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Generalised canonical basic sets for Ariki-Koike algebras

Thomas Gerber ∗

January 22, 2014

Abstract

Let H be a non semi-simple Ariki-Koike algebra. According to [20] and [16], there is a generali-

sation of Lusztig’s a-function which induces a natural combinatorial order

(parametrised by a tuple m) on Specht modules. In some cases, Geck and Jacon have proved that

this order makes the decomposition matrix of H unitriangular. The algebra H is then said to admit

a "canonical basic set". We fully classify which values of m yield a canonical basic set for H and

which do not. When this is the case, we describe these sets in terms of "twisted Uglov" or "twisted

Kleshchev" multipartitions.

1 Introduction

Over a field of characteristic 0, the representation theory of the symmetric groupSn is well-known. In

particular, thanks to Maschke’s semi-simplicity criterion, it is sufficient to understand its irreducible

representations. In fact, they are parametrised by partitions of n, via an explicit bijection. It is then

possible to study the representations of Sn in a combinatorial manner (using the notion of Young

tableaux), and deduce for instance the classic "hook-length formula" to compute the dimension of

any irreducible representation.

In the so-called modular case, that is, when the ground field is of prime characteristic e, one

loses many convenient properties, notably the semi-simplicity property. One can however collect

some information. For instance, the irreducible representations are known to be parametrised by

e-regular partitions of n (that is, the partitions of n with at most e − 1 equal parts). Also, the study

of the "decomposition matrix", which measures the defect of semi-simplicity, is of great interest in

modular representation theory. This matrix is known to have a unitriangular shape with respect to the

dominance order on the set of e-regular partitions, which parametrise its columns. It is natural to try

to extend this property to the more general groups G(l, 1, n) = (Z/lZ) ≀Sn, and to their quantizations,

which are known as Ariki-Koike algebras.

Inspired by this typical example, Geck and Rouquier introduced in [11] and [18] the notion of

canonical basic set for a non semi-simple Hecke algebra H . This approach formalises the fact that

the decomposition matrix D of H is unitriangular, with respect to a certain ordering of its columns.

Besides, it gives a bijection between Irr(H ) and a subset B of Irr(H), whereH is the semi-simple

generic Hecke algebra which specialises to H . The columns of D are then parametrised by B.

In this paper, we focus on Ariki-Koike algebras, that is, Hecke algebras H of the complex reflec-

tion groups G(l, 1, n). When H is non semi-simple, it is regarded as a specialisation, parametrised by

a pair (e, r) (where e is an integer and s is an l-tuple of integers), of a generic Ariki-Koike algebra H.

The irreducible representations of H are known to be parametrised by l-partitions of n. Using Broué

and Malle’s "cyclotomic Hecke algebras", see [5], Jacon defined in [20] a-invariants for Ariki-Koike

algebras, depending on a parameter m ∈ Ql (which itself depends on H), which induce an order on

the set of l-partitions of n. These a-invariants are seen as a generalisation of Lusztig’s a-function

[29]. In [16], Geck and Jacon showed compatibility between this order induced by the a-invariants,

which has several geometric interpretations, and a combinatorial order≪m defined using Lusztig’s

symbols. It turns out that the order ≪m naturally arises in the study of G(l, 1, n), for instance in

Kazhdan-Lusztig theory in type Bn (that is, when l = 2), see [14], or via the representations of

Cherednik algebras, as studied in [6] or [28].

Ariki’s proof in [2] of the LLT conjecture [25] enables us to compute the decomposition numbers

of H, when the ground field has characteristic zero, via the canonical basis of the Fock space Fr
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(Theorem 3.8). With this approach, Geck and Jacon showed (see [16, Theorem 6.7.2]) that it is

always possible to find a canonical basic set B for H for an appropriate choice of the parameter m.

In fact, they showed that B is the set Φr(n) of Uglov l-partitions of rank n associated to r.

We study here the canonical basic set for H with respect to ≪m in full generality: given an

element m ∈ Ql, we can define generalised a-invariants for H depending on m. In this setting, is

there a canonical basic set for H with respect to≪m? After defining a certain finite set of hyperplanes

P∗ ∈ Ql, we establish the following classification (see Theorem 6.5):

• If m <P∗, then there exists a canonical basic set, which we explicitely determine.

• If m ∈P∗, then there is no canonical basic set for H.

In the first case, the canonical basic set we describe can be regarded as a generalisation of the set of

Uglov multipartitions determined by Geck and Jacon. Hence we get other basic sets than the ones in

[16].

The paper is structured as follows. In Section 2 we recall some background on the representation

theory of Ariki-Koike algebras in the non semi-simple case. We introduce the order ≪m we use

throughout this article and the notion of canonical basic set in the sense of [18] and [12]. We also

formulate the precise question we are interested in. Section 3 summarizes the results of Geck Jacon

in [16, Chapters 5 and 6] which are relevant for our purpose. We introduce the Fock space, which

is a Uq(ŝle)-module, and its highest weight submodule V(r) which appears in Ariki’s theorem. In

Section 4 we show, using Theorem 3.10, that any so-called regular element m yields a canonical

basic set, which we describe in terms of "twisted Uglov multipartitions". Section 5 is devoted to the

asymptotic case, which roughly speaking corresponds to the case where the difference between two

arbitrary components of m is large. After explaining the particularity of this setting, we establish the

existence of a canonical basic set with respect to ≪m, namely the set of some "twisted Kleshchev

multipartitions". In the final Section 6, we prove that when m is singular, that is, when m ∈ P∗,

there is no canonical basic set with respect to≪m. We sum up these results in Theorem 6.5.

MSC: 05E10, 20C08, 20C20, 16T30.

2 Preliminaries

2.1 General notations

We start with some notations about partitions and multipartitions.

Let n ∈ Z≥0 and l ∈ Z>0. A partition of n is a decreasing sequence of non-negative integers

λ = (λ1, λ2, . . . ) such that
∑

i λi = n. We write |λ| = n, the rank of n. The elements λi are called the

parts of λ. We consider that a partition λ has an infinite number of parts λi = 0. We denote by Π(n)

the set of partitions of n, and we write λ ⊢ n if λ ∈ Π(n). An l-partition of n (also referred to as a

multipartition) is a sequence of partitions λ = (λ1, λ2, . . . , λl) such that |λ1|+ · · ·+ |λl| = n. We define

Πl(n) the set of l-partitions of n, and we write λ ⊢l n if λ ∈ Πl(n). The integer |λ| = n is called the

rank of λ.

Let λ ⊢l n. The Young diagram of λ is the set

[λ] := {(a, b, c) ; a ≥ 1, c ∈ ~1, l�, and 1 ≤ b ≤ λc
a}.

The elements of [λ] are called the nodes of λ. For the sake of simplicity, we sometimes identify a

multipartition with its Young diagram. A node γ of [λ] is called a removable node if the element µ

such that [µ] = [λ]\{γ} is still a multipartition (of rank n− 1). In this case, γ is also called an addable

node of [µ].

A multicharge is an element r = (r1, . . . , rl) ∈ Z
l. Given e ∈ Z>1, a multicharge r and a multipar-

tition λ ⊢l n, we can associate to each node γ = (a, b, c) of [λ] its residue modulo e re(γ) := rc + b− a

mod e. For i ∈ ~0, e − 1�, we call γ an i-node if re(γ) = i.

We recall the classic dominance order on Π(n). Let λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) be

two partitions of n. We say that that λ dominates µ, and we write λ D µ, if
∑

1≤i≤d λi ≥
∑

1≤i≤d µi for

all d ≥ 1. More generally, we introduce a dominance order on the the set of sequences of rational

numbers in the same manner. Precisely, if α = (α1, α2, . . . ) and β = (β1, β2, . . . ) are such that∑
i αi =

∑
i βi, we define α D β by

∑
1≤i≤d αi ≥

∑
1≤i≤d βi for all d ≥ 1. We write α ⊲ β if α D β and

α , β.
These are partial orders. In the following sections, we shall also consider other orders on the set

Πl(n) of multipartitions.
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We also need to introduce the extended affine symmetric group.

Let l ∈ Z>0. Denote bySl the symmetric group on ~1, l�, and by σi, i ∈ ~1, l−1� its generators in

its Coxeter presentation. Let {y1, . . . , yl} be the standard basis of Zl. The extended affine symmetric

group Ŝl is the group with the following presentation:

• Generators: σi, i ∈ ~1, l − 1� and yi, i ∈ ~1, l�.

