimization with alternating Bregman proximity operators[END_REF].)

Minimizing the sum of simple functions or finding a common point to a collection of closed sets is a very active field of research with applications in approximation theory [START_REF] Von Neumann | Functional Operators[END_REF], image reconstruction [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Donoho | Compressed Sensing[END_REF], statistics [START_REF] Csiszar | Information geometry and alternating minimization procedures[END_REF][START_REF] Grubisić | Efficient rank reduction of correlation matrices[END_REF], partial differential equations and optimal control [START_REF] Lions | On the Schwarz alternating method. III. A variant for nonoverlapping subdomains in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations[END_REF][START_REF] Widrow | Adaptive Inverse Control[END_REF]. A good reference for problems involving convex instances is [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]: many examples coming from signal processing problems are shown to be rewritable as [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF].

The specificity of our approach is twofold. First, we work in a nonconvex setting, just assuming that the function L satisfies the Kurdyka-Lojasiewicz inequality, see [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF][START_REF] Lojasiewicz | Sur la géométrie semi-et sous-analytique[END_REF][START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF]. As it has been established recently in [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | A nonsmooth Morse-Sard theorem for subanalytic functions[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF], this assumption is satisfied by a wide class of nonsmooth functions called functions definable in an o-minimal structure (see Section 3.2). Semialgebraic functions and (globally) subanalytic functions are for instance definable in their respective classes.

Secondly, we rely on a new class of alternating minimization algorithms with costs to move which has recently been introduced in [START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs to move[END_REF] (see also [START_REF] Attouch | Inertia and reactivity in decision making as cognitive variational inequalities[END_REF]) and which has proved to be a flexible tool [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF] permitting to handle general coupling functions Q(x, y) (for example Q(x, y) = Ax-By 2 , with A, B linear operators):

(x 0 , y 0 ) ∈ R n × R m given, (x k , y k ) → (x k+1 , y k ) → (x k+1 , y k+1 )

       x k+1 ∈ argmin L(u, y k ) + 1 2λ k u -x k 2 : u ∈ R n , y k+1 ∈ argmin L(x k+1 , v) + 1 2µ k v -y k 2 : v ∈ R m . (3) 
The above algorithm can be viewed as a proximal regularization of a two block Gauss-Seidel method for minimizing L:

x k+1 ∈ argmin{L(u, y k ) :

u ∈ R n } y k+1 ∈ argmin{L(x k+1 , v) : v ∈ R m }.
Some general results for Gauss-Seidel method, also known as coordinate descent method, can be found for instance in [START_REF] Auslender | Optimisation, Méthodes Numériques[END_REF][START_REF] Bertsekas | Nonlinear Optimisation[END_REF]; block coordinate methods for nonsmooth and nonconvex functions have been investigated by many authors (see [START_REF] Tseng | Convergence of a block coordinate descent method for nondifferentiable minimization[END_REF] and references therein). However very few general results ensure that the sequence (x k , y k ) converges to a global minimizer, even for strictly convex functions. An important fact concerning our approach is that the convergence of algorithm (3) works for any stepsizes λ k , µ k greater than a fixed positive parameter which can be chosen arbitrarily large. For such parameters the algorithm is very close to a coordinate descent method. On the other hand, when the stepsizes are not too large, the method is an alternating gradient-like method.

Kurdyka-Lojasiewicz inequalities and tame geometry. Before describing and illustrating our convergence results, let us recall some important facts that have motivated our mathematical approach.

In his pioneering work on real-analytic functions [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF][START_REF] Lojasiewicz | Sur la géométrie semi-et sous-analytique[END_REF], Lojasiewicz provided the basic ingredient, the so-called " Lojasiewicz inequality", that allows to derive the convergence of the bounded trajectories of the steepest descent equation to critical points. Given a real-analytic function f : R n → R and a critical point a ∈ R n , the Lojasiewicz inequality asserts that there exists some θ ∈ 1 2 , 1 such that the function |ff (a)| θ ∇f -1 remains bounded around a. Similar results have been developed for discrete gradient methods (see [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]) and nonsmooth subanalytic functions (see [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | A nonsmooth Morse-Sard theorem for subanalytic functions[END_REF][START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF]).

In the last decades powerful advances relying on an axiomatized approach of real-semialgebraic/realanalytic geometry have allowed to set up a general theory in which the basic objects enjoy the same qualitative properties as semialgebraic sets and functions [START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF][START_REF] Shiota | Geometry of subanalytic and semialgebraic sets[END_REF][START_REF] Wilkie | Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function[END_REF]. In such a framework the central concept is that of o-minimal structure over R. Basic results are recalled and illustrated in Section 4.3. Following van den Dries [START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF], functions and sets belonging to such structures are called definable or tame ( 5 ). Extensions of the Lojasiewicz inequality to definable functions and applications to their gradient vector fields have been obtained by Kurdyka [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF], while nonsmooth versions have been developed in [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]. The corresponding generalized inequality is here called the Kurdyka-Lojasiewicz inequality (see Definition 7, Section 3.2).

An important motivation for designing alternating algorithms for tame problems relies on these generalized Lojasiewicz inequalities but also on the following facts:

-tame sets and functions allow to model many problems both smooth and nonsmooth: most of standard subsets of matrices are semialgebraic (symmetric positive semidefinite matrices, orthogonal groups, Stiefel manifolds, constant rank matrices) and most criteria involve piecewise polynomial and analytic functions.

-tameness is a highly stable "concept": finite unions or finite intersections of tame sets are tame, compositions of tame mappings are tame, subdifferentials of tame functions are tame (see remarks after Definition 13 and also [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]).

Convergence results, tractability of the algorithm and applications. One of our central result (theorem 9) can be stated as follows: Assume that L has the Kurdyka-Lojasiewicz property at each point. Then either the sequence (x k , y k ) converges to infinity, or the trajectory has a finite length and, as a consequence, converges to a critical point of L. This result is completed by the study of the convergence rate of the algorithm, which depends on the geometrical properties of the function L around its critical points (namely the Lojasiewicz exponent).

Let us now give some insight into the interest of algorithm [START_REF] Aragon | Convergence of the proximal point method for metrically regular mappings[END_REF]. Verifying that a nonsmooth function has the Kurdyka-Lojasiewicz property at each point is often a very easy task. For instance check the semialgebraicity or the analyticity of functions f , g, Q and apply the nonsmooth Lojasiewicz inequalities provided in [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]. Section 4 below shows the preeminence of this inequality and its links to prominent concepts in Optimization:

-uniformly convex functions and convex functions enjoying growth conditions; -metric regularity and constraint qualification; -semialgebraic and definable functions. Specific examples related to feasibility problems are provided, they involve (possibly tangent) realanalytic manifolds, transverse manifolds (see [START_REF] Lewis | Alternating projection on manifolds[END_REF]), semialgebraic sets or more generally tame sets.

Our results also apply to tame convex problems which are easily identifiable in practice and which provide in turn an important field of applications (see for instance [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]). Many convergence results of various types are available under convexity assumptions [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. Our results seem new; when L is a tame closed convex function and has at least a minimizer, then the sequences generated by algorithm (3) converge. Besides, when L is semialgebraic or globally subanalytic, convergence rates are necessarily of the form O( 1 k s ) with s > 0. Computability of the proximal iterates deserves some explanation. For simplicity take Q(x, y) = 1 2 ||x -y|| 2 . A first general remark is the following: when, for instance, f is locally convex up to a square, an adequate choice of the stepsize λ k makes the computation of the first step of algorithm 3 a convex, hence tractable, problem. Computational issues concerning these aspects of the implementation of approximate proximal points are given by Hare-Sagastizábal in [START_REF] Hare | Computing proximal points of nonconvex functions[END_REF]; besides, the Nesterov optimal gradient algorithm provides a simple tool for efficiently solving convex problems ( [START_REF] Nesterov | Introductory lectures on convex optimization. A basic course[END_REF]). Some nonconvex cases are easily computable and amount to explicit or standard computations: projections onto spheres or onto ellipsoids, constant rank matrices, or even one real variable second order equations. A good reference for some of these aspects is [START_REF] Lewis | Alternating projection on manifolds[END_REF]. (****) In order to provide a more realistic and flexible tool for solving real-world problems, it would be natural to consider inexact versions of algorithm (3) (see [START_REF] Iusem | Inexact variants of the proximal point algorithm without monotonicity[END_REF] for some work in that direction); this subject is out of the scope of the present paper but it is a matter for future research. (****) Several applications involving nonconvex aspects are provided (see section 4.3): rank reduction of correlation matrices, compressive sensing with nonconvex "norms". For this last case our algorithm provides a regularized version of the reweighted l 1 minimization algorithm of Candès-Wakin-Boyd (see Example 2). To the best of our knowledge no convergence results are known for the reweighted algorithms.

