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This paper presents an analytical/numerical study of the effects of the mean flow on
thermo-acoustic instabilities. Simple quasi-1D configurations such as a 1D premixed flame
in a duct connected to a nozzle are considered in order to investigate to what extent the
frequency of oscillation and growth rate are modified when the Mach number is not zero.
It is demonstrated that the zero Mach number assumption for the mean flow can lead
to significant errors, especially when the mean flow is not isentropic, a condition which
is always met in combustion applications. The analysis confirms that terms involving
the mean velocity may contribute to the disturbance energy equation as much as the
the flame forcing (’Rayleigh’) term. Besides, the net effect of the non zero Mach number
terms on the stability of the modes strongly depends on both the boundary conditions
and the flame response. For moderate Mach number values of order 0.05, the errors made
by assuming that the mean flow is at rest are large enough to change the stability of the
frequencies of interest in an academic combustor.

1. INTRODUCTION
Thermo-acoustic instabilities, which arise from the coupling between acoustic waves

and flames, can lead to high amplitude instabilities [1–4]. In general, these instabilities
induce oscillations of all physical quantities (pressure, velocities, temperature, etc ...);
in the most extreme cases, they can destroy the burner by inducing large amplitude
flame motion (flashback) or unsteady pressure (material fatigue). Since the equivalence
ratio oscillates when instabilities are present, there is a general trend for combustors to
be more unstable when operating in the lean regime. Besides, due to new international
constraints, pollutant emissions must be reduced and gas turbine manufacturers need
to operate their systems under leaner and leaner conditions. Consequently, there is a
need to better understand combustion instabilities and to be able to predict them at the
design level [5].

Three types of methods have been considered so far to predict/describe these instabil-
ities:

(a) Large Eddy Simulation (LES) of all relevant scales of the reacting, turbulent,
compressible flow where the instability develops. Multiple recent papers have demon-
strated the power of this method to represent the flame dynamics [6–12], as well as
the interaction between the reaction zone and the acoustic waves [13–16]. However,
even when they confirm that a combustor is unstable, LES calculations do not say
why and how to control its instability. Besides, because of its intrinsic nature (full
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three-dimensional resolution of the unsteady Navier-Stokes equations), LES remains
very CPU demanding, even on today’s computers,
(b) Low-order methods where the geometry of the combustor is modelled by a network
of homogeneous (constant density) 1D or 2D axisymmetric acoustic elements where
the acoustic problem can be solved analytically [17–22]. Jump relations are used to
connect all these elements, enforcing pressure continuity and flow rate conservation and
accounting for the dilatation induced by the infinitely thin flame, if any. The acoustic
quantities in each segment are related to the amplitudes of the forward and backward
acoustic waves which are determined such that all the jump relations and the boundary
conditions are satisfied. This can only be achieved for a discrete set of frequencies ω
which are the roots of a dispersion relation in the complex plane. The main advantage
of low-order methods is that they allow to represent a complex system with only a
few parameters, thus allowing an extensive use for pre-design/optimization/control
purposes. However, the geometrical details of the combustor cannot be accounted for
and only the first ”equivalent” longitudinal or orthoradial modes are sought for,
(c) As an intermediate between LES and low-order methods, one may consider using
a finite-element or finite volume technique to solve for an equation (or a system of
equations) describing the space-time evolution of small amplitude fluctuations. A set
of linear transport equations for the perturbations of velocity, temperature and density
can be derived by linearizing the Navier-Stokes equations [23], where the local unsteady
heat release appears as a forcing term. This term is responsible for combustion noise
and thermo-acoustic instabilities and must be modeled to close the linearized set of
equations. Assuming that this modeling problem can be addressed appropriately, the
system of linear partial differential equations for the fluctuating quantities is closed
and can be solved, for example in the time domain [24]. Depending on the coupling
between the flame and acoustics, especially the phase between the pressure and heat
release fluctuations, some modes present in the initial field can be amplified and grow
exponentially; after a while, the unsteady field is dominated by the most amplified
mode which can then be analyzed [24]. To facilitate the description of time delayed
boundary conditions and also to obtain more information about the damped or less
amplified mode, it is worth solving the set of linear equations in the frequency space,
as proposed by Rao and Morris [25] for the wave propagation issue over a complex
baseline flow. If applied within the combustion instability framework, this would give
rise to an eigenvalue problem, the eigenvalues being related to the (complex valued)
frequencies of the thermo-acoustic modes. Since in general viscous contributions are
negligible when dealing with acoustic propagation, the appropriate set of equations to
solve are the Linearized Euler Equations.

Three modes of fluctuations can perturb an otherwise steady baseline flow: acoustic
waves, entropy waves and vorticity waves [26]. Acoustic perturbations propagate at the
speed of sound augmented by the local mean velocity while the last two modes are
simply convected by the mean flow. In general, these three types of fluctuations are
coupled, even in the linear regime, making the distinction between the fluctuating modes
a difficult task [27]. The linearized approach discussed above simplifies considerably if
the baseline flow is assumed homentropic and irrotational since a wave equation for the
perturbation potential can then be derived [28] and used in place of the Linearized Euler
Equations. Since assuming the mean flow to be homentropic is obviously not justified
when dealing with combustion instabilities, it is often assumed that the mean flow is
at rest instead of being potential. The advantage of this more restrictive assumption on
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the velocity field is that neither the entropy nor the vorticity mode can propagate so
that a wave equation for the acoustic perturbations can be derived, without assuming
the baseline flow is homentropic. The Linearized Euler Equations can then be replaced
by a forced Helmholtz equation with variable coefficients [29]. Combined with LES, this
approach proved useful to better understand the structure and nature of the instabilities
observed in academic or industrial burners [15, 30, 31]. However, no clear justification of
the zero Mach number assumption has been provided so far, as discussed by Keller et al.
[32], Dowling [33], Polifke et al. [34, 35], Sattelmayer [36].

Actually this simplification may induce significant changes on the frequency and growth
rate of the thermo-acoustic modes in at least three ways:

(a) acoustic boundary conditions: when analyzing the thermo-acoustic modes of
an industrial combustor (e.g.: a gas turbine), one must account for the proper acous-
tic environment of the combustion chamber. This means prescribing complex valued
impedance at the boundaries of the computational domain. For example, if one assumes
that the high pressure distributor which connects the combustor to the downstream
turbine [37] is choked, one may want to impose the appropriate boundary impedance
(e.g. assessed from the theory of compact isentropic nozzles [38]) at the outlet section
of the computational domain. In theory the impedance should be defined in a section
where the Mach number is very small, consistently with the zero Mach number ap-
proximation used to formulate the thermo-acoustic problem. In practice, the location
of the outlet section is often imposed by geometrical considerations and the effective
Mach number at the boundary is not a free parameter,
(b) coupling with the flame: when a flame is present, the mean entropy field is not
uniform and couples with the acoustic perturbations to generate hot spots (entropy
waves). Under the zero Mach number assumption, these spots do not propagate and
thus do not modify the fields of fluctuating quantities far from the reacting zone. The
situation changes as soon as the baseline flow is not at rest since any entropy spots
can then be convected away from the flame,
(c) acoustic/entropy coupling at the downstream boundary: when the entropy
waves generated in the flame region are convected downstream, they can couple with
the accelerated baseline flow in the high pressure distributor (or its equivalent quasi-
1D nozzle). From this interaction result acoustic waves, which can propagate upstream
and eventually modify the thermo-acoustic modes. Of course, this phenomenon is not
accounted for when the zero Mach number approximation is used to model the combus-
tor because entropy waves never reach the outlet section in this case. Its implications
regarding the overall thermo-acoustic stability of the system have been studied analyt-
ically by Keller et al. [32], Polifke et al. [34, 35]. In their view, an acoustic disturbance
in the chamber produces a fluctuation of equivalence ratio which in turn generates a
disturbance of the temperature downstream the premixed flame. Once it is convected
toward the downstream (choked) nozzle, the corresponding entropy spot is partly con-
verted into acoustics [38] and depending on the overall phase relationship, this may
enhance or damp the thermo-acoustic modes of the whole system. Sattelmayer [36]
added more physics by accounting for the dispersion of the entropy fluctuations dur-
ing their propagation from the injector and/or the flame to the exit nozzle. Contrary
to the approach of Keller et al. [32], Polifke et al. [34, 35], Sattelmayer [36], which is
restricted to low speed flows, the semi-analytical description of the mean flow effects
proposed by Dowling [33] is valid for arbitrary Mach numbers (see section 4.2.2). Note
that all the (semi-)analytical studies rely on the assumption that the reaction zone
and exit nozzle are infinitely thin.
The objective of this paper is to assess the potential errors associated with the above
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mentioned issues related to the zero Mach number assumption. For doing so, several
analytical results and numerical tools will be used in order to study the thermo-acoustic
modes of simple configurations, including a constant cross section duct with a premixed
1D flame (1D configuration) and a constant cross section duct with or without a flame
connected to a nozzle (quasi-1D configuration). The use of adapted numerical tools for
solving the Linearized Euler Equations together with an energy analysis of the distur-
bances will allow to draw a clearer view of a) the change of the spatial structure of the
thermo-acoustic modes when the mean flow is no longer at rest, b) the main contribu-
tors to the thermo-acoustic stability/instability when the Mach number is not zero. The
basic equations are first given in section 2 where different levels of approximation are
considered. The different numerical tools used in the paper are described in section 3 and
the results are presented in section 4 for three academic configurations.

Note that another potential effect of the mean flow being not at rest is to increase the
non-orthogonality of the eigenmodes. In the zero Mach number case, it has been shown by
Nicoud et al. [29] that the thermoacoustic modes are not mutually orthogonal as soon as
unsteady combustion occurs or finite complex valued boundary impedance is accounted
for. This property and its consequences have been analyzed in detail in the case of the
Rijke tube by Balasubramanian and Sujith [39], who demonstrated the relevancy of this
feature to the triggering phenomenon. Since non-normality is also known to be related
to convective effects in classical, incompressible fluid mechanics [40], it is the authors
point of view that a side effect of accounting for non zero Mach number effects is most
probably to enhance the non-orthogonality of the modes as well as its consequences in
terms of triggering and bootstrapping [39, 41]. However, this issue is out of the scope of
this paper which only deals with the behavior of the eigenmodes, without considering
combinations of modes.

2. MATHEMATICAL FORMULATIONS
The purpose of this section is to give the different mathematical representations rele-

vant to the configurations that will be considered in section 4. One considers an homoge-
neous reacting mixture with constant heat capacities Cp and Cv; viscous terms (molecular
diffusion of momentum and heat) are neglected in the remainder of this paper.

2.1. Linearized Euler Equations
Under the above assumptions, the mass, momentum and entropy equations read respec-
tively:

Dρ

Dt
= −ρ∇ · u, (2.1)

ρ
Du
Dt

= −∇p, (2.2)

Ds

Dt
=
rq

p
, (2.3)

where ρ, u, p and s stand for the mixture density, velocity vector, static pressure and
entropy per mass unit respectively while r = Cp − Cv and q is the rate of heat release
per unit of volume. At last, D/Dt = ∂/∂t + u · ∇ is the material derivative. Together
with the state equation and entropy expression

p

ρ
= rT and s− sst =

∫ T

Tst

Cp(T ′)
T ′

dT ′ − r ln
(
p

pst

)
, (2.4)
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where the ’st’ index stands for standard values and T is the static temperature, these
transport equations describe the spatio-temporal evolutions of all relevant physical flow
quantities.

