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Abstract

Existence and uniqueness of global in time measure solution for a one dimensional non-
linear aggregation equation is considered. Such a system can be written as a conservation
law with a velocity field computed through a selfconsistant interaction potential. Blow
up of regular solutions is now well established for such system. In Carrillo et al. (Duke
Math J (2011)) [14], a theory of existence and uniqueness based on the geometric approach
of gradient flows on Wasserstein space has been developped. We propose in this work
to establish the link between this approach and duality solutions. This latter concept of
solutions allows in particular to define a flow associated to the velocity field. Then an
existence and uniqueness theory for duality solutions is developped in the spirit of James
and Vauchelet (NoDEA (2013)) [21]. However, since duality solutions are only known in
one dimension, we restrict our study to the one dimensional case.
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1 Introduction

Aggregation phenomena of a population of particles interacting under a continuous interaction
potential are modelled by a nonlocal nonlinear conservation equation. Letting ρ denote the
density of cells, the so-called aggregation equation in N space dimension writes

∂tρ+∇x ·
(
a(∇xW ∗ ρ)ρ

)
= 0, t > 0, x ∈ R

N , (1.1)

and is complemented with the inital condition ρ(0, x) = ρini. Here W : R
N → R is the

interaction potential, and a : R
N → R

N is a smooth given function which depends on the
actual model under consideration.

This equation is involved in many applications in physics and biology. In the framework of
granular media [3, 15, 25], a is the identity function, and interaction potentials are in the form
W (x) = −|x|α with α > 1. In plasma physics, the context is the high field limit of a kinetic
equation describing the dynamics of electrically charged Brownian particles interacting with a
thermal bath. This leads to consider potentials in the form W (x) = −|x|, and a = id as well (see
e.g. [27]). Also, continuum mathematical models have been widely proposed to model collective
behaviour of individuals. Then the potential W is typically the fundamental solution of some
elliptic equation, and a depends on the microscopic behaviour of the individuals. We refer for
instance to the well-known Patlack-Keller-Segel model where aggregation of cells is described
by a macroscopic non-local interaction equation with linear diffusion [24, 30]. More precisely,
the swarming of cells can be described by aggregation equations where the typical interaction
potential is the attractive Morse potential W (x) = 1

2
e−|x| [13, 26, 29]. Such potentials also

appear when considering the hydrodynamic limit of kinetic model describing chemotaxis of
bacteria [16, 17, 20].

All the potentials mentioned above have a singularity at the origin, they fall into the context
of “pointy potentials” (see a precise definition below), and it is well-known that in that case
concentration phenomena induce the blow-up in finite time of weak Lp solutions [4, 5, 6]. Thus
the notion of solution breaks down at the blow-up time and weak measure-valued solutions for
the aggregation equation have to be considered. Carrillo et al. [14] have studied the multidimen-
sional aggregation equation when a = id in the framework of gradient flow solutions. Namely,
equation (1.1) is interpreted as a differential equation in time, the right-hand side being the
gradient of some interaction energy defined through the potential W . This idea, known as the
Otto calculus (see [28, 33]), requires the choice of a convenient space of probability measures
endowed with a Riemannian structure. Then, following [2], gradient flow solutions are inter-
preted as curves of maximal slopes in this space. The authors obtain existence and uniqueness
of weak solutions for (1.1) in R

N , N ≥ 1 when a = id, the main problem being now to connect
these solutions to distributional solutions.

An alternative notion of weak solutions has been obtained by completely different means
in the framework of positive chemotaxis in [21]. Here equation (1.1) with W (x) = 1

2
e−|x| can

be obtained thanks to some hydrodynamic limit of the kinetic Othmer-Dunbar-Alt system [16].
The key idea is to use the notion of duality solutions, introduced in [9] for linear conservation
equations with discontinuous velocities, where measure-valued solutions arise also. In that case,
this allows to give a convenient meaning to the product of the velocity by the density, so that
existence and uniqueness can be proved. When applying this strategy to the nonlinear case, it
turns out that uniqueness is not ensured, unless the nonlinear product is given a very precise
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signification, see for instance [10, 19]. In the case of chemotaxis, it is provided by the limit
of the flux in the kinetic model. Once this is done, existence and uniqueness can be obtained.
An important consequence of this approach is that it allows to define a flow associated to
this system. Then the dynamics of the aggregates (i.e. combinations of Dirac masses) can be
established, giving rise to an implementation of a particle method and numerical simulations
of the dynamics of cells density after blow-up (see also [22] for a numerical approach using a
discretization on a fixed grid). The principal drawback of this method is its limitation to the
one-dimensional case, mainly because duality solutions are not properly defined yet in higher
space dimension. Thus the theory developped in [14] is, up to our knowledge, the only one
allowing to get existence of global in time weak measure solution for (1.1) in dimension higher
than 2. Another possibility could be using the notion of Filippov flow [18], together with the
stability results in [7], to obtain a convenient notion of solution to (1.1), thus following [31].

This work is devoted to the study of the links between these two notions of weak solutions
for equation (1.1), in the one-dimensional setting. As we shall see there is no equivalence strictly
speaking for a general potential and a nonlinear function a. More precisely we first consider
the same situation as in [14], that is a pointy potential W , and a = id. We adapt the proof of
[21] to define duality solutions in this context, and choose a convenient space of measures to
be compatible with the gradient flows. Then we prove that duality solutions and gradient flow
solutions are identical (Theorem 4.1 below), thus answering the questions raised by Remark
2.16 of [14].

Next, we investigate the nonlinear case, that is a 6= id. Notice that additional monotonicity
properties are required to ensure the attractivity of the dynamics. The results of [14] cannot
be applied as they stand, the key problem is to define a new energy for which weak solutions of
(1.1) are gradient flows. However, we are able to find such an energy only in the particular case
W = −1

2
|x|. On the contrary existence of duality solutions for (1.1) with a nonlinear function a

can be obtained for more general potentials W , even if we cannot reach the complete generality
of [14].

The outline of this paper is as follows. In the next Section, we introduce notations and
recall the main results obtained in [14] in the case a = id. A sketch of their proof is proposed.
Section 3 is devoted to the duality solutions, and starts by recalling their original definition and
main properties. Next, we turn to the nonlinear setting, and define precisely the velocities and
fluxes that allow to state the existence and uniqueness results both for a = id and a 6= id. The
case a = id is treated in Section 4: existence and uniqueness for duality solutions are proved,
together with equivalence between gradient flows and duality solutions. Finally in Section 5 we
investigate the case a 6= id, where general equivalence results no longer hold.

2 Gradient flow solutions

2.1 Notations and definitions

Let C0(Y, Z) be the set of continuous functions from Y to Z that vanish at infinity and Cc(Y, Z)
the set of continuous functions with compact support from Y to Z. All along the paper, we
denote Mloc(R

N ) the space of local Borel measures on R
N . For ρ ∈ Mloc(R

N) we denote by
|ρ|(RN) its total variation. We will denote Mb(R

N ) the space of measures in Mloc(R
N) with

finite total variation. From now on, the space of measure-valued function Mb(R
N) is always
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endowed with the weak topology σ(Mb, C0). We denote SM := C([0, T ];Mb(R
N )−σ(Mb, C0)).

We recall that if a sequence of measure (µn)n∈N in Mb(R
N ) satisfies supn∈N |µn|(R

N) < +∞,
then we can extract a subsequence that converges for the weak topology σ(Mb, C0).

Since we focus on scalar conservation laws, we can assume without loss of generality that
the total mass of the system is scaled to 1 and thus we will work in some space of probability
measures, namely the Wasserstein space of order q ≥ 1, which is the space of probability
measures with finite order q moment:

Pq(R
N ) =

{
µ nonnegative Borel measure, µ(RN) = 1,

∫
|x|qµ(dx) < ∞

}
.

This space is endowed with the Wasserstein distance defined by (see e.g. [33, 34])

dWq(µ, ν) = inf
γ∈Γ(µ,ν)

{∫
|y − x|q γ(dx, dy)

}1/q

(2.1)

where Γ(µ, ν) is the set of measures on R
N × R

N with marginals µ and ν, i.e.

Γ(µ, ν) =

{
γ ∈ Pq(R

N × R
N); ∀ ξ ∈ C0(R

N),

∫
ξ(y0)γ(dy0, dy1) =

∫
ξ(y0)µ(dy0),

∫
ξ(y1)γ(dy0, dy1) =

∫
ξ(y1)ν(dy1)

}
.

