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The focus of this investigation is on the formulation and validation of a novel approach for 

the inclusion of uncertainty in the modeling of the boundary conditions of linear structures 

and of the coupling between linear substructures. This work is particularly relevant to 

complex structures assembled from simpler substructures as in aerospace applications. 

First, a mean structural dynamic model that includes boundary condition/coupling flexibility 

is obtained using classical substructuring concepts. The application of the nonparametric 

stochastic modeling approach to this mean model is next described and thus permits the 

consideration of both model and parameter uncertainty. Finally, a dedicated identification 

procedure is proposed to estimate the two parameters of this stochastic model, i.e. the mean 

boundary condition/coupling flexibility and the overall level of uncertainty. The 

methodology is demonstrated on three different structural dynamic models, i.e. of a 

rectangular plate and of two different wings. 

Nomenclature 

  = overall measure of uncertainty 

k  = scalar parameter of the boundary condition modeling 

physK  = structure stiffness matrix 

CBK  = Craig-Bampton stiffness matrix 

ROMK  = Reduced Order Model stiffness matrix 

I
physX  = internal degrees of freedom vector 
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B
physX  = boundary degrees of freedom vector 

Y  = boundary degrees of freedom 

q  = modal internal generalized coordinates vector 

u  = modal boundary generalized coordinates vector 

  = clamped structure mode shapes 

  = constraint modes 

  = boundary mode shapes 

BCE  = boundary condition energy 

I. Introduction 

 Significant efforts have been focused in last decade or so on the modeling and consideration of uncertainty in the 

properties of structural dynamic systems. In fact, two types of uncertainty have been recognized, see [1] for 

discussion. Parameter uncertainty refers to a lack of knowledge of the exact values of the parameters of the physical 

and/or computational model, e.g. of the Young’s modulus, see [2-5]. Model uncertainty on the other hand relates to 

discrepancies between the physical structure and its model that arise in the modeling effort, e.g. in the finite element 

representation of the connection between two parts by rivets, spot welds, etc. 

 Parameter uncertainties can be considered straightforwardly in full order (e.g. finite element) models through the 

introduction of random variables/stochastic processes that describe the uncertain parameters. The parameter 

uncertainty effects will then be estimated from a Monte Carlo analysis of a single full order model with different 

parameter values. Note that the identification of the statistical description of the parameters (e.g. selection of their 

joint probability density functions) is often a challenge owing to the generally limited information on their 

uncertainty/variability.  

 The treatment of model uncertainty is typically much more complex and may require the construction of an 

ensemble of different full order models. A convenient alternative to full order models are reduced order (modal) 

models in which the basis functions (modes) are fixed/deterministic. Not only are these models computationally 

much faster than their full order counterparts, a desirable feature when performing Monte Carlo analyses, but they 

also provide a unified framework for addressing both model and parameter uncertainties which are regrouped into 

the mass and stiffness matrices. The consideration of uncertainty in this framework is thus reduced to the simulation 

of random stiffness and/or mass matrices that are compatible with the structural model considered and a particularly 

efficient and mathematically sound framework to achieve this task is the nonparametric approach, see [1] for review. 

 Notorious sources of uncertainty in structures are the boundary conditions (especially the clamped ones) and the 

coupling between substructures which have been found to lead to significant uncertainty in the response of 

structures exhibiting  in particular closely spaced frequencies even in the low frequency domain, e.g. as in bladed 

disks (see [6]) or in wings near flutter as shown here. Note that both model and parameter uncertainties are in 
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general present. Consider for example the clamped boundary condition although a similar discussion can be carried 

for other boundary conditions and for the coupling between substructures. A first modeling strategy of a physical 

clamped boundary condition is in terms of its mathematical counterpart, i.e. zero displacements and slopes. This 

approach however completely neglects the unavoidable flexibility of the support and clamp and thus leads to an 

overestimation of the natural frequencies. More refined models have then been proposed that do account for this 

flexibility through the introduction of stiffnesses at the interface between the structure and its support considered 

rigid, e.g. see [7-10]. Further, uncertainty in these stiffnesses, i.e. parameter uncertainty, has been considered, e.g. 

see [9,10], to simulate the variability that originates most notoriously from the level of normal force applied at the 

clamp but also from the state of surface/wear of the structure at its boundary and of the clamp, etc. 

 While these efforts do capture some of uncertainty in the boundary conditions, they are restricted by the 

particular set of stiffnesses introduced or the selected form of the boundary stiffness matrix, i.e. they can account for 

parameter uncertainty but not for model uncertainty. Such uncertainty is however fully expected in this 

representation of the boundary conditions owing to the complexity of the interactions at the boundary interface (e.g. 

with contact nonlinearity, possible gaps, friction, etc.) which are only approximated through the introduction of 

linear stiffness constants. 