The Linearized Euler Equations can be derived from Eq. 2.1 to 2.4 by considering
the simple case of small amplitude fluctuations (index 1) super-imposed to a mean flow
(index 0) which depends only on space. The instantaneous pressure, density, temperature,
entropy and velocity fields can then be written as p = p0 + p1, ρ = ρ0 + ρ1, T = T0 + T1,
s = s0 + s1 and u = u0 + u1 where the quantities p1/p0, ρ1/ρ0, T1/T0, s1/s0 and√

u1 · u1/c0 are of order ε, where ε� 1 and c0 =
√
γp0/ρ0 is the mean speed of sound.

Injecting the above expansions for the instantaneous flow quantities into Eqs 2.1 to 2.4
and keeping only terms of order ε, one obtains the following set of linear equations for
the fluctuating quantities ρ1, u1, s1 and p1:

∂ρ1

∂t
+ u1 · ∇ρ0 + ρ0∇ · u1 + u0 · ∇ρ1 + ρ1∇ · u0 = 0, (2.5)

ρ0
∂u1

∂t
+∇p1 + ρ0u1 · ∇u0 + ρ0u0 · ∇u1 + ρ1u0 · ∇u0 = 0, (2.6)

∂s1

∂t
+ u1 · ∇s0 + u0 · ∇s1 =

rq1

p0
− rq0

p2
0

p1 (2.7)

The linearized state equation and entropy expression are:

p1

p0
− ρ1

ρ0
− T1

T0
= 0 and

s1

Cv
=
p1

p0
− γ ρ1

ρ0
. (2.8)

2.2. Linearized Euler Equations in frequency space
Writing any fluctuating quantity g1(x, t) as g1 = ĝ(x)e−jωt, one obtains:

û · ∇ρ0 + ρ0∇ · û + u0 · ∇ρ̂+ ρ̂∇ · u0 = jωρ̂, (2.9)

1
ρ0
∇p̂+ û · ∇u0 + u0 · ∇û +

u0 · ∇u0

ρ0
ρ̂ = jωû, (2.10)

û · ∇s0 + u0 · ∇ŝ+
rq0

p2
0

p̂− r

p0
q̂ = jωŝ (2.11)

and
p̂

p0
− ρ̂

ρ0
− T̂

T0
= 0 and

ŝ

Cv
=

p̂

p0
− γ ρ̂

ρ0
. (2.12)

Using Eq. 2.12 to eliminate p̂ in equations 2.9, 2.10 and 2.11, one obtains:

(∇ · u0 + u0 · ∇) ρ̂+ (∇ρ0 + ρ0∇) · û = jωρ̂, (2.13)(
∇c20
ρ0

+
u0 · ∇u0

ρ0
+
c20
ρ0
∇
)
ρ̂+ (∇u0 ·+u0 · ∇) û + (γ − 1)T0

(
∇p0

p0
+∇

)
ŝ = jωû,

(2.14)
γrq0

ρ0p0
ρ̂+∇s0 · û +

(
u0 · ∇+ (γ − 1)

q0

p0

)
ŝ− r

p0
q̂ = jωŝ (2.15)
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Figure 1. Definition of the flow domain for the derivation of the quasi-1D approximation.

Assuming that the unsteady heat release amplitude q̂ is modeled as a linear operator
of the amplitudes ρ̂, û and ŝ, formally written as q̂ = qρ̂ρ̂+ qû · û + qŝŝ, equations 2.13,
2.14 and 2.15 define the following eigenvalue problem:

AV = jωV (2.16)

with

A =

 ∇ · u0 + u0 · ∇ ∇ρ0 ·+ρ0∇· 0
∇c20
ρ0

+ u0·∇u0
ρ0

+ c20
ρ0
∇ ∇u0 ·+u0 · ∇ (γ − 1)T0

(
∇p0
p0

+∇
)

γrq0
ρ0p0
− r

p0
qρ̂ ∇s0 · − r

p0
qû· u0 · ∇+ (γ − 1) q0p0 −

r
p0
qŝ

 (2.17)

and (ω,V) the eigenpair, the eigenvector being V = (ρ̂, û, ŝ)T .

2.3. Quasi-1D approximations
In this paper, we restrict ourselves to 1D or quasi-1D configurations in order to focus
on the mean Mach number effect, avoiding issues related to waves scattering by shear
layers/vortices, complex geometries, and/or high order boundary conditions which are
required when non planar, high frequency perturbations interact with the edge of the
domain. Note that to remain consistent with the (quasi-)1D assumption that will be
made hereafter, modes with 2D or 3D spatial structure must be excluded from the be-
ginning. To this end, only frequencies smaller than the cut-off frequency of the duct
will be considered in section 4. Another consequence of the quasi-1D framework is that
vorticity perturbations are not present in the test cases considered, thus zeroing the
acoustic/vorticity mode interactions which arise, even in the linear regime, as soon as
the mean flow is non-uniform. However, since a) acoustic/entropy waves interactions can
properly be accounted for under the 1D assumption and b) the entropy mode contains
the largest part of the energy of the fluctuations when combustion is present [42], it is
believed that 1D or quasi-1D configurations are relevant enough for studying the major
effects of the baseline flow being not at rest.

The derivation of the quasi-1D counterparts of the equations of motion is rather stan-
dard; it is given in appendix for completeness and also because it is most often offered
under the isentropic assumption. These equations describe the space-time evolution of
small amplitude perturbations (subscript ’1’) super imposed to a steady baseline flow
(subscript ’0’) defined over a quasi-1D flow domain Ω whose cross section area S is a
slowly varying function of the principal axis of the domain, the x-direction say (see Fig.
1). After some algebra (see appendix), the following set of linear differential equations
can be obtained for the cross section averaged fluctuating quantities:

∂ρ1

∂t
+ u1

∂ρ0

∂x
+ ρ0

∂u1

∂x
+ u0

∂ρ1

∂x
+ ρ1

∂u0

∂x
+
ρ0u1 + ρ1u0

S
∂S
∂x

= 0, (2.18)
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ρ0
∂u1

∂t
+
∂p1

∂x
+ ρ0u1

∂u0

∂x
+ ρ0u0

∂u1

∂x
+ ρ1u0

∂u0

∂x
= 0, (2.19)

∂s1

∂t
+ u1

∂s0

∂x
+ u0

∂s1

∂x
=
rq1

p0
− rq0

p2
0

p1 (2.20)

Once written in the Fourier space, Eqs. 2.18-2.20 lead to an eigenvalue problem of the
type Eq. 2.16 with the following quasi-1D linear operator in place of A:

A1D =


∂u0
∂x + u0

∂
∂x + u0

S
∂S
∂x

∂ρ0
∂x + ρ0

∂
∂x + ρ0

S
∂S
∂x 0

1
ρ0

∂c20
∂x + u0

ρ0
∂u0
∂x + c20

ρ0
∂
∂x

∂u0
∂x + u0

∂
∂x (γ − 1)T0

(
1
p0

∂p0
∂x + ∂

∂x

)
γrq0
ρ0p0
− r

p0
qρ̂

∂s0
∂x −

r
p0
qû u0

∂
∂x + (γ − 1) q0p0 −

r
p0
qŝ


(2.21)

The eigenvector is now the 1D counterpart of V, viz. V1D = (ρ̂, û, ŝ)T .
The quasi-1D approximation is often used to described isentropic nozzles where the

fluctuating motion remains isentropic if no entropy fluctuations are injected through the
inlet Sin. In this case, the relevant equation has the form of Eq. 2.16 written for the
following simplified quasi-1D acoustic operator in place of A:

A1D,ac =

[
∂u0
∂x + u0

∂
∂x + u0

S
∂S
∂x

∂ρ0
∂x + ρ0

∂
∂x + ρ0

S
∂S
∂x

1
ρ0

∂c20
∂x + u0

ρ0
∂u0
∂x + c20

ρ0
∂
∂x

∂u0
∂x + u0

∂
∂x

]
(2.22)

The eigenvector is now the acoustic 1D counterpart of V1D, viz. V1D,ac = (ρ̂, û)T .

2.4. 1D Uniform ducts
In general, there is no analytical solution to the set of equations 2.18-2.20, even in the 1D
case where S is constant. However, it is sometimes possible to recast the mathematical
problem into a single ordinary differential equation for a proper acoustic variable so that
an analytical solution can be found [43–45]. One of the most general cases treated in
this way corresponds to a 1D duct with linear temperature profile, constant pressure
and velocity [46]; it is then possible, at least in the low Mach number regime, to derive
a solvable hypergeometric equation for a mapping of the acoustic pressure. The easiest
situation corresponds to an isothermal, isobaric zero Mach number mean flow where the
above set of equations reduces to a second order, constant coefficient wave equation for
the pressure fluctuations. It is then common use to seek for the harmonic solution of the
form:

p1(x, t) = Re [p̂(x)exp (−jωt)] , with p̂(x) = A+exp (jkx) +A−exp (−jkx)

where A+exp (jkx) and A−exp (−jkx) stand for the forward and backward propagating
waves respectively (A+ and A− are the associated pre-exponential factors) and k = ω/c0
is the acoustic wave number. When the mean flow is not at rest but at constant speed
u0, the two waves do not propagate at the same speed and one uses instead:

p̂(x) = A+exp
(
jk+x

)
+A−exp

(
−jk−x

)
(2.23)

where k+ = ω/(c0 + u0) = k/(1 + M) and k− = ω/(c0 − u0) = k/(1 −M). Injecting
this expression into Eq. 2.19 written under the uniform mean velocity assumption, one
obtains:

dû

dx
− j k

M
û = − 1

ρ0u0

dp̂

dx
, (2.24)

so that the velocity complex amplitude reads:

û(x) =
1

ρ0c0

[
A+exp

(
jk+x

)
−A−exp

(
−jk−x

)]
(2.25)
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Moreover, since the entropy perturbations propagate at the fluid velocity, one may write
the corresponding complex amplitude as:

ŝ(x) = Eexp (jksx) (2.26)

where ks = k/M is the entropy wave number. Injecting the above expressions of the
complex amplitudes into Eqs. 2.12 one deduces:

ρ̂ =
p̂

c20
− ρ0E

Cp
ejksx and

T̂

T0
=
γ − 1
ρ0c20

p̂+
E
Cp
ejksx (2.27)

It follows from the above statements that describing the harmonic small amplitude
perturbations over an isothermal, constant velocity 1D mean flow requires the calculation
of three pre-exponential factors A+, A− and E . These complex valued coefficients are
obtained by prescribing physical boundary conditions: when the mean flow is subsonic,
two conditions must be given at the inlet section (as two waves enter the domain) and
one at the outlet where only the backward propagating acoustic wave enters the domain.
More interesting configurations can be considered by connecting N uniform homentropic
segments. This is what is done in the Low-order methods discussed in the introduction.
At each interface, three jump relations are specified so that the 3N unknown waves
(3 per segments) can be obtained thanks to the three inlet/outlet conditions and the
3(N − 1) interface conditions. Assuming that such an interface is located at x = xi, the
jump conditions are obtained by integrating Eqs. A 8-A 10 between xi−η and xi+η and
taking the limit η → 0+. In the case where the two connected ducts share the same cross
section area S, this leads to:

[ρ u] = 0, (2.28)

[p+ ρ u u] = 0, (2.29)

[ρ u s] = Qs, (2.30)

where [ ] is the jump operator at interface x = xi and Qs is the volume integral of the RHS
of Eq. A 10, viz. q/T . In this approach, the heat release q is present only at the interface
since each segment is homentropic; thus q(x, t) = Q(t)δ(x − xi), where δ(x − xi) is the
Dirac distribution located at x = xi. This interface heat release generates a temperature
jump so that Qs cannot be interpreted easily. It is more suitable to use the total energy
conservation equation in order to derive the third jump condition, viz.:

∂ρE

∂t
+
∂ρuH

∂x
= q,

where the total energy is E = CvT + u2/2 and the total enthalpy reads H = E + p/ρ =
CpT + u2/2. After integration between x− ε and x+ ε one obtains:[

ρ u H
]

= Q, (2.31)

where the RHS is simply the total heat release. In terms of complex valued amplitudes of
the fluctuations, one obtains the following jump relations by linearizing Eqs. 2.28, 2.29
and 2.31:

[ρ0û+ u0ρ̂] = 0, (2.32)[
p̂+ 2ρ0u0û+ u2

0ρ̂
]

= 0, (2.33)[(
CpT0 +

1
2
u2

0

)
(ρ0û+ u0ρ̂) + ρ0u0

(
CpT̂ + u0û

)]
= Q̂, (2.34)
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where Q(t) = Re
(
Q̂exp(−jωt)

)
.

