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CIRCULAR LAW FOR RANDOM MATRICES WITH
UNCONDITIONAL LOG-CONCAVE DISTRIBUTION

RADOSLAW ADAMCZAK AND DJALIL CHAFAI

ABSTRACT. We explore the validity of the circular law for random matrices with non
i.i.d. entries. Let A be a random n x n real matrix having as a random vector in R"*™ a
log-concave isotropic unconditional law. In particular, the entries are uncorellated and
have a symmetric law of zero mean and unit variance. This allows for some dependence
and non equidistribution among the entries, while keeping the special case of i.i.d. stan-
dard Gaussian entries. Our main result states that as n goes to infinity, the empirical
spectral distribution of ﬁA tends to the uniform law on the unit disc of the complex

plane.

1. INTRODUCTION

For an n x n matrix A, denote by v, its spectral measure, defined as v4 = %Z?:1 O s
where Aq,...,\, are the eigenvalues of A which are the roots in C of the characteristic
polynomial of A, counted with multiplicities, and where J, stands for the Dirac mass at
point z. If A is Hermitian, then we will treat v, as a finite discrete probability measure
on R, while in the general case it is a finite discrete probability measure on C. When A
is a random matrix, then v, becomes a random measure.

The behaviour of the spectral measure of non-Hermitian random matrices has drawn
considerable attention over the years following the work by Mehta [32], who proved,
by using explicit formulas due to Ginibre [I8], that the expected spectral measure of
n X n matrices with i.i.d. standard complex Gaussian entries scaled by +/n converges
to the uniform measure on the unit disc (which we will call the circular law). Further
developments [19, 20] [7, 36, 21, 41] succeeded in extending the result to a beautiful
universal statement valid for any random matrix with i.i.d. entries of unit variance.

It is natural to try to relax the conditions of finite variance and/or independence im-
posed on the entries of the matrix by those results. Relaxing the finite variance assumption
leads to limiting distributions which are not the circular law, see [10,[12]. There are various
ways to relax the independence assumption. The circular law was first proved for various
models of random matrices with i.i.d. rows, such as for certain random Markov matrices
[T1], for random matrices with i.i.d. log-concave rows [I} 2], for random 41 matrices with
i.i.d. rows of given sum [35] (see also [40]), etc. Beyond the i.i.d. rows structure, the circu-
lar law was proved only for very specific models such as for blocs of Haar unitary matrices
[25], [16], and more recently for random doubly stochastic matrices following the uniform
distribution on the Birkhoff polytope [34]. Our main result stated in Theorem [L1] below
is establishing the circular law for a new class of random matrices with dependent entries
beyond the i.i.d. rows structure. Theorem [L1lis a natural extension of the model studied
in [I]. However, it does not include as special cases the models studied in [25] 16, 34]. The
general idea behind Theorem [L.1] comes from asymptotic geometric analysis and states
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2 RADOSEAW ADAMCZAK AND DJALIL CHAFAT

roughly that in large dimensions, for many aspects, unconditional isotropic log-concave
measures behave like product measures with unit variance and sub-exponential tail.

We say that a probability measure p on R? is log-concave when for all nonempty
compact sets A, B and § € (0,1), u(0A + (1 —0)B) > u(A)’u(B)'~Y. A measure p not
supported on a proper affine subspace of R? is log-concave iff it has density e where
V:R? - RU {+00} is a convex function, see [I3]. We say that p is isotropic if it is
centered and its covariance matrix is the identity, in other words if the coordinates are
uncorellated, centered, and have unit variance. Recall finally that p is called unconditional
if X = (Xy,...,Xy) and (61X1,...,64X4) have the same law when X has law p and
£1,...,&q are i.i.d. Rademacher random variables (signs) independent of X. The isotropy
and the unconditionality are related to the canonical basis of R?, while the log-concavity is
not. Note that unconditionality together with unit variances imply automatically isotropy.
We use in the sequel the identifications M, (R) = R and M,,(C) = C" in which a n xn
matrix M with rows Ry, ..., R, is identified with the vector (Ry,..., R,).