 In this light, the focus of this paper is on the formulation and validation of a novel procedure for the construction 

of stochastic linear structural dynamic models accounting explicitly for parameter and model uncertainties in 

boundary conditions and/or coupling between substructures in the low frequency domain. This objective will be 

achieved by employing the nonparametric approach [1,11-13], briefly reviewed below, which has been shown to 

address both parameter and model uncertainties as necessary here. 

II. Nonparametric Stochastic Modeling of Uncertainty 

The fundamental problem of the nonparametric approach is the simulation of random symmetric positive definite 

real matrices A such as the mass, damping, and/or stiffness matrices of linear modal models. To achieve this effort, 

it is necessary to specify which (joint) statistical distribution of their elements ijA  should be adopted. In this regard, 

it will first be assumed that the mean of the random matrix A is known as A , i.e.   AA E  where E[.] denotes the 

operation of mathematical expectation. If the fixed modes used to represent the motion of the uncertain structures 

are those associated with the mean structural model (also referred to as the design conditions model) and are mass 

normalized, the mean of the random mass and stiffness matrices are the identity matrix and the diagonal matrix of 

the squared natural frequencies, respectively. Further, if the mean model does not exhibit any rigid body mode (i.e. 

A is strictly positive definite), then it is also expected that the random matrices A will share the same property (note 

that the extension of the methodology to mean models exhibiting rigid body modes has been accomplished in [12]). 

This condition is equivalent to the existence of a flat zero at zero of the probability density function of the 

eigenvalues of A. Finally, it will be assumed that only a single measure of the variability of the matrices A is 

available, e.g. the standard deviation of the lowest eigenvalue of A (the extension of the methodology to account for 

multiple known measures of variability has been accomplished in [13]). 
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Even with the above assumptions (known mean model, nonsingurality of A, and known measure of variability), 

there is a broad set of statistical distributions of the elements ijA  that could be selected. Among these, it would be 

particularly desirable to select the one that places particular emphasis on “larger” deviations from the mean value, a 

desirable feature to assess, in a limited Monte Carlo study, the aeroelastic robustness of a design to uncertainty. As 

discussed in [1,11-13], this property arises when the distribution of the elements ijA  achieves the maximum of the 

statistical entropy under the stated constraints of symmetry, positive  definiteness, known mean model, 

nonsingurality of A, and known measure of variability. This maximum is obtained (see [1,11-13]) when the matrices 

A are generated as 

 TT
LHHLA                   (1) 

where L  is any decomposition, e.g. Cholesky, of A , i.e. satisfying T
LLA  , the superscript T  denoting the 

operation of matrix transposition. Further, H denotes a lower triangular random matrix the elements which are all 

statistically independent of each other. Moreover, the probability density functions of the diagonal ( iiH ) and off-

diagonal elements ( ilH ) are 

   2)(
exp hhChp

ip
iiHii

 ,   0h          (2) 

and 

   2exp hChp ilH il
 ,   0h  li         (3) 

where 

  12  inip     
2

12 


n
         (4)      

    

  

  2/1)(

2
2/1








ip
C

ip

ii             



ilC           (5) 

 In these equations, n denotes the size of the matrices A, i.e. the number of modes retained, and Γ(.) denotes the 

Gamma function. In fact, it is readily seen that the off-diagonal elements are identically distributed as zero mean 

Gaussian random variables with standard deviation 2/1  while the diagonal ones can be simulated as 

ii

ii
ii

Y
H


  where iiY  are Gamma distributed random variables with parameter p(i)+1. The construction of the 

random matrices H is pictorially summarized in Fig. 1. 
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Figure 1. Structure of the random matrices A (figures for n=8, i=2, and λ=1 and 10) 

 

 In the above equations, the parameter λ>0 is the free parameter of the statistical distribution of the random 

matrices H and A and can be evaluated to meet any given information about their variability. In the ensuing 

examples, the parameter λ will be determined to yield a specified value of the overall measure of uncertainty δ 

defined as  

12

11 2
2















n

n
E

n F

T
IHH             (6) 

where I  is the identity matrix, and 
F

 denotes the Frobenius norm of a matrix. This condition, coupled with Eqs. 

(1)-(5), provides a complete scheme for the generation of random symmetric positive definite matrices A. 