The regularized version, we provide converges even when small constant stepsizes are chosen in the implementation of 3.

In section 3.4, when specializing algorithm (3) to indicator functions, we obtain an alternating projection algorithm (recently introduced in [START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs to move[END_REF]), which can be seen as a proximal regularization of the von Neumann algorithm (see [START_REF] Von Neumann | Functional Operators[END_REF]). Being given two closed subsets C, D of R n the algorithm reads

         x k+1 ∈ P C λ -1 k x k + y k λ -1 k + 1 y k+1 ∈ P D µ -1 k y k + x k+1 µ -1 k + 1
, where P C , P D : R n ⇉ R n are the projection mappings onto C and D. The convergence of the sequences (x k ), (y k ) is obtained for a wide class of sets ranging from semialgebraic or definable sets to transverse manifolds, or more generally to sets with a regular intersection. A part of this result is inspired by the recent work of Lewis and Malick on transverse manifolds [START_REF] Lewis | Alternating projection on manifolds[END_REF], in which similar results were derived.

The paper is organized as follows: Section 2 is devoted to recalling some elementary facts of nonsmooth analysis. This allows us to obtain in section 3 some first elementary properties of the alternating proximal minimization algorithm, and then to establish our main theoretical results. A last section is devoted to examples and applications: various classes of functions satisfying the Kurdyka-Lojasiewicz property are provided and specific examples for which computations can be effectively performed are given.

Elementary facts of nonsmooth analysis

The Euclidean scalar product of R n and its corresponding norm are respectively denoted by •, • and || • ||. Some general references for nonsmooth analysis are [START_REF] Rockafellar | Variational Analysis[END_REF][START_REF] Mordukhovich | Variational analysis and generalized differentiation. I. Basic theory[END_REF].

If F : R n ⇉ R m is a point-to-set mapping its graph is defined by

Graph F := {(x, y) ∈ R n × R m : y ∈ F (x)}.
Similarly the graph of a real-extended-valued function f : R n → R ∪ {+∞} is defined by

Graph f := {(x, s) ∈ R n × R : s = f (x)}.
Let us recall a few definitions concerning subdifferential calculus.

Definition 1 ([43]

) Let f : R n → R ∪ {+∞} be a proper lower semicontinuous function.

(i) The domain of f is defined and denoted by dom f := {x ∈ R n : f (x) < +∞}.

(ii) For each x ∈ dom f , the Fréchet subdifferential of f at x, written ∂f (x), is the set of vectors

x * ∈ R n which satisfy lim inf y = x y → x 1 x -y [f (y) -f (x) -x * , y -x ] ≥ 0. If x / ∈ dom f , then ∂f (x) = ∅. (iii)
The limiting-subdifferential ( [START_REF] Mordukhovich | Variational analysis and generalized differentiation. I. Basic theory[END_REF]), or simply the subdifferential for short, of f at x ∈ dom f , written ∂f (x), is defined as follows

∂f (x) := {x * ∈ R n : ∃x n → x, f (x n ) → f (x), x * n ∈ ∂f (x n ) → x * }.
Remark 1 (a) The above definition implies that ∂f (x) ⊂ ∂f (x) for each x ∈ R n , where the first set is convex and closed while the second one is closed [43, th. 8.6 p. 302]. (b)(Closedness of ∂f ) Let (x k , x * k ) ∈ Graph ∂f be a sequence that converges to (x, x * ). By the very definition of ∂f (x), if f (x k ) converges to f (x) then (x, x * ) ∈ Graph ∂f . (c) A necessary (but not sufficient) condition for x ∈ R n to be a minimizer of f is

∂f (x) ∋ 0. (4) 
A point that satisfies (4) is called limiting-critical or simply critical. The set of critical points of f is denoted by crit f . If K is a subset of R n and x is any point in R n , we set dist (x, K) = inf{ xz : z ∈ K}.

Recall that if K is empty we have dist (x, K) = +∞ for all x ∈ R n . Note also that for any real-extendedvalued function f on R n and any x ∈ R n , dist (0, ∂f (x)) = inf{ x * : x * ∈ ∂f (x)}.

Lemma 2 Let f : R n → R ∪ {+∞} be a proper lower semicontinuous function. Let x ∈ dom f be a noncritical point of f . Then there exists c > 0 such that

x -x + f (x) -f (x) < c =⇒ dist (0, ∂f (x)) ≥ c.
Proof. On the contrary, there would exist a sequence (c k ) with c k > 0, c k → 0, and a sequence (x k ) with

x k -x + f (x k ) -f (x) < c k and dist (0, ∂f (x k )) < c k . The latter inequality implies the existence of some x * k ∈ ∂f (x k ) with x * k < c k .
Owing to the closedness of ∂f we would then have 0 ∈ ∂f (x), a contradiction.

Partial subdifferentiation Let L : R n × R m → R ∪ {+∞} be a lower semicontinuous function. When fixing y in R m , the subdifferential of the function L(•, y) at u is denoted by ∂ x L(u, y). Similarly, when fixing x in R n , one can define the partial subdifferentiation with respect to the variable y. The corresponding operator is denoted by ∂ y L(x, •).

The following result, though elementary, is central to the paper.

Proposition 3 Let L satisfy (H). Then for all (x, y) ∈ dom L = dom f × dom g we have

∂L(x, y) = {∂f (x) + ∇ x Q(x, y)} × {∂g(y) + ∇ y Q(x, y)} = ∂ x L(x, y) × ∂ y L(x, y).
Proof. Observe first that we have 

∂L(x, y) = ∂(f (x) + g(y)) + ∇Q(x, y), since Q is continuously differentiable ([

Normal cones, indicator functions and projections

If C is a closed subset of R n we denote by δ C its indicator function, i.e. for all x ∈ R n we set

δ C (x) = 0 if x ∈ C, +∞ otherwise.
The projection on C, written P C , is the following point-to-set mapping:

P C : R n ⇉ R n x → P C (x) := argmin { x -z : z ∈ C}.
When C is nonempty, the closedness of C and the compactness of the closed unit ball of R n imply that P C (x) is nonempty for all x in R n .

Definition 4 (Normal cone) Let C be a nonempty closed subset of R n . (i) For any x ∈ C the Fréchet normal cone to C at x is defined by

NC (x) = {v ∈ R n : v, y -x ≤ o(x -y), y ∈ C}. When x / ∈ C we set N C (x) = ∅. (ii) The (limiting) normal cone to C at x ∈ C is denoted by N C (x) and is defined by v ∈ N C (x) ⇔ ∃x k ∈ C, x k → x, ∃v k ∈ NC (x k ), v k → v.
Remark 2 (a) For x ∈ C the cone N C (x) is closed but not necessarily convex. (b) An elementary but important fact about normal cone and subdifferential is the following

∂δ C = N C .
3 Alternating proximal minimization algorithms

Convergence to a critical value

Let L satisfy (H). Being given (x 0 , y 0 ) ∈ R n × R m , recall that the alternating discrete dynamical system we are to study is of the form:

(x k , y k ) → (x k+1 , y k ) → (x k+1 , y k+1 )      x k+1 ∈ argmin {L(u, y k ) + 1 2λ k u -x k 2 : u ∈ R n } (5) 
y k+1 ∈ argmin {L(x k+1 , v) + 1 2µ k v -y k 2 : v ∈ R m }, (6) 
where (λ k ) k∈N , (µ k ) k∈N are positive sequences. We make the following standing assumption concerning ( 5), ( 6):

(H 1 )    inf R n ×R m L > -∞, the function L(•, y 0 ) is proper,
for some positive r -< r + the sequences of stepsizes λ k , µ k belong to (r -, r + ) for all k ≥ 0.

The next lemma, especially point (iii), is of constant use in the sequel.