• Relations :

– σ2
i
= 1 for all i ∈ ~1, l − 1�,

– σiσi+1σ = σi+1σiσi+1 for all i ∈ ~1, l − 2�,

– σiσ j = σ jσi whenever i − j , 1 mod l,

– yiy j = y jyi for all i, j ∈ ~1, l�,

– σiy j = y jσi for all i ∈ ~1, l − 1� and j ∈ ~1, l� such that j , i, i + 1 mod l,

– σiyiσi = yi+1 for all i ∈ ~1, l − 1�.

Note that Ŝl is not a Coxeter group. Also, this group can be regarded as the semi-direct product

Zl ⋊ Sl.

Given e ∈ Z>1, there is an action of Ŝl on Zl, via the formulas:

• σir = (r1, . . . , ri−1, ri+1, ri, . . . , rl) for all i ∈ ~1, l − 1�, and

• yir = (r1, . . . , ri−1, ri + e, ri+1, . . . , rl) for all i ∈ ~1, l�,

where r = (r1, . . . , rl) ∈ Z
l.

The set {r ∈ Zl | 1 ≤ r1 ≤ · · · ≤ rl ≤ e} is a fundamental domain for this action.

2.2 Ariki-Koike algebras and decomposition maps

Let l ∈ Z>0 and n ∈ Z>1. Let R be a subring of C, u,V1, . . . ,Vl be independent indeterminates, and

set A = R[u±1,V1, . . . ,Vl].

Definition 2.1. The generic Ariki-Koike algebra Hn = HA,n(u,V1, . . . ,Vl) is the unital associative

A-algebra with generators Ti, i = 0, . . . , n − 1, and relations

• (Ti − u)(Ti + 1) = 0 for all i ∈ ~1, n − 1�.

• (T0 − V1) . . . (T0 − Vl) = 0

• T0T1T0T1 = T1T0T1T0

• TiTi+1Ti = Ti+1TiTi+1 for all i ∈ ~1, n − 2�

• TiT j = T jTi whenever |i − j| > 1

Let K be the field of fractions of A. We set HK,n = K ⊗A Hn. We denote by Irr(HK,n) the set of

irreducible HK,n-modules.

Theorem 2.2 (Ariki, [4]). The algebra HK,n is split semi-simple.

As a consequence, Tits’ deformation theorem implies that the irreducible representations of HK,n

are in one-to-one correspondence with the irreducible representations of the complex reflection group

Wn = G(l, 1, n) over K = Frac(R). It is known that these representations are in one-to-one correspon-

dence with Πl(n), the set of l-partitions of n. Therefore, we can write

Irr(HK,n) = {Eλ; λ ⊢l n}.

The representations Eλ, λ ⊢l n, are called the Specht representations. The correspondence Πl(n) →

Irr(HK,n), λ 7→ Eλ is explicitely described in [4, Section 3].

We have the following criterion of semi-simplicity for specialised Ariki-Koike algebras.

Theorem 2.3 (Ariki, [3]). Let θ : A −→ k be a specialisation, with k = Frac(θ(A)). Denote η =
θ(u) , 0 and ηi = θ(Vi), for all i ∈ ~1, l�. Then the specialised algebra Hk,n(η, η1, . . . , ηl) = k ⊗A Hn

is (split) semi-simple if and only if

(
∏

−n<d<n

∏

1≤i< j≤l

(ηdηi − η j))(
∏

1≤i≤n

(1 + η + · · · + ηi−1)) , 0.

In his paper [31], Mathas gives a thorough review of both the semi-simple and the modular

representation theory of Ariki-Koike algebras. In particular, we can recall this result by Dipper and

Mathas:
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Theorem 2.4 (Dipper and Mathas, [9]). Let η and ηi (i = 1, . . . , l) be as in Theorem 2.3. Denote

E = {η1, . . . , ηl} and suppose that there exists a partition E = E1 ⊔ · · · ⊔ Es such that

∏

1≤α<β≤s

∏

(ηi ,η j)∈Eα×Eβ

∏

−n<N<n

(ηNηi − η j) , 0.

Then Hk,n(η, η1, . . . , ηl) is Morita equivalent to the algebra

⊕

n1+···+ns=n
n1,...,ns≥0

Hk,n1
(η,E1) ⊗k · · · ⊗k Hk,ns

(η,Es).

As a consequence, in order to study non semi-simple Ariki-Koike algebras, it is sufficient to

consider the specialisations Hk,n(η, η1, . . . , ηl) of Hn defined via

θ : A −→ k

u 7−→ ζ
Vi 7−→ ζri ,

where ζ is a primitive root of unity of order e (possibly infinite), and ri ∈ Z for all i ∈ ~1, l�.
Hence each specialisation considered from now on will be characterised by a pair (e, r) where

e is the multiplicative order of ζ = θ(u), and r = (r1, . . . , rl) ∈ Z
l. We will denote equally

Hk,n(ζ, ζr1 , . . . , ζr j ) = H
(e,r)

k,n the specialised Ariki-Koike algebra corresponding to (e, r). We also

denote θ(e,r) the associated specialisation map.

Consider the specialisation θ(e,r) : A −→ k with k = Frac(θ(e,r)(A)). In accordance with [1], [2]

(or [17] for l = 1, 2), there is an associated decomposition map dθ(e,r)
: R0(HK,n) −→ R0(H

(e,r)

k,n
), and

we can write

dθ(e,r)
([Eλ]) =

∑

M∈Irr(H
(e,r)

k,n
)

dλ,M[M].

The decomposition matrix of H
(e,r)

k,n is the matrix

Dθ(e,r)
= (dλ,M)λ⊢ln

M∈Irr(H
(e,r)

k,n )

.

The elements dλ,M are called the decomposition numbers of H
(e,r)

k,n . If the specialised algebra is semi-

simple, the decomposition map is trivial and Dθ(e,r)
is the identity matrix. In general, this matrix has

a rectangular shape, since |Irr(H
(e,r)

k,n )| ≤ |{Eλ; λ ⊢l n}| ([1], [2]). For simplicity, we say that λ appears

in the column C indexed by M if dλ,M , 0.

Actually, we can recover this matrix Dθ(e,r)
from any specialisation H

(e,s)

k,n where s is in the class of

r modulo Ŝl. It is important to understand the consequences of choosing another multicharge to get

the decomposition matrix.

Denote by C(r) (or simply C) the class of r modulo Ŝl, and by Ce(r) (or simply Ce) the class of r

modulo the subgroup 〈y1, ..., yl〉 of Ŝl (i.e. the set of all s = (s1, ..., sl) ∈ Z
l such that ∀1 ≤ i ≤ l, si = ri

mod e).

• If s ∈ Ce, then it is clear that H
(e,s)

k,n = H
(e,r)

k,n . Besides, the decompositions maps are the same.

Therefore, the decomposition matrices are strictly equal.

• If s ∈ C, one still has H
(e,s)

k,n
= H

(e,r)

k,n
. We therefore denote Hk,n this algebra. However, the

decomposition maps do not necessarily coincide. In fact, if we have s = σ(r), for some

σ ∈ Sl, denote θ := θ(e,r) and θσ := θ(e,s). Then we can write dθ([E
λ]) =

∑
M∈Irr(Hk,n) dλ,M[M]

and dθσ([E
λ]) =

∑
M∈Irr(Hk,n) dσ

λ,M
[M].

Now since θσ(Vi) = ζ
si = ζrσ(i) = θ(Vσ(i)), we have

dσλ,M = dλσ ,M, ∀λ ⊢l n , ∀M ∈ Irr(Hk,n)

where λσ = (λσ(1), . . . λσ(l)).

This means that the decomposition matrices are equal up to a permutation of the rows. Equiv-

alently, they are strictly equal (denoted by D) provided the parametrisation of the rows is

changed: the row of D labeled by λ with respect to the parametrisation yielded by r is labeled

by λσ with respect to the parametrisation yielded by s = σ(r).
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To sum up, the specialised Ariki-Koike algebra only depends on C. We denote it by Hk,n. Hence

we consider that for any s ∈ C, we obtain one genuine matrix, that we denote dy D, but that each

element s ∈ C yields a different (in general) parametrisation of the rows of D.