      It should be recognized that the random matrices A are full irrespectively of any particular structure that the 

mean matrix A  may exhibit. This observation implies that the uncertainty it induces is not limited to the structure 

defined by the mean model or equivalently that model uncertainty is included in the formulation. This property is 

particularly desirable here given the difficulty in appropriately modeling the boundary conditions. 
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III. Uncertain Clamped Boundary Conditions 

A. Modeling Strategy 

A perfect clamped boundary cannot exhibit any uncertainty as the displacements and slopes are exactly set to 

zero. The physical problem which is thus modeled is one in which there is flexibility at the boundary and it is that 

flexibility which is uncertain. The first step in the present effort is then to replace the perfect clamped boundary 

condition by an “imperfect”/flexible one which is represented by a distribution of springs (both linear and torsional), 

see Fig. 2. This discussion will be carried out first in the absence of uncertainty in the boundary conditions which 

will then be introduced in the second step. 

 

Figure 2. Transformation of the perfect clamped boundary condition into a flexible boundary condition and 

separation of the domains. 

 

 

Assuming that the modeling of the structure is accomplished with finite elements, the next step is to proceed 

with a partitioning of the degrees-of-freedom of the structure with flexible boundary conditions in terms of internal 

(I) and boundary (B) degrees-of-freedom. Accordingly, the stiffness matrix of the structure may be expressed as  

         physphysphys KKK ˆ             (7) 

where, in partitioned form, 

                    















BB
phys

BI
phys

IB
phys

II
phys

phys

KK

KK
K             

 

and                                                                           







 BB

phys
phys K

K ˆ
ˆ

0

00
                                      (8) 
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 Note in this decomposition that physK  is the stiffness matrix of the free-free structure. Assuming that the 

boundary is massless, one obtains similarly 

physphys MM               (9) 

with 
















BB
phys

BI
phys

IB
phys

II
phys

phys

MM

MM
M  .          (10) 

 A first reduced order model of the structure with flexible boundary conditions can be derived by proceeding with 

a Craig-Bampton approach (e.g. see [14-17]), i.e. by approximating the internal ( I
physX ) and boundary ( B

physX ) 

degrees-of-freedom as 

YqX  I
phys              (11) 

and 

      YX B
phys              (12) 

where   denotes the modal matrix of p selected modes of the clamped structure, i.e.  p 21 , 

where 

           j

II
physjCj

II
phys  MK

2
,            (13) 

Further, in Eq. (11), the symbol  denotes the matrix of constraint modes 

IB
phys

II
phys KK

1








             (14) 

 Finally, the vector q  denotes the generalized coordinates of the modes of the clamped structure. 

 The reduction of variables, from ( I
physX ,  B

physX ) to  Yq, , is accompanied by the matrix 











I
T

0


1               (15) 

where I denotes the identity matrix of appropriate dimensions. Thus, the stiffness and mass matrices of the free-free 

structure associated with the variables  Yq,  are 
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












YY
CB

Yq
CB

qY
CB

qq
CB

phys
T

CB
KK

KK
TKTK 11             (16) 

and 














YY
CB

Yq
CB

qY
CB

qq
CB

phys
T

CB
MM

MM
TMTM 11            (17) 

 Since the reduced order model is built on the modal matrix , the matrices qq
CBK  and qq

CBM  are diagonal, and 

more specifically with nonzero elements equal respectively to the natural frequencies and to 1 if the modes j  have 

been normalized with respect to the mass matrix 
II

physM . 

 The reduced order model of Eq. (11) and (12) is in fact “mixed” as it contains both modal coordinates (for the 

internal degrees-of-freedom) and physical coordinates (for the boundary degrees-of-freedom). A “fully” reduced 

order model can be developed by expressing the physical boundary degrees-of-freedom as 

uY                 (18) 

where  r 21  and the vectors j  are an appropriate basis for the representation of the physical 

boundary degrees-of-freedom, for instance the eigenvectors corresponding to YY
CBK  and YY

CBM . That is, satisfying 

j
YY
CBjj

YY
CB  MK   .            (19) 

 This second reduction of degrees-of-freedom is accompanied by the matrix 











0

0I
T2               (20) 

and thus, the stiffness and mass matrices of the free-free structure associated with the variables  uq, are 














 uu

ROM

uq

ROM

qu

ROM

qq

ROM
CB

T
ROM

KK

KK
TKTK 22                 (21) 

and 














 uu

ROM

uq

ROM

qu

ROM

qq

ROM
CB

T
ROM

MM

MM
TMTM 22  .         (22) 
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 The above discussion focused solely on the free-free structure but the consideration of its flexible boundary 

counterpart is accomplished simply through the addition of the finite boundary stiffness matrix physK̂ , see Eq. (7) 

and (8). That is, ROMROMROM KKK ˆ  where 









 uu

ROM
phys

TT
ROM

K
TTKTTK

ˆ
ˆˆ

2112
0

00
 .         (23) 

 In practical situations, the matrix physK̂  is generally not known which in fact is why a perfect clamped boundary 

condition is often introduced. The next level of complexity, which will be adopted here, is to relate physK̂  to the 

boundary-boundary partition of the stiffness matrix of the free-free structure. This relation is most conveniently 

achieved directly in the reduced order model variables, i.e. by assuming 

 BB
phys

Tuu
ROM k KK ˆ              (24) 

in which k is a scalar that constitutes a parameter of the boundary condition modeling. 