2.5. Zero Mach number mean flow
When dealing with thermo-acoustic instabilities, it is often claimed that the mean Mach
number is small enough to consider that the baseline flow is at rest. According to the order
of magnitude analysis proposed by Nicoud et al. [29], ’small enough’ means M << δf/La,
where δf and La are the characteristic flame thickness and acoustic wavelength. Assuming
u0 = 0, taking the time derivative of Eq. 2.5, adding the divergence of Eq. 2.6 divided
by ρ0 and using Eqs. 2.8 and 2.7 to eliminate ρ1 yield the following wave equation for
the pressure fluctuations p1:

∇ ·
(

1
ρ0
∇p1

)
− 1
γp0

∂2p1

∂t2
= −γ − 1

γp0

∂q1

∂t
. (2.35)

Note that no assumption has been made about the spatial evolution of the isentropic
coefficient γ to derive Eq. 2.35. If γ is constant over space, one recovers the classical
equation for inhomogeneous medium with the elliptic term being ∇ ·

(
c20∇p1

)
. Written

in the frequency space, Eq. 2.35 leads to the classical Helmholtz equation :

∇ ·
(

1
ρ0
∇p̂
)

+
ω2

γp0
p̂ = iω

γ − 1
γp0

q̂(x), (2.36)

Three types of boundary conditions are usually associated to Eq. 2.36 (nBC denotes the
outward unit normal vector to the boundary ∂Ω of the flow domain):
• Zero pressure: this corresponds to fully reflecting outlets where the outer pressure is
imposed strongly to the flow domain, zeroing the pressure fluctuations:

p̂ = 0, on the boundary ∂ΩD, (2.37)

• Zero normal velocity, viz. û · nBC = 0: this corresponds to fully rigid walls or re-
flecting inlets where the velocity of the incoming flow is imposed, zeroing the velocity
fluctuations. Under the zero Mach number assumption, Eq. 2.6 can be used to re-write
this condition as a Neumann condition for the acoustic pressure:

∇p̂ · nBC = 0, on the boundary ∂ΩN , (2.38)

• Imposed reduced complex impedance Z = p̂/ρ0c0û · nBC. Under the zero Mach
number assumption, this condition can be re-written as a Robin condition for the
acoustic pressure:

c0Z∇p̂ · nBC − iωp̂ = 0, on the boundary ∂ΩZ , (2.39)

Associated with the homogeneous boundary conditions 2.37, 2.38 and 2.39 on ∂Ω =
∂ΩD

⋃
∂ΩN

⋃
∂ΩZ , equation 2.36 defines a non-linear eigenvalue problem which can be

solved as soon as a model is provided for the unsteady heat release q̂.

2.6. Flame model
Modeling the unsteady behavior of the flame is the most challenging part in the descrip-
tion of thermo-acoustic instabilities [47]. Several models have been proposed in the past
to describe the response of conic or V-shape laminar flames [48], accounting for non-linear
saturation effects [49] and equivalence ratio fluctuations [50, 51]. Most models available
so far relate the global heat release across the flame zone to the acoustic velocity in the
cold gas region upstream the flame. For example the n− τ model [52, 53] reads:

Q̂ = Sref
γp0

γ − 1
n exp(iωτ)û(x−f ), (2.40)
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where n and τ denote the interaction index and time delay, Q̂ is the complex valued
amplitude of the total unsteady heat release over the flow domain, viz.

∫
x
q̂(x)dx and

Sref is the cross section area of the duct. At last, û(x−f ) is the velocity perturbation
immediately upstream of the flame interface. This modeling strategy is supported by the
idea that heat release depends on the flame surface which, the flame speed being given,
is mainly controlled by a time lagged version of the fresh gas flow rate. As an extension
to the global n− τ model, Eq. 2.40, it is rather natural to relate the pointwise unsteady
heat release q̂(x) to an upstream reference acoustic velocity through a local n− τ model
[29]. This amounts to:

q1(x, t)
qtot

= nu(x)
u1(xref , t− τu(x)) · nref

Ubulk
, (2.41)

where nu(x) and τu(x) are fields of interaction index and time lag and nref is a fixed
unitary vector defining the direction of the reference velocity. The scaling by the total
heat release qtot and the bulk velocity Ubulk has been used to make sure that nu(x) has
no dimension. Once converted into the frequency space, this model leads to

q̂(x) =
qtot

Ubulk
nu(x)ejωτu(x)û(xref) · nref . (2.42)

where the acoustic velocity can be replaced by the pressure gradient (jωû = ∇p̂/ρ0) if
the zero Mach number assumption is made.

3. CONFIGURATIONS AND NUMERICAL TOOLS
Three different numerical tools have been used in the course of this study to solve the

different mathematical formulations discussed in section 2, all of them being based on
the linear assumption:
• The general purpose AVSP code [29] for the computation of the thermo-acoustic
modes in complex geometries from the resolution of Eq. 2.36, viz. assuming zero Mach
number mean flow,
• The tool NOZZLE for the computation of the acoustic impedance of accelerated
regions from the resolution of equations related to the quasi-1D acoustic operator of
Eq. 2.22. NOZZLE aims at producing relevant boundary conditions for thermo-acoustic
analysis based on Eq. 2.36 and for which the accelerated regions must be excluded from
the computational domain,
• The tool LEE-Q1D for computing the modes related to the quasi 1D Linearized
Euler Equations from the eigenvalue problem defined by Eqs. 2.16 and 2.21.

These three numerical tools are described in the following sections.

3.1. Thermo-acoustic modes with zero Mach number - The AVSP code
Assuming that the sound speed c0 and the density ρ0 distributions over space are known,
Eq. 2.36 can be solved for the pressure amplitude and the frequency as soon as a model
provides the unsteady heat release q̂ from the knowledge of the acoustic field p̂. A Galerkin
finite element method can be used to transform Eq. 2.36 into a nonlinear eigenvalue
problem of size close to N (the number of nodes in the finite element grid used to discretize
the geometry) of the form:

[A][P ] + ω[B(ω)][P ] + ω2[C][P ] = [D(ω)][P ] (3.1)

where [P ] is the column vector containing the nodal values of the eigenmode at frequency
ω and [A] and [C] are square matrices depending only on the discretized geometry of the
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combustor and mean flow fields c0 and ρ0. Matrix [B] contains information related to the
boundary conditions and thus depends on ω since in general Z is frequency dependent.
Matrix [D] contains the unsteady contribution of the flame, viz. q̂, and usually depends
non-linearly on the mode frequency ω (see Eq. 2.42). Thus, Eq. 3.1 defines a non-linear
eigenvalue problem which must be solved iteratively, the kth iteration consisting in solving
the quadratic eigenvalue problem in ωk defined as:

([A]− [D(ωk−1)]) [P ] + ωk[B(ωk−1)][P ] + ω2
k[C][P ] = 0. (3.2)

A natural initialization is to set [D](ω0) = 0 so that the computation of the modes
without acoustic/flame coupling is in fact the first step of the iteration loop. Usually,
only a few (typically less than 5) iterations are enough to converge toward the complex
frequency and associated mode.

Note that a quadratic problem must be solved at each iteration Eq. 3.2. These problems
are rather well known from a theoretical point of view; they can efficiently be solved
numerically once converted into an equivalent linear problem of size 2×N [54]; we are then
using a parallel implementation of the Arnoldi method [55] available in the P-ARPACK
library. Another option is to solve the quadratic eigenvalue problem directly without
linearizing it; a specific algorithm must then be used instead of the Arnoldi approach.
A good candidate is the Jacobi-Davidson method [56] which has recently been applied
successfully to combustion instability problems [57]. However, since computational time
is not an issue in the present study (only simple geometries are considered), the well
established Arnoldi method has been used. More details regarding the AVSP code can
be found in [29].

3.2. Acoustic impedance of non-compact nozzles - The NOZZLE code
The purpose of the NOZZLE tool is to compute the acoustic impedance of diffusers/nozzles
under the isentropic mean flow assumption; it can be seen as a way to extend previous
analytical results [38] to non compact nozzles. The appropriate equations to be consid-
ered are the quasi-1D linearized Euler equations written in the frequency space and under
the constant mean entropy assumption. These equations can thus be written under the
form:

A1D,acV1D,ac − jωV1D,ac = 0 (3.3)

with V1D,ac = (ρ̂, û)T and A1D,ac given as in Eq. 2.22. Although formally similar to Eq.
2.16, the above equation should not be interpreted as an eigenvalue problem but rather
as a linear system of equations whose unknown is V1D,ac, assuming that the frequency
ω is fixed a priori. Once discretized, Eq. 3.3 can be converted into an algebraic linear
system of size close to twice the number of grid points:

[A1D,ac][V1D,ac] = [BT ] (3.4)

where V1D,ac is the discrete counterpart of the vector of acoustic unknowns V1D,ac, the
matrix [A] depends on both ω and the details of the spatial discretization and the
right-hand-side term comes from possibly non homogeneous boundary conditions. In
the present study, a first order upwind biased finite difference approximation has been
used to discretize Eq. 3.3.

For any quasi-1D flow domain with inlet and outlet section Sin and Sout respec-
tively (see figure 1), the following procedure is used to compute the equivalent acoustic
impedance:

(a) fix the frequency ω,
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(b) impose a non zero forward propagating acoustic wave at the inlet section Sin. The
corresponding boundary condition is obtained by combining Eqs. 2.23 and 2.25 to
relate p̂ and û at x = xin, viz.