In our purpose to study canonical basic sets, introduced in the next section, it is crucial to under-

stand which parametrisation we use. In fact, we will fix a multicharge r once and for all, and this

will fix a parametrisation of the rows of D.

In the sequel, we will be interested with the shape of this decomposition matrix. One of the

classic problems is to find an indexation of the simple Hk,n-modules so that D is upper unitriangular,

that is,

D =

Irr(Hk,n)︷          ︸︸          ︷


1 0 . . . 0

⋆ 1 . . . 0
... ⋆

. . .
...

...
...
. . . 1

...
... ⋆

...
... . . .

...





Πl(n)

More precisely, we ask for an order ≤ on Irr(Hk,n) such that D has the above shape with respect

to this order, that is, i > j ⇒ Mi ≤ M j, if Mi ∈ Irr(Hk,n) parametrises the i-th column of D. These

problems have been solved in [16], using the theory of canonical basic sets. This approach enables us

find a bijection between Irr(Hk,n) and a subset ofΠl(n), and therefore to label the simple Hk,n-modules

by certain l-partitions, the Uglov multipartitions. Accordingly, the orders used to parametrise the

columns of D are orders on l-partitions (i.e. on the rows of D).

In this paper, we address the "converse" question: given a certain natural order on the set of

multipartitions, is it possible to find a parametrisation of Irr(Hk,n) by a subset of Πl(n) such that D is

upper unitriangular with respect to this order? We first need to precise which specific orders we are

interested in, and some background about canonical basic sets.

2.3 Canonical basic sets

One can associate to each simple HK,n-module Eλ its Schur element cλ. Explicit formulas for com-

puting cλ have been given independently in [15] and [30]. In [8], Chlouveraki and Jacon have showed

that cλ is actually an element of Z[u±1,V±1
1
, . . . ,V±1

l
] (that is, a Laurent polynomial in the variables

u,V1, . . . ,Vl).

Now fix m = (m1, . . . ,ml) ∈ Q
l. One can define the degree of cλ by setting

deg(upV
p1

1
. . .V

pl

l
) = p + m1s1 + · · · + mlsl, and

deg(cλ) = min{deg(upV
p1

1
. . .V

pl

l
) ; upV

p1

1
. . .V

pl

l
is a monomial appearing in cλ}.

Such an element m is then called a weight sequence. Note that this definition of the degree is different

from the usual one for Laurent polynomials (namely, one usually takes the maximum of the degrees

of the monomials).

Extending Lusztig’s [29] definition of the a-function, one can then introduce generalised a-

invariants for the modules Eλ. We simply set am(λ) = − deg(cλ). The map Eλ 7→ am(λ) is then called

a generalised a-function, and coincides with Lusztig’s a-function when l = 1 and m = m1 = 1.

Remark 2.5. The weight sequence m we just introduced also has another algebraic meaning. In [5],

Broué and Malle have introduced the notion of "cyclotomic" Hecke algebra. In the case of an Ariki-

Koike algebra, see [16, Chapter 5], this is a one-parameter specialisation of Hn, parametrised by a

pair (m, t) ∈ Ql × Q. Thanks to Theorem 2.3, any cyclotomic specialisation is known to be semi-

simple. Note that in [16], the generalised a-function is defined on this cyclotomic specialisation.

Interestingly, any non semi-simple algebra H
(e,r)

k,n
= Hk,n can be obtained by specialising a certain

cyclotomic algebra. In fact, if mi = ri − e(i−1)/pl with gcd(p, e) = 1 and t is such that tmi ∈ Z for all

i, we have a cyclotomic algebra HK(y),n depending on an indeterminate y, which can be specialised to

Hk,n via y 7→ ζ1/t := exp(2ipπ/et). In other terms, the following diagram commutes:

5



Hn

θ(e,r)

��

θy

##
GG

GG
GG

GG
G

HK(y),n

θ̃
{{ww
ww
ww
ww

Hk,n

where θy : A −→ K(y)

u 7−→ yt with t such that t(ri −
e(i−1)

pl
) ∈ Z,

Vi 7−→ y
t(ri−

e(i−1)
pl

)ξi−1
l

for i ∈ ~1, l�
is the cyclotomic specialisation, where ξl = exp(2iπ/l),

and θ̃ : K(y) −→ k such that ζ1/t ∈ k

y 7−→ ζ1/t.

Now, the a-invariants induce an order on Specht modules, namely Eλ ⊑ Eµ ⇔ [λ = µ or am(λ) <
am(µ)]. The general notion of canonical basic sets requires an order on the Specht modules. In

the case of Ariki-Koike algebras, it is natural to use this algebraic order. In fact, we will use a

combinatorial order≪m which contains the order ⊑ above. This is the order on shifted m-symbols

defined in [16].

The shifted m-symbol of λ = (λ1, . . . , λl) ⊢l n of size p ∈ Z is the l-tupleBm(λ) = (B1
m(λ), . . . ,Bl

m(λ)),

where B
j
m(λ) = (B

j

p+⌊m j⌋
(λ), . . . ,B

j

1
(λ)), with B

j

i
(λ) = λ

j

i
− i + p + m j, for all j ∈ ~1, l� and

i ∈ ~1, p + ⌊m j⌋�. Note that p must be sufficiently large, so that p + ⌊m j⌋ ≥ 1 + h j for all j ∈ ~1, l�,

where h j
= maxλ j

i
,0

i. This ensures in particular that each B
j
m(λ) is well defined. As usual, we

consider that each partition λ j of λ has an infinite number of parts λ
j

i
= 0.

The shifted m-symbol Bm(λ) is pictured by an array whose j-th line (numbered from bottom to

top) corresponds to B
j
m(λ).

Example 2.6. Let m = (1/2, 2,−1) and λ = (1.1, ∅, 2) ⊢3 4. We choose p = 3. Then

Bm(λ) =


0 3

0 1 2 3 4

1/2 5/2 7/2

 .

Note that this symbol can easily be obtained from the shifted m-symbol of the empty l-partition,

by adding the parts of λi to the i-th row (numbered from bottom to top) of Bm(∅), from right to left.

The symbolBm(λ) has h = lp +
∑

1≤ j≤l⌊m j⌋ elements.

Write bm(λ) = (b1m(λ), b2m(λ), . . . , bhm(λ)) the sequence of elements in Bm(λ), in decreasing order.

For λ, µ ∈ Πl(n), we define the order≪m by

λ≪m µ
def
⇐⇒ λ = µ or bm(λ) ⊲ bm(µ),

in the general sense of dominance order on sequences of rational numbers defined in Section 2.1.

Set also nm(λ) =
∑

1≤i≤h(i− 1)bim(λ). By [16, Proposition 5.5.11], we can compute the a-invariant

of λ using symbols, namely am(λ) = t(nm(λ)−nm(∅)). As a direct consequence, we have the following

compatibility property ([16, Proposition 5.7.7]):

[λ≪m µ and λ , µ] ⇒ am(λ) < am(µ). (1)

This order on symbols has the advantage of being easier to handle, since it is purely combina-

torial. Besides, it naturally appears in the representation theory of the complex reflection groups of

type G(l, 1, n). For instance, when l = 2 (i.e. in type B), Geck and Iancu showed in [14, Theorem

7.11] that this order is compatible with an order �L, defined (in [13]) on Irr(G(l, 1, n)) using Lusztig’s

families (and related to the order ≤LR defining Kazhdan-Lusztig cells). In fact, they showed that in

general, one has λ �L µ ⇒ λ ≪m µ, and that in some particular cases, both orders are equivalent.

Note that the version of the order ≪m defined in [14, Section 3] is slightly different from the one

we just defined. Moreover, Chlouveraki, Gordon and Griffeth have used the compatibility property

(1) above to deduce information on the decomposition of standard modules of Cherednik algebras,
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[6, Theorem 5.7]. Also, Liboz showed in [28] that the order ≪m contains the order induced by the

"c-function" on Irr(G(l, 1, n)) used in the representation theory of Cherednik algebras.

We can now state the definition of a canonical basic set in the sense of [12], for both the order

≪m and the one induced by the a-invariants.

Fix r ∈ Zl and e ∈ Z>1. Consider the specialised algebra H
(e,r)

k,n
= Hk,n. For M ∈ Irr(Hk,n), set

S (M) = {λ ⊢l n | dλ,M , 0}. Note that this set strongly depends on the choice of r (which is fixed

once and for all), as explained on page 4.