 Combining the preceding results, it is found that the overall ROM stiffness matrix is 


















uu
ROM

uu
ROM

uq

ROM

qu

ROM

qq

ROM
ROMROMROM

KKK

KK
KKK

ˆ
ˆ          (25) 

 The determination of the natural frequencies 
jf ,

  and mode shapes j  of the flexible boundary structure is 

achieved by solving the eigenvalue problem

jROMROMjfjROMROM ,
2

,,  MK        then   jROMj ,21  TT .      (26) 

 The consideration of uncertainty of the free-free structure is easily performed from Eq. (25) through the 

nonparametric approach as in [11], see also [1]. Specifically, if the free-free structure is uncertain, a random reduced 

order stiffness matrix ROMK


 can be obtained as ROM

T

ROM
T

ROMROM KLHHLK ˆ


 where ROML  is the 

Cholesky decomposition of ROMK , i.e. the lower triangular matrix satisfying the equation 
T

ROMROMROM LLK  . 

Further H  denotes the random matrix of Eqs (2)-(5), see also Fig. 1. Uncertainty in boundary conditions alone is 

introduced similarly by replacing the mean model matrix uu
ROMK̂  by  

T
uu
ROM

Tuuuuuu
ROM

uu
ROM k 







 LHHLK

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where 
uu

ROML  is the Cholesky decomposition of 
T

uu
ROM

uu
ROM

uu
ROM 







 LLK̂  and  uu
H  is another random matrix 

also defined by Eqs (2)-(5), see also Fig. 1. Note that the matrices H  and uu
H  model different sources of 

uncertainties, i.e. on the free-free structure and on its boundary conditions, respectively, and thus may or may not be 

correlated. This issue is not considered further in this paper which focuses solely on lesser studied uncertainty in the 

boundary conditions. 

 It should finally be recognized that the use of the nonparametric approach permits to account for model 

uncertainty as the random matrices uu
ROMK


are full matrices, i.e. they do not conform to the specific form chosen for 

the mean model. This is in contrast with prior investigations in which the values of the stiffnesses used in the mean 

model are randomized. In such investigations, only parameter uncertainty can be induced, the form of the stiffness 

matrix uu
ROMK


remaining the same as that of uu

ROMK̂ . 

 

B. Examples of Application 

To demonstrate the process discussed above and clarify the effects of the parameters k and δ, an aluminum 

clamped plate of dimension 0.3556m×0.254m×0.001m was considered. The material properties of aluminum were 

selected as E = 70,000MPa, υ = 0.30, ρ = 2700kg/m3. A first set of computations was carried out without uncertainty 

to analyze the mean model and in particular the effects of k on the natural frequencies and mode shapes. The results 

of this analysis are presented in Fig. 3 for the first seven natural frequencies and mode shapes. The ordinate of Fig. 

3(a) is the ratio of the natural frequencies to their k =  counterparts while those of Fig. 3(b) are the ratios of the 

norm of the difference between each mode and its k =  counterpart divided by the norm of the latter. As expected, 

both natural frequencies and mode shapes converge monotonically as k  to those of the perfectly clamped plate 

and with higher order modes converging faster as they are less sensitive to the boundary modeling. In all ensuing 

discussions, the value of k = 0.75 was selected. 

It was next desired to assess the convergence of the model prediction with increasing number of boundary modes 

j  which is guaranteed since these modes span the space of the boundary deflections. Thus, the inclusion of all 240 

boundary modes will recover the original Craig-Bampton model of Eqs (16) and (17) only expressed in terms of 

different boundary coordinates. A typical convergence plot of the natural frequencies to their Craig-Bampton 
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counterparts is shown in Fig. 4 which indicates that an accurate reduced order model is accomplished with only a 

small number of boundary modes. The small magnitudes of the ordinates in Fig. 4 suggest that the boundary 

flexibility has only a small effect on the modes shapes. This expectation is confirmed in Fig. 5 which shows the first  
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(b) 

Figure 3. Convergence of the first seven (a) natural frequencies and (b) mode shapes as a function of k to their 

k= counterparts, all boundary modes included. 
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(b) 

Figure 4. Convergence of the first seven (a) natural frequencies and (b) mode shapes with increasing number of 

boundary modes, k = 0.75. 

 

4 modes of the flexible boundary condition plate with k = 0.75 which are very similar to those obtained for a 

perfectly rigid boundary, i.e. for k = , the most noticeable differences being slight displacements and rotations at 

the boundary. 