Lemma 5 Under assumptions (H), (H 1 ), the sequences (x k ), (y k ) are correctly defined. Moreover (i) The following estimate holds

L(x k , y k ) + 1 2λ k-1 x k -x k-1 2 + 1 2µ k-1 y k -y k-1 2 ≤ L(x k-1 , y k-1 ) ∀k ≥ 1; (7) hence L(x k , y k ) does not increase. (ii) ∞ k=1 x k -x k-1 2 + y k -y k-1 2 < +∞; hence lim( x k -x k-1 + y k -y k-1 ) = 0. (iii) For k ≥ 1 define (x * k , y * k ) = (∇ x Q(x k , y k )-∇ x Q(x k , y k-1 ), 0)-1 λ k-1 (x k -x k-1 ), 1 µ k-1 (y k -y k-1 ) ; we have (x * k , y * k ) ∈ ∂L(x k , y k ). ( 8 
)
For all bounded subsequence

(x k ′ , y k ′ ) of (x k , y k ) we have (x * k ′ , y * k ′ ) → 0, k ′ → +∞, hence dist (0, ∂L(x k ′ , y k ′ )) → 0, k ′ → +∞. Proof. Since inf L > -∞, (H) implies that for any r > 0, (ū, v) ∈ R n × R m the functions u → L(u, v) + 1 2r u -ū 2 and v → L(ū, v) + 1 2r v -v 2 are
coercive. An elementary induction ensures then that the sequences are well defined and that (i) and (ii) hold for all integer k ≥ 1.

By the very definition of x k , and Remark 1 c), 0 must lie in the subdifferential at point

x k of the function ξ → 1 2λ k-1 ξ -k -1 2 + L(ξ, y k-1 ) which is equal to 1 λ k-1 (ξ -x k-1 ) + ∂ x L(x k , y k-1 ) since the function ξ → 1 2λ k-1 ξ -x k-1 2 is smooth. Hence 0 ∈ 1 λ k-1 (x k -x k-1 ) + ∂ x L(x k , y k-1 ), ∀k ≥ 1. (9) 
And similarly

0 ∈ 1 µ k-1 (y k -y k-1 ) + ∂ y L(x k , y k ), ∀k ≥ 1. ( 10 
)
Due to the structure of L we have

∂ x L(x k , y k-1 ) = ∂f (x k ) + ∇ x Q(x k , y k-1 ) and ∂ y L(x k , y k ) = ∂g(y k ) + ∇ y Q(x k , y k ).
Hence we may write with (9, 10)

-1 λ k-1 (x k -x k-1 ) -(∇ x Q(x k , y k-1 ) -∇ x Q(x k , y k ), 0) ∈ ∂f (x k ) + ∇ x Q(x k , y k ); -1 µ k-1 (y k -y k-1 ) ∈ ∂g(y k ) + ∇ y Q(x k , y k ).
This yields (8) with proposition 3.

If (x k ′ , y k ′ ) is a bounded sequence, then so is (x k ′ , y k ′ -1 )
, and, by (ii), (

x k ′ , y k ′ ) -(x k ′ , y k ′ -1 ) vanishes as k ′ → ∞.
The uniform continuity of ∇ x Q on bounded subsets then yields the last point of (iii).

Remark 3 (a) Without additional assumptions, like for instance the convexity of L, the sequence (x k , y k ) is not a priori uniquely defined. (b) Note also that the result remains valid if L is bounded from below by an affine function.

The next proposition, especially points (ii)(iii), gives the first convergence results about sequences generated by [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF][START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs to move[END_REF]. Theorems 9 and 11 below make the convergence properties much more precise.

Proposition 6 Assume that (H), (H 1 ) hold. Let (x k , y k ) be a sequence complying with [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF][START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs to move[END_REF]. Let ω(x 0 , y 0 ) denote the set (possibly empty) of its limit points. Then (i) If (x k , y k ) is bounded, then ω(x 0 , y 0 ) is a nonempty compact connected set and

d((x k , y k ), ω(x 0 , y 0 )) → 0 as k → +∞, (ii) ω(x 0 , y 0 ) ⊂ crit L, (iii) L is finite and constant on ω(x 0 , y 0 ), equal to inf k∈N L(x k , y k ) = lim k→+∞ L(x k , y k ).
Proof. Item (i) follows by using x kx k-1 + y ky k-1 → 0 together with some classical properties of sequences in R n . (ii) By the very definition of (x k , y k ) (k ≥ 1) we have

L(x k , y k-1 ) + 1 2λ k-1 x k -x k-1 2 ≤ L(ξ, y k-1 ) + 1 2λ k-1 ξ -x k-1 2 , ∀ξ ∈ R m L(x k , y k ) + 1 2µ k-1 y k -y k-1 2 ≤ L(x k , η) + 1 2µ k-1 η -y k-1 2 , ∀η ∈ R n .
Due to the special form of L and to 0

< r -≤ λ k-1 ≤ r + and 0 < r -≤ µ k-1 ≤ r + we have f (x k ) + Q(x k , y k-1 ) + 1 2r+ x k -x k-1 2 ≤ f (ξ) + Q(ξ, y k-1 ) + 1 2r-ξ -x k-1 2 , ∀ξ ∈ R m , (11) 
g(y k ) + Q(x k , y k ) + 1 2r+ y k -y k-1 2 ≤ g(η) + Q(x k , η) + 1 2r-η -y k-1 2 , ∀η ∈ R n . (12) 
Let (x, ȳ) be a point in ω(x 0 , y 0 ); there exists a subsequence (

x k ′ , y k ′ ) of (x k , y k ) converging to (x, ȳ). Since x k -x k-1 + y k -y k-1 → 0 we deduce from (11) lim inf f (x k ′ ) + Q(x, ȳ) ≤ f (ξ) + Q(ξ, ȳ) + 1 2r - ξ -x 2 ∀ξ ∈ R m .
In particular for ξ = x we obtain

lim inf f (x k ′ ) ≤ f (x).
Since f is lower semicontinuous we get further

lim inf f (x k ′ ) = f (x).
There is no loss of generality in assuming that the whole sequence f

(x k ′ ) converges to f (x) lim f (x k ′ ) = f (x). (13) 
Similarly, using [START_REF] Benedetti | Real Algebraic and Semialgebraic Sets[END_REF], we may assume that lim g(y k ′ ) = g(ȳ). Now, as Q is continuous, we have

Q(x k ′ , y k ′ ) → Q(x, ȳ) and hence L(x k ′ , y k ′ ) → L(x, ȳ).
But with lemma 5(iii) and using the same notation , we have (

x * k ′ , y * k ′ ) ∈ ∂L(x k ′ , y k ′ ) and (x * k ′ , y * k ′ ) → 0.
Owing to the closedness properties of ∂L, we finally obtain 0 ∈ ∂L(x, ȳ).

(iii) For any point (x, ȳ) ∈ ω(x 0 , y 0 ) we have just seen that there is a subsequence

(x k ′ , y k ′ ) with L(x k ′ , y k ′ ) → L(x, ȳ). Since the sequence L(x k , y k ) is nonincreasing, we have L(x, ȳ) = inf L(x k , y k ) independent of (x, ȳ).

Kurdyka-Lojasiewicz inequality

Let f : R n → R ∪ {+∞} be a proper lower semicontinuous function. For -∞ < η 1 < η 2 ≤ +∞, let us set [η 1 < f < η 2 ] = {x ∈ R n : η 1 < f (x) < η 2 } .
Definition 7 (Kurdyka-Lojasiewicz property) The function f is said to have the Kurdyka-Lojasiewicz property at x ∈ dom ∂f if there exist η ∈ (0, +∞], a neighborhood (6 ) U of x and a continuous concave function ϕ : [0, η) → R + such that:

-

ϕ(0) = 0, -ϕ is C 1 on (0, η), -for all s ∈ (0, η), ϕ ′ (s) > 0, -and for all x in U ∩ [f (x) < f < f (x) + η], the Kurdyka-Lojasiewicz inequality holds ϕ ′ (f (x) -f (x)) dist (0, ∂f (x)) ≥ 1. ( 14 
)
Remark 4 (a) S. Lojasiewicz proved in 1963 [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF] that real-analytic functions satisfy an inequality of the above type with ϕ(s) = s 1-θ where θ ∈ [ 1 2 , 1). A nice proof of this result can be found in the monograph [START_REF] Denkowska | Ensembles sous-analytiques à la Polonaise[END_REF]. In a recent paper, Kurdyka [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF] has extended this result to differentiable functions definable in an o-minimal structure (see the next section). More recently Bolte, Daniilidis, Lewis and Shiota have extended the Kurdyka-Lojasiewicz inequality to nonsmooth functions in the subanalytic and o-minimal setting [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | A nonsmooth Morse-Sard theorem for subanalytic functions[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]; see also [START_REF] Bolte | Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity[END_REF]. The concavity assumption imposed on the function ϕ does not explicitly belong to the usual formulation of the Kurdyka-Lojasiewicz inequality. However the examples of the next section show that the inequality holds in many instances with a concave ϕ. (b) A proper lower semicontinuous function f : R n → R ∪ {+∞} has the Kurdyka-Lojasiewicz property at any noncritical point x ∈ R n . Indeed, Lemma 2 yields the existence of c > 0 such that

dist (0, ∂f (x)) ≥ c > 0 whenever x ∈ B(x, c/2) ∩ [f (x) -c/2 < f < f (x) + c/2]; ϕ(s) = c -1
s is then a suitable concave function. (c) When a function has the Kurdyka-Lojasiewicz property, it is important to have estimations of η, U, ϕ. We shall see for instance that many convex functions satisfy the above property with U = R n and η = +∞. The determination of tight bounds for the nonconvex case is a lot more involved.