Definition 2.7. Assume that the following conditions hold:

1. For M ∈ Irr(Hk,n), there exists a unique element λM ∈ S (M) such that for all µ ∈ S (M),

λM ≪m µ (resp. am(λM) < am(µ) or λ = µ).

2. The map Irr(Hk,n)→ Πl(n), M 7→ λM is injective.

3. We have dλM ,M = 1, for all M ∈ Irr(Hk,n).

Then the set B := {λM; M ∈ Irr(Hk,n)} ⊆ Πl(n) is in one-to-one correspondence with Irr(Hk,n). It is

called a (generalised) canonical basic set for (Hk,n, r) with respect to ≪m (resp. with respect to the

a-function).

Remark 2.8. As a direct consequence, if there exists a canonical basic set for (Hk,n, r) with respect

to ≪m (or with respect to the a-function), it is unique. Moreover, the three conditions of Definition

2.7 encode the fact that D is upper unitriangular with respect to≪m.

Remark 2.9. We have given here the definition of a canonical basic set for both the orders≪m and

the one induced by the a-function. In this paper, we only consider the combinatorial order≪m, which

is no real restriction because of the relation (1) between both orders. However, both orders enjoying

the same "continuity" property with respect to m (see Lemma 5.13) we give two versions of the main

result of this paper, namely Theorem 6.5 (for the order≪m), and Theorem 6.7 (for the order induced

by the a-function).

Remark 2.10. Just like decomposition matrices, it is important to understand how the notion of

canonical basic set depends on r. Indeed, this multicharge determines a parametrisation of the rows

of D. This parametrisation being invariant in the class Ce, we are ensured that for s ∈ Ce, if (Hk,n, s)

admits a canonical basic set B, then B is the canonical basic set for (Hk,n, r). However, this is not

true for general s ∈ C. For such a multicharge, it is sometimes possible to find a canonical basic set

for (Hk,n, s), even if (Hk,n, r) does not admit any canonical basic set and both algebras are equal, see

Example 6.3. Also, if B is the canonical basic set for (Hk,n, r), it is sometimes possible to find s ∈ C

such that (Hk,n, s) admits a canonical basic set B′ and B′ , B, see Example 4.3.

Fix r ∈ Zl, n, l ∈ Z>1, e ∈ Z>1. The question of determining canonical basic sets for (Hk,n, r)

has been solved in some cases. First, in [20], Jacon has studied the case where mi = ri − e(i − 1)/l
(which is also when θ(e,r) can be decomposed in a cyclotomic specialisation and a non semi-simple

specialisation, as noticed in Remark 2.5), and in [16], Geck and Jacon have explained the more

general case where mi = ri − vi with some restrictions on (v1, . . . , vl). We now want to fully review

which values of m ∈ Ql yield a canonical basic set for (Hk,n, r), and which do not. We will see that

unless m belongs to some hyperplanes of Ql, the algebra (Hk,n, r) admits a canonical basic set with

respect to≪m, which we can explicitely describe.

Remark 2.11. Note that it is already known that canonical basic sets do not always exist. For instance,

in level 2, that is, when Hk,n can be seen as an Iwahori-Hecke algebra of type Bn, Geck and Jacon have

computed in [16, Example 3.1.15 (c)] a decomposition matrix, associated to a specialisation (with

k = F2(v) and n = 2) which does not admit any canonical basic set with respect to the a-function.

Enlightened by [16, Examples 5.7.3, 5.8.4 and 6.7.5], we can then regard the cases of non-

existence of a canonical basic set for Hk,n (Proposition 6.2) as anologues of this non-existence result

in type Bn.

Remark 2.12. The existence of canonical basic sets for Hecke algebras of more general reflection

groups have been notably studied in [7] and [8].

Remark 2.13. We could have adressed a slightly different question. Since we can recover the decom-

position matrix from any s ∈ C (up to a change of parametrisation of the rows), we could also ask

which weight sequences m yield a canonical basic set for (Hk,n, s), for some s ∈ C. Note that solving

the first question automatically solves this weaker question, by taking the reunion over s ∈ C of all

weight sequences m that yield a canonical basic set for (Hk,n, s).

First, let us recall what particular values of m are known to yield canonical basic sets for (Hk,n, r).

7



3 Existence of canonical basic sets for appropriate parameters

Consider the specialised Ariki-Koike algebra Hk,n = H
(e,r)

k,n where e ∈ Z>1, and r = (r1, . . . , rl) ∈ Z
l.

We want to find a canonical basic set for (Hk,n, r), in the sense of Definition 2.7. The following results

prove that it is always possible to find m ∈ Ql such that (Hk,n, r) admits a canonical basic set with

respect to≪m. Besides, they can be explicitely described, either "directly" (FLOTW l-partitions) or

recursively (Uglov l-partitions). These results can be found in [16].

3.1 FLOTW multipartitions as canonical basic sets

Let S l
e = {r = (r1, . . . , rl) ∈ Z

l | 0 ≤ r j − ri < e for all i < j}. In this section, we assume that r ∈ S l
e .

The following definition is due to Foda, Leclerc, Okado, Thibon and Welsh, see [10].

Definition 3.1. Let λ = (λ1, . . . , λl) ⊢l n and r ∈ S l
e . Then λ is called a FLOTW l-partition if:

1. For all j ∈ ~1, l − 1�, λ
j

i
≥ λ

j+1

i+r j+1−r j
,∀i ≥ 1; and λl

i
≥ λ1

i+e+r1−rl
,∀i ≥ 1.

2. The residues of the rightmost nodes of the length p rows (for all p > 0) of λ do not cover

~0, e − 1�.

Denote by Ψr the set of FLOTW l-partitions associated to r ∈ S l
e , and by Ψr(n) ⊂ Ψr the ones of

rank n.

Example 3.2. If l = 3, e = 4 and r = (0, 0, 2), we have:

Ψr(3) =

{
(3, ∅, ∅) , (2, 1, ∅) , (1, 1, 1) , (1.1, 1, ∅) , (2.1, ∅, ∅) , (2, ∅, 1) ,

(1, ∅, 2) , (1.1, ∅, 1) , (1, ∅, 1.1) , (∅, ∅, 2.1) , (∅, ∅, 3)
}
.

Remark 3.3. If l = 1, the FLOTW l-partitions are exactly the e-regular partitions, that is, the partitions

with at most e − 1 equal parts.

We have the following result by Geck and Jacon.

Theorem 3.4 ([16, Theorem 5.8.2]). Let r ∈ S l
e , v = (v1, . . . , vl) ∈ Q

l such that i < j⇒ 0 < v j−vi <
e, and set m = r − v = (r1 − v1, . . . , rl − vl). Then (Hk,n, r) admits a canonical basic set with respect

to≪m, namely the set Ψr(n).

Note that since S l
e contains a fundamental domain for the action of Ŝl on Zl (the one described in

section 2.1), and since Hk,n depends only on the class C of r modulo Ŝl, it is relevant to only consider

the elements r ∈ S l
e . Besides, this theorem holds regardless of the characteristic of the field k, and

Ψr(n) has the advantage of being directly computable.

3.2 Ariki’s theorem and Uglov multipartitions as canonical basic sets

We now want to find a canonical basic set for (Hk,n, r) for an arbitrary value of r. In this subsection,

we will need to assume that char(k) = 0. Indeed, this is an essential condition for Ariki’s theorem

to apply. His result links the theory of canonical bases (in the sense of Kashiwara, or Lusztig)

of quantum groups with the modular representation theory (in characteristic zero) of Ariki-Koike

algebras.

We do not recall here the theory of quantum groups. We refer to [3] and [19] for detailed back-

ground onUq(ŝle) in particular. We denote by ei, fi, ti, t
−1
i
, d, d−1 the generators ofUq(ŝle), and by ωi,

i ∈ ~0, e − 1�, the fundamental weights ofUq(ŝle).

We redefine the Fock space and its properties. Let r ∈ Zl, q be an indeterminate. The Fock space

Fr is the Q(q)-vector space with formal basis |λ, r〉 where λ ⊢l n, i.e.

Fr =

⊕

n∈Z≥0

⊕

λ⊢ln

Q(q)|λ, r〉.