2A+exp
(
jk+xin

)
= p̂+ ρ0c0û,

where A+ is set to any non zero value to ensure that the inlet condition is non homo-
geneous,
(c) define the appropriate boundary condition to be prescribed at the outlet section
depending on whether the mean flow is subsonic or supersonic, typically imposed
pressure or no boundary condition respectively,
(d) solve the corresponding linear system Eq. 3.4,
(e) compute the acoustic equivalent impedance as Zin = p̂/ρ0c0û assessed at x = xin.
Note that when the mean flow is subsonic, there is a backward propagating wave

entering the domain through the outlet section Sout so that an outlet boundary condition
is required. In this case case, the above procedure turns out to provide a way to transform
a supposedly known acoustic boundary condition at Sout to another condition at Sin. For
example, when the flow domain is a nozzle, this procedure allows to displace an acoustic
boundary condition at a high speed section to an upstream, low Mach number position.
In the case where the nozzle is choked, no extra acoustic condition is required since no
wave can enter the domain through the outlet section Sout. In the particular case where
the outlet section coincides with the location of the throat, the proper acoustic impedance
to impose at Sout is given by Lieuwen and Yang [5]:

Zth =
2du0
dx − jω

(γ − 1)du0
dx − jω

(3.5)

and the procedure above allows to convert this impedance condition valid at the sonic
throat to another condition valid at an upstream, low Mach number location.

3.3. Thermo-acoustic modes with non-zero Mach number - The LEE-Q1D code
The proper framework for this tool are the Linearized Euler Equations written in the
frequency space under the quasi-1D approximation, Eq. 2.16, with the matrix operator
defined as in Eq. 2.21, viz.

A1DV1D = jωV1D (3.6)
Using an appropriate spatial discretization leads to an algebraic eigenvalue problem of
the form:

[A1D][V1D] = jω[V1D] (3.7)
where obvious notations have been used. Note that similarly to the situation depicted
in section 3.1, the [A1D] matrix may depend on the frequency ω as soon as frequency
dependent boundary conditions are considered; in this case the above eigenvalue problem
cannot be solved directly by the Arnoldi algorithm but requires an iterative procedure
similar to Eq. 3.2.
Since the entropy fluctuations are kept in this formulation, viz. V1D = (ρ̂, û, ŝ)T , the
size of matrix [A1D] is close to three times the number of grid points. In the course
of this study, a mixed second order centered/first order upwind biased finite difference
approximation has been used in order to generate the [A1D] matrix from the mathematical
expression given in Eq. 2.21 (centered scheme for the ρ̂ and û equations, upwind biased
scheme for the ŝ equation); a staggered grid arrangement (velocity stored at the cell edges,
density and entropy fluctuations stored at the cell centers) has been used in order to avoid
the pressure field to be contaminated by the classical odd-even decoupling phenomenon.
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Figure 2. Principle of the academic configuration for studying the mean Mach number effects
with respect to the boundary conditions (choked nozzle).

L (m) Lc (m) γ r (S.I) p0 (Pa) T0 (K)
1.0 0.9 1.4 287 101325 300 (K)

Table 1. Main physical parameters used for configuration of Fig. 2.

4. RESULTS
The tools described in section 3 are now used to perform the thermo-acoustic analysis

of several academic configurations with the aim to assess the Mach number effects on the
resulting modes of oscillation. All the results presented are essentially free of numerical
errors since grid convergence has been obtained in all the cases discussed. Typically, 1000
to 3000 grid points were used to represent the quasi-1D configurations discussed in the
following sections. The height of the ducts considered in the following sections are not
specified since only 1D modes are considered; it may simply be though as small enough
to ensure that the frequencies discussed are smaller than the cutoff frequency of the
corresponding configuration.

4.1. Baseline flow effect on the boundary conditions
4.1.1. Academic configuration I

The configuration considered in this section is shown in figure 2. It consists in a constant
cross section channel (the combustion chamber) of length Lc mounted on a nozzle (the
high pressure distributor or first compressor stage) of length L − Lc. The mean flow is
assumed isentropic so that it is uniform over the combustion chamber, with M in

0 the
corresponding Mach number. The nozzle profile has been designed from the classical
isentropic mean flow equations so that it produces an increase in the mean Mach number
of the form:

M(x) = M in
0 +

(
Mout

0 −M in
0

) ( x− Lc
L− Lc

)3

, (4.1)

for x ≥ Lc. The nozzle can be made choked (resp. unchoked) by setting the exit
Mach number Mout

0 larger (resp. smaller) than unity; the duct between Lc and L has
a convergent-divergent shape if choked and is convergent otherwise. When a throat is
present it is located at xthroat. The effect of upstream Mach number can be assessed by
considering different inlet Mach number values. The geometrical, physical and inlet base-
line flow parameters that have been used are given in table 1 from which one can deduce
the following inlet speed of sound and density: c0 ' 347.2 m/s and ρ0 ' 1.177 kg/m3.

The two main cases considered in the following correspond to Mout
0 = 0.8 and Mout

0 =
1.5 respectively, values chosen as representative to the distributor of a gas turbine under
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idle and standard operating conditions respectively. In each case, different inlet Mach
number values have been considered, viz. M in

0 = 0.01; 0.1; 0.2; 0.3 and 0.4 while zero
velocity fluctuation is assumed at the inlet section (û(x = 0) = 0). Note that the modal
analysis can only be performed for homogeneous boundary conditions so that the al-
gebraic problem which results from the spatial discretization is indeed an eigenvalue
problem. To this respect, the most natural choice for the entropy fluctuations is to use a
Dirichlet condition at the inlet, viz. ŝ(x = 0) = 0. In absence of a mean entropy gradient
and combustion, the equation for the entropy fluctuations then reduces to (see Eq. 2.21):

u0
dŝ

dx
= jωŝ, with ŝ(x = 0) = 0,

whose only solution is ŝ = 0. The configuration depicted in Fig. 2 is thus purely acoustic
and the modal analysis can be equivalently done with Eq. 2.21 or Eq. 2.22.

4.1.2. Modal analysis
The modal analysis of the cases described above has been performed in two different

ways in order to assess to error related to the zero Mach number assumption for the
mean flow:

(a) Method M1: by solving the eigenvalue problem associated to the quasi-1D Lin-
earized Euler Equations discretized over the entire domain 0 ≤ x ≤ L (LEE-Q1D tool
of section 3.3). Since no specific assumption is made regarding the nozzle compactness
or the mean Mach number, this approach provides the reference solution. Note that
it has been checked in the choked nozzle case, as expected from a theoretical point
of view, that the results do not change if the computational domain is restricted to
0 ≤ x ≤ xrestrict where xrestrict is anywhere between the throat location xthroat and the
original domain outlet x = L. In the unchoked nozzle case, a zero pressure fluctuation
condition is imposed at the outlet section,
(b) Method M2: by solving the eigenvalue problem associated to the Helmholtz equa-
tion derived under the zero Mach number assumption for the mean flow and discretized
over the combustion chamber, viz. 0 ≤ x ≤ Lc (AVSP code of section 3.1). The outlet
boundary condition is then obtained from the impedance assessed at x = Lc from
the technique described in section 3.2 (NOZZLE tool). Consistently with the previous
item, the outlet pressure is zeroed at x = L when computing the equivalent impedance
of an unchocked nozzle while the condition Eq. 3.5 has been used at x = xthroat in the
choked case.

Note that the way to proceed depicted in item (b) is strictly equivalent to what is
done in practical modal analysis of complex geometries [29, 31] so that the comparison
proposed in the following provides a relevant assessment of the error related to the zero
Mach number assumption for the mean flow with respect to the outlet condition.

4.1.3. Results
The first eigen-frequencies obtained when applying methods M1 and M2 of sec-

tion 4.1.2 to the academic configuration of section 4.1.1 are given in table 2, for both the
unchoked and the choked cases. The frequency dependent boundary impedances used at
x = Lc for method M2 are illustrated for the choked case in figure 3 which displays the
modulus and argument of the reflexion coefficient R = (Z− 1)/(Z+ 1). For all the Mach
number values considered, the argument of R tends to zero for vanishing frequencies,
in agreement with the real valued impedance found by Marble and Candel [38] under
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Figure 3. Outlet reflexion coefficient computed from NOZZLE (section 3.2) for the
choked case: Top left: modulus; Top right: non-dimensionalized modulus; Bottom: phase.

:M in
0 = 0.01; :M in

0 = 0.1; :M in
0 = 0.2; :M in

0 = 0.4. Symbols denote the
compact approximation Z = 2/(γ − 1)M in

0 .

the compact nozzle approximation, viz. Z = 2/(γ − 1)M in
0 , and corresponding reflexion

coefficient R =
(
1− (γ − 1)M in

0 /2
)
/
(
1 + (γ − 1)M in

0 /2
)
. Note that this approximation

is in full agreement with the numerical assessments for small frequency values. Fig. 3 also
indicates that the range of validity of the compact approximation is smaller for larger
Mach numbers. For example, for M in

0 = 0.01, the actual modulus of R is 5 % off its
compact approximation for f ' 1300 Hz, whereas the same error is obtained at f ' 300
Hz for M in

0 = 0.4. This suggests that the critical Helmholtz number f(L− Lc)/c0 below
which the compact nozzle approximation is justified does in fact depend on the Mach
number; it would be approx. 0.35 for M in

0 = 0.01 but only 0.085 for M in
0 = 0.4. The same

trend can be observed for the phase of the reflexion coefficient.
In table 2, the relative error is defined as 2(φM2−φM1)/(φM2−φM1), where φ stands for

either the real or imaginary part of the frequency and the index M1 (resp. M2) denotes
Method M1 (resp. Method M2). As expected, the error is essentially zero for the small-
est inlet Mach number, M in

0 = 0.01, since in this case the zero Mach number assumption
for the mean flow is fully justified. For higher values of the Mach number within the com-
bustion chamber, the M2 method systematically overestimates the frequency amplitude
(relative errors are always positive), significant errors (10 % or more) being obtained for
inlet Mach numbers larger than 0.2. Note also that the error behaves essentially in the
same way for both the unchoked and choked case, indicating that the main source of
error is indeed the combustion chamber.
The relative error in the frequency of oscillation can actually be retrieved by the fol-

lowing simple reasoning. Calling T+ and T− the times of propagation of an acoustic
perturbation traveling throughout the combustion chamber in the forward and backward
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M in
0 Method M1 Method M2 εr εi εth

0.01 187.23− 0.48i 187.24− 0.49i 0.0 2.1 0.0
0.10 180.57− 4.61i 182.45− 4.87i 1.0 5.5 1.0
0.20 173.53− 9.15i 180.96− 10.08i 4.2 9.7 4.1
0.30 163.75− 13.93i 180.33− 16.30i 9.6 15.7 9.4
0.40 151.25− 19.54i 180.68− 24.64i 17.7 23.3 17.4

0.01 188.19− 0.14i 188.22− 0.12i 0.0 15.4 0.0
0.10 181.62− 1.31i 183.54− 1.40i 1.1 6.6 1.0
0.20 173.90− 2.48i 181.42− 2.77i 4.2 11.0 4.1
0.30 163.11− 3.45ii 179.68− 4.15i 9.7 18.4 9.4
0.40 149.01− 4.17i 177.86− 5.56i 17.7 28.6 17.4

Table 2. First eigenfrequencies (Hz) obtained from Methods M1 and M2 for the unchoked
(Mout

0 = 0.8 - first five rows) and choked (Mout
0 = 1.5 - last five rows) case. The forth and

fifth columns contained the relative error (%) for the real and imaginary part of the frequencies
respectively. The last column is 2(M in

0 )2/(2− (M in
0 )2).