To obtain a better perspective of the differences between the flexible and rigid boundary mode shapes, consider 

the vectors 

               
    

 jjphys
T

jjj  M           (27) 



 

American Institute of Aeronautics and Astronautics 
 

 

12 

where 
 
j  denotes the mass normalized mode shapes of the structure with rigid boundary. Then, j  represents 

the remainder of the projection, or vector rejection, of the flexible boundary mode j  on its rigid counterpart 
 
j  

and thus can be used to assess the effects of the boundary flexibility. The plots of j  for the first four modes, see  

 
(a)  

(b) 

 
(c) 

 
(d) 

Figure 5. First four modes of the flexible boundary plate, k=0.75, 120 boundary modes, 10 clamped modes. 

(a),(b),(c),(d) modes 1, 2, 3, and 4. 

 

Fig. 6, confirm the above preliminary observation that the boundary flexibility affects the modes of the plate near 

the boundary but, to some extent, also away from it. 

Uncertainty was introduced next in the model using the nonparametric methodology, Eqs (1)-(6), and an ensemble 

of matrices uu
ROMK


 were generated for k = 0.75 but with different levels of uncertainty, i.e. different values of the 

parameter , see Eq. (6). First assessed were the effects of the number of boundary modes included in the model on 

the mean and standard deviations of the natural frequencies and it was found that the mean values converged must 

faster than the corresponding standard deviations as the number of boundary modes retained increased. The analysis 

was first carried out for a constant value of the parameter , see Fig. 7(a). Surprisingly, it was observed that the 
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standard deviations of the natural frequencies first increased with increasing number of modes then decreased. The 

first phase, increase with increasing number of modes, is expected since each new mode induces further uncertainty 

in the model. Of course, the effects of additional modes decrease owing to the convergence of the natural 

frequencies with the number of boundary modes retained, see Fig. 4(a). Thus, one would expect the increase in 

standard deviations of the frequencies to flatten out leading to a somewhat monotonic convergence. This is however 

not what is observed, see Fig. 7(a): the standard deviations exhibit a peak at 25 or so boundary modes and then 

steadily decrease thereafter. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Remainder j  of the projection, or vector rejection,  of the modes of Fig. 5 on their rigid boundary 

counterparts. (a),(b),(c),(d) modes 1, 2, 3, and 4.  

 

In clarifying this trend, it was observed from Eqs (4) and (6) that the parameter  increases as the number of 

modes retained increases (it is the parameter n in these equations). Thus, the standard deviation of each component 

of uu
H  decreases and accordingly there is less uncertainty associated with each given boundary mode. Combining 

this observation with the lessened effects of higher order boundary modes, see Fig. 4(a), leads indeed to the 

decreasing behavior of Fig. 7(a). The expected, monotonic convergence of the standard deviations of the natural 
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frequencies with the number of boundary modes is obtained by keeping  constant, for which  is also close to 

constant if n  as is the case here, see Fig. 7(b). Note again the rapid convergence with only a few boundary 

modes confirming the observation drawn in connection with the mean model. 
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Figure 7. Standard deviation of the 7 lowest natural frequencies divided by the asymptotic value (in %), as a 

function of the number of boundary modes, k=0.75, (a) δ=0.1 constant (b) =4950 constant. 

 

In summary, for a fixed number of boundary modes, the parameters  and  are fully equivalent to measure the 

level of uncertainty with the former one preferred because of its direct physical interpretation of Eq. (6). However, 

when varying the number of boundary modes, it is suggested that  be kept constant as justified above. 

The model of uncertain boundary conditions developed in the previous section is a 2 parameter model as it 

involves the coefficient k of Eq. (24) and the uncertainty measure δ of Eq. (6). In fact, shown in Fig. 8 are the 

coefficients of variations of the first two natural frequencies, as functions of k and δ. These plots do exhibit expected 

behaviors where the coefficients of variations both grow as a function of the uncertainty measure for all values of k. 

Second, these coefficients of variations are also monotonically decreasing function of k as might be expected since 

the limit k  should recover the perfectly clamped plate for which the natural frequencies do not exhibit any 

variability. 
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(a) 

 
(b) 

Figure 8. Coefficients of variation (in %) of the first two natural frequency vs. k and δ, 120 boundary modes, 10 

clamped modes. (a) first mode, (b) second mode. 

 
(a) 

 
(b) 

 
 

(c) 

 
(d) 

Figure 9. Standard deviation of modal values, first 4 modes, k=0.75, 120 boundary modes, 10 clamped modes, 

δ=0.1, (a),(b),(c),(d) modes 1, 2, 3, and 4.  