Convergence to a critical point and other convergence results

This section is devoted to the convergence analysis of the proximal minimization algorithm introduced in Section 3.1. It provides the main mathematical results of this paper. Applications and examples are given in section 4.

Related previous work may be found in [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF][START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs to move[END_REF]; but there, the setting is convex with a quadratic coupling Q, and the mathematical analysis relies on the monotonicity of the convex subdifferential operators. In [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF] alternating algorithms are not considered.

Let us introduce the notations:

z k = (x k , y k ), l k = L(z k ), z = (x, ȳ), l = L(z).
Theorem 8 (pre-convergence result) Assume that L satisfies (H), (H 1 ) and has the Kurdyka-Lojasiewicz property at z = (x, ȳ). Denote by U , η and ϕ : [0, η) :→ R the objects appearing in [START_REF] Bochnak | Real Algebraic Geometry[END_REF], relative to L and z. Let ρ > 0 be such that B(z, ρ) ⊂ U . Let (z k ) be a sequence generated by the alternating algorithm [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF][START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs to move[END_REF], with z 0 as an initial point. Let us assume that

l < l k < l + η, ∀k ≥ 0, (15) 
and M ϕ(l 0 -l) + 2 2r

+ l 0 -l + z 0 -z < ρ (16) 
with M = 2r + (C + 1/r -) where C is a Lipschitz constant for ∇Q on B(z, √ 2ρ). Then, the sequence (z k ) converges to a critical point of L and the following estimates hold: ∀k ≥ 0

(i) z k ∈ B(z, ρ) (17) 
(ii)

∞ i=k+1 z i+1 -z i ≤ M ϕ(l k -l) + 2r + l k -l. ( 18 
)
The meaning of the theorem is roughly the following: a sequence (z k ) that starts in the neighborhood of a point z (as given in ( 16)) and that does not improve L(z) (as given in ( 15)) converges to a critical point near z.

Proof. The idea of the proof is in the line of Lojasiewicz argument: it consists mainly in proving -and then using -that ϕ • L is a Liapunov function with decreasing rate close to ||z k+1z k ||.

With no loss of generality one may assume that L(z) = 0 (replace if necessary L by L -L(z)). With [START_REF] Attouch | Inertia and reactivity in decision making as cognitive variational inequalities[END_REF] we have for i ≥ 0:

l i -l i+1 ≥ 1 2r + z i+1 -z i 2 . ( 19 
)
But ϕ ′ (l i ) makes sense in view of [START_REF] Bolte | Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity[END_REF], and ϕ ′ (l i ) > 0; hence

ϕ ′ (l i )(l i -l i+1 ) ≥ ϕ ′ (l i ) 2r + z i+1 -z i 2 .
Owing to ϕ being concave, we have further:

ϕ(l i ) -ϕ(l i+1 ) ≥ ϕ ′ (l i ) 2r + z i+1 -z i 2 , ∀i ≥ 0. ( 20 
)
Let us first check (i) for k = 0 and k = 1. In view of ( 16), z 0 lies in B(z, ρ) . As to z 1 , (19) yields in particular

1 2r + z 1 -z 0 2 ≤ l 0 -l 1 ≤ l 0 . (21) 
Hence:

z 1 -z ≤ z 1 -z 0 + z 0 -z ≤ 2r + l 0 + z 0 -z . ( 22 
)
Hence z 1 lies in B(z, ρ) in view of [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF].

Let us now prove by induction that (x k , y k ) ∈ B(z, ρ) for all k ≥ 0. This being true for k ∈ {0, 1}, let us assume that it holds up to some k ≥ 1. For 0 ≤ i ≤ k, since z i ∈ B(z, ρ) and 0 < l i < η, we can write the Kurdyka-Lojasiewicz inequality at z i :

ϕ ′ (l i ) dist (0, ∂L(z i )) ≥ 1.
Recall, with lemma 5 (iii), that

(x * i , y * i ) = -(∇ x Q(x i , y i-1 ) -∇ x Q(x i , y i ), 0) - 1 λ i-1 (x i -x i-1 ), 1 µ i-1 (y i -y i-1 )
is an element of ∂L(x i , y i ). Hence we have for 1

≤ i ≤ k: ϕ ′ (l i ) (x * i , y * i ) ≥ 1. ( 23 
)
Let us examine (x * i , y * i ) , for 1 ≤ i ≤ k. On the one hand

1 λ i-1 (x i -x i-1 ), 1 µ i-1 (y i -y i-1 ) ≤ 1 r - z i -z i-1 .
On the other hand, let us observe

(x i , y i-1 ) -(x, ȳ) 2 = x i -x 2 + y i-1 -ȳ 2 ≤ z i -z 2 + z i-1 -z 2 ≤ 2ρ 2 .
Hence (x i , y i-1 ), and

z i = (x i , y i ), lie in B(z, √ 2ρ 
); which allows us to apply the Lipschitz inequality between these points

∇ x Q(x i , y i ) -∇ x Q(x i , y i-1 ) ≤ C y i -y i-1 ≤ C z i -z i-1 . Hence, for 1 ≤ i ≤ k (x * i , y * i ) ≤ (C + 1/r -) z i -z i-1 . (24) 
Now (23) yields

ϕ ′ (l i ) ≥ 1 (C + 1/r -) z i -z i-1 -1 , 1 ≤ i ≤ k.
And (20) yields

ϕ(l i ) -ϕ(l i+1 ) ≥ 1 M z i+1 -z i 2 z i -z i-1 , 1 ≤ i ≤ k.
We rewrite the previous inequality in the following way

z i -z i-1 1/2 (M (ϕ(l i ) -ϕ(l i+1 ))) 1/2 ≥ z i+1 -z i .
Hence (recall ab ≤ (a 2 + b 2 )/2)

z i -z i-1 + M (ϕ(l i ) -ϕ(l i+1 )) ≥ 2 z i+1 -z i . (25) 
This inequality holds for 1 ≤ i ≤ k; let us sum over i

z 1 -z 0 + M (ϕ(l 1 ) -ϕ(l k+1 )) ≥ k i=1 z i+1 -z i + z k+1 -z k .
Hence, in view of the monotonicity properties of ϕ and l k

z 1 -z 0 + M ϕ(l 0 ) ≥ k i=1 z i+1 -z i .
We finally get

z k+1 -z ≤ k i=1 z i+1 -z i + z 1 -z ≤ M ϕ(l 0 ) + z 1 -z 0 + z 1 -z ;
which entails z k+1 ∈ B(z, ρ) in view of [START_REF] Candès | Enhancing sparsity by reweighting ℓ 1 minimization[END_REF][START_REF] Combettes | Signal recovery by best feasible approximation[END_REF] and [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]. That completes the proof of (i). Indeed inequality (25) holds for i ≥ 1; let us sum it for i running from some k to some K > k

z k -z k-1 + M (ϕ(l k ) -ϕ(l K+1 )) ≥ K i=k z i+1 -z i + z K+1 -z K .
Hence

z k -z k-1 + M ϕ(l k ) ≥ K i=k z i+1 -z i . Letting K → ∞ yields ∞ i=k z i+1 -z i ≤ M ϕ(l k ) + z k -z k-1 . (26) 
We conclude with [START_REF] Bruckstein | From sparse solutions of systems of equations to sparse modeling of signals and images[END_REF], and that will prove point (ii):

∞ i=k z i+1 -z i ≤ M ϕ(l k ) + 2r + l k-1 ≤ M ϕ(l k-1 ) + 2r + l k-1 .
This clearly implies that (z k ) is a convergent sequence. As a consequence of Proposition 6, we obtain that its limit is a critical point of L. This theorem has two important consequences Theorem 9 (convergence) Assume that L satisfies (H), (H 1 ) and has the Kurdyka-Lojasiewicz property at each point of the domain of f . Then: -either ||(x k , y k )|| tends to infinity -or

(x k -x k-1 , y k -y k-1 ) is l 1 , i.e. +∞ k=1 x k+1 -x k + y k+1 -y k < +∞,
and, as a consequence, (x k , y k ) converges to a critical point of L.