M in
0 0.01 0.1 0.2 0.4

Numerical impedance 188.22− 0.12i 183.54− 1.40i 181.42− 2.77i 177.86− 5.56i
Compact nozzle 192.86− 0.12i 190.95− 1.22i 185.13− 0.50i 162.02− 4.13i

Table 3. First eigenfrequencies (Hz) obtained from Method M2 for the choked nozzle case by
using either the numerically (see section 3.2) or analytically (compact approximation - [38])
assessed outlet impedance at x = Lc.

direction respectively, viz. T+ = Lc/c0(1+M in
0 ) and T− = Lc/c0(1−M in

0 ), the frequency
of oscillation can be assessed as f ' 1/(T+ +T−) = c0(1− (M in

0 )2)/2Lc. Comparing the
classical zero Mach number value of the frequency f0 = c0/2Lc against f , the theoretical
relative error is then εth = 2(f0−f)/(f0 +f) ' 2(M in

0 )2/(2− (M in
0 )2). As shown in table

2, this assessment nicely reproduces the observed results.
The frequencies obtained numerically and reported in table 2 can be further validated

since the problem actually considered when method M2 is used can be solved semi-
analytically. Indeed, since the combustion chamber is a constant cross section duct, Eqs.
2.23-2.25 are suitable to represent the acoustic fluctuations. The upstream boundary
condition û(x = 0) = 0 imposes the equality of the wave amplitudes, viz. A+=A−,
whereas the outlet impedance condition allows writing a dispersion relation of the form:

exp
(
jk+Lc

)
+ exp

(
−jk−Lc

)
= Z(ω)

[
exp

(
jk+Lc

)
− exp

(
−jk−Lc

)]
(4.2)

Assuming that Z(ω) is known (either analytically or numerically), Eq. 4.2 can be solved
numerically to obtain the corresponding eigen-frequencies. If the boundary impedance
depicted in Fig. 3 is injected into Eq. 4.2, the frequencies obtained are essentially the
same as those given in the method M2 column of table 2, supporting the fact that
the results presented are essentially free of numerical errors. However, if the analytical
approximation of Marble and Candel [38] is used instead, viz. Z = 2/(γ− 1)M in

0 , table 3
shows that some differences in the frequencies can be observed. These differences are
moderate (less than 5 %), as it could have been anticipated from the previous discussion
of Fig. 3 (the first eigenmode frequency is below 300 Hz). Note however that larger errors
can be obtained for higher order modes (e.g. 486− 0.5i instead of 454− 0.5i for the third
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Figure 4. Principle of the academic configuration for studying the mean Mach number effects
with respect to the flame/acoustic coupling.

mode at M in
0 = 0.4). Still, the main result from this isentropic configuration is that a)

the errors from the zero Mach number assumption for the mean flow are moderate for
moderate Mach numbers and b) that the main source of error is the change in the speed
of propagation of the pressure waves rather that the boundary conditions themselves.

4.2. Mean flow effect on the flame/acoustic coupling
4.2.1. Academic configuration II

The configuration considered in this section is shown in figure 4. It consists in a constant
cross section channel of length L with a 1D flame of characteristic thickness δf located
at x = xf . The mean flow is isentropic only in regions where combustion does not occur.
Due to thermal expansion, the mean flow velocity increases continuously from uin

0 to uout
0

when the gas mixture is heated from T in
0 to T out

0 . The baseline flow is defined in order to
ensure constant mass flux m0 = ρ0u0, impulsion J0 = p0 + ρ0u

2
0 and conservation of the

total temperature, viz. ρ0u0CpdTt0/dx = q0, with Tt0 = T0 + u2
0/(2Cp). More precisely

the following analytical evolution for static temperature has been selected in order to
mimic the presence of an anisentropic region (the flame):

T0 =
T in

0 + T out
0

2
+
T out

0 − T in
0

2
tanh

(
3
x− xf
δf

)
, (4.3)

The mean flow is then entirely determined by the choice of three independent quantities,
for example the inlet pressure pin

0 , temperature T in
0 , Mach number M in

0 . Since the ob-
jective is to assess the mean flow effects related to the flame, simple acoustic boundary
conditions are used in this section: zero velocity fluctuation at the inlet (û(x = 0) = 0)
and pressure fluctuation at the outlet (p̂(x = L) = 0). As for the academic configura-
tion I described in section 4.1.1, the most natural homogeneous boundary condition is
ŝ(x = 0) = 0 so that only entropy fluctuations arising from the flame-acoustic coupling
will be present in the modes computed.

4.2.2. Modal analysis
The mean flow effects on the thermo-acoustic modes of configuration II are assessed

by comparing the results using methods M1 and M2 (as defined in section 4.1.2) with
various inlet Mach numbers. Note that the problem depicted in Fig. 4 can be solved
semi-analytically in the limit case where δf −→ 0 [33]. The mean flow is then isentropic
in each of the two subdomains 0 ≤ x < xf and xf < x ≤ L separated by the infinitely
thin flame located at xf . Thus harmonic pressure, velocity and entropy fluctuations are
given as in Eqs. 2.23, 2.25 and 2.26 in each of the above domains and the solution is
entirely known as soon as six wave amplitudes have been determined: two acoustic and
one entropy wave in each sub-domain, viz. A+

u , A−u , Eu, A+
b , A−b , and Eb, with index ’u’
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and ’b’ denoting the unburnt and burnt gas respectively. From the boundary condition
ŝ(x = 0) = 0, it follows immediately that Eu = 0 so that only five wave amplitudes need
to be computed. These waves are solutions of an homogeneous linear system of equations
obtained by requiring that the boundary conditions (û(x = 0) = 0, p̂(x = L) = 0) and
jump relations Eqs. 2.32-2.34 are fulfilled. After some algebra one obtains:

MW = 0 (4.4)

with

M =


(1 +Mu)ejk

+
u xf (Mu − 1)e−jk

−
u xf −(Mb + 1) cu

cb
ejk

+
b
xf −(Mb − 1) cu

cb
e−jk

−
b
xf Mb

cu

cb

(1 +Mu)2ejk
+
u xf (Mu − 1)2e−jk

−
u xf −(Mb + 1)2ejk

+
b
xf −(Mb − 1)2e−jk

−
b
xf M2

b

M31 M32 M33 M34 M3
b /2

1− Zu 1 + Zu 0 0 0
0 0 (1− Zb) ejk

+
b
L (1 + Zb) e−jk

−
b
L 0

 ,
(4.5)

M31 =
cu
cb

(
(1 +Mu)

[
Mu + 1/(γ − 1) +M2

u/2
]

+ nejωτ/(γ − 1)
)
ejk

+
u xf

M32 =
cu
cb

(
(1−Mu)

[
Mu − 1/(γ − 1)−M2

u/2
]
− nejωτ/(γ − 1)

)
e−jk

−
u xf

M33 = −(1 +Mb)
[
Mb + 1/(γ − 1) +M2

b /2
]
ejk

+
b
xf

M34 = −(1−Mb)
[
Mb − 1/(γ − 1)−M2

b /2
]
e−jk

−
b
xf , (4.6)

and W =
(
A+
u A−u A+

b A
−
b Eb

)T
. The dispersion relation is then obtained by requiring

the matrixM to be singular. Although it cannot be handled analytically, this dispersion
relation can easily be solved numerically, producing the semi-analytical solution to the
problem in the infinitely thin flame limit.

4.2.3. Results
Figure 5 displays the frequencies of the first three modes of the academic configuration

II for L = 1 m, T in
0 = 300 K, T out

0 = 1200 K and pin = 101325 Pa; the flame position
and thickness are xf = L/2 and δf ' 0.047 L respectively. Note that similar results are
observed with different values of xf and δf although the Mach number effect on a par-
ticular mode may depend on these parameters. The case without unsteady combustion
(q̂ = 0) is considered first. In this case, no acoustic amplification/damping is generated
by the flame if the mean flow is at rest. Moreover, with the boundary conditions chosen,
the zero Mach number inlet/outlet acoustic flux p1u1 is zero at each instant. As a con-
sequence, all the frequencies of oscillation are purely real when the mean flow is at rest
(see 4 in Fig. 5). Note that the numerical results depicted here are in good agreement
with the analytical solution available for zero Mach number in the case T out

0 /T in
0 = 4 and

xf = L/2 [58]: 136.04 Hz, 347.19 Hz and 558.34 Hz for the first three modes respectively.
Fig. 5 further shows that mean velocity effects are significant even for small Mach number
values (see ◦ in Fig. 5); the imaginary part of the eigenmodes is clearly negative as soon
as M in

0 > 0.01. Moreover, it becomes more and more negative with increasing inlet Mach
number and large damping rates are obtained for M in

0 = 0.15, with imaginary frequency
of −53 Hz, −35 Hz and −37 Hz for the first three modes respectively. Note that the real
frequency shift between M in

0 = 0 and M in
0 = 0.15 is also not negligible for modes 1 and

2 (−12 Hz and −24 Hz, approx 9 % and 7 %) although much smaller for the third mode
(−6 Hz, approx. 1 %). The same trends is obtained in the infinitely thin flame limit (see
• in Fig. 5). The infinitely thin flame assumption either under-estimates (first mode) or
over-estimates (third mode) the Mach number effects. The independence of the second



Mach number effect on combustion instabilities 19

Figure 5. Location of the first three modes of the academic configuration II for different values
of the inlet Mach number M in

0 . 4 : results from method M2 for M in
0 = 0; ◦ : results from method

M1 for M in
0 = 0.01 to 0.15 with an increment of 0.02; • : semi-analytical solution from Eq. 4.5.

Thick dashed arrows indicate increasing Mach numbers.

mode on the flame thickness is most probably due to the fact that the flame is located at
a velocity node (first family of modes in [58]) for this mode. This observation is affirmed
by other calculations: using the same setup, but placing the flame at xf = L/4, the flame
position coincides with a velocity node of the third mode. In this case, the agreement
between semi-analytical results and those obtained with method M1 is best for the third
mode.
The structure of the first mode is depicted in Fig. 6 for different Mach number values.
Even though acoustic and entropy waves are decoupled when the mean flow is at rest,
entropy fluctuations are present in the flame region when M in

0 = 0, since in this case
jωŝ = û(ds0/dx− rq̂/p0) (see Eq. 2.21) with u0 = 0). Note that because of the homoge-
neous inlet condition, ŝ(x = 0) = 0, no entropy fluctuations are present until the flame
can interact with the acoustic field. When the Mach number is not zero, entropy fluctua-
tions are convected downstream of the flame so that, although the mean flow is isentropic,
the equations of pure acoustics are no longer valid (strictly speaking) for x > xf + δf/2;
indeed p̂ 6= c20ρ̂ when ŝ 6= 0. Downstream of the flame, the complex entropy amplitude
is represented by Eq. 2.26; for damped modes, the imaginary part of the frequency ω is
negative and the amplitude of ŝ is a increasing function of x, as depicted in Fig. 6.