 

The effects that uncertainty has on the mode shapes was also investigated, e.g. see Fig. 9 for the standard 

deviation of the first 4 modes. Since the uncertainty affects only the boundary flexibility, it may be expected that the 

variability of the mode shapes (e.g. the standard deviations of Fig. 9) will be large where this flexibility plays an 

important role, i.e. in zones of large values of the discrepancies of Eq. (27), see Fig. 6. Notwithstanding differences 
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between Figs 6 and 9, they both exhibit large values in the neighborhood of the boundary identifying this zone as 

one in which the effects of flexibility and uncertainty are important. 

To complete the modeling process, it remains to address the determination/estimation of the two parameters of 

the boundary conditions uncertainty model, i.e. k and δ, from experimental measurements. Specific identification 

techniques of these parameters would depend on the information that is measured, i.e. type, number, and location of 

sensors, as well as on the number of specimen of the structure which are tested. Before such detailed techniques are 

devised, however, it is necessary to demonstrate that these parameters can indeed be identified and to assess from 

what information they could be extracted. These latter issues are addressed below assuming a broad availability of 

response data for a large number of specimen while the formulation of specific identification techniques are the 

focus of a future experimental validation.  

Given the above observation that flexibility (k) and uncertainty () both affect the mode shapes strongly near the 

boundary, it is proposed here to focus on metrics that relate to the motions at/near the boundary. An additional 

benefit of using such metrics is that they are expected to be only weakly dependent on uncertainty in the structure 

away from the boundary (e.g. on the Young’s modulus) not considered here. More specifically then, consider the 

boundary condition “energy” term BCE  defined as 

  B
physBC

TB
physBCE XAX              (28) 

where BCA  is a specified positive definite matrix and B
physX  is a particular response of the boundary. It is then 

desired to assess the existence of strong correlation between BCE  and the parameters k and δ. Shown in Fig. 10 are 

the mean and coefficient of variation BCE  with BCA  chosen as a diagonal matrix with elements equal to 1 on 

translations and 10 on rotations and B
physX  the response at the boundary of the first mode 1 . Clearly the mean of 

BCE  depends almost solely on k, from which it can thus be extracted. Then, the standard deviation of BCE  can be 

used to estimate . Thus, the first two moments of the quantity BCE  provides straightforward estimates of k and δ. 
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(a)  

(b) 

Figure 10. Mean and coefficient of variation (in %) of BCE , first mode deformations, vs. k and δ, 120 boundary 

modes, 10 clamped modes. 

 

 
(a) 

 
(b) 

Figure 11. The Goland+ wing model. (a) Planform geometry, (b) finite element model. (from [19]). 
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 The analysis of the effects of uncertainty in the boundary conditions can extend further than the natural 

frequencies and mode shapes of the structure, e.g. to the flutter boundary. To exemplify this application, the 

Goland+ wing [18-20], see Fig. 11, was considered. It is a flat rectangular wing cantilevered at one end and carrying 

out a rigid store at the other end modeled as a box structure with skin panels, ribs, and spars (see [19] for detailed 

geometry and properties). Its first natural frequencies are shown in Table 1 as predicted by Nastran.  

Mode # Nat. Freq. (Hz) Mode # Nat. Freq. (Hz) 

1 1.690 6 16.260 

2 3.051 7 22.845 

3 9.172 8 26.318 

4 10.834 9 29.183 

5 11.258   

Table 1. Natural frequencies of the mean Goland+ wing. 

 

  

 
(a)  

(b) 

 
(c) 

 
(d) 

Figure 12. Mean of modal values of the Goland+ wing, first 4 modes, k=20, 8 boundary modes, 12 clamped modes, 

δ=0.6, (a),(b),(c),(d) modes 1, 2, 3, and 4.  

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 13. Standard deviation of modal values of the Goland+ wing, first 4 modes, k=20, 8 boundary modes, 12 

clamped modes, δ=0.6, (a),(b),(c),(d) modes 1, 2, 3, and 4.  

 

     An analysis similar to the one carried out with the clamped plate example was first performed and the parameter 

k was selected as k = 20. Further, 12 cantilevered modes and all 8 boundary modes were considered in the analysis. 

These parameter values led to first and second natural frequencies without uncertainty equal to 98.8% and 99.4% of 

their fully clamped counterparts. Further, the value δ=0.6 was chosen; it leads to coefficients of variation of the first 

and second natural frequencies of 0.28% and 0.14%, respectively, see also Figs 12 and 13 for the mean and standard 

deviation of the first four modes of the flexible support wing. 