Theorem 1.1 (Circular law for isotropic unconditional log-concave random matrices).

Let A, = [Xi(f)]lgngn be n x n random matrices, defined on a common probability space.
Assume that for each n, the distribution of A, as a random vector in R™ is log-concave,
isotropic and unconditional. Then with probability one the empirical spectral measure of

%An converges weakly as n — oo to the uniform measure on the unit disc of C.

If one drops the unconditionality assumption in Theorem [L.T] then the limiting spectral
measure needs not be the circular law. For instance, one may consider random matrices
with density of the form A — exp(—Tr(V(VAA*))) with V' convex and increasing, which
are log-concave (Klein’s lemma) but for which the limiting spectral distribution depends
on V, see [17, eq. (5.8) p. 654] and [23]. This is in contrast with the model of random
matrices with i.i.d. log-concave rows studied in [I], for which it turned out that the circular
law holds without assuming unconditionality, as explained in [2].

We prove Theorem [L.1] by using the by now classical Hermitization method introduced
by Girko in [19] and further developed by Tao and Vu in [4I]. Following the scheme
presented in [12], we first establish the convergence of the spectral measure of the matrix

B = ¢(%An_m) (L) "

and later obtain bounds on the small singular values of the matrix, which will allow us
to prove almost sure uniform integrability of the logarithm with respect to the empirical
spectral measure of B, (z). Putting these ingredients together we obtain convergence of
the logarithmic potential of the empirical spectral measure of #An, which ends the proof.

Outline. The organization of the paper is as follows. In Section [2 we first recall some
basic results concerning log-concave unconditional measures, which will be useful in the
proof. Next in Section Bl we give the outline of the argument, prove convergence of the
empirical spectral measure of B, (z) and reduce the proof of Theorem [Tl to lower bounds
on the singular values of A,,. These are proved in Section [4l

Notations. We will denote by C, ¢ positive absolute constants and by C,, ¢, constants
depending only on the parameter a. In both cases the values of constants may differ
between occurrences (even in the same line). By |-| we will denote the standard Euclidean
norm of a vector in C" or R”. We will use || - || to denote the operator norm of a matrix
and || - ||us to denote its Hilbert-Schmidt norm. For a probability measure p on R and £
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in C; ={z € C: Iz >0} by m,(&) we will denote the Cauchy-Stieltjes transform, i.e.

&) = [ ygh(an),

A=¢

R

We refer to [4, [6] for general theory of Cauchy-Stieltjes transforms and in particular their
connection with weak convergence. For an n x n matrix A by s;(A) > -+ > s,(A) we

will denote its singular values, i.e. eigenvalues of (AA*)"/2,

2. BASIC FACTS ON UNCONDITIONAL LOG-CONCAVE MEASURES

The geometric and probabilistic analysis of log-concave measures is a well developed
area of research. We recommend the reader the forthcoming monograph [14] for a detailed
presentation of this rich theory. What we will need for our analysis is properties related to
the behaviour of densities and concentration of measure results. In general such questions
are difficult and related to famous open problems, like the Kannan-Lovasz-Simonovits
question [26] or the slicing problem [24] 33].

Fortunately, unconditional log-concave measures behave in a much more rigid way than
general ones, in particular some of the aforementioned questions have been answered either
completely or up to terms which are logarithmic in the dimension and as such do not cause
difficulties in the problems we are about to deal with. Below we present the ingredients
we will use throughout the proof.

The first fact we will need follows immediately from the definition of log-concavity:
linear images of log-concave random vectors are themselves log-concave. We also have the
following tail estimate, which is a special case of a more general fact due to Borell [13].

Theorem 2.1 (Log-concave random variables have sub-exponential tails). If X is a log-
concave, mean zero, variance one random variable, then for allt > 0,

P(| X[ > t) < 2exp(—ct).