The numerical results are further tested/analyzed by constructing the acoustic and
entropy pre-exponential factors A+, A− and E as defined in Eqs. 2.23, 2.25 and 2.26.
Since the mean flow is isentropic before and after the flame location, these quantities
should be constant in these regions. The pressure, velocity and entropy fluctuations
corresponding to the first mode have been combined as follows in order to construct the
waves pre-exponential factors:

A+ =
1
2

(p̂(x) + ρ0c0û(x)) exp
(
−jk+x

)
A− =

1
2

(p̂(x)− ρ0c0û(x)) exp
(
jk−x

)
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Figure 6. Structure of the first mode as obtained by Method M1. The amplitude (left column)
and the phase (right column) of the complex amplitude of the pressure (top row), velocity
(middle row) and entropy (bottom row) fluctuations are displayed. : M in

0 = 0, f ≈ 137 Hz;
:M in

0 = 0.05, f ≈ 139 − 13i Hz; :M in
0 = 0.11, f ≈ 134 − 34i Hz. Normalization is

p̂(x = 0) = 1.

E = ŝ(x)exp (−jksx) (4.7)

The resulting values for small to medium Mach number values are depicted in Fig. 7.
In all cases, the constant behavior expected upstream and downstream of the flame
region is well recovered. Note that the entropy factor has been non-dimensionalized by
Cv|A+(x = 0)|/M in

0 p
in
0 to reflect the fact that entropy is convected at the mean flow

velocity. In the zero Mach number limit, the scaled entropy pre-exponential factor is
negligible and the forward and backward acoustic coefficient share the same amplitude as
imposed by the inlet/outlet boundary conditions. Since no entropy fluctuation is injected
into the domain, the acoustic factor ratio A−/A+ is unity in the upstream part of the flow
even for non zero Mach number values, consistently with the velocity imposed condition
at the inlet. In the flame region, the mean flow is not isentropic so that the pre-exponential
factors computed from Eqs. 4.7 cannot be interpreted in terms of waves. Still, the mean
entropy evolves in this region and part of the acoustic energy is converted into entropy
fluctuations. Downstream of the flame, the balance between the forward and backward
acoustic waves is modified even if the zero acoustic pressure condition is imposed at
the outlet. From Fig. 7, the |A−/A+| ratio increases with the Mach number: it is close
to 1, 1.3, 1.9 and 9.7 for M in

0 = 0, 0.05, 0.11 and 0.2 respectively. Those large values
of the acoustic pre-exponential factor ratio should not be misinterpreted, viz. they do
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Figure 7. Pre-exponential factors for the forward acoustic wave A+ ( ), backward acoustic
wave A− ( ) and entropy wave E ( ) normalized by |A+(x = 0)|. Top left: M in

0 = 0,
f ≈ 137 Hz; Top right: M in

0 = 0.05, f ≈ 139− 13i Hz; Bottom left: M in
0 = 0.11, f ≈ 134− 34i

Hz; Bottom right: M in
0 = 0.2, f ≈ 92 − 92i Hz. The entropy-to-acoustic pre-exponential factor

ratio is further scaled by Cv/M
in
0 p

in
0 .

not correspond to acoustic energy entering the flow domain from the outlet section.
Actually, the acoustic flux at x = L (averaged over one cycle of oscillation and scaled
by its counterpart at x = 0) is always positive, viz. 1, 1.47, 1.70 and 2.35 for M in

0 = 0,
0.05, 0.11 and 0.2 respectively, indicating increasing acoustic loss at the outlet. Here the
acoustic flux has been computed as the time average of (p1 + ρ0u0u1)(u1 + p1u0/ρ0c

2
0),

as it is appropriate for moving media [59, 60]. Note also that the values obtained for
|A−/A+| are in good agreement with the theoretical assessment that can be derived
under the isentropic mean flow assumption. In this case, the wave decomposition Eq.
2.23 together with the pressure imposed condition p̂ = 0 at x = L leads to |A−/A+|b =
exp

(
−2ωiL/c0(1−M2

b )
)
. Defining the outlet reflexion coefficient as the wave amplitude

ratio at x = L, viz. R = A− exp (−jk−L) / [A+ exp (+k+L)], one recovers |R| = 1,
consistently with the zero pressure boundary condition.

When the unsteady flame contribution is accounted for, e.g. by using a n − τ type
of model, the situation becomes more complex since the zero Mach number modes can
be either stable or unstable depending on the phase between the acoustic pressure and
the unsteady heat release. Only a global view of the potential effects of the mean flow is
provided in the remaining of this section, a more detailed analysis being offered in section
4.3 for a particular mode. To this end, a parametric study has been conducted for the
second mode of configuration II, the interaction index and time delay taking the values
0, 1, 2, 3, 4, 5 and 0, 0.2, 0.4, ..., 2.4, 2.6 ms respectively. In order to save computational
time and because Fig. 5 showed a good agreement between the semi-analytical approach
of [33] and the numerical results, the parametric study is based on solving Eq. 4.4 for
each values of the n− τ parameters.

The results are shown in Fig. 8 which displays the frequency shifts (defined as the
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Figure 8. Frequency shifts at M in
0 = 0.15 for mode 2 of Configuration II. Each type of symbol

represents a particular value of the interaction index. 4 : n = 0, ◦ : n = 1, • : n = 2, ?: n = 3, ×:
n = 4, : n = 5. For each value of n, the frequency shifts corresponding to several values of the
time delay are displayed, from τ = 0 to 2.6 ms, with an increment of 0.2 ms. The arrows indicate
increasing time delays and the solid lines corresponds to zero time delay. The frequency is real
valued in all cases when M in

0 = 0 and equals 347.19 Hz. Left: Simple BC; Right: Convective BC.

difference between the frequencies at M in
0 = 0.15 and M in

0 = 0) for each value of the
flame response n−τ . Two different sets of boundary conditions have been considered: the
left plot corresponds to the simple conditions û = 0 at x = 0 and p̂ = 0 at x = L (Simple
BC) while the right plot corresponds to û + p̂u0/ρ0c

2
0 = 0 at x = 0 and p̂ + ρ0u0û = 0

at x = L (Convective BC). This second set of boundary conditions allows to set the
acoustic flux at the boundaries to zero for the case of non zero Mach number mean flow
[59, 60]. In terms of reduced impedance, these boundary conditions read Zu =∞; Zb = 0
and Zu = −1/Mu; Zb = −Mb respectively (see Eq. 4.5 for the use of Zu and Zb in the
semi-analytical approach).

In both cases, the frequency shift due to the mean flow effects can hardly be guessed
from a zero Mach number calculation. Indeed, the amplitude of the frequency change
depends strongly on the nature of the flame-acoustic coupling (values of n− τ) and thus
on the mode considered. For the particular mode depicted in Fig. 8, it goes from less
than 10 Hz to approx. 150 Hz, depending on the flame response and boundary condition
characteristics. When Simple BC are used, the imaginary frequency shift can be either
positive or negative, with a trend to be positive for large values of the interaction index.
As a result, including the mean flow effects can make this particular mode either stable
(n = 1 or n = 2 with τ < 1.4 ms) or unstable (e.g.: n = 5 with τ > 0.8 ms). Regarding
the frequency of oscillation, the shift is always negative, consistently with the findings
of section 4.1, but with a stronger amplitude: for large values of the time delay, the real
frequency is decreased by one third when passing from M in

0 = 0 to M in
0 = 0.15. Overall,

the frequency shifts are smaller when the Convective BC are used instead of the Simple
BC. Moreover, including the non zero Mach number effects tends to stabilize the mode
in almost all the cases, except for n = 2 and τ > 1 ms. The real frequency shift remains
mostly negative but smaller than in the Simple BC case. Gathering the results from
the two sets of boundary conditions, only the first quadrant is never reached (positive
real and imaginary frequency shifts) while the second and third quadrants (negative real
frequency shift) are the most often reached. These results strongly suggest that zero
Mach number thermo-acoustic analysis is not always enough to gain a clear view of the
stability map of a combustor and that extension to non-zero Mach number mean flow
formulation might be useful/necessary in some cases.
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4.3. Energy analysis
In order to evaluate the origin of the differences between zero and non-zero Mach number
mean flows, an analysis of the disturbance energy budget is carried out for configuration
II. Since the mean flow in not isentropic, the acoustic and entropy modes of fluctuations
interact and the energy analysis cannot rely on the acoustic energy only. Instead, the
energy corollary proposed by Myers [27] and extended by Karimi et al. [61] to include
combustion terms is used in this section. In the case of a 1D inviscid flow, this corollary
can be written in the form:

∂E2

∂t
+
∂W2

∂x
= D2 (4.8)

where E2 is the first-order disturbance energy density defined as:

E2 =
p2

1

2ρ0c20
+
ρ0u

2
1

2
+ ρ1u0u1 +

ρ0T0s
2
1

2cp0
, (4.9)

W2 is the first-order disturbance energy flux vector given by:

W2 = (p1 + ρ0u0u1)(u1 + ρ1u0/ρ0) + ρ0u0T1s1 (4.10)

and the source term D2 reads:

D2 = −s1ρ1u0
dT0

dx
− s1ρ0u1

dT0

dx
+ s1ρ0u0

dT1

dx
+ T1

(
q1

T0
− q0T1

T 2
0

)
(4.11)

It is obvious from the above expressions that even in 1D, keeping the mean velocity
terms makes the situation much more complex (14 terms required to define E2, W2 and
D2 instead of 6 under the zero Mach number assumption). Using the results obtained
with method M1 (viz. using the LEE-Q1D tool of section 3.3 to solve the eigenvalue
problem associated to the 1D Linearized Euler Equations discretized over 0 ≤ x ≤ L),
the time-dependent pressure fluctuation (or any other fluctuating quantity) associated
to any thermo-acoustic mode can be computed by p1(x, t) = < (p̂(x)exp(−jωt)). Testing
the numerical solutions against Eq. 4.8 allows to a) demonstrate the accuracy of the
numerical results and b) find out which terms in W2 and D2 are key ingredients to the
time evolution of the disturbance energy E2. The numerical setup is identical to the
one in section 4.2.3 except for the flame thickness which is now δf ' 0.15 L. Moreover,
the flame is no longer considered steady and the unsteady heat release is modeled as in
Eq. 2.42, the local interaction index being given as :

nu(x) =
n

δf
× uin

0

qtot
× γp0

γ − 1
, if xf − δf/2 < x < xf + δf/2,

nu(x) = 0 elsewhere, (4.12)

where qtot is the total mean heat release in the domain and n is the global interaction
index of Eq. 2.40. We may note that for δf −→ 0, Eq. 4.12 produces results equivalent to
the thin flame model where the combustion process is restricted to the interface between
the burnt and the unburnt gas [29]. The value n = 5 has been selected to obtain significant
unsteady combustion effects on the thermo-acoustic modes while the time delay has been
fixed to the constant value τ = 1 ms.