Proof. Assume that (x k , y k ) does not tend to infinity and let z be a limit-point of (x k , y k ) for which we denote by ρ, η, ϕ the associated objects as defined in [START_REF] Bochnak | Real Algebraic Geometry[END_REF]. Note that Proposition 6 implies that z is critical and that l k = L(x k , y k ) converges to L(z). (****) If there exists an integer k 0 for which L((x k0 , y k0 )) = L(z), it is straightforward to check (recall [START_REF] Attouch | Inertia and reactivity in decision making as cognitive variational inequalities[END_REF]) that (x k , y k ) = (x k0 , y k0 ) for all k ≥ k 0 (so that (x k0 , y k0 ) = z). Assume thus that L(x k , y k ) > L(z). (****) Since max(ϕ(l k -L(z)), z kz ) admits 0 as a cluster point, we obtain the existence of k 0 ≥ 0 such that ( 16) is fulfilled with z k0 as a new initial point. The conclusion is then a consequence of theorem 8.

Remark 5 (a) Several standard assumptions automatically guarantee the boundedness of the sequence (x k , y k ), hence its convergence:

-One-sided coercivity implies convergence. Assuming that f (or g) has compact lower-level sets and that Q(x, y) = 1 2 ||x -y|| 2 , implies that the sequence (x k , y k ) is bounded (use Lemma 5). -Convexity implies convergence. Assume that f, g are convex and that Q is of the form Q(x, y) = ||Ax -By|| where A : R m → R p and B : R n → R p are linear mappings. If L has at least a minimizer, then the sequence (x k , y k ) is bounded (see [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF]). (b) Theorem 9 gives new insights into convex alternating methods: first it shows that the finite length property is satisfied by many convex functions (e.g. convex definable functions, see next sections), but it also relaxes the quadraticity assumption on Q that is required by the alternating minimization algorithm of [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF][START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs to move[END_REF].

The following result should not be considered as a classical result of local convergence: we do not assume here any standard nondegeneracy conditions like for instance uniqueness of the minimizers, secondorder conditions or transversality conditions.

Theorem 10 (local convergence to global minima) Assume that L satisfies (H), (H 1 ) and has the Kurdyka-Lojasiewicz property at (x, ȳ), a global minimum point of L. Then there exist ǫ, η such that (x 0 , y 0 ) -(x, ȳ) < ǫ, min L < L(x 0 , y 0 ) < min L + η implies that the sequence (x k , y k ) starting from (x 0 , y 0 ) has the finite length property and converges to (x * , y * ) with L(x * , y * ) = min L.

Proof. A straightforward application of theorem 8 yields the convergence of (x k , y k ) to some (x * , y * ), a critical point of L with L(x * , y * ) ∈ [min L, min L + η). Now, if L(x * , y * ) were not equal to L(x, ȳ) then the Kurdyka-Lojasiewicz inequality would entail ϕ ′ (L(x * , y * ) -L(x, ȳ)) dist (0, ∂L(x * , y * )) ≥ 1, a clear contradiction since 0 ∈ ∂L(x * , y * ).

The convergence rate result that follows is motivated by the analysis of problems involving semialgebraic or subanalytic data. These are very common problems (see Section 4).

Theorem 11 (rate of convergence) Assume that L satisfies (H), (H 1 ). Assume further that (x k , y k ) converges to (x ∞ , y ∞ ) and that L has the Kurdyka-Lojasiewicz property at (x ∞ , y ∞ ) with ϕ(s) = cs 1-θ , θ ∈ [0, 1), c > 0. Then the following estimations hold (i) If θ = 0 then the sequence (x k , y k ) k∈N converges in a finite number of steps.

(ii) If θ ∈ (0, 1 2 ] then there exist c > 0 and τ ∈ [0, 1) such that

(x k , y k ) -(x ∞ , y ∞ ) ≤ c τ k .
(iii) If θ ∈ ( 1 2 , 1) then there exists c > 0 such that

(x k , y k ) -(x ∞ , y ∞ ) ≤ c k -1-θ 2θ-1 .
Proof. The notations are those of Theorem 10 and for simplicity we assume that l k → 0. Then L(x ∞ , y ∞ ) = 0 (prop. 6(iii)).

(i) Assume first θ = 0. If (l k ) is stationary, then so is (x k , y k ) in view of lemma 5(i). If (l k ) is not stationary, then the Kurdyka-Lojasiewicz inequality yields for any k sufficiently large c dist (0, ∂L(x k , y k )) ≥ 1, a contradiction in view of lemma 5(iii).

(ii,iii) Assume θ > 0. For any

k ≥ 0, set ∆ k = ∞ i=k x i+1 -x i 2 + y i+1 -y i 2 which is finite by Theorem 9. Since ∆ k ≥ x k -x ∞ 2 + y k -y ∞ 2 , it is sufficient to estimate ∆ k .
The following is a rewriting of ( 26) with these notations

∆ k ≤ M ϕ(l k ) + (∆ k-1 -∆ k ). ( 27 
)
The Kurdyka-Lojasiewicz inequality successively yields

ϕ ′ (l k )dist (0, ∂L(x k , y k )) = c(1 -θ)l -θ k dist (0, ∂L(x k , y k )) ≥ 1 l θ k ≤ c(1 -θ)dist (0, ∂L(x k , y k )).
But with [START_REF] Csiszar | Information geometry and alternating minimization procedures[END_REF] we have

dist (0, ∂L(x k , y k )) ≤ (x * k , y * k ) ≤ (C + 1/r -)(∆ k-1 -∆ k ).
Combining the previous two inequalities we obtain for some positive K

ϕ(l k ) = cl 1-θ k ≤ K(∆ k-1 -∆ k ) 1-θ θ .
Finally [START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF] gives

∆ k ≤ M K(∆ k-1 -∆ k ) 1-θ θ + (∆ k-1 -∆ k ).
Sequences satisfying such inequalities have been studied in [4, Theorem 2]. Items (ii) and (iii) follow from these results.

Convergence of alternating projection methods

In this section we consider the special but important case of bifunctions of the type

L C,D (x, y) = δ C (x) + 1 2 x -y 2 + δ D (y), (x, y) ∈ R n , ( 28 
)
where C, D are two nonempty closed subsets of R n . Notice that L satisfies (H) and (H 1 ) (see section 3.1) for any y 0 ∈ D. In this specific setting, the proximal minimization algorithm (5, 6) reads

x k+1 ∈ argmin { 1 2 u -y k 2 + 1 2λ k u -x k 2 : u ∈ C} y k+1 ∈ argmin { 1 2 v -x k+1 2 + 1 2µ k v -y k 2 : v ∈ D}.
Thus we obtain the following alternating projection algorithm

         x k+1 ∈ P C λ -1 k x k + y k λ -1 k + 1 y k+1 ∈ P D µ -1 k y k + x k+1 µ -1 k + 1
.

The following result illustrates the interest of the above algorithm for feasibility problems. 

(x ∞ , y ∞ ) such that x ∞ -y ∞ = min{ x -y : x ∈ C, y ∈ D}.
Proof. The first point is due to Theorem 9 while the second follows from a specialization of Theorem 10 to L C,D .

Observe that for λ k and µ k large, the method is very close to the von Neuman alternating projection method. Section 4.6 i lists a wide class of sets for which convergence of the sequence is ensured.

Examples and applications

A first simple theoretical result which deserves to be mentioned is that a generic smooth function satisfies the Lojasiewicz inequality. Recall that a C 2 function f : R n → R is a Morse function if for each critical point x of f , the hessian ∇ 2 f (x) of f at x is a nondegenerate endomorphism of R n . Morse functions can be shown to be generic in the Baire sense in the space of C 2 functions (see [START_REF] Aubin | Applied Nonlinear Analysis[END_REF]).

Let x be a critical point of f , a Morse function. Using the Taylor formula for f and ∇f , we obtain the existence of a neighborhood U of x and positive constants c 1 , c 2 for which

|f (x) -f (x)| ≤ c 1 ||x -x|| 2 , ||∇f (x)|| ≥ c 2 ||x -x||,
whenever x ∈ U . It is then straightforward to see that f complies with ( 14) with a function ϕ of the form ϕ(s) = c √ s, where c is a positive constant.

Let us now come to more practical aspects and to several concrete illustrations of the Kurdyka-Lojasiewicz inequality (14).