The next theorem provides a positive answer to the so-called slicing conjecture in the
case of unconditional log-concave measures. Let us recall that the conjecture (in one of
many equivalent formulations) asserts that the density of a log-concave isotropic measure
in R™ is bounded by C™. While this question is wide open in the general case, it has been
answered positively in the case of unconditional measures. We refer for instance to [9] for
a proof. We will use it to obtain sharp small ball inequalities, which will be useful when
dealing with dependence between different rows of the matrix.

Theorem 2.2 (Density bound for log-concave measures). The density of a log-concave
unconditional measure in R™ is bounded from above by C™, where C' is a universal constant.

Another result we will need is the following version of the Poincaré inequality for log-
concave measures, together with the concentration of measure inequality which follows
from it. We refer to [27, 8] and to the books [30) 5] for the general theory of concentra-
tion of measure and its relations with functional inequalities. The question whether all
isotropic log-concave measures satisfy the Poincaré inequality with a universal constant
is another famous open problem in asymptotic geometric analysis [26].

Theorem 2.3 (Poincaré inequality from unconditional log-concavity). If X is an isotropic
unconditional log-concave random vector in R™, then for every smooth f: R — R,

Var f(X) < Clog?(n + DE|V f(X)|*.

The above theorem implies in particular concentration of measure inequality for Lips-
chitz functions via the so called Herbst argument, see for instance [22] and [30)].
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Theorem 2.4 (Concentration of measure from the Poincaré inequality). If a random
vector X in R™ satisfies the Poincaré inequality Var f(X) < A™YE|V f(X)|* for all smooth
functions f: R" — R, then for all 1-Lipschitz functions g: R" — R and all t > 0,

P(lg(X) — Eg(X)| > t) < 2exp(—cv/At).

Finally we will need the following result taken from [29], built on previous developments
in [9]. It provides a comparison of norms of log-concave unconditional random vectors
with norms of vectors with independent exponential coordinates.

Theorem 2.5 (Comparison of tails for unconditional log-concave measures). If X is an
isotropic unconditional log-concave random vector in R™ and £ a standard n-dimensional
symmetric exponential vector (i.e. with i.i.d. components of symmetric exponential dis-
tribution with variance one), then for any seminorm || - || on R™ and any t > 0,

P(IX[| > Ct) < CP(|[E]] = 1).

3. PROOF OF THE MAIN RESULT BY REDUCTION TO SINGULAR VALUES BOUNDS

As already mentioned in the introduction, we will follow the Hermitization method
introduced by Girko, together with a Tao and Vu approach to obtain lower bounds on
the singular values. We refer the reader to [12] for a presentation of this method in the
general case. Let B,(z) be as in (). Thanks to [I2] Lemma 4.3], to prove that with
probability one v,,-1/2, converges weakly to the uniform measure on the unit disc, it is
enough to demonstrate the following two assertions.

(i) For all z € C the spectral measure v, ,, := vp,(,) converges almost surely to some
deterministic probability measure v, on R, . Moreover, for almost all z € C,

B [ —logle|  iflz] > 1
U(z) = —/R+ log(s)v.(ds) = { $(1—|2]*) otherwise;

(ii) For all z € C, with probability one the function s — log(s) is uniformly integrable
with respect to the family of measures {v, ,, }n>1.

The quantity U,(z) := [.log ﬁu%fln (d)\) is the logarithmic potential of VA, and
we have Uy, (z) = [7log(s) vp,(x)(ds), see [12]. We will first prove point (i).

Proposition 3.1 (Singular values of shifts). Assertion (i) above is true.

Proof. Let us fix z € C. From Theorem [2.3] and Theorem [2.4] it follows easily that
the Euclidean length of a random row/column of A,, normalized by /n, converges in
probability to one. Thus we deduce by [I, Theorem 2.4] that the expected spectral
measure Ev, ,, converges weakly, as n — oo, to a probability measure v, which depends
only on z (the identification of v, and the formula involving U can be then done and
checked on the case of i.i.d. Gaussian entries, see for instance [12]). The rest of our proof
is now devoted to the upgrade to almost sure convergence, by using concentration of
measure for the Cauchy-Stieltjes transform. For now, we know that for every £ € C,

Em,, (€)= E / (@) = e (6) — ().