From the Kantorovich theorem, we know that in the definition of dWq the infimum is actually a
minimum. A map that realizes the minimum in the definition (2.1) of dWq is called an optimal
map, the set of which is denoted by Γ0(µ, ν).

A fundamental breakthrough in the use of the geometric approach to solve PDE is the work
of F. Otto [28], which is the basis of the so-called Otto Calculus [33]. Let X be a Riemannian
manifold endowed with the Riemannian metric gx(·, ·) (a positive quadratic form on the tangent
space at X in x denoted TxX). Let W : X → R be differentiable. The gradient of W at x ∈ X
is defined by: for all v ∈ TxX, let γ(t) be a regular curve on X such that γ(0) = x and γ′(0) = v,
then

d

dt
|t=0W(γ)(t) = gx(∇xW, v), ∇xW ∈ TxX.

The gradient flow associated to W is the solution ρ : [0,+∞) → X of the differential equation :

dρ

dt
= −∇ρW.

A fundamental result due to Ambrosio et al. [2] states that gradient flows are equivalent to
curves of maximal slope. Therefore, solving a PDE model of gradient type boils down to prove
the existence of a curve of maximal slope.

Let us be more precise. In the following, we will mainly focus on the case q = 2 and we will
shortly denote dW instead of dW2. In the formalism of [2], we say that a curve µ is absolutely
continuous, and we denote µ ∈ AC2((0,+∞),P2(R

N)), if there exists m ∈ L2(0,+∞), such
that dW (µ(s), µ(t)) ≤

∫ t

s
m(r)dr, for 0 < s ≤ t < +∞. Then we can define the metric derivative

|µ′|(t) := lim sup
s→t

dW (µ(s), µ(t))

|s− t|
.
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The tangent space to a measure µ ∈ P2(R
N) is defined by the closed vector subspace of L2(µ)

TanµP2(R
N) := {∇φ : φ ∈ C∞

c (RN )}
L2(µ)

.

We recall the result of Theorem 8.3.1 of [2]: if µ ∈ AC2((0,+∞),P2(R
N )), then there exists

a Borel vector field v(t) ∈ L2(µ(t)) such that

∂tµ+∇ · (vµ) = 0, in the distributional sense on (0,+∞)× R
N . (2.2)

Conversely, if µ solves a continuity equation for some Borel velocity v ∈ L1((0,+∞);L2(µ))
then µ is an absolutely continuous curve and |µ′|(t) ≤ ‖v(t)‖L2(µ). As a consequence, we have

|µ′|(t) = min
{
‖v‖L2(µ(t)) : v(t) satisfies (2.2)

}
.

Definition 2.1 (Gradient flows) We say that a map µ ∈ AC2
loc((0,+∞);P2(R

N)) is a solu-
tion of a gradient flow equation associated to the functional W if there exists a Borel vector
field v such that v(t) ∈ Tanµ(t)P2(R

N) for a.e. t > 0, ‖v(t)‖L2(µ) ∈ L2
loc(0,+∞), the continuity

equation
∂tµ+∇ ·

(
vµ

)
= 0,

holds in the sense of distributions and v(t) ∈ −∂W(ρ(t)) for a.e. t > 0, where ∂W(ρ) is the
subdifferential of W at the point ρ.

We recall that the subdifferential of a functional W is defined by

w ∈ ∂W(µ) ⇐⇒ W(ν)−W(µ) ≥

∫

R

w(x)(θ(x)− x)µ(dx) + o(dW (µ, ν)),

where θ is an optimal transport map such that ν = θ#µ. Next, the slope |∂W| is defined by

|∂W|(µ) = lim sup
ν→µ

(W(µ)−W(ν))+
dW (µ, ν)

, (2.3)

where u+ = max{u, 0}. We have the property ([2], Lemma 10.1.5)

|∂W|(µ) = min{‖w‖L2(µ) : w ∈ ∂W(µ)}. (2.4)

Moreover, there exists a unique w ∈ W(µ) which attains the minimum in (2.4). It is denoted
by ∂0W(µ).

Definition 2.2 (Curve of maximal slope) A curve µ ∈ AC2
loc((0,+∞);P2(R)) is a curve of

maximal slope for the functional W if t 7→ W(µ(t)) is an absolutely continuous function and if
for every 0 ≤ s ≤ t ≤ T ,

1

2

∫ t

s

|µ′|2(τ) dτ +
1

2

∫ t

s

|∂W|2(µ(τ))dτ ≤ W(µ(s))−W(µ(t)).

Finally Theorem 11.1.3 of [2] shows that curves of maximal slope with respect to |∂W|
are equivalent to gradient flow solutions. Moreover, the tangent vector field v(t) is the unique
element of minimal norm in the subdifferential of W (see (2.4)):

v(t) = −∂0W(µ(t)) for a.e. t > 0.
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2.2 Strategy of the proof in [14]

The idea of the work by Carrillo et al. [14] is to extend the work of [2] to an interaction energy
W defined through the interaction potential W in (1.1), whose derivative has a singularity in
0. More precisely, attractive “pointy potentials” are considered, which we define now.

Definition 2.3 (pointy potential) The interaction potential W is said to be an attractive
pointy potential if it satisfies the following assumptions.

(A0) W is continuous, W (x) = W (−x) and W (0) = 0.

(A1) W is λ-concave for some λ ≥ 0, i.e. W (x)− λ
2
|x|2 is concave.

(A2) There exists a constant C > 0 such that W (x) ≥ −C(1 + |x|2) for all x ∈ R
N .

(A3) W ∈ C1(RN \ {0}).

Given a continuous potential W : R → R, we define the interaction energy in one dimension by

W(ρ) =
1

2

∫

R×R

W (x− y) ρ(dx)ρ(dy). (2.5)

The existence and uniqueness result of [14] can now be synthetized as follows.

Theorem 2.4 (Theorem 2.12 and 2.13 of [14].) Let W satisfies assumptions (A0)–(A3) and
let a = id. Given ρini ∈ P2(R

N), there exists a gradient flow solution of (1.1), i.e. a curve
ρ ∈ AC2

loc([0,∞);P2(R
N )) satisfying

∂ρ(t)

∂t
+ ∂x(v(t)ρ(t)) = 0, in D′([0,∞)× R

N),

v(t, x) = −∂0W(ρ)(t, x) =

∫

y 6=x

W ′(x− y) ρ(t, dy),

with ρ(0) = ρini. Moreover, if ρ1 and ρ2 are such gradient flow solutions, then there exists a
constant λ such that, for all t ≥ 0

dW (ρ1(t), ρ2(t)) ≤ eλtdW (ρ1(0), ρ2(0)).

Thus the gradient flow solution of (1.1) with initial data ρini ∈ P2(R
N) is unique. Moreover,

the following energy identity holds for all 0 ≤ t0 ≤ t1 < ∞:

∫ t1

t0

∫

R

|∂0W ∗ ρ|2ρ(t, dx)dt+W(ρ(t1)) = W(ρ(t0)). (2.6)

Proof. We summarize here the main steps of the proof and refer the reader to [14] for more
details. The first step is to compute the element of minimal norm in the subdifferential of W.
By extending Theorem 10.4.11 of [2], the authors prove that

− ∂0W(ρ) = ∂0W ∗ ρ, (2.7)
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where

∂0W ∗ ρ(x) =

∫

y 6=x

W ′(x− y) ρ(dy).

The second step is based on the so-called JKO scheme introduced in [23] (see also [2]). It
consists in the following recursive construction for curves of maximal slope. Let τ > 0 be a small
time step, we set ρτ0 = ρini the initial data for (1.1). Next, knowing ρτk, one proves (Proposition
2.5 in [14]) that there exists ρτk+1 such that

ρτk+1 ∈ arg min
ρ∈P2(RN )

{
W(ρ) +

1

2τ
d2W (ρτk, ρ)

}
. (2.8)

Next, a piecewise constant interpolation ρτ is defined by

ρτ (0) = ρini ; ρτ (t) = ρτk if t ∈ (kτ, (k + 1)τ ],

and Proposition 2.6 states the weak compacteness (in the narrow topology) of the sequence ρτ

as τ → 0. Finally Theorem 2.8 ensures that the weak narrow limit ρ is a curve of maximal
slope.