Convex examples

A general smooth convex function may not satisfy the Kurdyka-Lojasiewicz (see [START_REF] Bolte | Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity[END_REF] for a counterexample), however, in many practical cases convex functions do satisfy this inequality. Growth condition for convex functions: Consider a convex function f satisfying the following growth condition: [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]).

∃U neighborhood of x, η > 0, c > 0, r ≥ 1 such that ∀x ∈ U ∩ [min f < f < min f + η], f (x) ≥ f (x) + cd(x, argmin f ) r , where x ∈ argmin f = ∅. Then f complies with (14) at point x (for ϕ(s) = r c -1 r s 1 r ) on U ∩ [min f < f < min f + η] (see
Uniform convexity: If f is uniformly convex i.e., satisfies f (y) ≥ f (x) + x * , yx + K yx p , p ≥ 1 for all x, y ∈ R n , x * ∈ ∂f (x) then f satisfies the Kurdyka-Lojasiewicz inequality on dom f for ϕ(s) = p K -1 p s 1 p . Proof. Since f is coercive and strictly convex, argmin f = {x} = ∅. Take y ∈ R n . By applying the uniform convexity property at the minimum point x, we obtain that

f (y) ≥ min f + K y -x p .
The conclusion follows from the preceding paragraph. Tame convex functions: Another important class of functions which is often met in practice is the class of convex functions which are definable in an o-minimal structure (e.g. semialgebraic or globally subanalytic convex functions). In a tame setting the Kurdyka-Lojasiewicz inequality does not involve any convexity assumptions, the reader is thus referred to section 4.3 for an insight into this kind of results.

Among the huge literature devoted to convex problems, one may consult [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Combettes | Signal recovery by best feasible approximation[END_REF][START_REF] Byrne | Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] and their references.

Metrically regular equations

Let the mapping F : R n → R m be metrically regular at some point x ∈ R n , namely (cf. [START_REF] Rockafellar | Variational Analysis[END_REF][START_REF] Ioffe | Metric regularity and subdifferential calculus, (Russian)[END_REF]) there exist a neighborhood V of x in R n , a neighborhood W of F (x) in R m and a positive k such that

x ∈ V, y ∈ W ⇒ dist (x, F -1 (y)) ≤ k dist (y, F (x)).
The coefficient k is a measure of stability under perturbation of equations of the type F (x) = ȳ.

Let C ⊆ R m and consider the problem of finding a point x ∈ R n satisfying F (x) ∈ C, so that we are concerned with metric regularity in constraint systems.

For the sake of simplicity, we assume that F is C 1 on a neighborhood of x and that C is convex, closed, nonvoid. Solving our constraint system amounts to solving

min f (x) := 1 2 dist 2 (F (x), C) : x ∈ R n ,
so that f is now the object under study. The function f is differentiable around x with gradient

∇f (x) = D * F (x)[F (x) -P C (F (x))],
where D * F (x) denotes the adjoint of the Fréchet derivative of F at x. The metric regularity of F at x entails that

D * F (x) : R m → R n is one-to-one, with [D * F (x)] -1 ≤ k ([43, Th. 9.43][32, Ch. 3, Th. 3]). Fix some k ′ > k. In view of the continuity of [D * F (x)] -1 around x, there exists a neighborhood U of x such that: x ∈ U ⇒ [D * F (x)] -1 ≤ k ′ .
We then deduce from the expression above for ∇f (x)

x ∈ U ⇒ ∇f (x)) ≥ 1 k ′ F (x) -P C (F (x)) = 1 k ′ dist (F (x), C) = 1 k ′ 2f (x). Hence x ∈ U, f (x) < f (x) ⇒ ∇f (x)) ≥ 1 k ′ 2(f (x) -f (x)
). In other words, f satisfies the Kurdyka-Lojasiewicz inequality at all point x where F is metrically regular, with ϕ :

s ∈ [0, +∞[ → k ′ √
2s. It is important to observe here that argmin f can be a continuum (in that case f is not a Morse function). This can easily be seen by taking m < n, b ∈ R m , a full rank matrix A ∈ R m×n and

F (x) = Ax -b for all x in R n .
For links between metric regularity and the Kurdyka-Lojasiewicz inequality see [START_REF] Bolte | Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity[END_REF].

Tame functions

As it was emphasized in the introduction, tame sets and functions provide a vast field of applications of our main results.

Semialgebraic functions : Recall that a subset of R n is called semialgebraic if it can be written as a finite union of sets of the form {x ∈ R n : p i (x) = 0, q i (x) < 0, i = 1, . . . , p}, where p i , q i are real polynomial functions. A function f : R n → R ∪ {+∞} is semialgebraic if its graph is a semialgebraic subset of R n+1 . Such a function satisfies the Kurdyka-Lojasiewicz property (see [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]) with ϕ(s) = cs 1-θ , for some θ ∈ [0, 1) ∩ Q and some c > 0. This nonsmooth result generalizes the famous Lojasiewicz inequality for real-analytic functions [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF]. Stability properties of semialgebraic functions are numerous (see e.g. [START_REF] Benedetti | Real Algebraic and Semialgebraic Sets[END_REF][START_REF] Bochnak | Real Algebraic Geometry[END_REF]), the following few facts might help the reader to understand how they impact Optimization matters:

-finite sums and products of semialgebraic functions are semialgebraic; -scalar products are semialgebraic; -indicator functions of semialgebraic sets are semialgebraic; -generalized inverse of semialgebraic mappings are semialgebraic; -composition of semialgebraic functions or mappings are semialgebraic;

-functions of the type R n ∋ x → f (x) = sup y∈C g(x, y) (resp. R n ∋ x → f (x) = inf y∈C g(x, y)) where g and C are semialgebraic are semialgebraic.

Matrix theory provides a long list of semialgebraic objects (see [START_REF] Lewis | Alternating projection on manifolds[END_REF]): positive semidefinite matrices, Stiefel manifolds (spheres, orthogonal group; see e.g. [START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF]), constant rank matrices... Let us provide now some concrete problems for which our algorithm can be implemented effectively.

Example 1 (Rank reduction of correlation matrices) The formulation of the rank reduction problem for correlation matrices we use here, is due to Grubišić-Pietersz [START_REF] Grubisić | Efficient rank reduction of correlation matrices[END_REF] who transform the original problem into the minimization of a functional on a matrix manifold (for more on optimization on matrix manifolds see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]) . Let G : Y ∈ R n×d → G(Y ) ∈ R be a smooth function defined on the space of n × d real matrices (0

< d < n), identified with R n×d . Let Y i , i ∈ {1, . . . , n}, denote line i of Y ∈ R n×d . Consider the following manifold of R n×d C = Y ∈ R n×d : Y i ∈ S i-1 × {0} d-i , ∀i ∈ {1, . . . , d}; Y i ∈ S d-1 , ∀i ∈ {d + 1, . . . , n} ,
where S 0 = {1} and S i-1 denotes the unit sphere of R i for i ∈ {2, . . . , d}. The set C is a real-algebraic manifold, and, due to its simple structure (it is a product of low dimensional spheres), the projection operator onto C is simply given as a product of projections on spheres. The correlation matrix rank reduction problem may be formulated as

min { G(Y ) : Y ∈ C }. (29) 
In [START_REF] Grubisić | Efficient rank reduction of correlation matrices[END_REF] this problem is addressed by Newton's method or a conjugate gradient algorithm on the manifold C. Newton's method enjoys its usual local quadratic convergence, while theoretical results about the conjugate gradient are sparse in spite of good numerical evidence.