 The flutter boundary of the fully clamped wing model was first determined for a Mach number 7.0M  using 

the ZONA Technology code ZAERO (see [15,16] for related investigations). It was found that flutter occurs at 

752.87 ft/s with a frequency of 1.966Hz. Next, an ensemble of 300 uncertain wings (with flexible boundary 

conditions) were simulated and their flutter boundary was determined using ZAERO for 7.0M  with the 20 

mode model based on the mean wing with flexible boundary conditions, i.e. the 12 cantilevered modes and the 8 

boundary modes. Then, shown in Fig. 14 are the first and second natural frequencies of these wings (Fig. 14(a)) and 

their corresponding matched point flutter boundaries (Fig. (14b)). 
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Figure 14. Scatter plot of (a) first and second natural frequencies, (b) flutter frequency vs. flutter speed. The red 

diamond denotes the design conditions (fully clamped wing). 
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(b) 

Figure 15. Probability density functions of (a) the flutter frequency and (b) the flutter speed. The red triangle denotes 

the design conditions (fully clamped wing). 

 

 It had been observed in a previous investigation of this wing [18] that the variations in flutter frequency and 

especially flutter speed were much larger than the corresponding variations of the natural frequencies resulting from 

uncertainty in the structure (not in the boundary conditions). Clearly, the results of Fig. 14 confirm this earlier 

finding to the case of uncertainty in the boundary conditions. It had further been observed [18] that two different 

flutter modes could occur and the probability density functions of Fig. 15 support again this finding here: the 300 

flutter cases corresponding to uncertain boundary conditions can be separated into two groups, exhibiting either high 

or low flutter speed and frequency. 

IV. Uncertain Coupling Between Substructures 

The modeling procedure described and assessed in the previous section can be extended to the consideration of 

uncertainty in the coupling between substructures such as the wing of Fig. 16. For simplicity, assume that there are 

only two substructures the dynamics of which will be represented by two sets of fixed boundaries mode shapes, 1  

and 2 , and two sets of constraint modes, 1  and 2 . The subscripts 1 and 2 refer here to the inboard and 

outboard parts of the wing of Fig. 16, respectively. Then, contained in 1  are the mode shapes of the inboard wing 

clamped at both its root and the interface with the outboard one. Similarly, the modes in 2  correspond to the 

outboard wing clamped at its interface with the inboard. The constraint modes, 1  and 2 , are associated solely 
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with the inboard-outboard interface if no flexibility/variability is considered at the inboard root. Otherwise, 1  

would also include the corresponding constraint modes. 

5.012.0

45.0

1.75

7.04.5  
 

Figure 16. Wing example definition (dimensions in feet) 

To obtain a reduced order model of the structure with flexible coupling between its substructures, denote first by 

iq  and iY , i = 1,2, the generalized coordinates associated with the modes and constraint modes of the two 

substructures. Further, introduce the expansion of the variables iY  as 

iii uY      i = 1,2          (29) 

where i  denotes the eigenvector matrix of the boundary modes of structure i obtained as in Eq. (19). Then, 

paralleling the developments of the previous sections, the stiffness and mass matrices of the reduced order model 

variables 

 TTTTT
ROM 2211 uquqX              (30) 

are found to be 
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with notations consistent with those introduced in the treatment of uncertain boundary conditions. That is, 
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where 
)(i

phys
K  is the stiffness matrix of the free component i and 
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and similarly for the mass matrix partitions. Further, assuming as in Eq. (24), one has 

jphys
T
i

uu

ROM
ji  KK ˆˆ  .         (35) 

where physK̂  is the coupling stiffness joining the two substructures at their common interface. In parallel with the 

discussion of the previous section, it is assumed here that 

 2211ˆ BB
phys

BB
physphys k KKK             (36) 

where the notation ii BB  is introduced here to specify the side of the common boundary (i.e. substructure i). So, 

physK̂  is built from the sum of the physical stiffnesses of the two substructures at their interface nodes. 

 This approach has been demonstrated on the wing of Fig. 16. Given the small number of nodes at its interface, 

all constraint modes were kept and 20 clamped modes were taken for each substructure. The behavior of the mean 

flexible-interface model was first analyzed and shown in Fig. 17 is the convergence, as k increases, of the first  five 

natural frequencies of the system (Fig. 17(a)) and of their corresponding mode shapes (Figs 17(b) and 18) to their 

counterparts for the single cantilevered wing. Note the similarity of behavior with the plots of Fig. 3. 

 Given the cantilevered nature of the wing of Fig. 16, it was expected that the introduction of flexibility at the 

coupling line would affect the mode shapes not only near that line but also near the tip. The mode shape projection 

remainders (or vector rejections) j , see Eq. (28) and Fig. 19, confirm this expectation somewhat for mode 2 but 

definitely for modes 3 and 4 while mode 1 is only affected at the coupling line. 
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Figure 17. Convergence of the first five (a) natural frequencies and (b) mode shapes of the flexibility coupled 

wing as a function of k to their k= counterparts, all boundary modes included.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18. Mode shape magnitudes of the wing model of Fig. 16 with flexible coupling line k=0.25. 