The conclusion follows by applying Theorem 11.1.3 of [2], which allows therefore to get the
existence of a gradient flow for the functional W. By definition, the gradient flow is a solution
of a continuity equation whose velocity field is the element with minimal norm of the subdiffer-
ential of W. In the first step of the proof this element has been identified to be ∂0W ∗ ρ. Thus,
it is a weak solution of the problem and moreover we have the energy estimate (2.6).

2.3 The one-dimensional case

We gather here several remarks specific to the one-dimensional framework. First we notice that
assumptions (A1) and (A3) imply that x 7→ W ′(x)−λx is a nonincreasing function on R\{0}.
Therefore limx→0± W ′(x) = W ′(0±) exists and from (A0), we deduce that W ′(0−) = −W ′(0+).
Moreover, for all x > y in R\{0} we have W ′(x)−λx ≤ W ′(y)−λy. Thus we have the one-sided
Lipschitz estimate (OSL) for W ′

∀ x > y ∈ R \ {0}, W ′(x)−W ′(y) ≤ λ(x− y). (2.9)

Letting y → 0± we deduce that for all x > 0, W ′(x)− λx ≤ W ′(0+) and W ′(x)− λx ≤ W ′(0−).
Thus we also have the one-sided estimate

W ′(x) ≤ λx, for all x > 0. (2.10)

After an integration with (A0), we deduce that W (x) ≤ λx2/2. By concavity of the function

W̃ : x 7→ W (x)− λx2/2, we have

W̃ ′(x) h ≥ W̃ (x+ h)− W̃ (x) ≥ −C(1 + x2 + h2),

for any x 6= 0. Taking h = max{|x|, 1}, we deduce that there exist nonnegative constants C0

and C1 such that
|W ′(x)| ≤ C0 + C1|x|. (2.11)
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The one-dimensional framework also allows to simplify several proofs in Theorem 2.4. In-
deed any probability measure µ on the real line R can be described in term of its cumulative
distribution function F (x) = µ((−∞, x)) which is a right-continuous and nondecreasing func-
tion with F (−∞) = 0 and F (+∞) = 1. Then we can define the generalized inverse of F by
F−1(z) = inf{x ∈ R/F (x) > z}, it is a right-continuous and nondecreasing function as well,
defined on [0, 1]. If µ and ν belongs to P2(R), with generalized inverses F−1 and G−1, we have
this explicit expression of the Wasserstein distance (see [34])

dW (µ, ν)2 =

∫ 1

0

|F−1(z)−G−1(z)|2 dz. (2.12)

Moreover, we have
(F−1)′(z)µ(F−1(z)) = 1.

In this framework, we can then rewrite the JKO scheme (2.8) in the proof above. Let us
denote by F τ

k the cumulative distribution of the measure ρτk and by V τ
k := (F τ

k )
−1 its generalized

inverse. Then, in term of generalized inverses, (2.8) rewrites

V τ
k+1 ∈ arg min

{V ∈L2(0,1)}

{
W̃(V ) +

1

2τ
‖V − V τ

k ‖
2
L2(0,1)

}
,

where

W̃(V ) =

∫ 1

0

∫ 1

0

W (V (y)− V (z)) dydz.

Such an approach using the generalized inverse has been used in [8] for the one dimensional
Patlack-Keller-Segel equation.

3 Duality solutions

We turn now to the alternative notion of weak solution we wish to investigate. It is based
on the so-called duality solutions which were introduced for linear advection equations with
discontinuous coefficients in [9]. Compared with the gradient flow approach, this strategy allows
a more straightforward PDE formulation, including from the numerical viewpoint. The main
drawback is that presently duality solutions in any space dimension are only available for pure
transport equations (see [11]). Since we have to deal here with conservative balance laws, we
have to restrict ourselves to one space dimension. First we give a brief account of the theory
developed in [9], summarizing the main theorems we shall use, next we define duality solutions
for (1.1).

3.1 Linear conservation equations

We consider here conservation equations in the form

∂tρ+ ∂x
(
b(t, x)ρ

)
= 0, (t, x) ∈ (0, T )× R, (3.1)

where b is a given bounded Borel function. Since no regularity is assumed for b, solutions to
(3.1) eventually are measures in space. A convenient tool to handle this is the notion of duality
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solutions, which are defined as weak solutions, the test functions being Lipschitz solutions to
the backward linear transport equation

∂tp+ b(t, x)∂xp = 0, p(T, .) = pT ∈ Lip(R). (3.2)

In fact, a formal computation shows that d
dt

(∫
R
p(t, x)ρ(t, dx)

)
= 0, which defines the duality

solutions for suitable p’s.
It is now quite classical that to ensure existence for (3.2), it suffices for the velocity field to

be compressive, in the following sense:

Definition 3.1 We say that the function b satisfies the one-sided Lipschitz (OSL) condition if

∂xb(t, .) ≤ β(t) for β ∈ L1(0, T ) in the distributional sense. (3.3)

However, to have uniqueness, we need to restrict ourselves to reversible solutions of (3.2): let
L denote the set of Lipschitz continuous solutions to (3.2), and define the set E of exceptional
solutions by

E =
{
p ∈ L such that pT ≡ 0

}
.

The possible loss of uniqueness corresponds to the case where E is not reduced to zero.

Definition 3.2 We say that p ∈ L is a reversible solution to (3.2) if p is locally constant on
the set

Ve =
{
(t, x) ∈ [0, T ]× R; ∃ pe ∈ E , pe(t, x) 6= 0

}
.

We refer to [9] for complete statements of the characterization and properties of reversible
solutions. Then, we can state the definition of duality solutions.

Definition 3.3 We say that ρ ∈ SM := C([0, T ];Mb(R) − σ(Mb, C0)) is a duality solution
to (3.1) if for any 0 < τ ≤ T , and any reversible solution p to (3.2) with compact support in

x, the function t 7→

∫

R

p(t, x)ρ(t, dx) is constant on [0, τ ].

We summarize now some properties of duality solutions that we shall need in the following.

Theorem 3.4 (Bouchut, James [9])

1. Given ρ◦ ∈ Mb(R), under the assumptions (3.3), there exists a unique ρ ∈ SM, duality
solution to (3.1), such that ρ(0, .) = ρ◦.
Moreover, if ρ◦ is nonnegative, then ρ(t, ·) is nonnegative for a.e. t ≥ 0. And we have the
mass conservation

|ρ(t, ·)|(R) = |ρ◦|(R), for a.e. t ∈]0, T [.

2. Backward flow and push-forward: the duality solution satisfies

∀ t ∈ [0, T ], ∀φ ∈ C0(R),

∫

R

φ(x)ρ(t, dx) =

∫

R

φ(X(t, 0, x))ρ0(dx), (3.4)

where the backward flow X is defined as the unique reversible solution to

∂tX + b(t, x)∂xX = 0 in ]0, s[×R, X(s, s, x) = x.
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3. For any duality solution ρ, we define the generalized flux corresponding to ρ by b∆ρ =
−∂tu, where u =

∫ x
ρ dx.

There exists a bounded Borel function b̂, called universal representative of b, such that
b̂ = a almost everywhere, and for any duality solution ρ,

∂tρ+ ∂x(̂bρ) = 0 in the distributional sense.

4. Let (bn) be a bounded sequence in L∞(]0, T [×R), such that bn ⇀ b in L∞(]0, T [×R)−w⋆.
Assume ∂xbn ≤ αn(t), where (αn) is bounded in L1(]0, T [), ∂xb ≤ α ∈ L1(]0, T [). Consider
a sequence (ρn) ∈ SM of duality solutions to

∂tρn + ∂x(bnρn) = 0 in ]0, T [×R,

such that ρn(0, .) is bounded in Mb(R), and ρn(0, .) ⇀ ρ◦ ∈ Mb(R).

Then ρn ⇀ ρ in SM, where ρ ∈ SM is the duality solution to

∂tρ+ ∂x(bρ) = 0 in ]0, T [×R, ρ(0, .) = ρ◦.

Moreover, b̂nρn ⇀ b̂ρ weakly in Mb(]0, T [×R).

The set of duality solutions is clearly a vector space, but it has to be noted that a duality
solution is not a priori defined as a solution in the sense of distributions. However, assuming
that the coefficient b is piecewise continuous, we have the following equivalence result:

Theorem 3.5 Let us assume that in addition to the OSL condition (3.3), b is piecewise con-
tinuous on ]0, T [×R where the set of discontinuity is locally finite. Then there exists a function

b̂ which coincides with b on the set of continuity of b.
With this b̂, ρ ∈ SM is a duality solution to (3.1) if and only if ∂tρ+ ∂x(̂bρ) = 0 in D′(R).