The budget of Eq. 4.8 has been computed for two Mach number values, namelyM in
0 = 0

and M in
0 = 0.1 and for the same two sets of boundary conditions as in Fig. 8, namely

û = 0 at x = 0; p̂ = 0 at x = L (Simple BC) and û+ p̂u0/ρ0c
2
0 = 0 at x = 0; p̂+ρ0u0û = 0

at x = L (Convective BC). One may note that in the case where the fluctuations are
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Figure 9. Position of the second mode of configuration II in the complex plane, for xf = L/2,
δf = 0.15 L, n = 5 and τ = 1 ms. • : M in

0 = 0 - f = 465 + 15i; + : M in
0 = 0.1 and Simple

BC - f = 472 + 36i; ×: M in
0 = 0.1 and Convective BC - f = 462 + 0.7i. The arrows show the

displacement of the mode when M in
0 goes from 0 to 0.1

isentropic (s1 = 0), the classical relationship p1 = c20ρ1 holds and the energy flux W2

becomes the acoustic flux as defined by Cantrell and Hart [59], Candel [60] in the case
of a medium not at rest, viz. (p1 + ρ0u0u1)(u1 + p1u0/ρ0c

2
0). Thus the Convective BC

sets the energy flux to zero only in the case where the disturbances are isentropic. The
Simple BC does the same in the restrictive case where the mean flow is at rest. The
displacement of the mode for which the energy analysis is performed (the second mode
of the setup) is shown in Fig. 9 when M in

0 increases from 0 to 0.1. Note that the mode
is unstable in the zero Mach number case and that the mean flow effect depends on the
boundary conditions. The mode becomes more unstable when the Simple BC are used
whereas it becomes marginally unstable when the Convective BC are prescribed.

Eq. 4.8 is a direct consequence of the Linearized Euler Equation and thus it holds
at each location and time. However, it is convenient to consider integrated versions of
this equation in order to get insights about the different contributions. Since we restrict
ourselves to the linear approximation, the instantaneous value of the disturbance energy
is not as important as its evolution after one period of oscillation: if E2 at time t+ T is
greater than E2 at time t, with T = 1/fr, one may conclude that the mode is unstable
since it contains more and more energy. Integrating Eq. 4.8 over one period of oscillation,
one obtains the following exact equation:

E2
t=T − Et=0

2 +
d< W2 >

dx
− < D2 >= 0, (4.13)

where < > stands for the time integration from t = 0 to t = T . The numerical results
obtained for the three modes depicted in Fig. 9 have been post-processed and tested
against Eq. 4.13 in Fig. 10. Note the scaling is such that maxx (< D2 >) = 1 and that
different scales have been used for the bottom right plot. The type of boundary condition
is not specified for M in

0 = 0 since the Convective and Simple BCs are equivalent in this
case. In all the cases considered, the computed LHS of Eq. 4.13 is very small compared
to unity (of order 1 %, see bottom right), meaning that the results obtained are free of
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Figure 10. Spatial evolution of the terms in Eq. 4.13. Top left: M in
0 = 0; Top right: M in

0 = 0.1
and Simple BC; Bottom left: M in

0 = 0.1 and Convective BC; Bottom right: same as Bottom left
but larger scale. : E2

t=T − Et=0
2 , : d < W2 > /dx, : < D2 >, : LHS of

Eq. 4.13. All the terms are scaled by the maximum of < D2 > over space.

significant numerical errors. In the zero Mach number case (Top left in Fig. 10), the three
terms have the same order of magnitude but the Et=T2 − Et=0

2 and < D2 > terms are
always positive whereas the flux term d< W2 >/dx oscillates. When the Mach number
equals 0.1, the source term oscillates over the domain, meaning that the unsteady flame
feeds the disturbances at some locations and pumps energy at others. Such an effect
can hardly be reproduced when the compact flame approximation is used. In the case
where the Convective BC are used, the mode is virtually marginal; this explains why
the Et=T2 − Et=0

2 term is so small in the bottom plots. The relative amplitude of this
term is also smaller in the top right plot (M in

0 = 0.1 and Simple BC) than in the zero
Mach number case. Since with the Simple BC the mode becomes more unstable when
the Mach number increases (see Fig. 9), this is an effect of the oscillatory behavior of
the < D2 > term (the scaling is based on the maximum value of < D2 > but the growth
rate depends on the space integrated version of this quantity).

Integrating Eq. 4.13 further in space one obtains:

E2
t=T +

[
< W2 >

]x=L

x=0
−< D2 > = 1, (4.14)

where · stands for the integral from x = 0 to L,
[
< W2 >

]x=L

x=0
is < W2 >x=L−< W2 >x=0

and the scaling is now such that Et=0
2 = 1. The different terms involved in this exact

equation are gathered in Table 4 for the three modes depicted in Fig. 9. With the retained
scaling, the Et=T2 entries are directly related to the growth rate of the modes and one can
easily show that Et=T2 = exp(2ωiT ), in agreement with the frequencies displayed in the
table. One should also note that the disturbance energy is mostly of entropic nature, the
relative amplitude of the acoustic energy (the first three terms in Eq. 4.9) being 36 %,
26 % and 32 % for the three cases reported (values not gathered in Table 4). When the
Mach number is zero, both Simple or Convective BC ensure zero acoustic flux at the
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Case f (Hz) E2
t=T

[
< W2 >

]x=L

x=0
< D2 > LHS of Eq. 4.14

M in
0 = 0 465.0 + 15.3 j 1.514 0 0.513 1.001

M in
0 = 0.1

Simple BC 472.2 + 36.0 j 2.609 0.363 2.002 0.974

M in
0 = 0.1

Convective BC 462.0 + 0.7 j 1.019 0.083 0.118 0.984

Table 4. Contributions of the separate terms of Eq. 4.14. Scaling is such that Et=0
2 = 1.

Case D2,1 D2,2 D2,3 D2,4 D2,5 < D2 >

−s1ρ1u0
dT0
dx
−s1ρ0u1

dT0
dx

s1ρ0u0
∂T1
∂x

T1
q1
T0

−q0
T2
1

T2
0

M in
0 = 0 0 0.132 0 0.381 0 0.513

M in
0 = 0.1

Simple BC 0.868 −0.055 0.919 1.938 −1.668 2.002

M in
0 = 0.1

Convective BC 1.114 0.514 0.974 −0.582 −1.902 0.118

Table 5. Contributions to Eq. 4.14 of the five terms defining the source term D2 in Eq. 4.11.
The last column recalls the values of < D2 > already given in Table 4 and corresponds to the
sum of the entries D2,1, ..., D2,5.

inlet/outlet and since entropy fluctuations cannot be convected, the boundary term is
zero. As a consequence, the growth rate is just and only related to the positive source
term. In the second case considered (Simple BC and M in

0 = 0.1), the boundary term[
< W2 >

]x=L

x=0
contributes significantly since 36 % of the energy initialy present in the

domain is lost by the boundaries. This amount drops down to approx. 8 % when the
Convective BC are used, consistentely with the fact that the acoustic flux is zeroed by
this set of conditions but not by the Simple ones. Thus the mode with the Convective
BC is more stable (less unstable) than its Simple BC counterpart although it loses less
energy trough the boundaries per period of oscillation. This is due to the fact that the
source term in Eq. 4.14 is much larger when Simple BC are used: in this case, more
than twice the initial amount of energy is extracted from the mean flow and/or the
flame whereas less than 12 % of this same amount is produced when the Convective
BC are used. The contributions to the source terms are gathered in table 5 for the
different cases considered. In the zero Mach number case, the major contributor is the
temperature-heat release correlation (the D2,4 term in Table 5) which is the counterpart
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to the classical Rayleigh term when entropy fluctuations are included into the disturbance
energy [62]. The other contributor (the D2,2 term) describes how the overall fluctuation
energy increases when a negative fluctuation of entropy (s1 < 0, viz.−s1 > 0) is convected
toward region with larger mean entropy (u1dT0/dx > 0). When using Simple BC to
compute the M in

0 = 0.1 case, Table 5 indicates that the flame related source terms
(D2,4 and D2,5) compensate each other and eventually produce the same amount of
energy as in the M in

0 = 0 case, viz. roughly 30 % of the initial energy Et=0
2 . However,

there are two other significant contributors when the Mach number is finite, namely
D2,1 and D2,3 which globally produce more than 170 % of Et=0

2 . Note that D2,1 and
D2,2 can be combined to give −s1m1dT0/dx where m1 is the fluctuation of flow rate;
thus the physical interpretation given above for D2,2 can also be applied to the sum
of the first two terms D2,1 + D2,2. This mechanism remains very efficient in producing
fluctuating energy when the Convective BC is used instead of the Simple one. The D2,3

term can be partly related to the convection by the mean flow of the variance of the
temperature fluctuations (assuming s1 ∝ T1). Its contribution is indeed positive and
remains essentially unchanged (of order 90−100 % of Et=0

2 ) when the boundary conditions
are modified. However, changing the boundary condition modifies the temperature-heat
release correlation so that the D2,4 term pumps energy when the Convective BC are used.
Since the contribution from the mean heat release q0 is also negative (by construction,
see the definition of D2,5 in table 5), the flame has a strong stabilizing effect in this case.
Finally, the flame (D2,4+D2,5) and mean velocity/temperature terms (D2,1+D2,2+D2,3)
compensate so that the overall contribution of the source terms is far less significant in
the Convective BC case compared to the Simple BC one. This leads to the difference in
the mode stability displayed in Fig. 9.

4.4. Combined mean flow effects: Academic configuration III

The objective of this section is more to compare the results from Methods M1 and M2
(as defined in section 4.1.2) when applied to an academic yet representative configuration
rather than analyzing the causes for the Mach number effects observed. This is the reason
why the energy analysis presented above is not conducted in this section although this
could be done without major difficulties.

As shown in figure 11, the setup is a combination of configurations I and II of Figs. 2
and 4: it consists in a constant cross section duct of length Lc with a 1D flame of char-
acteristic thickness δf located at x = xf and connected to a nozzle of length L − Lc.
Note that this configuration is similar to the one studied by Polifke et al. [34, 35]. The
mean flow is assumed isentropic except in the flame region and is constructed from the
temperature profile Eq. 4.3 in the combustion chamber and the Mach number distribu-
tion Eq. 4.1 in the isentropic nozzle. The mean flow is then entirely determined by the
choice of three independent inlet quantities (for example pin

0 , T in
0 , M in

0 ), the outlet Mach
number Mout

0 and relevant geometrical parameters δf , xf , Lc, xthroat and L. Typical
values of actual configurations have been selected for the flow/geometrical parameters
relevant to this configuration (see table 6). Tu and Tb are the unburnt and burnt gas tem-
perature respectively and are used in Eq. 4.3 to define the static temperature profile in
the combustion chamber. The corresponding mean profiles are depicted in Fig. 12. Note
that according to the order of magnitude analysis of Nicoud et al. [29], the mean flow
effects might be non negligible in this configuration when the inlet Mach number is small
compared to δf/L ≈ 0.14. Thus, with M in

0 = 0.05, the zero Mach number assumption
for the mean flow is susceptible to induce significant errors.

Methods M1 and M2 (as defined in section 4.1.2) are used to perform the thermo-
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Figure 11. Principle of academic configuration III for illustrating the combined mean Mach
number effects.

Figure 12. Mean flow fields for configuration III. Top left: Mach number; Top right: Static
pressure (Pa); Bottom left: Static temperature (K); Bottom right: Entropy scaled by Cv.