R+)‘_€ n—00
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At this step, we observe that if C' and C” are in M,,(C) with singular values s; > -+ > s,
and s§ > --- > s/ respectively then for every € € C,,

Il 1 I 1
) = e O = [ 2 =~ T

S; — Sk

IC = s,

1
= VaISER
where the last step follows from the Hoffman-Wielandt inequality for singular values, see
for instance [15, Chapter 4]. Thus both the real and the imaginary parts of m,_, are
1/(n(3€)?) Lipschitz functions of A,,, with respect to the Hilbert-Schmidt norm, which is
the Euclidean norm on M,,(R) = R". Therefore, by Theorem and Theorem 2.4, we
get, for every £ € C, and € > 0,

P(|my. ,(§) — Em,, ()] > €) < 2exp(—cneS(2)*/ log(n)).

Now by the first Borel-Cantelli lemma, with probability one, m,_, (£) —Em,_, () — 0 as
n — oo (the set of probability one depends on &). Since Em,,_, (§) = m,, (&) as n — oo,
we get that with probability one, m,,_, (§) = m,._(§) asn — oco. Since the Cauchy-Stieltjes
transform is uniformly continuous on every compact subset of C,, it follows that with
probability one, for every { € Ci, m,_ (&) — m, (§) as n — oo, which implies finally
that with probability one, v, ,, converges weakly to v, as n — oo. U

To finish the proof of Theorem [[I] it is thus enough to demonstrate (ii). We will do
this using the following three lemmas which give bounds on singular values of the matrix
ﬁAn — zId. The proofs of the lemmas will be deferred to the next section. Let us remark
that the formulations we present are in fact more general then what is needed for the
proof of Theorem [L.T. We also recall that by C, ¢ we denote absolute constants.

The first lemma estimates the operator norm of the matrix (largest singular value).

Lemma 3.2 (Largest singular value). Let A,, be an n x n random matriz with log-concave
1sotropic unconditional distribution and let M, be a deterministic n X n matrix with
| M|l < Ry/n for some R > 0. Then for allt > 1,

P(| Ay + Myl > (R+ C)i + 1) < 2exp(—ct).
Our next lemma provides a bound on the smallest singular value.

Lemma 3.3 (Smallest singular value). Let A,, be an nxn random matriz with log-concave
1sotropic unconditional distribution and let M, be a deterministic n X n matrixz. Then

P(s,(A, + M,) <n %) < Cn=2

Remark 3.4. The above lemma is certainly suboptimal, but it is sufficient for our ap-
plications. In view of the results for Gaussian matrices [38] it is natural to conjecture
that for ¢ € (0,1), P(s,(A, + M,) < en~Y2) < Ce. For a matriz A, with independent
log-concave isotropic columns it is proven in [3] that P(s,(A,) < en~?) < Celog?(2/e).
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The next lemma we will need gives a bound on the singular values s,,_;, where ¢ > n?
for some y € (0,1). It is analogous to an estimate in [41] (see also [12]) used to prove the
circular law in the i.i.d. case under minimal assumptions. The main difficulty in its proof
in our setting is lack of independence between the rows of A,, which has to be replaced
by unconditionality and geometric properties implied by log-concavity.