Then the generalized flux b∆ρ = b̂ρ. In particular, b̂ is a universal representative of b.

This result comes from the uniqueness of solutions to the Cauchy problem for both kinds of
solutions (see Theorem 4.3.7 of [9]).

3.2 Duality solutions for aggregation

Equipped with this notion of solutions, we can now define duality solutions for the aggregation
equation. The idea was introduced in [10] in the context of pressureless gases. It was next
applied to chemotaxis in [21], and we shall actually follow these steps.

Definition 3.6 We say that ρ ∈ C([0, T ];Mb(R)) is a duality solution to (1.1) if there exists
âρ ∈ L∞((0, T )× R) and α ∈ L1

loc(0, T ) satisfying ∂xâρ ≤ α in D′((0, T )× R), such that for all
0 < t1 < t2 < T ,

∂tρ+ ∂x(âρρ) = 0 in the sense of duality on (t1, t2), (3.5)

and âρ = a(W ′ ∗ ρ) a.e.
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This allows at first to give a meaning to the notion of distributional solution, but it turns out
that uniqueness is a crucial issue. For that, a key point is a precise definition of the product
âρρ, as we shall see in more details in Section 3.3 below.

We now state the main theorems about duality solutions for the aggregation equation (1.1).
Existence of such solutions in a measure space has been obtained in [21] in the particular case
W (x) = 1

2
e−|x| and a similar result is presented in [19] when W (x) = −|x|/2 which appears in

many applications in physics or biology. We extend here these results for a general potential
satisfying assumptions (A0)–(A3). However to do so, we have, as in [14], to restrict ourself to
the linear case, that is a = id.

Theorem 3.7 (Duality solutions, the linear case) Let W satisfies assumptions (A0)–(A3)
and let a = id. Assume that ρini ∈ P1(R). Then for any T > 0, there exists a unique duality
solution ρ ≥ 0 of equation (1.1) in the sense of Definition 3.6 with ρ(0) = ρini, ρ(t) ∈ P1(R) for
any t ∈ (0, T ) and which satisfies (3.5) in the distributional sense with

âρ(t, x) := ∂0W ∗ ρ(t, x) =

∫

x 6=y

W ′(x− y)ρ(t, dy). (3.6)

Then we have ρ = X#ρ
ini where X is the backward flow corresponding to âρ.

We turn now to the case a 6= id. In order to be in the attractive case, we assume that the
function a satisfies the following

Assumption 3.8 a is non-decreasing, with

a ∈ C1(R), 0 ≤ a′ ≤ α. (3.7)

In this context, existence and uniqueness of duality solutions have been proved for the case of
an interaction potential W = 1

2
e−|x| in [21]. We extend here the techniques developed in this

latter work to more general potentials W . However we are not able to prove such results in
the whole generality of assumptions (A0)–(A3) and need more regularity on the interaction
potential.

Assumption 3.9 Let W ∈ C1(R \ {0}), we assume that in the distributional sense

W ′′ = −δ0 + w, w ∈ C0
b (R), (3.8)

where δ0 is the Dirac measure in 0.

This allows a definition of the flux in (1.1) which generalizes the one in [21]. Indeed we can
formally take the convolution of (3.8) by ρ, then multiply by a(W ′ ∗ ρ). Denoting by A the
antiderivative of a such that A(0) = 0 and using the chain rule we obtain formally

− ∂xA(W
′ ∗ ρ) = −a(W ′ ∗ ρ)W ′′ ∗ ρ = a(W ′ ∗ ρ)(ρ+ w ∗ ρ). (3.9)

Thus a natural formulation for the flux J is given by

J := −∂xA(W
′ ∗ ρ) + a(W ′ ∗ ρ)w ∗ ρ. (3.10)

11



Theorem 3.10 (duality solutions, the nonlinear case) Let us assume that ρini is given in
P1(R). Under Assumption 3.9 on the potential W and (3.7) for the nonlinear function a, for all
T > 0 there exists a unique duality solution ρ of (1.1) in the sense of Definition 3.6 ρ(t) ∈ P1(R)
for t ∈ (0, T ) and which satisfies in the distributional sense

∂tρ+ ∂xJ = 0, (3.11)

where J is defined by (3.10).

Theorems 3.7 and 3.10 are proved respectively in Sections 4 and 5, but before diving into the
detailed proofs, we comment the main steps, which are common to both cases.

• existence of duality solutions is obtained by approximation. First we obtain the dynamics
of aggregates (that is combinations of Dirac masses), then we proceed using the stability
of duality solutions

• uniqueness is obtained by a contraction argument in P1(R). No uniqueness is expected
in a general space of measures. The argument is repeated in P2(R) so that gradient flow
and duality solutions can be compared.

3.3 Velocities and fluxes

When concentrations occur in conservation equations, leading to measure-valued solutions, a
key point to obtain existence and uniqueness in the sense of distributions is the definition of
the flux and the corresponding velocity. This was already pointed out in [10], where duality
solutions are defined for pressureless gases, and partially managed through conditions on the
initial data. A more satisfactory solution came out in [21], since uniqueness was completely
handled by a careful definition of the flux of the equation, or in other terms, the product âρρ.
An analogous situation arising in plasma physics is considered in [19], around duality solutions
as well. In a similar context, other definitions of the product can be found, see [27] in the
one-dimensional setting, and [32] for a generalization in two space dimensions, where defect
measures are used.

We explain in more details this point in our context, in order to give a meaning to both
duality and gradient flow solutions in the sense of distributions. As a rule, the product of
a(W ′ ∗ ρ(t)) by ρ(t) is not well-defined when ρ(t) ∈ Mb(R). First we compute W ′ ∗ ρ. We write
ρ = ∂xu, so that u ∈ BV (R). For such a function, we denote by Su the set of x ∈ R where u
does not admit an approximate limit, |Su| = 0, and by Ju ⊂ Su the set of approximate jump
points (see Remark 3.98 of [1]). We use the decomposition ρ = ∂a

xu+ ρc + ρj, where ∂a
xu << L

is the regular part of the derivative, ρj =
∑

y∈Ju
ζyδy the jump part, and ρc the so-called Cantor

part. The so-called diffuse part of the derivative is ρd = ∂a
xu+ ρc. For x /∈ Ju, we easily obtain

W ′ ∗ ρ(x) = W ′ ∗ ρd(x) +
∑

y∈Ju

ζyW
′(x− y),

while if x ∈ Ju, the function is not defined. Indeed, letting z → x, first with z < x, then with
z > x, we obtain

W ′ ∗ ρ(x±) = W ′ ∗ ∂a
xu(x) +

∑

y∈Ju,y 6=x

ζyW
′(x− y) + ζxW

′(0±). (3.12)
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Removing the indetermination amounts to define a velocity for a single Dirac mass located in
x or equivalently for the center of mass of the density. Obviously, formula (3.6) sets this value
to 0, hence a single Dirac mass is stationary, and the product by the measure ρ is meaningful.
Therefore in the linear case we can consider the flux

J(t, x) := âρ(t, x) ρ(t, x).

Recall that this value is obtained by computing the element of minimal norm in the subgradient
of the energy W corresponding to W .

On the other hand, in the nonlinear case, with W ′′ = −δ0 + w, the natural quantity to be
defined is the flux J , by formula (3.10). To define the corresponding velocity, and give rigorous
meaning to (3.9), we use the Vol’pert calculus for BV functions [35] (see also [1]): for a BV
function u, the fonction âV defining the chain rule ∂xA(u) = âV ∂xu is constructed by

âV (x) =

∫ 1

0

a(tu1(x) + (1− t)u2(x)) dt, (3.13)

where

(u1, u2) =





(u, u) if x ∈ R \ Su,

(u+, u−) if x ∈ Ju,

arbitrary elsewhere.

(3.14)

Now we apply that to u = W ′ ∗ ρ, and obtain, using the antiderivative A of a,

âV (x) =





a(W ′ ∗ ρ(x)) if x ∈ R \ Su,

A(W ′ ∗ ρ(x+))−A(W ′ ∗ ρ(x−))

W ′ ∗ ρ(x+)−W ′ ∗ ρ(x−)
if x ∈ Ju,

arbitrary elsewhere.