We propose the following relaxation of problem [START_REF] Hare | Computing proximal points of nonconvex functions[END_REF] min

       δ C (X) + ρ 2 i=1,...,n j=1,...,d (X ij -Y ij ) 2 + G(Y ) : X, Y ∈ R n×d        , (30) 
where ρ > 0 is a penalization parameter. Performing plain alternating minimization on [START_REF] Gabrielov | Complements of subanalytic sets and existential formulas for analytic functions[END_REF] does not guarantee convergence . But if the functional L(X, Y ) = δ C (X) + i,j (X ij -Y ij ) 2 + G(Y ) is definable in some o-minimal structure (if G is semialgebraic e. g.) then [START_REF] Gabrielov | Complements of subanalytic sets and existential formulas for analytic functions[END_REF] falls into the context of our study. Algorithm (3) applied to [START_REF] Gabrielov | Complements of subanalytic sets and existential formulas for analytic functions[END_REF] generates a sequence (X k , Y k ) that converges (C is bounded) to a critical point ( X, Ȳ ) of L with X ∈ C. The algorithm reads

                         X k+1 ∈ argmin        δ C (X) + ρ 2 i=1,...,n j=1,...,d (X ij -Y k,ij ) 2 + 1 2λ k i=1,...,n j=1,...,d (X ij -X k,ij ) 2 : X ∈ R n×d        Y k+1 ∈ argmin        G(Y ) + ρ 2 i=1,...,n j=1,...,d (Y ij -X k+1,ij ) 2 + 1 2µ k i=1,...,n j=1,...,d (Y ij -Y k,ij ) 2 : Y ∈ R n×d        (31) 
The second minimization is a proximal step for the function Y → ρ 2 i,j (X k+1,ij -Y ij ) 2 + G(Y ) (which may be convex, for large ρ). The first minimization reduces to n uncoupled minimizations in R d which give the n lines X k+1,i of matrix X k+1 : Functions definable in an o-minimal structure over R. Introduced in [START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF] these structures can be seen as an axiomatization of the qualitative properties of semialgebraic sets. (iv) For all i = j in {1, . . . , n}, {(x 1 , . . . , x n ) ∈ R n :

X k+1,i ∈ argmin Xi    j=1,...,d X ij - ρλ k Y k,ij + X k,ij ρλ k + 1 2    ; in the above, the constraint set is X i ∈ S i-1 ×{0} d-i if i ∈ {1, . . . ,
x i = x j } ∈ O n . (v) The set {(x 1 , x 2 ) ∈ R 2 : x 1 < x 2 } belongs to O 2 .
(vi) The elements of O 1 are exactly finite unions of intervals.

Let O be an o-minimal structure. A set A is said to be definable (in O), if A belongs to O. A point to set mapping F : R n ⇉ R m (resp. a real-extended-valued function f :

R n → R ∪ {+∞}) is said to be definable if its graph is a definable subset of R n × R m (resp. R n × R).
As announced in the introduction, definable sets and mappings share many properties of semialgebraic objects. Let O be an o-minimal structure. Then, -finite sums of definable functions are definable; -indicator functions of definable sets are definable; -generalized inverses of definable mappings are definable; -compositions of definable functions or mappings are definable; -functions of the type R n ∋ x → f (x) = sup y∈C g(x, y) (resp. R n ∋ x → f (x) = inf y∈C g(x, y)) where g and C are definable, are definable.

Due to their dramatic impact on several domains in mathematics, these structures are being intensively studied. One of the interests of such structures in optimization is due to the following nonsmooth extension of the Kurdyka-Lojasiewicz inequality. Theorem 14 ([18]) Any proper lower semicontinuous function f : R n → R ∪ {+∞} which is definable in an o-minimal structure O has the Kurdyka-Lojasiewicz property at each point of dom ∂f . Moreover the function ϕ appearing in [START_REF] Bochnak | Real Algebraic Geometry[END_REF] is definable in O.

The concavity of the function ϕ is not stated explicitly in [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]. The proof of that fact is however elementary: it relies on the following fundamental result known as the monotonicity Lemma (see [START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF]).

(Monotonicity Lemma) Let k be an integer and f : I ⊆ R → R a function definable in some o-minimal structure. Then there exists a finite partition of I into intervals I 1 , . . . , I p such that the restriction of f to each I i is C k and either strictly monotone or constant. Proof of Theorem 14 [concavity of ϕ] Let x be a critical point of f and ϕ a Lojasiewicz function of f at x (see [START_REF] Bochnak | Real Algebraic Geometry[END_REF]). As recalled above, such a function ϕ exists and is definable in O moreover. When applied to ϕ, the monotonicity lemma yields the existence of r > 0 such that ϕ is C 2 with either ϕ ′′ ≤ 0 or ϕ ′′ > 0 on (0, r) (apply the monotonicity lemma to ϕ ′′ ). If ϕ ′′ > 0 then ϕ ′ is increasing. The function ϕ in inequality ( 14) can be replaced by ψ(s) = ϕ ′ (r)s for all s ∈ (0, r), since ψ ′ (s) = ϕ ′ (r) > ϕ ′ (s).

.

The following examples of o-minimal structures illustrate the considerable wealth of such a concept. Semilinear sets A subset of R n is called semilinear if it is a finite union of sets of the form

{x ∈ R n : a i , x = α i , b i , x < β i , i = 1, . . . , p},
where a i , b i ∈ R n and α i , β i ∈ R. One can easily establish that such a structure is an o-minimal structure.

Besides the function ϕ is of the form ϕ(s) = cs with c > 0. Real semialgebraic sets By Tarski quantifier elimination theorem the class of semialgebraic sets is an o-minimal structure [START_REF] Benedetti | Real Algebraic and Semialgebraic Sets[END_REF][START_REF] Bochnak | Real Algebraic Geometry[END_REF]. Globally subanalytic sets (Gabrielov [START_REF] Gabrielov | Complements of subanalytic sets and existential formulas for analytic functions[END_REF]) There exists an o-minimal structure, denoted by R an , that contains all sets of the form {(x, t) ∈ [-1, 1] n × R : f (x) = t} where f : [-1, 1] n → R (n ∈ N) is an analytic function that can be extended analytically on a neighborhood of the square [-1, 1] n . The sets belonging to this structure are called globally subanalytic sets. As for the semialgebraic class, the function appearing in Kurdyka-Lojasiewicz inequality is of the form ϕ(s) = s 1-θ , θ ∈ [0, 1) ∩ Q.

Let us give some concrete examples. Consider a finite collection of real-analytic functions f i : R n → R where i = 1, . . . , p.

-The restriction of the function

f + = max i f i (resp. f -= min i f i ) to each [-a, a] n (a > 0) is globally subanalytic.
-Take a finite collection of real-analytic functions g j : R n → R and set

C = {x ∈ R n : f i (x) = 0, g j (x) ≤ 0}.
If C is a bounded subset then it is globally subanalytic. Let now G : R m × R n → R be a real analytic function. When C is bounded, the restriction of the following function to each [-a, a] n (a > 0) is globally subanalytic:

f (x) = max y∈C G(x, y).
Log-exp structure (Wilkie, van der Dries) [START_REF] Wilkie | Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function[END_REF][START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF] There exists an o-minimal structure containing R an and the graph of exp : R → R. This huge structure contains all the aforementioned structures. One of the surprising specificity of such a structure is the existence of "infinitely flat" functions like x → exp(-1 x 2 ). Many optimization problems are set in such a structure. When it is possible, it is however important to determine the minimal structure in which a problem is definable.

This can for instance have an impact on the convergence analysis and in particular on the knowledge of convergence rates (see theorem 11).

Example 2 [Compressive sensing]

A current active trend in signal recovery aims at selecting a sparse (i.e. with many zero components) solution of an underdetermined linear system. So the following problem comes under consideration (see [START_REF] Candès | Enhancing sparsity by reweighting ℓ 1 minimization[END_REF][START_REF] Bruckstein | From sparse solutions of systems of equations to sparse modeling of signals and images[END_REF][START_REF] Donoho | Compressed Sensing[END_REF]) min{ x 0 : Ax = b} [START_REF] Ioffe | Metric regularity and subdifferential calculus, (Russian)[END_REF] where x 0 is the so-called ℓ 0 "norm" which counts the nonzero components of x ∈ R n , A is an m × n matrix (m < n) and b ∈ R m ; the set of contraints C = {x ∈ R n : Ax = b} is supposed nonvoid. Due to its extremely combinatorial nature, problem (32) is untractable and signal theory scientists have to turn to alternatives. We briefly present one of them below, in connection with our work.