Lemma 3.5 (Count of small singular values). Let A, be an n x n random matriz with
log-concave isotropic unconditional distribution and M, a deterministic n X n matriz with
| M| < R/n. Let also v € (0,1). Then for every n? <i<n-—1,

P(sn,i(n’m(An M) < ch) < 2exp(—cpn").
n

Let us now finish the proof of Theorem [[.1], by demonstrating how the above lemmas
imply point (ii). By Markov’s inequality it is enough to show that for every z € C, for
some small a > 0 with probability one

o0

lim (8% + 5 M), n(ds) < 00,

or in other words, denoting s; := Sz(ﬁz‘ln — zId),
T L3 (50 4 577 <
Jim 2 s; + s; 00.
For all a < 2 we have, for n large enough,
nt Y s S (7 Y)Y = (0 e A — 2l fles)” < (oA, - 21d))
i=1 i=1
But by Lemma[3.2]and the Borel-Cantelli lemma, with probability one, we have the bound
lim,, o |[n~Y2A, — 21d|| < C, for some finite constant C, and thus
i o <
T <o
Passing to the other sum, for «,~ small enough, by Lemmas 3.3, and the Borel-
Cantelli lemma we have with probability one, for some finite constants C, and C, 4,

n [n7] n—1
1 o 1 a 1 a
n § Sz - § :Sn—i_'_ n E Sp—i
i=1 i=0 i=|n7]+1
n—1
1 1 n\«
chte 8 )
- nn ne nCZ 7
i=|nY]+1

< n7a+’yfl + C«z’anaflnlfa — 0(1)

This implies (ii) and ends the proof of Theorem [L.11

4. PROOF OF SINGULAR VALUES BOUNDS
We will start with the proof of Lemma [3.2]

Proof of Lemma[3.2. By the triangle inequality it is enough to estimate || A,||. By Theo-
rem 2.5 we can assume that A, hasi.i.d. entries with the standard symmetric exponential
distribution. It is well known (see e.g. [28]) that in this case E||A, || < Cy/n. Moreover,
by the Poincaré inequality for the product of symmetric exponential measures (see e.g.
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[5]) and the fact that the operator norm is 1-Lipschitz with respect to the Hilbert-Schmidt
norm, we have P(||A4,|| > CE||A,|| +t) < exp(—ct), which allows to finish the proof. O

Before we proceed let us introduce some additional notation to be used in the proofs

below. We will assume that A, = [Xi(j")]mgn but for notational simplicity we will suppress

the superscript (n) and write X;; instead of Xi(;l). We will refer to the rows of A, as
X1,...,X,. Since the law of A,, is unconditional, sometimes we will work with the matrix
[€ijXijlij<n, where ¢;; are independent Rademacher variables independent of X;;. Slightly
abusing the notation, we will sometimes identify this new matrix with A,.

Let us now pass to the proof of Lemma 3.3

Proof of Lemmal3.3. We will denote the rows of M, and A, + M, by Yi,...,Y, and
24, ..., Zy respectively. By estimates from [37] (see also [10, Lemma B.2]) we have

P(s, (A, + M,) < n %) < nmaxP(dist(X; + Vi, span({Z;},;x)) < n °). (2)

Let us fix i. Remarkably, the conditional distribution of X; given (Xj);»; is log-concave
and unconditional. Let o} = E(X%|(X;);). Now for every € > 0, every random variable
X and random vector Y, by Markov’s inequality, 1igxzjy—y<c2y < 3P(|X] < 2e|Y =y)
for every y, which gives P(E(X?|Y) < €?) < 3P(|X| < 2¢), and in particular

4
3
Next, since X, is log-concave of unit variance, Theorem in dimension one gives

4
P(o} <€) < (|Xm| < 2¢) < Ce.

P(o} <€) < 2P| Xul < 22).

Therefore we get
P(3pcnof <n77) < Cn-n" % = Cn 52
Note that dist(X; + Y;,span({Z;},.)) = [(X; + Yi,e)|, where e is a random normal to
span({Z;},-) (note that due to the existence of a density this space is with probability
one of dimension n — 1). Let ¢ = Re, ¢’ = Je. Since |e| = 1, at least one of the real
vectors €, €” has Euclidean length greater than 272, Without loss of generality we can
assume that |e’| > 271/2 (otherwise we may multiply e by v/—1). By unconditionality and
the fact that €’ is measurable with respect to (X;);.; , we get
1
2
E (X5, )’I(X,)j) 2 5 mino}.