(3.15)

The connection with the linear case follows since then A(v) = v2/2, hence

A(W ′ ∗ ρ(x+))− A(W ′ ∗ ρ(x−))

W ′ ∗ ρ(x+)−W ′ ∗ ρ(x−)
=

W ′ ∗ ρ(x+) +W ′ ∗ ρ(x−)

2
.

Therefore the undetermined term in (3.12) is replaced by (W ′(0+)+W ′(0−))/2, which vanishes
since W is even, and we recover (3.6).

4 The linear case

By linear case we mean the case where a = id in (1.1). Together with assumptions of Definition
2.3, this is exactly the context of [14]. At first we prove Theorem 3.7, obtaining existence of
duality solutions in Subsection 4.1, and uniqueness in Subsection 4.2. Next, in Subsection 4.3
we establish that they are equivalent to gradient flow solutions, thus answering the questions
raised by Remark 2.16 of [14]. More precisely, we prove the following theorem.

Theorem 4.1 Let a = id. Let us assume that W satisfies assumptions (A0)–(A3) and that
ρini ∈ P2(R).
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(i) Let ρ be the duality solution as in Theorem 3.7. Then for all t > 0, ρ(t) ∈ P2(R),
ρ ∈ AC2

loc((0,+∞);P2(R)) and ρ is the gradient flow solution as in Theorem 2.4.

(ii) If ρ is the gradient flow solution of Theorem 2.4, then it is a duality solution as in Theorem
3.7.

4.1 Existence of duality solutions

The first step is to verify that the velocity âρ defined by (3.6) satisfies the OSL condition (3.3).

Lemma 4.2 Let ρ(t) ∈ Mb(R) be nonnegative for all t ≥ 0. Then under assumptions (A0) –
(A3) the function (t, x) 7→ âρ(t, x) defined in (3.6) satisfies the one-sided Lipschitz estimate

âρ(t, x)− âρ(t, y) ≤ λ(x− y)|ρ|(R), for all x > y, t ≥ 0

Proof. By definition (3.6), we have

âρ(x)− âρ(y) =

∫

z 6=x,z 6=y

(W ′(x− z)−W ′(y − z))ρ(dz) +W ′(x− y)

∫

z={x}∪{y}

ρ(dz),

where we use the oddness of W (A0) in the last term. Let us assume that x > y, from (2.9), we
deduce that W ′(x−z)−W ′(y−z) ≤ λ(x−y) and with (2.10), we deduce W ′(x−y) ≤ λ(x−y).
Thus, using the nonnegativity of ρ, we deduce the one-sided Lipschitz (OSL) estimate for âρ.

Proof of the existence result in Theorem 3.7. This proof is split in several steps.
• Aggregates.
Let us assume in a first step that ρini =

∑n
i=1miδx0

i
where x0

1 < x0
2 < · · · < x0

n and the mi-s
are nonnegative. We look forward a solution ρn(t, x) =

∑n
i=1miδxi(t) in the distributional sense

of the equation
∂tρ+ ∂x(âρρ) = 0, (4.16)

where âρ is defined in (3.6). Let un :=
∫ x

ρn =
∑n

i=1miH(x− xi(t)) where H is the Heaviside
function. Then we have that

−∂tun = âρnρn =
n∑

i=1

mi

∑

j 6=i

mjW
′(xi − xj)δxi

.

In fact,

âρn(x) =





∑

j 6=i

mjW
′(xi − xj) if x = xi, i = 1, . . . , n

n∑

j=1

mjW
′(x− xj) otherwise.

(4.17)

Then the sequence (xi)i=1,...,n satisfies the ODE system

x′
i(t) =

∑

j 6=i

mjW
′(xi − xj), xi(0) = x0

i , i = 1, . . . , nℓ, (4.18)
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where nℓ ≤ n is the number of distinct particles, i.e. nℓ = #{i ∈ {1, . . . , N}, xi 6= xj , ∀ j}.
Notice that (3.12) rewrites as

W ′ ∗ ρn(x
±
i ) =

∑

j 6=i

mjW
′(xi − xj) +miW

′(0±).

We define the dynamics of aggregates as follows.

• the xi-s are solutions of system (4.18) (where the right-hand side is zero if nℓ = 1), when
they are all distinct;

• at collisions, we define a sticky dynamics: if xi = xj at time Tℓ when for instance i < j,
then the two aggregates collapse in a single one and we redefine system (4.18) by changing
the number nℓ to nℓ − 1, replacing the mass mi by mi +mj and deleting the point xj . We
denote by 0 := T0 < T1 < . . . Tk < ∞ the times of collapse, where k < n.

This choice for the dynamics is clearly mass-conservative. Moreover, with this choice at
the collisional times, we still have that xi < xj when i < j. Thus the function defining the
right-hand side satisfies the one-sided Lipschitz condition and there exists a solution to this
dynamical system.

In fact, the function defining the right-hand side of (4.18) is continuous and locally bounded
as long as all xi are distincts. Therefore there exists a C1 local solution of the ODE (4.18)
thanks to the Cauchy-Peano Theorem. A difficulty appears when particles collide. Thanks to
the one-sided estimate on W ′ (2.9), we have that the right hand side defining (4.18) is one-
sided Lipschitz. Hence, there exists a unique Filippov flow which is global in time thanks to
estimate (2.11). Moreover this unique solution coincides with the C1 solution obtained by the
Cauchy-Peano theorem on each time interval [Tℓ, Tℓ+1). Finally we have constructed a solution
(xi)i=1,...,n of the system of ODE (4.18) which is Lipschitz on [0, T ] and C1 on each interval
(Tℓ, Tℓ+1).

Thus we can define ρn :=
∑n

i=1miδxi
. It is then straightforward by contruction that ρ is a

solution in the distributional sense of (4.16)–(3.6).
• Duality solutions.
Using Lemma 4.2 and expression (4.17), we deduce that âρn satisfies the OSL condition and

is piecewise continuous where the set of all discontinuities is {xi}i=1,...,n. From Theorem 3.5, we
deduce that ρn is a duality solution for all n ∈ N

∗.
• Finite first order moment.
By construction, we clearly have that ρ ≥ 0. Let us denote by j1(t) :=

∑n
i=1mi|xi(t)| the

first order moment. We have j1(0) < +∞. Using (4.18), we compute

j′1(t) ≤
n∑

i=1

mi

∑

j 6=i

mj |W
′(xi − xj)| ≤ C

n∑

i=1

mi

∑

j 6=i

mj(1 + |xi − xj |),

where we use (2.11) for the last inequality. Using
∑

i mi = |ρini|(R) = 1, we deduce that there
exists a nonnegative constant C such that

j′1(t) ≤ C(1 + j1(t)).
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Integrating this latter inequality implies that j1 is bounded on [0, T ] by a constant only depend-
ing on T and on j1(0). It remains to pass to the limit n → +∞ in the regularization.

• Passing to the limit n → +∞.
Using the fact that ρn(t) ∈ P1(R) for all t ≥ 0 and from (2.11), we deduce that âρn is

bounded in L∞((0, T )×R) uniformly with respect to n. Thus, from the point 4 of Theorem 3.4,
we can extract a subsequence ân converging in L∞((0, T )×R) towards â and the corresponding
duality solutions sequence (ρn)n converge in SM towards ρ which is a duality solution of

∂tρ+ ∂x(âρ) = 0.

Moreover, since ρn ⇀ ρ in SM , we have that âρn → âρ a.e. with the definition in (3.6). Thus
â = âρ a.e. and the flux

Jn(t, x) ⇀ J(t, x) := âρρ in Mb(]0, T [×R)− w.

4.2 Uniqueness

Let ρ be a nonnegative duality solution which satisfies in the distributional sense

∂tρ+ ∂x(âρρ) = 0. (4.19)

As above, we denote by F the cumulative distribution function of ρ and by F−1 its generalized
inverse. We have then by integration of (4.19)

∂tF + âρ∂xF = 0.

Then, we deduce from standard computations that

∂tF
−1(t, z)ρ(t, F−1(t, z)) = âρ(t, F

−1(z))ρ(t, F−1(t, z)).

Then the generalized inverse is a solution of the system

∂tF
−1(t, z) = âρ(t, F

−1(z)). (4.20)

Moreover thanks to a change of variables in (3.6),

âρ(t, F
−1(z)) =

∫

y 6=z

W ′(F−1(z)− F−1(y)) dy.