L (m) Lc (m) xthroat (m) xf (m) δf (m) γ r (S.I)
1.1 1.0 1.0863 0.5 0.15 1.4 287

pin
0 (Pa) T in

0 = Tu (K) Tb (K) M in
0 Mout

0 xref (m) n τ (s)
101325 300 1200 0.05 1.5 0.42 3 0.001

Table 6. Main physical parameters used for configuration of Fig. 11.

acoustic analysis of the configuration described above in the case where unsteady com-
bustion occurs. In the computations considered, the unsteady heat release is modeled as
in section 4.3 (see Eq. 4.12) with the interaction index set to the value n = 3 (see table
6). Recall that this value corresponds to the low frequency limit of the interaction index
when the burnt-to-unburnt temperature ratio equals 4, viz. n −→ Tb/Tu − 1 [58].

The inlet boundary conditions are as in section 4.2, viz. û(x = 0) = ŝ(x = 0) = 0,
whereas no outlet boundary condition is required for Method M1 since the nozzle is
choked; when Method M2 is used, the equivalent acoustic impedance is computed from
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the NOZZLE tool (see section 3.2) and applied at x = Lc in the computation performed
with the zero Mach number acoustic tool AVSP (see section 3.1).

In the following, the first mode computed from Methods M1 and M2 will be called
mode 10 and 10.05 respectively, the index value referring to the inlet Mach number for
these two computations. Under the conditions described in table 6 and Fig. 12, the
frequency of mode 10 is f0 = 234 + 32i, whereas it is f0.05 = 183 − 2i for mode 10.05.
In other words, the first mode of this configuration is found to be very unstable under
the zero Mach number assumption for the mean flow and weakly stable when non zero
Mach number effects are accounted for. Besides, the real frequency shift is significant
since it reaches approx. 50 Hz or 25 % of the frequency of oscillation. Fig 13 shows that
the structures of these two modes are very similar, at least in the cold region where
entropy fluctuations are not present. Entropy fluctuations are generated in the region
where the mean flow is not isentropic; those fluctuations are stationary in mode 10 but
are convected in mode 10.05, as the phase of ŝ indicates in Fig. 13. Note also that the
velocity jump related to the unsteady combustion in the flame region is significantly
larger in mode 10.05 compared to mode 10; this is most probably due to the fact that
the entropy generation in the flame region is under-estimated when the mean flow is
at rest. In this latter case, the mean heat release q0 is null, zeroing two contributors to
the entropy equation (third row in Eq. 2.21). This difference in the amount of entropy
fluctuation induces a large change in the pressure phase in the flame region: from Fig.
13, it is φp0 ≈ −2.4 for mode 10 and φp0.05 ≈ −1 for mode 10.05. Upstream the flame, the
two modes share the same velocity phase, especially near x = 0.42 m, the location of
the reference point used in the local n− τ model to represent the unsteady heat release
(denoting by φu the phase of the velocity at this location, Fig. 13 suggests φu ≈ 1.5).
From the form of the local n − τ model, Eq. 2.42, the following approximations can be
obtained for the phase of the unsteady heat release: φq0 = φu + 2πRe(f0) τ ≈ 3 for mode
10 and φq0.05 = φu + 2πRe(f0.05) τ ≈ 2.7 for mode 10.05. Finally, the phase difference
between heat release and pressure is approx. ∆φ0 ≈ 3 − (−2.4) ≈ 5.4 for mode 10 and
2.7− (−1) ≈ 3.7 for mode 10.05. In other words, Fig. 13 indicates that pressure and heat
release fluctuations are in phase for mode 10 (since −π/2 [2π] < ∆φ0 < π/2 [2π]) and
out of phase for mode 10.05 (since π/2 [2π] < ∆φ0.05 < 3π/2 [2π]). According to the
Rayleigh criterion [1], this means that mode 10 is unstable (assuming that acoustic losses
are too small to compensate for the energy feeding from the acoustic/flame coupling) and
that mode 10.05 is stable. This result is of course in agreement with the frequency values
of these two modes (Im(f0) > 0, Im(f0.05) < 0); it also supports the idea that entropy
generation/propagation is a key phenomenon that should be appropriately accounted for
when performing thermo-acoustic analysis of non zero Mach number flows.

5. CONCLUSION
Several 1D or quasi-1D academic test cases have been considered to assess the origin

and amount of the errors made when performing thermo-acoustic analysis under the zero
Mach number assumption. Results from two different methods have been compared: the
reference method consisted in solving the eigenvalue problem arising from the Linearized
Euler Equations written in the frequency space; the other method consisted in using
an Helmholtz solver for representing the small velocity regions, the high speed regions
being represented by an equivalent acoustic impedance computed beforehand. Beside the
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Figure 13. Structure of the modes 10 and 10.05. The amplitude (left column) and the phase
(right column) of the complex amplitude of the pressure (top row), velocity (middle row) and
entropy (bottom row) fluctuations are displayed. : mode 10, M in

0 = 0; : mode 10.05,
M in

0 = 0.05. Normalization is p̂(x = 0) = 1. The two vertical solid lines denote the flame region;
the vertical dashed line is the throat location.

expected frequency shift due to the change in the speed of propagation of the pressure
waves, an important source of error is related to the interaction between the disturbances
and the flame region. The budget of the disturbance energy equation shows that several
source terms proportional to the mean velocity contribute as much as the classical pres-
sure or temperature - heat release correlation (’Rayleigh’ term). As a result, when the
mean flow is assumed to be at rest, the amount of entropy fluctuations generated in
the flame region is not well estimated; besides, the entropy fluctuations arising from the
acoustic/flame interaction remain in their production zone since no convection occurs
when the Mach number is zero. The absence of the entropy mode downstream of the
flame region induces significant changes in the structure of the thermo-acoustic mode
even for moderate Mach numbers. The analysis also illustrated that the net effect of
the non zero Mach number terms strongly depends on the characteristics of the flame
response to disturbances and also on the boundary conditions. For the academic (yet
representative to practical combustors) configuration considered, the errors induced by
the zero Mach number assumption for the mean flow are large enough to modify the
stability of the first mode for an inlet Mach number as small as 0.05.
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de Recherche pour l’Aéronautique et l’Espace. The authors also would like to thank the
Centre Informatique National de l’Enseignement Supérieur for giving access to super-
computing facilities and E. Gullaud for providing the zero Mach number results from the
AVSP code.



32 F. Nicoud and K. Wieczorek

Appendix A. Derivation of the quasi-1D equations
These equations are best derived, either in the physical or in the frequency space, by

considering first the non-linearized flow equations 2.1-2.3 written in a conservative form:

∂ρ

∂t
+∇ · ρu = 0, (A 1)

∂ρu
∂t

+∇ · (pI + ρu⊗ u) = 0, (A 2)

∂ρs

∂t
+∇ · ρus =

q

T
, (A 3)

where I is the identity second order tensor. Let us first consider a quasi-1D flow domain
Ω whose cross section area S is a slowly varying function of the principal axis of the
domain, the x-direction say (see Fig. 1). Let us call Γ the lateral boundary of Ω and ∂Ω
its complete boundary. If one denotes by Sin and Sout the inlet and outlet cross sections
of Ω, it is obvious that ∂Ω = Γ ∪ Sin ∪ Sout. Similarly, one may define Ω2

1 the subset of
Ω defined by the intersection of Ω with the range x1 ≤ x ≤ x2 where x1 and x2 are such
that xin ≤ x1 < x2 ≤ xout; the boundary of Ω2

1 is then ∂Ω2
1 = Γ2

1 ∪S1 ∪S2 where obvious
notations have been used. For any conserved variable φ whose transport equation reads:

∂ρφ

∂t
+∇ · F(φ) = 0, (A 4)

where F(φ) is the flux of φ, one may obtain the corresponding quasi-1D equation by first
integrating Eq. A 4 over the volume Ω2

1. Since the volume of integration does not depend
on time, one obtains:

∂ < ρφ >

∂t
+
∫ ∫

Γ2
1

F(φ) · ndΓ2
1 −

∫ ∫
S(x1)

Fx(φ)dS(x1) +
∫ ∫

S(x2)

Fx(φ)dS(x2) = 0,

(A 5)
where < ρφ > is the volume integral of ρφ and the divergence theorem has been used to
express the integral of the divergence term in Eq. A 4; to this respect, n is the outward
unit vector normal to ∂Ω2

1. With Fx the x-component of F , the RHS of Eq. A 5 is obtained
by recognizing that n equals (1, 0, 0) and (−1, 0, 0) over S(x2) and S(x1) respectively.
The volume integral of ρφ can be recast in :

< ρφ >=
∫ x2

x1

(∫ ∫
S(x)

ρφdS(x)

)
dx

so that it is useful to introduce the cross section averaging operator:

ψ(x) =
1
S(x)

∫ ∫
S(x)

ψdS(x),

which can be applied to any integrable physical quantity ψ and where S(x) must be
understood as the area of the cross section S at position x. Equation A 5 can then be
written in a more compact form:

∂
∫ x2

x1
S(x)ρφdx

∂t
+
∫ ∫

Γ2
1

F(φ) · ndΓ2
1 − S(x1)Fx(x1) + S(x2)Fx(x2) = 0, (A 6)
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We now have the liberty to choose x1 and x2 in a convenient way; taking x1 = x and
x2 = x+ ∆x where ∆x is an arbitrarily small increment, Eq. A 6 leads to:

S ∂ρφ
∂t

+
∫
C
F(φ) · ncdC +

∂SFx
∂x

= 0, (A 7)

where C is the contour defined as the intersection between Γ and the plane orthogonal to
the x-axis at position x. Note also that dependences on x have been omitted for clarity
and that nc is the outward unit vector normal to C belonging to the x-plane.

Choosing either φ = 1, φ = u or φ = s, the integral term in Eq. A 7 contributes only
when dS/dx 6= 0 since F is either zero or aligned with the x-direction over the lateral
boundary Γ. The following quasi-1D equations for mass, streamwise velocity and entropy
can then be derived from Eq. A 7:

∂ρ

∂t
+
∂ρu

∂x
+
ρu

S
∂S
∂x

= 0, (A 8)

∂ρu

∂t
+
∂p+ ρu2

∂x
+
ρu2

S
∂S
∂x

= 0, (A 9)

and
∂ρs

∂t
+
∂ρus

∂x
+
ρus

S
∂S
∂x

=
q

T
, (A 10)

Note that no assumption has been made so far, except that the flow takes place in a
domain Ω such that the cross section area S can be taken as a function of x. We now
introduce the quasi-1D approximation, neglecting the in-plane correlation terms, viz.
assuming φψ = φ ψ. Eqs. A 8-A 10 can then be combined to give the following set of
quasi-1D equations written in non-conservative form:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+
ρ u

S
∂S
∂x

= 0, (A 11)

ρ
∂u

∂t
+ ρ u

∂u

∂x
= −∂p

∂x
, (A 12)

∂s

∂t
+ u

∂s

∂x
=
rq

p
, (A 13)

Except for the equation of mass which now contains an extra term related to the geometry
of the domain, the quasi-1D equations to be considered are essentially the 1D restriction
of the 3D equations of motion 2.1-2.3. Omitting the · operator for simplicity and intro-
ducing the decomposition of each variable into a steady component (subscript ’0’) and
an unsteady, small amplitude fluctuating part (subscript ’1’), one eventually obtains the
quasi-1D set of linear differential equations given in the main text, Eqs. 2.18-2.20.
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