Moreover, the conditional distribution of (X;,e’) given (X;);.; is log-concave and sym-
metric. Thus we have

—-1/2

Elkgnai <n" ) + Cn76E(E(<X“ €'>2‘<Xj>j7éi>> 1{Vk0,%>n*7}
<COn?? 4+ Cn 0% < Cn_5/2,

where we used conditionally the fact that the density of a symmetric one-dimensional log-
concave r.v. X is bounded by C/|X||2 (which follows by Theorem 2.2)). In combination
with (2]) this ends the proof of the lemma. 0
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It remains to prove Lemma [3.5l The argument follows the ideas introduced by Tao and
Vu in [41] and relies on a bound on a distance between a single row of the matrix and the
subspace spanned by some other k& rows. Since contrary to the situations considered in
[41], 1], we do not have independence between rows, a prominent role in the proof will be
played by log-concavity and unconditionality, which will allow us to replace independence
with upper bounds on the densities given in Theorem

Lemma 4.1 (Distance to a random subspace). Let A, be an n x n random matriz with
log-concave isotropic unconditional distribution and M, a deterministic n X n matriz with
|M.,.|| < R\/n. Denote the rows of A, + M, by Z1,...,Z, and let H be the space spanned
by Z1,..., 7 (k <n). Then with probability at least 1 — 2nexp(—cr(n — k)1/3),

dist(Zx41, H) > crvVn — k.

Before we prove the above lemma let us show how it implies Lemma The argu-
ment is due to Tao and Vu (see the proof of [41, Lemma 6.7]). We present it here for
completeness.

Proof of Lemma[3.3. Consider i > n”. Let k =n — |i/2] and let B/, be the k x n matrix
with rows Zi,...,Z; (we use the notation from Lemma []). By Cauchy interlacing
inequalities we have s,_;(A, + M,) > s,_;(B},) for j > |i/2]. Let H;, j = 1,...,k be
the subspace of C" spanned by all the rows of B, except for the j-th one. By [41, Lemma
A4]7

k
> si(By) 2= dist(Z;, Hy)
J=1 J=1
By Lemma (1] for each j < k, dist(Z;, H;) > cgv/n — k+ 1 with probability at least
1—2n exp(—cgi'/?) (note that we can use the lemma since all its assumptions are preserved
under permutation of rows of the matrix A,). Thus by the union bound, with probability
at least 1 — 2n? exp(—cgrn?/?), we get

: 1\ —2 k
S5 < Ol
=1 !
On the other hand, the left-hand side above is at least s,,_;(B!,) ?(k—n+i) > s,_;(B.)"%i/2.
This gives that with probability at least 1 — 2n?exp(—czn?/?),

,L'2

n—n7/2]°
which implies that sn_i(ﬁ(An + M,)) > CR%. We may now conclude the proof by taking

Sn_i(An + M,)* > s, (B.)* > cr

the union bound over all © > n” and adjusting the constants. O

Proof of Lemma[{.1. Denote the rows of M, by Y7,....,Y,. Recall that thanks to uncon-
ditionality we can assume that A, = [¢;;Xi;]ij<n, Where [X;;]; j<n is log-concave, isotropic
and unconditional. For simplicity in what follows we will write €; instead of ey ;.

With probability one dim(H) = k. Let us however replace H by K = span(H, Yj.1)
and assume without loss of generality that this space is of dimension k£ + 1 (if not one
can always choose a vector Y, measurable with respect to o(Zi,..., Zx, Yrs1) such that
K =span(H,Y) is of dimension k+1). Let ey, ..., e,_r_1 be an orthonormal basis in K+
and P be the orthogonal projection onto K*. By e;; we will denote the j-th coordinate
of e;.