Proposition 4.3 Let ρ1(t, ·) and ρ2(t, ·) belong to P1(R). If ρ1 and ρ2 satisfy equation (4.19)
in the weak sense with initial data ρini1 and ρini2 . Then we have, for all t > 0

dW1(ρ1(t, ·), ρ2(t, ·)) ≤ eλtdW1(ρ1, ρ2).

Proof. Let us assume that there exists two nonnegative measures ρ1 and ρ2 duality solutions
which satisfy moreover (4.19). Let us denote respectively F−1

1 and F−1
2 their generalized inverses.

From (4.20), we have

∂t(F
−1
1 − F−1

2 ) = âρ(t, F
−1
1 (z))− âρ(t, F

−1
2 (z)).
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Multiplying the latter equation by sign(F−1
1 (z)− F−1

2 (z)) and integrating, we get

∂t(F
−1
1 (z)−F−1

2 (z))sign(F−1
1 (z)−F−1

2 (z)) =
(
âρ(F

−1
1 (z))− âρ(F

−1
2 (z))

)
sign

(
F−1
1 (z)−F−1

2 (z)
)
.

(4.21)
The one-sided Lipschitz estimate on âρ in Lemma 4.2 implies that

(
âρ(F

−1
1 (z))− âρ(F

−1
2 (z))

)
sign

(
F−1
1 (z)− F−1

2 (z)
)
≤ λ

∣∣F−1
1 (z)− F−1

2 (z)
∣∣.

Hence, after an integration,

d

dt

∫ 1

0

|F−1
1 − F−1

2 |(z) dz ≤ λ

∫ 1

0

|F−1
1 − F−1

2 |(z) dz.

Applying a Gronwall argument, we deduce that

‖(F−1
1 − F−1

2 )(t)‖L1(0,1) ≤ eλt‖(F−1
1 − F−1

2 )(0)‖L1(0,1)

We conclude the proof by noticing that ‖(F−1
1 −F−1

2 )(t)‖L1(0,1) = dW1(ρ1, ρ2) and using a Gron-
wall argument.

Proof of Theorem 3.7. The existence has been obtained in Section 4.1. Then if we have
two duality solutions ρ1 and ρ2 as in Theorem 3.7, Proposition 4.3 implies that their generalized
inverse are equals. Therefore ρ1 = ρ2. Finally, the second point of Theorem 3.4 allows to define
the duality solution as a push-forward measure from the backward flow.

4.3 Proof of Theorem 4.1

Let us first prove that the second order moment is bounded provided ρini ∈ P2(R). We follow the
idea of the proof of finite first order moment in subsection 4.1 : we consider an approximation of
ρini by

∑n
i=1miδx0

i
and we consider then the constructed duality solution ρ(t, x) =

∑n
i=1miδxi(t)

where the dynamics of the nodes {xi}i=1,...,n is given in (4.18). Let us denote by j2(t) :=∑n
i=1mix

2
i (t) the second order moment. We have j2(0) < +∞. Using (4.18), we compute

j′2(t) =
n∑

i=1

2mixi

∑

j 6=i

mjW
′(xi − xj) ≤ C

n∑

i=1

mi|xi|
∑

j 6=i

mj(1 + |xi − xj |),

where we use (2.11) for the last inequality. Since
∑

i mi = |ρini|(R) and from the Cauchy-
Schwarz inequality, we deduce that there exists a nonnegative constant C such that

j′2(t) ≤ C

n∑

i=1

mi(|xi|+ |xi|
2) ≤ C(1 + j2(t)).

Integrating this latter inequality implies that j2 is bounded on [0, T ] by a constant only de-
pending on T and on j2(0). Then we can pass to the limit n → +∞ to obtain a bound on∫
R
|x|2ρ(t, dx) for any t > 0. Moreover, using this L∞((0, T );P2(R)) bound, we deduce that the

velocity field âρ defined in (3.6) is bounded in L1((0, T );L2(ρ)).
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Then, if ρ is a duality solution as in Theorem 3.7, it satisfies in the distributional sense the
scalar conservation laws

∂tρ+ ∂x(âρρ) = 0.

Using Theorem 8.3.1 of [2] and the L1((0, T );L2(ρ)) bound on the velocity âρ, we deduce that
ρ ∈ AC2

loc((0,+∞);P2(R)). Thus ρ is a gradient flow solution (see [14] or Sections 8.3 and 8.4
of [2]). It concludes the proof of point (i) of Theorem 4.1.

Conversely, if ρ is a gradient flow solution of Theorem 2.4, then it is a weak measure solution
of (3.5)–(3.6). Such solution is unique from Theorem 3.7 then ρ is a duality solution.

5 On the case a 6= id

In many applications in physics and biology (see e.g. [10, 21]), we have to consider that a 6= id.
This situation is not so favourable as the previous one, and one has to impose restrictions on
the potential W . First we recall that attractivity implies that a is non-decreasing, see (3.7).
Next, we need to assume that W has the following structure, see (3.8),

W ′′ = −δ0 + w, w ∈ C0
b (R).

With these assumptions, we are able to prove existence and uniqueness of duality solutions,
Theorem 3.10, this is the aim of subsection 5.1. Next, in subsection 5.2, we turn to gradient
flow, which are definitely not well suited for that case, since we have to restrict ourselves to
w = 0 in the previous assumption on W .

5.1 Duality solutions

Here we prove Theorem 3.10, following the same strategy as in the linear case: first we prove
the OSL condition, next establish the dynamics of aggregates, which leads to existence by
approximation. Finally, uniqueness follows from a contraction principle in the space P1. In
addition, we prove that duality solutions are absolutely continuous in time.

5.1.1 OSL condition

The first step consists in checking the OSL property for a.

Lemma 5.1 Assume 0 ≤ ρ ∈ Mb(R) and that (3.7) holds, If Assumption 3.9 is satisfied, then
the function x 7→ a(W ′ ∗ ρ) satisfies the OSL condition (3.3).

Proof. Using (3.8), we deduce that

∂xxW ∗ ρ = −ρ+ w ∗ ρ.

Therefore,
∂x(a(∂xW ∗ ρ)) = a′(∂xW ∗ ρ)(−ρ + w ∗ ρ) ≤ a′(∂xW ∗ ρ)w ∗ ρ,

where we use the nonnegativity of ρ in the last inequality. Then from (3.7) we get

∂x(a(∂xW ∗ ρ)) ≤ α‖ρ‖L1‖w‖L∞.
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It implies the OSL condition on the velocity.

5.1.2 Existence

Approximation with aggregates.
Following the idea in subsection 4.1, we first approximate the initial data ρinin by a finite sum

of Dirac masses: ρinin =
∑n

i=1miδx0
i

where x0
1 < x0

2 < · · · < x0
n and the mi-s are nonnegative. We

look for a sequence (ρn)n solving in the distributional sense ∂tρn + ∂xJn = 0 where the flux Jn

is given by (3.10). A function ρn(t, x) =
∑n

i=1miδxi(t) is such a solution provided the function
un defined by

un(t, x) :=

∫ x

ρn dx =
n∑

i=1

miH(x− xi(t)), (5.1)

where H denotes the Heaviside function, is a distributional solution to

∂tun − ∂xA(∂xW ∗ ρn) + a(∂xW ∗ ρn)w ∗ ρn = 0. (5.2)

We have

W ′ ∗ ρn(t, x) =
n∑

i=1

miW
′(x− xi(t)). (5.3)

And from (3.8), we deduce that

W ′(x) = −H(x) + w̃(x), where w̃(x) =

∫ x

w(y) dy. (5.4)

Straightforward computations show that in the distributional sense

∂xA(∂xW ∗ ρn) = a(∂xW ∗ ρn)w ∗ ρn +

n∑

i=1

[A(∂xW ∗ ρn)]xi
δxi

, (5.5)

where [f ]xi
= f(x+

i ) − f(x−
i ) is the jump of the function f at xi. Injecting (5.1) and (5.5) in

(5.2), we find

−

n∑

i=1

mix
′
i(t)δxi(t) =

n∑

i=1

[A(∂xW ∗ ρn)]xi
δxi

.