We define an order on the set of addable or removable i-node of a l-partition λ. Let γ = (a, b, c)

and γ′ = (a′, b′, c′) be two removable or addable i-nodes of λ ⊢l n. We write

γ ≺(r,e) γ
′ if

{
b − a + rc < b′ − a′ + rc′ or

b − a + rc = b′ − a′ + rc′ and c > c′.

Note that if ba + rc = b′ − a′ + rc′ and c = c′, then γ and γ′ are in the same diagonal of the same

Young diagram, so they cannot be both addable or removable. Hence this order is well-defined.
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Let λ ⊢l n and µ ⊢l n + 1 such that [µ] = [λ] ∪ {γ} where γ is an i-node. We set

N≺i (λ, µ) =♯{addable i-nodes γ′ of λ such that γ′ ≺(r,e) γ}−

♯{removable i-nodes γ′ of µ such that γ′ ≺(r,e) γ},

N≻i (λ, µ) =♯{addable i-nodes γ′ of λ such that γ′ ≻(r,e) γ}−

♯{removable i-nodes γ′ of µ such that γ′ ≻(r,e) γ},

Ni(λ) = ♯{addable i-nodes of λ} − ♯{removable i-nodes of λ},

and Nd(λ) = ♯{0-nodes of λ}.

The following result is due to Jimbo, Misra, Miwa and Okado.

Theorem 3.5 ([23]). Let λ ⊢l n. The formulas

ei |λ, r〉 =
∑

µ⊢ln−1
re([λ]\[µ])=i

q−N≺
i

(µ,λ) |µ, r〉 ,

fi |λ, r〉 =
∑

µ⊢ln−1
re([µ]\[λ])=i

q−N≻
i

(λ,µ) |µ, r〉 ,

ti|λ, r〉 = qNi(λ)|λ, r〉 and

d|λ, r〉 = −(∆(r) + Nd(λ))|λ, r〉, for all i ∈ ~0, e − 1�

endowFr with the structure of an integrableUq(ŝle)-module. Here, ∆(r) is a rational number defined

in [32].

The element |∅, r〉 ∈ Fr is a highest weight vector, of highest weightΛr := ωr1mode + · · ·+ωrlmode.

We denote by V(r) ⊂ Fr the irreducible highest weight Uq(ŝle)-module spanned by |∅, r〉. This

module V(r) is endowed with a crystal basis, a crystal graph Gr, and a canonical (or global) basis, in

the sense of [24]. In order to determine the crystal graph Gr, we first need to recall the definition of

good addable and good removable i-nodes.

Let λ ⊢l n. Consider the set of its addable and removable i-nodes, ordered with respect to ≺(r,e).

Encode each addable (resp. removable) i-node with the letter A (resp. R). This yields a word of the

form Aα1 Rβ1 . . . Aαp Rβp . Delete recursively all the occurences of type RA in this word. We get a word

of the form AαRβ. Denote it by wi(λ). Let γ be the rightmost addable (resp. leftmost removable)

i-node in wi(λ). Then γ is called the good addable (resp. good removable) i-node of λ.

Definition 3.6. The set Φr of Uglov l-partitions is defined recursively as follows:

• ∅ ∈ Φr,

• If µ ∈ Φr, then any λ obtained from µ by adding a good addable node is also in Φr.

Then we have the following result:

Theorem 3.7 ([16, Proposition 6.2.14]). The crystal graph Gr consists of vertices |λ, r〉 with λ ∈ Φr

and arrows |µ, r〉
i

−−−−−→ |λ, r〉 if and only if [λ] = [µ] ∪ {γ} where γ is the good addable i-node of µ.

We can now state Ariki’s theorem, proved in [2].

Consider the canonical basis Br of V(r). It is indexed by Uglov l-partitions. We write Br =

{G(µ, r) ; µ ∈ Φr}. Each element of Br decomposes on the basis of l-partitions. Write G(µ, r) =∑
λ⊢ln

cλ,µ(q)|λ, r〉.
Let B1

r be the specialisation of Br at q = 1, that is,

B1
r =

{ ∑

λ⊢ln

cλ,µ(1)|λ, r〉 ; µ ∈ Φr

}
.

Recall that the elements dλ,M ∈ Z>0, λ ⊢l n, are the decomposition numbers associated to M ∈

Irr(Hk,n). Define

B(M, r) =
∑

λ⊢ln

dλ,M |λ, r〉.
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Theorem 3.8 ([3, Theorem 12.5]). Suppose that char(k) = 0. Then

B1
r =

{
B(M, r) ; M ∈ Irr(Hk,n), n ∈ Z≥0

}
.

Hence we have the following result concerning the decomposition matrix D of Hk,n:

Corollary 3.9. Set C = (cλ,µ(1))λ⊢ln,µ∈Φr
. Then C = D up to a reordering of the columns.

In other words, if char(k) = 0, it is sufficient to compute the canonical basis of the irreducible

highest weightUq(ŝle)-module V(r) in order to recover the decomposition matrix D.

Uglov, in [32], determined a "canonical basis" Br of V(r), generalising the work of Leclerc and

Thibon in [27]. Another good reference is the thesis of Yvonne, [33]. This requires some theory

about the affine Hecke algebra of type A and q-wedge products. This approach permits us to establish

the existence of a "canonical" basis of the whole Fock space, and also to compute Br.

We introduce one more notation. Let s = (s1, . . . , sl) ∈ C. For m = (m1, . . . ,ml) ∈ Q
l, we set

v = (v1, . . . , vl) = (s1 − m1, . . . , sl − ml), and we define

Ds =

{
m ∈ Ql | i < j⇒ 0 < v j − vi < e

}
.

Using Uglov’s canonical basis of the Fock space, Geck and Jacon have proved the following

result about canonical basic sets:

Theorem 3.10 ([16, Theorem 6.7.2]). Suppose that char(k) = 0. Let r ∈ Zl and m ∈ Ql. If m ∈ Dr,

then (Hk,n, r) admits a canonical basic set with respect to≪m, namely the set Φr(n).

In the rest of the paper, we will assume that char(k) = 0, so that Ariki’s theorem (and hence

Theorem 3.10) holds.

We now wish to review the existence or non-existence of a canonical basic set for (Hk,n, r) with

respect to≪m, depending on the values of m, and explicitely describe these sets when they exist.

In the following sections, we will denote by P the following subset of Ql:

P =

{
m ∈ Ql | ∃ i , j such that (ri − mi) − (r j − m j) ∈ eZ

}
.

Precisely, P consists in the union of the hyperplanes

Pi, j(s) =
{
m ∈ Ql | (si − mi) − (s j − m j) = 0

}

=

{
m ∈ Ql | vi − v j = 0

}
(where vi := si − mi ∀i ∈ ~1, l�)

over all s ∈ Ce and all 1 ≤ i < j ≤ l.

Indeed, for k ∈ Z, we have

(ri − mi) − (r j − m j) = ke ⇔ (ri − mi) − (r j + ke − m j) = 0

⇔ (si − mi) − (s j − m j) = 0

⇔ vi − v j = 0

with s = (s1, . . . , si, . . . , s j, . . . , sl) = (r1, . . . , ri, . . . , r j + ke, . . . , rl).

Clearly, this is not a disjoint union, since Pi, j(s) = Pi, j(s̃) whenever s̃i = si + pe and s̃ j = s j + pe

for some p ∈ Z. Also, when l > 2, the hyperplanes Pi, j(s) and Pi′ , j′(s) always intersect, even when

(i, j) , (i′, j′).

Now, for m ∈ Ql, we can always find a multicharge s ∈ Ce which is "close" to m in the following

sense. In Ql, consider the closed balls Be/2(s), with respect to the infinity norm, of radius e/2 and

centered at s, for s ∈ Ce. By definition of Ce, it is clear that

⋃

s∈Ce

Be/2(s) = Ql, and
⋂

s∈Ce

Be/2(s) =
⋃

s∈Ce

∂Be/2(s).

In other terms, these balls cover Ql, and only their boundaries intersect. Hence, there is a particular

s = (s1, . . . , sl) ∈ Ce such that m ∈ Be/2(s), and this multicharge is unique if m is not on the boundary

of the ball. If it belongs to the boundary, then this means that there exists i ∈ ~1, l� such that

|vi] = |si − mi| = e/2. In this case, we make s unique by setting |vi| = e/2.

Definition 3.11. The element s thus obtained is called the m-adapted multicharge.