In [START_REF] Candès | Enhancing sparsity by reweighting ℓ 1 minimization[END_REF], the ℓ 0 norm is approximated by a weighted ℓ 1 norm min n i=1

w i | x i |: Ax = b . (33) 
For fixed positive weights w i , problem [START_REF] Iusem | Inexact variants of the proximal point algorithm without monotonicity[END_REF] classically boils down to a linear program whose solution may well bear little relation with that of [START_REF] Ioffe | Metric regularity and subdifferential calculus, (Russian)[END_REF]. So actually, in this formulation, the weights are somehow part of the unknowns and are to be chosen at best. The reweighted ℓ 1 minimization algorithm used in [START_REF] Candès | Enhancing sparsity by reweighting ℓ 1 minimization[END_REF] updates, at step k, the solution candidate x k and the weight vector w k = (w k 1 , . . . , w k n ) according to the following rule. Fix ε > 0: -w k being known, solve [START_REF] Iusem | Inexact variants of the proximal point algorithm without monotonicity[END_REF] If we set Q(x, y) = n i=1 ((| x i | +ε)e yiy i ) for x, y ∈ R n , it is not difficult to realize that the original reweighted ℓ 1 minimization algorithm is exactly the alternate minimization of the function Q(x, y)+δ C (x), with the correspondance w i = e yi . The function Q is definable in the log-exp o-minimal structure. It is not continuously differentiable, but can be made so. Define Q(x ′ , y) = n i=1 ((x ′ i + x ′ i+n + ε)e yiy i ) for x ′ ∈ R 2n and y ∈ R n , and C = {x ′ ∈ R 2n : [A, -A]x ′ = b, x ′ i ≥ 0, ∀i ∈ {1, . . . , 2n}}. Then minimizing Q(x, y) + δ C (x) is equivalent to minimizing Q(x ′ , y) + δ C (x ′ ), with the correspondance x i = x ′ ix ′ i+n . The proximal alternating minimization (3) applied to Q(x ′ , y) + δ C (x ′ ) yields a sequence (x ′k , y k ) (with no relation to (x k , w k ) because of the proximal terms in the algorithm) whose behaviour is ruled by Theorems 9, 10, and 11. In particular (x ′k , y k ), which is bounded, converges to a critical point (x ′ , ỹ) of Q(x ′ , y) + δ C (x ′ ) verifying

     0 ∈ ∂ x ′ { Q(x ′ , ỹ) + δ C (x ′ )} , hence x′ ∈ argmin { Q(x ′ , ỹ) + δ C (x ′ ) : x ′ ∈ R 2n } 0 = ∇ y Q(x ′ , ỹ) , hence e ỹi = 1 x′ i + x′ i+n + ε , ∀i ∈ {1, . . . , n}
where the minimizing property of x′ stated in the first line is a consequence of the convexity of the function x ′ → Q(x ′ , y) + δ C (x ′ ) for a fixed y. Now it is easy to see that x′ must be such that min(x ′ i , x′ i+n ) = 0 for i ∈ {1, . . . , n}. Let x ∈ R n be defined by xi = x′ i -x′ i+n , then x is a solution of (33) with w i = e ỹi = 1/(|x i | + ε).

Kurdyka-Lojasiewicz inequality for feasibility problems

Recall the function L C,D defined by [START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF]. Writing down the optimality condition we obtain (34)

(Strongly) regular intersection

The following result is a reformulation of [START_REF] Lewis | Alternating projection on manifolds[END_REF]Theorem 17] where this fruitful concept was considered in relation with alternate projection methods. For the sake of completeness we give a proof avoiding the use of metric regularity and Mordukhovich criterion. Proof. We argue by contradiction. Let (x k , y k ) ∈ [0 < L < +∞] be a sequence converging to (x, x) such that dist (0, ∂L C,D (x k , y k ))

x k -y k ≤ 1 k + 1 .
In view of (34), there exists (u k , v k ) ∈ N C (x k ) × N D (y k ) such that

x k -y k -1 [ y k -x k -u k + x k -y k -v k ] ≤ √ 2 k + 1 .
Remark 8 (a) Note that if C, D are definable in the log-exp structure then [START_REF] Lions | On the Schwarz alternating method. III. A variant for nonoverlapping subdomains in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations[END_REF] holds. This is due to the fact that the square norm is also definable in this structure. (b) If C, D are semilinear sets, L C,D is not semilinear but it is however semialgebraic. (c) Many concrete problems involving definable data and for which the projection operators are easily computable are given in [START_REF] Lewis | Alternating projection on manifolds[END_REF].

Corollary 12 (

 12 convergence of sequences) Assume that the bifunction L C,D has the Kurdyka-Lojasiewicz property at each point. Then either (x k , y k ) → ∞ as k → ∞, or (x k , y k ) converges to a critical point of L. (local convergence) Assume that the bifunction L C,D has the Kurdyka-Lojasiewicz property at (x * , y * ) and that x *y * = min{ xy : x ∈ C, y ∈ D}. If (x 0 , y 0 ) is sufficiently close to (x * , y * ) then the whole sequence converges to a point

Definition 13

 13 Let O = {O n } n∈N be such that each O n is a collection of subsets of R n . The family O is an o-minimal structure over R, if it satisfies the following axioms:(i) Each O n is a boolean algebra. Namely ∅ ∈ O n and for each A, B in O n , A ∪ B, A ∩ B and R n \ A belong to O n . (ii) For all A in O n , A × R and R × A belong to O n+1 . (iii) For all A in O n+1 , Π(A) := {(x 1 , . . . , x n ) ∈ R n : (x 1 , . . . , x n , x n+1 ) ∈ A} belongs to O n .

  with w k in place of w to obtain x k+1 ; -update each component of w k to w k+1 i = 1/(| x k+1 i | +ε).

  ∂L C,D (x, y) = {(xy + u, yx + v) : u ∈ N C (x), v ∈ N D (y)}. This implies dist (0, ∂L C,D (x, y)) = dist 2 (yx, N C (x)) + dist 2 (xy, N D (y))

Proposition 15

 15 Let C, D be two closed subsets of R n and x ∈ C ∩ D. Assume [-N C (x)] ∩ N D (x) = {0}.Then there exist a neighborhood U ⊂ R n × R n of (x, x) and a positive constant c for whichdist (0, ∂L C,D (x, y)) ≥ c xy > 0, (35)whenever (x, y) ∈ U ∩ [0 < L C,D < +∞].In other words L C,D has the Kurdyka-Lojasiewicz property at (x, x) with ϕ(s) = 1 c √ 2s.

  d}, and X i ∈ S d-1 if i ∈ {d+1, . . . , n}. Each solution line X k+1,i is simply the projection of line ρλ k Y k,i + X k,i of matrix ρλ k Y k + X k onto the unit sphere of R d if d ≤ i ≤ n, and onto a unit sphere of lower dimension if 2 ≤ i ≤ d -1.

The word tame actually corresponds to a slight generalization of definable objects.

See Remark (4) (c)

 [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]The first three authors acknowledge the support of the French ANR under grant ANR-08-BLAN-0294-03.

Let d ∈ S n-1 be a cluster point of x ky k -1 (y kx k ). Since x ky k -1 [(y kx k )u k ] converges to zero, d is also a limit-point of x ky k -1 u k ∈ N C (x k ). Due to the closedness property of N C , we therefore obtain d ∈ N C (x). Arguing similarly with v k we obtain d ∈ -N D (x). So d satifies both d = 1 and

(b) for related, but different, results see [START_REF] Lewis | Local Linear Convergence for Alternating and Averaged Nonconvex Projections[END_REF][START_REF] Luke | Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space[END_REF].

Transverse Manifolds

As pointed out in [START_REF] Lewis | Alternating projection on manifolds[END_REF] a nice example of regular intersection is given by the smooth notion of transversality. Let M be a smooth submanifold of R n . For each x in M , T x M denotes the tangent space to M at x. Two submanifolds of R n are called transverse at x ∈ M ∩ N if they satisfy

Since the normal cone to M at x is given by N M (x) = T x M ⊥ , we have

whenever M and N are transverse at x. And therefore L M,N satisfies the Kurdyka-Lojasiewicz inequality near x with ϕ(s) = c -1 √ s, c > 0.

The constant c can be estimated [START_REF] Lewis | Alternating projection on manifolds[END_REF]Theorem 18].

Tame feasibility

Assume that C, D are two globally analytic subsets of R n . The graph of L C,D is given by

where G is the graph of the polynomial function (x, y) → 1 2 ||x -y|| 2 . From the stability property of o-minimal structures (see Definition 13 (i)-(ii)), we deduce that L C,D is globally subanalytic.

Let (x, ȳ) ∈ C × D. Using the fact that the bifunction L C,D satisfies the Lojasiewicz inequality with ϕ(s) = s 1-θ (where θ ∈ (0, 1]) we obtain

for all (x, y) with x = y in a neighborhood of (x, ȳ).

Remark 7 (a) One of the most interesting features of this inequality is that it is satisfied for possibly tangent sets. (b) Let us also observe that the above inequality is satisfied if C, D are real-analytic submanifolds of R n . This is due to the fact that B((x, ȳ), r) ∩ [C × D] is globally subanalytic for all r > 0.

If C, D and the square norm function || • || 2 are definable in the same o-minimal structure, we of course have a similar result. Namely,

for all (x, y) in a neighborhood of a critical point of L.

Although [START_REF] Lions | On the Schwarz alternating method. III. A variant for nonoverlapping subdomains in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations[END_REF] is simply a specialization of a result of [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF], this form of the Kurdyka-Lojasiewicz inequality can be very useful in many contexts.