Without loss of generality we can also assume that k& > n/2 (otherwise we may change
the constant cg to cr/2).
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The proof will consist of several steps. First we will take advantage of independence
between €;;’s and X;;’s and use concentration of measure on the discrete cube to provide
a lower bound on the distance which will be expressed in terms of X;;’s and e;;’s and will
hold with high probability with respect to the Rademacher variables (i.e. conditionally
on X;;’s). Next we will use log-concavity to show that the random lower bound is itself

with high probability bounded from below by cgvn — k.
Step 1. FEstimates with respect to Rademachers. We have

n—k—1

‘ 1/2
dist(Xp1, K) = |PXppi| = ( > |<Xk+1>6i>|2>
=1

n—k—1 n

= ( > ‘ > Xii18:
i=1  j=1

The function f is a semi-norm, L-Lipschitz with

2)1/2 = f(er,. . En). (3)

L= sup [f(z)|= sup [P(Xpt1,7:)i4] < sup

n

2 2 .

§ :XkJrl,ixi < m<aX|Xk+17z|-
resn—1 resn—1 resn—1 i—1 =N

Moreover, using the Khintchin-Kahane inequality we get

n—k—1

Eof(ere o) 2 eBef (e 2 o X2, (3 leu?))
j=1 '

=1

Since dist(Z, H) > dist(Xy1, K), by Talagrand’s concentration inequality on the discrete
cube (see [39]) we get for some absolute constant ¢ > 0,

n—

k—1 12
> lef)) )
i=1

n ){2 n—k—=1,_ 2

Zj:l k-+1,5 Do el )

2
max;<, ch+1,z‘

P. (dist(Zk+1, H) < C( Z X13+1,j (
=1

(4)

§2exp<—c

Step 2. Lower bounds on coordinates on e;. Let Sparse(d) denote the set of dn sparse
vectors in C", i.e. vectors with at most dn nonzero coordinates. Let Sg’l be the unit
Euclidean ball in C™ and define the set of compressible and incompressible vectors by

Comp(6, p) = {x € Sg~': dist(x, Sparse(d)) < p} and Incomp(d,e) = S\ Comp(d, ¢).

We will now show that with high probability for each i < n —k — 1, ¢; € Incomp(J, ¢)
(with 6, depending only on R).

We will follow the by now standard approach (see [37, 31]) and consider first the set of
sparse vectors. Let A', M’ B’ be k x n matrices with rows resp. (X;)i<k, (Y2)i<k, (Zi)i<k
and denote by XY/ Z! (i = 1,...,n) their columns. Note that for any real vector
x € S 1, the random vector

S ::EE::rka
i=1

is a log concave isotropic unconditional random vector in R¥ (it is log-concave as a linear
image of a log-concave vector, unconditionality and isotropicity can be directly verified).
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Therefore, by Lemma 2.2] it has a density bounded by C*. Thus for any deterministic
vector v € R¥,

P(S € v+ 2rvVEBE) < C*2Rrk R 20l (BE) < CFrF, (5)

where B% is the unit Euclidean ball in R*. Consider now any x € S&™' and let 2/ = R,
2" = Qx. We have

Bz = Z X!+ %(Z z;Y]) +1i Z ) X] + Z%(Z z;Y;).
i=1 i=1 i=1 i=1
Setting v’ = —R> " | ;Y and v = =D ;Y] we get

P(|B'z| < 2rVE) < min (p(\ S al X! - o) < 2VE), (S e X] — ] < 2r\/E)).
=1 i=1

At least one of the vectors 2/, 2" has Euclidean not smaller than 27/2. Thus using (&),
we get

P(|B'z| < 2rvEk) < C*rk. (6)
Note that the set Sparse(§) N Sg™! admits an e-net A of cardinality

(1) 277 < ()"

(This can be easily seen by using volumetric estimates for each choice of the support).
By (6) and the union bound with probability at least