The following easy lemma will be useful in the last two sections.
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e

e

Ds

P1,2((r1, r2 − e))

s ∈ Ce r = (r1, r2)

P1,2((r1, r2 + e)) = P1,2(s)

P1,2(r)

Figure 1: The set P and the domains Ds in level 2.

Lemma 3.12. Let m ∈ Ql. Suppose that m ∈ Pi, j(s
′) for some i < j and some s′ ∈ Ce. Then

Pi, j(s) = Pi, j(s
′), where s is the m-adapted multicharge.

Proof. The multicharge s verifies in particular 0 ≤ |si − mi| ≤ e/2 and 0 ≤ |s j − m j| ≤ e/2. Also,

because s′, s ∈ Ce, we can write si = s′
i
+ pe for some p ∈ Z. This gives

0 ≤ |s′i − mi + pe| ≤ e/2,

i.e.

0 ≤ |s′j − m j + pe| ≤ e/2 since m ∈ Pi, j(s
′).

Hence we have s j = s′
j
+ pe, which implies that Pi, j(s) = Pi, j(s

′). �

As a consequence, if m ∈ P , it writes a priori m ∈
⋂

(i, j)∈J
s′∈S

Pi, j(s
′) for some index set J and some

S ⊂ Ce, but, a posteriori, we can simply write m ∈
⋂

(i, j)∈J

Pi, j(s), where s is the m-adapted multicharge.

4 Canonical basic sets for regular m

If m ∈ Ql\P , we say that m is regular. In this section, we show that any regular m defines an order

≪m with respect to which Hk,n admits a canonical basic set. We use the fact that, for s ∈ Ce, if B is

the canonical basic set for (Hk,n, s) with respect to≪m, then B is the canonical basic set for (Hk,n, r)

with respect to≪m (see Remark 2.10). We first study the case l = 2, and then the general case.

4.1 l = 2

Here we have r = (r1, r2) ∈ Z2, and P is just a collection of parallel lines, namely the lines passing

through (s1, s2) ∈ Ce with slope 1. The set Ds is the domain strictly between the lines passing through

(s1, s2) and (s1, s2 − e), see Figure 1.

Notation: For s = (s1, s2) ∈ C, we denote s̃ = (s1, s2 + e).

Proposition 4.1. Let m = (m1,m2) ∈ Q2\P . Then (Hk,n, r) admits a canonical basic set with respect

to≪m, namely either Φs(n) or Φs̃(n), where s ∈ Ce is explicitely determined.

Proof. The idea is to show that any such m belongs to a certain Dŝ, for ŝ ∈ Ce.

Consider the m-adapted multicharge s (cf. Definition 3.11). It verifies, in particular, 0 ≤ |si−mi| ≤
e
2
, i = 1, 2.. We set, as usual, vi = si − mi, so that we have 0 ≤ |v1 − v2| ≤ e. The fact that m is not

located on a hyperplane of P (and that s is obtained from r after translation of each coordinate by

an element of eZ) ensures that on can never have v1 = v2. Thus 0 < |v1 − v2| < e. Now,
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• If 0 < v2 − v1 < e, then m ∈ Ds. By Theorem 3.10, the set Φs(n) is the canonical basic set

for the algebra H
(e,s)

k,n
with respect to the order ≪m. Therefore, by Remark 2.10, Φs(n) is the

canonical basic set for (Hk,n, r) with respect to≪m.

• If 0 < v1−v2 < e, then 0 < (v2+e)−v1 < e. Hence m ∈ Ds̃ (where we recall that s̃ = (s1, s2+e)),

so that by Theorem 3.10, the set Φs̃(n) is the canonical basic set for (Hk,n, s̃) with respect to the

order≪m. Since s̃ ∈ Ce, using Remark 2.10, Φs̃(n) is the canonical basic set for (Hk,n, r) with

respect to≪m.

�

Remark 4.2. In level 2, the domains Ds, s ∈ Ce, actually tile Q2\P . In higher level this does not

hold anymore, and we need to find other canonical basic sets than Uglov multipartitions.

Note that we can sometimes find different canonical basic sets for (Hk,n, r) and (Hk,n, s) with

respect to the same order≪m if s ∈ C\Ce, as mentioned in Remark 2.10. This is what the following

example shows.

Example 4.3. Let l = 2, e = 4, r = (1, 0) and s = rσ = (0, 1) (where σ = (12)). Then s < Ce. Take

m = (1,−1).

Then m ∈ Dr since r −m = (0, 1). Hence Φr(n) is the canonical basic set for (Hk,n, r). Besides,

m ∈ Ds since s −m = (−1, 2). Hence Φs(n) is the canonical basic set for (Hk,n, s), but Φs(n) , Φr(n)

for n ≥ 2 (which one can easily check).

4.2 l > 2

Throughout this paper, we will use the following notations. For α = (α1, . . . αl) ∈ Q
l and σ ∈ Sl, we

denote ασ = (ασ(1), . . . ασ(l)). Similarly, for λ = (λ1, ..., λl) ⊢l n, we write λσ = (λσ(1), . . . , λσ(l)).

Let m = (m1, ...,ml) be an element of Ql\P .

Proposition 4.4. Let s ∈ C and σ ∈ Sl. If Φs(n) is the canonical basic set for (Hk,n, s) with respect

to≪m, then the set

σ(Φs(n)) := {λσ ; λ ∈ Φs(n)}

of σ-twisted Uglov l-partitions is the canonical basic set for (Hk,n, s
σ) with respect to≪mσ .

Proof. In order to prove this result, we need to define a twisted Fock space F σsσ , which, as a vector

space, is the Fock space Fsσ , but has a σ-twistedUq(ŝle)-action.

Recall that the action of Uq(ŝle) on the Fock space Fs is derived from an order on the i-nodes

of l-partitions. We define a twisted order on the removable and addable i-nodes of a multipartition

in the following way : let γ = (a, b, c) and γ′ = (a′, b′, c′) be two removable or addable i-nodes of

λ ⊢l n. We write

γ ≺σ(sσ,e) γ
′ if

{
b − a + sσ(c) < b′ − a′ + sσ(c′) or

b − a + sσ(c) = b′ − a′ + sσ(c′) and σ(c) > σ(c′).

Now, if γ = (a, b, c) is a removable (resp. addable) i-node of λ = (λ1, ..., λl), then γσ := (a, b, σ−1(c))

is a removable (resp. addable) i-node of λσ := (λσ(1), ..., λσ(l)), so that we have

γσ ≺σ(sσ,e) γ
′σ ⇔ γ ≺(s,e) γ

′.

This order enables us to define the numbers N≺
σ

i
(λ, µ) and N≻

σ

i
(λ, µ). Let λ ⊢l n and µ ⊢l n + 1

such that [µ] = [λ] ∪ {γ} where γ is an i-node. Then set

N≺
σ

i (λ, µ) =♯{addable i-nodes γ′ of λ such that γ′ ≺σ(sσ,e) γ}−

♯{removable i-nodes γ′ of µ such that γ′ ≺σ(sσ,e) γ}

and
N≻

σ

i (λ, µ) =♯{addable i-nodes γ′ of λ such that γ′ ≻σ(sσ,e) γ}−

♯{removable i-nodes γ′ of µ such that γ′ ≻σ(sσ,e) γ}
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We abuse the notation by denoting σ the isomorphism of vector spaces

σ :
Fs −→ Fsσ

|λ, s〉 7−→ |λσ, sσ〉

Now we want do define a twisted action ofUq(ŝle) on Fsσ .

The action of ei and fi, denoted by eσ
i
. |λσ, sσ〉 and f σ

i
. |λσ, sσ〉, are defined as follows:

eσi . |λ
σ, sσ〉 =

∑

re([λσ]\[µσ])=i

q−N≺
σ

i
(µσ ,λσ) |µσ, sσ〉 .

Then we have
eσi . |λ

σ, sσ〉 =
∑

re([λ]\[µ])=i

q−N≺
i

(µ,λ)σ( |µ, s〉)

= σ(
∑

re([λ]\[µ])=i

q−N≺
i

(µ,λ) |µ, s〉)

that is, eσ
i

acts as σeiσ
−1.

Similarly, if we set

f σi . |λ
σ, sσ〉 =

∑

re([µσ]\[λσ])=i

q−N≻
σ

i
(λσ,µσ) |µσ, sσ〉 ,

we have
f σi . |λ

σ, sσ〉 =
∑

re([µ]\[λ])=i

q−N≻
i

(λ,µ)σ( |µ, s〉)

= σ(
∑

re([µ]\[λ])=i

q−N≺
i

(λ,µ) |µ, s〉)

that is, f σ
i

acts as σ fiσ
−1.