Thus it is a solution if we have

mix
′
i(t) = −[A(∂xW ∗ ρn)]xi(t), for i = 1, . . . , n. (5.6)

This system of ODEs is complemented by the initial data xi(0) = x0
i . Moreover, we have from

(5.4)

W ′ ∗ ρn(x
+
i ) = −

i∑

j=1

mj +
n∑

j=1

mjw̃(xi − xj). (5.7)

And
W ′ ∗ ρn(x

−
i ) = mi +W ′ ∗ ρn(x

+
i ). (5.8)
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Thus

x′
i(t) =

[A(W ′ ∗ ρn)]xi

[W ′ ∗ ρn]xi

, i = 1, . . . , n, xi(0) = x0
i . (5.9)

Then we define the dynamics of aggregates as in subsection 4.1 :

• When the xi are all distinct, they are solutions of system (5.6) or equivalently (5.9) (with
zero right hand side if nℓ = 1).

• At collisions, we use a sticky dynamics as defined as above.

We recall that this choice of the dynamics allows the conservation of the mass. As above, we
have existence of the sequence (xi)i satisfying (5.9) on [0, T ] with initial condition (x0

i ). Then
we set ρn(t, x) =

∑n
i=1miδxi(t)(x). By construction, ρn is a solution in the sense of distribution

of (3.11)-(3.10) for given initial data ρinin .
Existence of duality solutions
We recall the following result due to Vol’pert [35] (see also [1]): if u belongs to BV (R) and

f ∈ C1(R) with f(0) = 0, then v = f ◦ u belongs to BV (R) and

∃ fu with fu = f ′(u) a.e. such that (f ◦ u)′ = fuu
′.

Together with the fact that A is an antiderivative of a such that A(0) = 0, this result implies
that there exists a function ân such that ân = a(W ′ ∗ ρn) a.e. and

∂x(A(W
′ ∗ ρn)) = ân∂xxW ∗ ρn = −ânρn + ânw ∗ ρn,

where the last identity comes from (3.8). Therefore, we have

Jn := −∂x(A(W
′ ∗ ρn)) + a(W ′ ∗ ρn)w ∗ ρn = ânρn, and ân = a(W ′ ∗ ρn) a.e.

Thus ρn is a solution in the distributional sense of

∂tρn + ∂x(ânρn) = 0.

Moreover, we deduce from (5.3) that a(W ′ ∗ ρn) is piecewise continuous with the discontinuity
lines defined by x = xi, i = 1, . . . , n. We can apply Theorem 3.5 which gives that ρn is a
duality solution and that ân is a universal representative of a(W ′ ∗ ρn). Then the flux is given
by a(W ′ ∗ ρn)∆ρn = Jn.

General case.
Let us yet consider the case of any initial data ρini ∈ Mb(R). We approximate ρini by

ρinin =
∑n

i=1miδx0
i

with ρinin ⇀ ρini in Mb(R). By the same token as above, we can construct

a sequence of solutions (ρn)n with ρn(t = 0) = ρinin =
∑n

i=1miδx0
i
, which solves in the sense of

distributions

∂tρn + ∂xJn = 0, Jn = −∂xA(∂xW ∗ ρn) + a(∂xW ∗ ρn)w ∗ ρn,

and which satisfies
ânρn = Jn, ân = a(W ′ ∗ ρn) a.e.

Moreover, since W ′ ∗ ρn is bounded in L∞ uniformly with respect to n by construction, we can
extract a subsequence of (a(W ′ ∗ ρn))n that converges in L∞ − weak∗ towards b. Since from
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Lemma 5.1, a(W ′ ∗ ρn) satisfies the OSL condition, we deduce from Theorem 3.4 4) that, up to
an extraction, ρn ⇀ ρ in SM and ânρn ⇀ âρ weakly in Mb(]0, T [×R), ρ being a duality solution
of the scalar conservation law with coefficient b. Then Jn → J := −∂xA(W

′ ∗ρ)+a(W ′ ∗ρ)w ∗ρ
in D′(R) and that a(W ′ ∗ ρn) → a(W ′ ∗ ρ) a.e. By uniqueness of the weak limit, we have
b = a(W ′ ∗ ρ). Moreover J = âρ a.e. and ρ satisfies then (3.11).

Finite first order moment.
As in subsection 4.1, we define j1(t) =

∑n
i=1mi|xi(t)| and we compute

j′1(t) =
n∑

i=1

mi
xi

|xi|

[A(W ′ ∗ ρn)]xi

[W ′ ∗ ρn]xi

,

where we use (5.9). Since a is nondecreasing, A is a convex function. Moreover, we deduce from
(5.4) that |W ′(x)| ≤ C(1 + |x|). Thus, using the fact that a′ is bounded (3.7), we have

j′1(t) ≤ C

n∑

i=1

mi(1 +
∑

j

mj |xi − xj |) ≤ C(1 + j1(t)),

where C stands for a generic nonnegative constant. Applying a Gronwall inequality and passing
to the limit n → +∞ allows to conclude the proof.

Remark 5.2 Let us consider the case studied in the previous Section : a = id and W is even.
Since W ′ is odd, then (5.4) rewrites

W ′(x) = −H(x) + w0(x), where w0(x) =

∫ x

0

w(y) dy +
1

2
.

When a = id, we have A(x) = 1
2
x2. Then system (5.6) rewrites

mix
′
i(t) = −

1

2
(W ′ ∗ ρn(x

+
i )−W ′ ∗ ρn(x

−
i ))(W

′ ∗ ρn(x
+
i ) +W ′ ∗ ρn(x

−
i )).

Then, from (5.7) and (5.8), we have

x′
i(t) = −

i−1∑

j=1

mj −
mi

2
+

n∑

j=1

mjw0(xi − xj) = −

i−1∑

j=1

mj +
∑

j 6=i

mjw0(xi − xj).

From the expression of W ′ above, we deduce that x′
i(t) =

∑
j 6=imjW

′(xi − xj) and we recover
the dynamical system (4.18) of the previous Section.

Remark 5.3 The dynamical system (5.6) defines actually the macroscopic velocity. Indeed, if
we formally take the limit n → +∞ of the right hand side of (5.9), this latter term converges
towards the velocity âV defined by the chain rule (3.15)

5.1.3 Uniqueness.

The proof of the uniqueness follows straightforwardly the one in subsection 4.2 since the macro-
scopic velocity still satisfies the OSL condition as proved in Lemma 5.1.
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5.1.4 Absolute continuity.

Following subsection 4.3, we have the following result:

Proposition 5.4 Under the assumptions of Theorem 3.10, if moreover ρini ∈ P2(R), then the
duality solution of Theorem 3.10 satisfies ρ ∈ AC2

loc((0,+∞);P2(R)).

Proof. The proof of the finite second order moment follows straightforwardly the one for the
first order moment in subsection 5.1.2. Then from (3.7) and (2.11), we have that

|a(W ′ ∗ ρ)| ≤ C
(
1 +

∫

R

|x− y| ρ(dy)
)
.

Applying a Cauchy-Schwarz inequality, we deduce that
∫

R

|a(W ′ ∗ ρ)|2 ρ(dx) ≤ C
(
1 +

∫

R

|x− y|2 ρ(dx) ρ(dy)
)
,

which is bounded since ρ(t) ∈ P2(R). Therefore the velocity field â is bounded in L1((0, T );L2(ρ)).
Moreover ρ is a solution in the distributional sense of ∂tρ+ ∂x(âρ) = 0. We conclude then from
Theorem 8.3.1 of [2] that ρ ∈ AC2

loc((0,+∞);P2(R)).

5.2 Gradient flows

When a 6= id, equation (1.1) does not have a structure of a gradient. Moreover, we are not able
to determine a conserved energy corresponding to the system. Nevertheless, in the particular
case W (x) = −1

2
|x|, we are able to adapt the technique of [14] to recover the existence of

gradient flow solutions. We introduce for ρ ∈ P2(R) the functional

W(ρ) = −

∫

R

xa(u(x))ρ(dx), where u(x) = W ′ ∗ ρ(x) =

∫ x

−∞

ρ(dy)−
1

2
. (5.10)

Recall that we denote by A the antiderivative of a which vanishes at 0. We first verify that when
a = id this energy is equal to the one introduced in (2.5). In fact, we have for W (x) = −1

2
|x|,

−
1

4

∫

R2

|x−y|ρ(dx)ρ(dy) = −
1

4

∫

R

∫ x

−∞

(x−y)ρ(dy)ρ(dx)+
1

4

∫

R

∫ +∞

x

(x−y)ρ(dy)ρ(dx). (5.11)

Repeated use of Fubini’s Theorem in the last term of the right hand side leads to

−
1

4

∫

R2

|x− y|ρ(dx)ρ(dy) = −
1

2

∫

R

∫ x

−∞

(x− y)ρ(dy)ρ(dx)

= −
1

2

∫

R

x

∫ x

−∞

ρ(dy)ρ(dx) +
1

2

∫

R

∫ +∞

y

ρ(dx)yρ(dy).