(a),(b),(c),(d) modes 1, 2, 3, and 4. 
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(c) 
 

(d) 

Figure 19. Remainder j  of the projection, or vector rejection, of the flexible coupling line modes on their 

rigid boundary counterparts. (a),(b),(c),(d) modes 1, 2, 3, and 4. Wing model of Fig. 16 with k=0.25.  
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Figure 20. Coefficients of variation (in %) of the first two natural frequency vs. k and δ, all boundary modes, 20 

clamped modes each substructure, wing model of Fig. 16. 

 

 

 
(a)  

(b) 

 

(c) 
 

(d) 

Figure 21. Standard deviation of the mode shapes of the wing model of Fig. 16 with flexible coupling line. 

k=0.25, = 0.1. (a),(b),(c),(d) modes 1, 2, 3, and 4.  
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 Uncertainty in the coupling of the two substructures was introduced next and the effects of varying the 

parameters k and δ on the coefficient of variation of the natural frequencies were first assessed. The results, see Fig. 

20, demonstrate the same monotonic behavior with respects to  k and δ which had been observed with the clamped 

plate, Fig. 8. Further, an analysis of the mode shapes, see Fig. 21, confirms the strong correlation between the 

standard deviation of these modes and the remainders j . Since the first mode variability is predominantly along 

the coupling line, the boundary energy metric BCE  of Eq. (28) (with the same matrix BCA  as before) applied to this 

mode, with B
physX  the difference of modal values across the coupling line, can be introduced for the estimation of 

the parameters k and , see Fig. 22 for its mean and standard deviation. As in the clamped plate example, it is seen 

from these plots that the parameter k relates again strongly to the mean of the boundary energy while its variance 

then permits the estimation of the dispersion parameter . 
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Figure 22. Mean and coefficient of variation (in %) of BCE  first mode deformations, vs. k and δ, all boundary 

modes, 20 clamped modes each substructure, wing model of Fig. 16. 

V. Conclusions 

The focus of this investigation was on the formulation and validation of a novel approach for the inclusion of 

uncertainty in the modeling of the boundary conditions of linear structures and of the coupling between linear 

substructures. The three steps of the approach are: (i) the determination of a mean structural dynamic model 

including boundary condition/coupling flexibility, (ii) the introduction of uncertainty in the mean model, and (iii) the 

estimation of the flexibility and uncertainty parameters of the model. 
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A Craig-Bampton substructuring approach was adopted for the formulation of the mean model with boundary 

condition/coupling flexibility. This flexibility was implemented through the introduction of a finite stiffness matrix 

uu
ROMK̂ expressed in terms of the physical stiffness matrix of the structure at its boundary, see Fig. 2 and Eq. (24). 

Note that differences between the assumption of Eq. (24) and the actual behavior of the structure’s boundary add to 

the existing model uncertainty to be accounted for. 

The simulation of uncertainty was addressed using the nonparametric modeling approach first because it 

addresses model and parameter uncertainties, both of which are expected to be present. The inclusion of model 

uncertainty permits in particular to account for the differences between the actual behavior of the structure’s 

boundary and the assumption of Eq. (24). A second advantage of the nonparametric approach is its computational 

convenience as random matrices uu
ROMK


are readily generated using the algorithm of Eqs (2)-(5) or Fig. 1. 

Each of the above steps, i.e. the mean model construction and the nonparametric approach, introduces one 

parameter in the problem, i.e. k to represent the boundary flexibility in the mean model and δ for the uncertainty 

characterization. The estimation of these parameters could be performed from global variables, e.g. from the mean 

and standard deviation of the first natural frequency, but they might then be affected by the presence of uncertainty 

on other aspects of the structure (other boundary/coupling, uncertain material/geometrical properties, etc.) 

Accordingly, it was proposed here to estimate k and δ using measurements performed on the uncertain boundary. In 

fact, the value of k was readily shown to correlate very strongly to the mean energy on the boundary, see Eq. (28), 

while δ exhibited a similar relationship with the standard deviation of this energy. 

These developments permitted the flutter analysis of the Goland+ wing of Fig. 11 with uncertain boundary 

conditions. It was observed in particular that the resulting level of uncertainty on the flutter boundary was 

significantly larger than on the natural frequencies and thus is of practical importance. 

Finally, the consideration of uncertainty in the coupling between substructures was formulated in a similar 

manner to that of the boundary conditions through a Craig-Bampton modeling approach of all connecting 

substructures. The application of these concepts was demonstrated on the 2-piece wing model of Fig. 16. 
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