Hence by Theorem 3.5, these new formulas, combined with the formulas

ti. |λ
σ, sσ〉 = qNi(λ)|λσ, sσ〉

and

d. |λσ, sσ〉 = −(∆(s) + Nd(λ))|λ
σ, sσ〉

endow Fsσ with the structure of an integrableUq(ŝle)-module, that we denote by F σsσ .

We continue the construction as in the non-twisted case. Denote by V(sσ)σ the submodule of F σsσ

generated by the empty l-partition |∅, sσ〉. This is an irreducible highest weight Uq(ŝle)-module for

this twisted action, and the crystal basis of V(s) is mapped to the one of V(sσ)σ by the isomorphism

σ. In particular the vertices of the crystal graph of V(sσ)σ are the σ-twisted Uglov l-partitions:

σ(Φs(n)) := {(λσ(1), ..., λσ(l)) ; (λ1, ..., λl) ∈ Φs(n)}.

It is an indexing set for the global basis of V(sσ)σ. Now this basis is also obtained from the global

basis of V(s) by applying σ. That is, if we denote by Gσ(λ, sσ) (λ ∈ σ(Φs(n))) the elements of the

canonical basis of V(sσ)σ, we have:

σ(G(λ, s)) = Gσ(λσ, sσ). (2)

Write Gσ(λ, sσ) =
∑

µσ⊢ln

dµσ,λσ(q) |µσ, sσ〉 the decomposition of Gσ(λ, sσ) on the basis of all l-

partitions. By (2), we have

σ(
∑

µ⊢ln

dµ,λ(q) |µ, s〉) =

∑

µσ⊢ln

dµσ,λσ(q) |µσ, sσ〉

i.e.
∑

µ⊢ln

dµ,λ(q) |µσ, sσ〉 =
∑

µ⊢ln

dµσ,λσ (q) |µσ, sσ〉 .

Hence ∀λ ∈ Φs(n), ∀µ ⊢l n, we have

dµσ ,λσ(q) = dµ,λ(q). (3)

In particular, this is true at q = 1.
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By Ariki’s theorem (Theorem 3.8), which holds for any realisation of the highest weightUq(ŝle)-

module V(r), the matrix (dµ,λ(1))µ⊢ln,λ∈Φs(n) is the decomposition matrix D of Hk,n. Hence by (3), one

can also parametrise the irreducible modules of Hk,n by the elements of σ(Φs(n)) and recover the

same matrix by labelling the i-th column by λσi ∈ σ(Φs(n)) and the j-th line by µσ
j
⊢l n.

Moreover, the fact thatΦs(n) is the canonical basic set for (Hk,n, s) with respect to≪m means that

D is upper unitriangular with respect to≪m. Since we have

λi ≪m λ j ⇔ λ
σ
i ≪mσ λ

σ
j ,

the matrix D (with columns indexed by σ(Φs(n)) ) is upper unitriangular with respect to ≪mσ , i.e.

σ(Φs(n)) is the canonical basic set for (Hk,n, s
σ).

�

We are now ready to prove the following general result.

Proposition 4.5. Let m = (m1, ...,ml) ∈ Q
l\P . Then (Hk,n, r) admits a canonical basic set with

respect to≪m, namely σ(Φ
sσ
−1 (n)), where s is the m-adapted multicharge and σ ∈ Sl is explicitely

determined. We then say that σ is the m-adapted permutation.

Proof. As in the level 2 case, consider the m-adapted multicharge s, and set vi = si − mi, for all

i ∈ ~1, l�. Since m <P , at most one coordinate vi can verify |vi| =
e
2
. Moreover one can never have

|vi − v j| = 0 for i , j. Hence, we have i , j⇒ 0 < |vi − v j| < e for all i, which implies that

there exists (a unique) τ ∈ Sl such that i < j⇒ 0 < vτ( j) − vτ(i) < e. (4)

Since m = s − v, we have mτ = sτ − vτ. Because of (4), we see that mτ ∈ Dsτ , hence by

Theorem 3.10, Φsτ (n) is the canonical basic set for (Hk,n, s
τ). Since s ∈ Ce, sτ ∈ Ce(rτ) and therefore

(using Remark 2.10 again), Φsτ (n) is the canonical basic set for (Hk,n, r
τ) with respect to≪mτ . Thus

by Proposition 4.4, τ−1(Φsτ(n)) is the canonical basic set for (Hk,n, r) with respect to ≪m. Setting

σ = τ−1, we get the result.

�

In the particular level 2 case, we thus have two different approaches which yield canonical basic

sets. Let l = 2. Let m ∈ Q2, and take s the m-adapted multicharge. Denote σ = (12) (in particular,

σ = σ−1). Suppose that m < Ds. On the one hand, by Proposition 4.5, σ(Φsσ(n)) is the canonical

basic set for (Hk,n, r). On the other hand, we also have m ∈ Ds̃, so that Φs̃(n) is the canonical basic

set for (Hk,n, r) (this is precisely Proposition 4.1).

Hence one must have Φs̃(n) = σ(Φsσ(n)). In other terms,

Φ(s1,s2+e)(n) = {(λ2, λ1) ; (λ1, λ2) ∈ Φ(s2,s1)(n)}.

We recover a result by Jacon, namely [21, Proposition 3.1]. However, in level l > 2, the application

λ 7−→ λσ is not necessarily a crystal isomorphism. Consequently, the canonical basic set σ(Φ
sσ
−1 (n))

is not a priori a set of Uglov l-partitions. However, we know exactly which of these applications are

indeed isomorphisms between sets of some Uglov multipartitions. Indeed, the crystal isomorphisms

between the different sets of Uglov multipartitions (associated to s ∈ C) have been described by Jacon

and Lecouvey in [22]. In particular, [22, Proposition 5.2.1] claims that

Φ(s1,...,sl−1,sl+e)(n) = {(λ2, . . . , λl, λ1) ; (λ1, . . . , λl) ∈ Φ(sl,s1,...,sl−1)(n)}.

This proves that the application

Φ
s
σ−1

0
(n) −→ Φs̃(n)

λ 7−→ λσ0 with σ0 = (1 2 . . . l),

where s̃ = (s1, . . . , sl−1, sl+e), is a crystal isomorphism. Applying several times σ0 (which is of order

l), we obtain l − 1 different crystal isomorphisms λ 7−→ λσ0
k

, k ∈ ~0, l − 1�.

Example 4.6. Take l = 3. Then σ0 = (1 2 3) and σ0
2
= (1 3 2). Then the following applications are

crystal isomorphisms:

Φ(s3,s1,s2)(n) −→ Φ(s1,s2,s3+e)(n)

(λ1, λ2, λ3) 7−→ (λ2, λ3, λ1)
,

Φ(s2,s3,s1)(n) −→ Φ(s3,s1,s2+e)(n)

(λ1, λ2, λ3) 7−→ (λ2, λ3, λ1)
.
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As in the level 2 case, it is possible to recover these results by looking at the domains Ds, s ∈ Ce.

Indeed, even though these domains do not tile Ql (as already mentioned in Remark 4.2) some weight

sequences m whose adapted permutation σ verify σ , Id can also lie in a domain Dŝ, for some

ŝ ∈ Ce. In that case we have two different constructions of the canonical basic set for (Hk,n, r), which

must therefore coincide. That is, for some values of σ ∈ Sl, the set σ(Φ
sσ
−1 (n)) is necessarily a set

of Uglov multipartitions Φŝ(n), for some ŝ ∈ Ce.

Of course, it gets difficult to visualise the domains Ds when l ≥ 3. Moreover, this argument does

not hold whenever λ 7−→ λσ is not a crystal isomorphism between Uglov multipartitions. In fact,

these σ-twisted Uglov multipartitions yield in general new canonical basic sets for (Hk,n, r).

5 Canonical basic sets for asymptotic m

Let s ∈ Ce. We will show that when the difference between the values of s is large, the set of Uglov

multipartitions stabilises (that is, no longer depends on the parameter s), and coincides with the set

of Kleshchev multipartitions. This is what we call the asymptotic case, and such an l-tuple s will be

called asymptotic, see Definition 5.9.