1 rken( ! )5"
J— 7" RN

g2/ 7
for all z € NV,

|B'z| > 2rVk.
If € < 1/2 then on the above event we have,
|B'z| > rVk — 2| B|
for all x € Comp(d,¢). Indeed if z € Comp(6, €), then there exists y € Sparse(d) such that
|r—y| < e. But |y| > 1—¢ then and therefore |B'y| > (1—5)|B/‘—z|| > (1—¢)(2rvVE—e||B'||),
since y/|y| € Sparse(§) N S¢™! (and so it can be e-approximated by a vector from N).
Now |B'z| > |B'y| —¢||B'|| > vk — 2¢||B|.
Thus by Lemma and the assumption k > n/2 we have
|B'z| > (r/2 —3(C + R)e)v/n
for all z € Comp(4, ), with probability at least
1 \on

If we set ¢ = r/(12(C' + R)), we get for r € (0,1) and 6 small enough (depending only on
R),

1— 7’”/20”<

|B'x| > ryn/4 >0
for all x € Comp(d, €), with probability at least
144 )2\ on
1— 7’"/20"(%) —2exp(—c(R+ C)v/n)

>1—C™r"* — 2exp(—c(R 4+ C)v/n).
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Now for r sufficiently small, the right hand side above is greater than 1 — 2 exp(—cy/n).
In particular we have shown that there exist J,¢ > 0 depending only on R such that with
probability at least 1 — 2 exp(—cy/n),

inf |B'z| >0

z€Comp(6,e)
and in consequence (since B'e; = 0)

e; € Incomp (4, €) (7)
fori=1,....n—k—1.

Step 8. Estimating conditional expectation. From [37, Lemma 3.4] we get that whenever
x € Incomp(9, €), then there exists a set I C C" of cardinality at least 3e26n, such that
foralli e I, |z;| > \ﬁ (the lemma is proved in [37] in the real case, but the proof works
as well for C", alternatively one may formally pass to the complex case by identifying C"
with R?", which will just slightly change the constants).

Using this fact and (), we get that with probability at least 1 — 2exp(—cy/n), for
i=1,...,n—k—1, there exists a set [; C {1,...,n} of cardinality at least an (where
a > 0 depends only on R) such that |e;;|* > 2/2n for all j € ;. We will now prove that
for some constant p > 0, depending only on R, with probability at least 1 — 2 exp(—an),
the set J = {j: | Xy41,;| > p} satisfies

|J| > (1 —«a/2)n. (8)

Thus we will obtain that for some /3, depending only on R, with probability 1—2 exp(—cgr+/n),

n—k—1 n—k—1

an 6
ZXW Z jeil” = Z > Xblehl = (n—k = 1)Zpte = B~k — 1),

i=1 jeLnJ
9)

To prove (8) we note that for every set I C {1,...,n} of cardinality m, the random
vector (Xgi1,4)ier is isotropic, log-concave and unconditional and hence by Theorem
has a density bounded by C™. Thus

P(| Xgt14 < pforalliel)<2mC™p™.

Taking the union bound over all sets of cardinality m = |an/2| we obtain
- n m m _m an an an 1o, « an
P4+ Xl 2 9} < (1= af2)) < (2 )2memgn < gongen Comtosafe) enr,

which gives (§) for p = exp(—C'log(2/a)).

Step 4. Conclusion of the proof. Without loss of generality we may assume that n—k > C
(otherwise we can make the bound on probability in the statement of the lemma trivial,
by playing with the constant cg). Note that by Theorem 2.1 and the fact that Xy, is
log-concave of mean zero and variance one,

IP’(111<aXX,3+17Z- > (n—k)¥?) < 2nexp(—c(n — k)'/3).

Combining this estimate with (@) we get

n—k—1
(Z Xk+1g Z e?j > B(n — k)/Qvlﬁ%LXXgH,i < (n— k)2/3> > 1—4n exp(—cr(n—k)"/%).
i=1 -
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Denote the event above by U. Using the above estimate together with (4]) and the Fubini
theorem, we get

P(dist(Zyi1, H) < cv/B/2vVn — k) <E (1UIP’€(dist(Zk+1, H) < e\/B/2vn — k;)) + P(U°)

< 6nexp(—cgr(n — k)¥3).

To prove the lemma it is now enough to adjust the constants. 0
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