Since u is given by (5.10), we have
∫ +∞

x
ρ(dy) = 1

2
− u(x). Finally,

−
1

4

∫

R2

|x− y|ρ(dy)ρ(dx) = −

∫

R

xu(x)ρ(dx),

which concludes the proof.
We are able to prove in this case the following Theorem.
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Theorem 5.5 Let W (x) = −1
2
|x| and a satisfy assumption (3.7). Given ρini ∈ P2(R), there

exists a unique gradient flow solution ρ ∈ AC2
loc([0,+∞),P2(R)) in the sense of Definition 2.1.

Therefore ρ satisfies in the distributional sense

∂tρ+ ∂x(a(u)ρ) = 0, with ρ(0) = ρini,

where u(x) = W ′ ∗ ρ(x) = ρ((−∞, x)) − 1
2
. Moreover, this solution is unique and we have the

energy estimate : for all 0 ≤ t0 ≤ t1 < ∞,

∫ t1

t0

|a(u(t, x))|2 ρ(t, dx) dt+W(ρ(t1)) = W(ρ(t0)).

Proof. This proof closely follows the ideas of the Section 2 of [14]. Therefore we will only
gives the main steps and do not detail all the computations. As recalled in the beginning of
this paper, the proof is divided into several steps.

• −a(u) is the unique element of minimal L2(ρ)-norm in the subdifferential ∂W
of W.

We first show that −a(u) ∈ ∂W(ρ), where u is defined in (5.10). That means

W(θ#ρ)−W(ρ) ≥ −

∫

R

a(u)(x)(θ(x)− x) ρ(dx) + o(dW2(θ#ρ, ρ)), (5.12)

where θ is an optimal transportation map. From Brenier’s Theorem [12], we can take for θ a
nondecreasing function. By definition of the pushforward measure, we have

∫ x

−∞

d(θ#ρ) = ρ(θ−1(−∞, x)),

so that

W(θ#ρ) = −

∫

R

xa(ρ(θ−1(−∞, x)))θ#ρ(dx) = −

∫

R

θ(x)a(ρ({y ∈ R/θ(y) < θ(x)}))ρ(dx).

We deduce from the monotony of the fucntion t that

W(θ#ρ)−W(ρ) = −

∫

R

a(u(x))(θ(x)− x)ρ(dx).

To prove that −a(u) is an element of minimal norm in ∂W(ρ), we first notice that for ξ ∈ C∞
b (R)

and for ε > 0 small enough such that (id+ εξ) is increasing, we have

W((id + εξ)#ρ) = −

∫

R

(id+ εξ)(x)a(u(x))ρ(dx).

Thus,

lim
ε→0

W((id+ εξ)#ρ)−W(ρ)

ε
= −

∫

R

a(u(x))ξ(x) dρ(x).

Then, from the definition of the slope (2.3), we have

lim inf
εց0

W((id + εξ)#ρ)−W(ρ)

dW2((id+ εξ)#ρ, ρ)
≥ −|∂W|(ρ).
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We deduce from above that
∫

R

a(u(x))ξ(x) dρ(x) ≤ |∂W|(ρ) lim inf
εց0

dW2((id+ εξ)#ρ, ρ)

ε
≤ |∂W|(ρ)‖ξ‖L2(ρ),

where we use the inequality dW2(S#ρ, T#ρ) ≤ ‖S − T‖L2(ρ) for the last inequality. By the same
token with −ξ instead of ξ, we deduce

∣∣∣
∫

R

a(u(x))ξ(x) dρ(x)
∣∣∣ ≤ |∂W|(ρ)‖ξ‖L2(ρ).

Since ξ is arbitrary, we get ‖a(u)‖L2(ρ) ≤ |∂W|(ρ). We conclude by using (2.4).
• Well-posedness and convergence of the JKO scheme.
The JKO scheme is defined in (2.8) where τ > 0 is a given small time step. The convergence

of this scheme can be deduced by an adaptation of the argument of Subsection 2.2 of [14].
However, in this one dimensional case, we can simplify a lot the computations by using the
generalized inverse, denoted v, of the function u, in the spirit of [8]. In fact, the function u is,
up to a constant, the cumulative distribution of ρ. Then, we have

W(ρ) = W̃(v) := −

∫ 1/2

−1/2

v(t, z)a(z) dz,

where we recall
v(t, z) = u−1(t, z) := inf{x ∈ R/u(t, x) > z}.

We define moreover vini = (uini)−1, where uini(x) = ρini((−∞, x)). Thus, using moreover (2.12),
the minimization problem defined in (2.8) is equivalent to : let vτk ∈ L2(−1/2, 1/2), we define

vτk+1 = arg min
v∈L2(−1/2,1/2)

{
W̃(v) +

1

2τ
‖v − vτk‖

2
}
. (5.13)

We recall that a is a nondecreasing function, then a(−1/2) ≤ a(z) ≤ a(1/2) when z ∈
(−1/2, 1/2). Then the functional defined inside the brackets is clearly lower semi-continuous,
convex and coercive on L2(−1/2, 1/2). We deduce that the above minimization problem (5.13)
admits an unique solution. Moreover, computing the Fréchet derivative of the functional defining
(5.13) in the L2-metric, the Euler-Lagrange equation associated to this minimization problem
implies

vτk+1(z) = vτk(z)− τa(z), z ∈
(
−

1

2
,
1

2

)
.

This is an implicit Euler discretization of the equation ∂tv(t, z) + a(z) = 0. It is well
known that the piecewise constant interpolation vτ defined by vτ (0) = vini and vτ (t) = vτk if
t ∈ (kτ, (k + 1)τ ], converges in L2(−1/2, 1/2) as τ → 0 towards v(t) for all t ∈ [0,+∞), where
v(t, z) = vini − ta(z). Moreover, we have the energy estimate

W̃(v) = W̃(vini)−

∫ t

0

∫ 1/2

−1/2

|a(z)|2 dz. (5.14)

We define then ρ := ∂xu, where u(t, x) := v−1(t, z) = inf{z ∈ [−1/2, 1/2]/v(t, z) > x}. We
have ρ ∈ P2(R), and from the latter energy estimate, we deduce

W(ρ) = W(ρini)−

∫ t

0

∫

R

|a(u(t, x))|2ρ(t, dx). (5.15)
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Moreover, we have from the equation ∂tv(t, z) + a(z) = 0 that the generalized inverse u solves
in the weak sense ∂tu+ a(u)∂xu = 0. Therefore, in the sense of distributions, we have

∂tρ+ ∂x(a(u)ρ) = 0.

From Theorem 8.3.1 of [2], we deduce that ρ ∈ AC2
loc((0,+∞);P2(R)). We conclude, using

moreover (5.15) that ρ is a curve of maximal slope for the functional W defined in (5.10).
• Gradient flow solutions.
This last step is a direct consequence of Theorem 11.1.3 of [2] since all assumptions of the

Theorem have been verified above. Thus curves of maximal slope are gradient flow solutions.
Uniqueness is obtained thanks to a contraction estimate based on a Gronwall argument as in
[14]. This concludes the proof of Theorem 5.5.

Finally we highlight that for the potential W (x) = −1
2
|x|, the problem has a special structure

explaining why we are able in that particular case to apply the theory of gradient flows. In fact,
in this case we have W ′′(x) = −δ0(x) that is w = 0 in (3.8). Then denoting by u = W ′ ∗ ρ and
taking the convolution by W ′ of (3.11), we deduce that u satisfies in the distributional sense

∂tu− J + w ∗ J = 0, J = −∂xA(u) + a(u)w ∗ ρ.

Therefore, in the particular case when w = 0, this latter equation reduces to the scalar conser-
vation law

∂tu+ ∂xA(u) = 0.

Obviously, since we recover the absolute continuity of the duality solution in Proposition 5.4,
we conclude that when W = −1

2
|x| both concepts of solutions coincide.
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