5.1 Kleshchev multipartitions and asymptotic setting

Let us recall in detail the relation between Uglov l-partitions and Kleshchev l-partitions. The Kleshchev

l-partitions are defined in the same manner as the Uglov l-partitions, except the order on i-nodes

used to define an action of Uq(ŝle) on the Fock space is different. Indeed, let γ = (a, b, c) and

γ′ = (a′, b′, c′) be two removable or addable i-nodes of the same l-partition of n. We define

γ ≺K γ
′ ⇔

{
c′ < c or

c′ = c and a′ < a.

Note that this order only depends on the class Ce, not on some particular s ∈ Ce anymore.

This permits us to give Fs the structure of integrableUq(ŝle)-module via the same formulas used

with ≺(s,e) in Theorem 3.5. We can then construct the crystal graph of the highest weight submodule

spanned by |∅, s〉, in the same way as the Uglov multipartions (Theorem 3.7). Its vertices are labeled

by what we call the Kleshchev l-partitions. We denote by KCe
(n) the set of Kleshchev l-partitions of

rank n.

Note that with this realisation as anUq(ŝle)-module,Fs is actually a tensor product of Fock spaces

of level 1, see [32].

The following proposition connects both orders for certain values of s.

Proposition 5.1. Let s ∈ Ce such that i < j⇒ si − s j ≥ n− e 1. Then for all m ≤ n, Φs(m) = KCe
(m).

In particular , Φs(n) = KCe
(n).

Proof. It is sufficient to show that in this case, both orders on i-nodes are equivalent, i.e. γ ≺(s,e) γ
′ ⇔

γ ≺K γ
′, where γ = (a, b, c) and γ′ = (a′, b′, c′) are two removable or addable i-nodes of λ ⊢l m.

Note that −n ≤ b′−a′− (b−a) ≤ n. Indeed, the difference between b′−a′ and b−a is minimal if

and only if (λc′
= ∅ and λc

= (n)) or (λc′
= (1n) and λc

= ∅); and is maximal if and only if (λc′
= (n)

and λc
= ∅) or (λc′

= ∅ and λc
= (1n)).

First assume that γ ≺K γ
′. Then:

• If c′ < c, then sc′ − sc ≥ n − e + 1, hence b′ − a′ + sc′ − (b − a + sc) ≥ −n + n − e + 1 = −e + 1.

Since γ and γ′ have the same residue, this implies that b′ − a′ + sc′ and b− a+ sc are congruent

modulo e, thus b′ − a′ + sc′ − (b − a + sc) ≥ 0, and therefore γ ≺(s,e) γ
′.

• If c′ = c and a′ < a, then b < b′ since λc′
= λc is a partition and γ and γ′ are on the border of

λc. Hence b − a < b′ − a′, and b − a + sc < b′ − a′ + sc′ , hence γ ≺(s,e) γ
′.

Conversely, assume that γ ≺(s,e) γ
′. Then:

• If b−a+ sc < b′−a′+ sc′ then suppose c′ > c. Then sc− sc′ ≥ n−e+1. Since γ and γ′ have the

same residue, we have b′−a′+sc′−(b−a+sc) ≥ e, and thus b′−a′−(b−a) ≥ e+n−e+1 = n+1,

whence a contradiction. Hence c′ ≤ c. If c′ < c then γ ≺K γ
′, and if c′ = c then b′ − a′ > b− a

thus a′ < a for the same reason as before, and γ ≺K γ
′.

1Of course, this is equivalent to si − si+1 ≥ n − e + 1 for all i ∈ ~1, l − 1�.
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• If b − a + sc = b′ − a′ + sc′ and c′ < c then it is straightforward that γ ≺K γ
′.

The only difference (a priori) in the construction of the Uglov l-partitions on the one hand, and

the Kleshchev l-partitions on the other hand is the definition of the order on i-nodes. Since we just

proved that both orders coincide in this case, both sets are the same.

�

From this Proposition, we directly deduce:

Corollary 5.2. Suppose s ∈ Ce. When the difference si − s j, for all i < j, is sufficiently large, the set

of Uglov multipartitions Φs(n) stabilises, and is equal to KCe
(n).

Remark 5.3. Note that the bound n − e + 1 is not necessarily sharp (even though it is an optimal

condition for both orders on i-nodes to coincide), it is a priori possible for Uglov multipartitions to

stabilise at a weaker condition on s.

Actually, the set of Uglov multipartitions stabilises in other directions, that is, under other con-

ditions of s. More precisely, we will show that they stabilise whenever the difference between any

arbitrary coordinates of s (without the condition i < j) is "large enough".

In order to describe this phenomenon, we introduce the set of twisted Kleshchev multipartitions.

Let π ∈ Sl. We define the π-twisted Kleshchev order on i-nodes as follows: Let γ = (a, b, c) and

γ′ = (a′, b′, c′) be two removable or addable i-nodes of the same l-partition of n. We set

γ ≺π
K
γ′ ⇔

{
π(c′) < π(c) or

π(c′) = π(c) and a′ < a

This just means that the lexicographic convention on the coordinates of the l-partition is twisted

by π. The π-twisted Kleshchev l-partitions are then defined as in the non-twisted case (and as the

in the "Uglov" case): they label the vertices of the crystal graph of the same highest weight module

defined via the action ofUq(ŝle) derived from this order ≺π
K

. We denote them by Kπ
Ce

(n).

Remark 5.4. Note that it is equivalent to either build the set of π-twisted Kleshchev multipartitions

associated to Ce, or to twist via π the set of Kleshchev multipartitions associated to Ce(r
π−1

), i.e.

KπCe
(n) = π(K

Cπ
−1

e
(n)),

where Cπ
−1

e := Ce(rπ
−1

).

We have the following "asymptotic" property:

Proposition 5.5. Let s ∈ Ce such that there exists π ∈ Sl verifying π(i) < π( j) ⇒ si − s j ≥ n + 1.

Then Φs(m) = Kπ
Ce

(m) for all m ≤ n. In particular, Φs(n) = Kπ
Ce

(n).

Proof. It is very similar to the one of Proposition 5.1. Indeed, we show that for γ = (a, b, c) and

γ′ = (a′, b′, c′) two removable or addable i-nodes of λ ⊢l m, γ ≺(s,e) γ
′ ⇔ γ ≺π

K
γ′.

Assume that γ ≺π
K
γ′. Then:

• If π(c′) < π(c), then sc′ − sc ≥ n + 1, hence b′ − a′ + sc′ − (b − a + sc) ≥ −n + n + 1 = 1 > 0.

Hence b′ − a′ + sc′ > (b − a + sc) and γ ≺(s,e) γ
′.

• If π(c′) = π(c) and a′ < a. Then c′ = c since π is a permutation. Thus b < b′ since λc′
= λc is a

partition and γ and γ′ are on the border of λc. Hence b−a < b′−a′, and b−a+ sc < b′−a′+ sc′ ,

hence γ ≺(s,e) γ
′.

Conversely, assume that γ ≺(s,e) γ
′. Then:

• If b − a + sc < b′ − a′ + sc′ then suppose π(c′) > π(c). Then sc − sc′ ≥ n + 1, and thus

b′ − a′ − (b − a) > n + 1, whence a contradiction. Hence π(c′) ≤ π(c). If π(c′) < π(c) then

γ ≺π
K
γ′, and if π(c′) = π(c) then c′ = c and b′ − a′ > b − a thus a′ < a , and γ ≺π

K
γ′.

• If b − a + sc = b′ − a′ + sc′ and π(c′) < π(c) then γ ≺π
K
γ′.

Again, the only difference in the construction of the Uglov l-partitions on the one hand, and the

π-twisted Kleshchev l-partitions on the other hand is the definition of the order on i-nodes. Since we

have proved that both orders coincide in this case, these sets are the same.

�
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Hence, we directly deduce the following stabilisation property, whenever the difference between

two arbitrary coordinates of s is large:

Corollary 5.6. Let s ∈ Ce and let π ∈ Sl. When the difference si− s j, for all π(i) < π( j), is sufficiently

large, then the set of Uglov l-partitions Φs(n) stabilises, and is equal to Kπ
Ce

(n).

Note that such a permutation π verifies in particular π(i) < π( j) ⇒ si > s j. We thus call π the

reordering permutation of s.

Remark 5.7. As in Remark 5.3, note that the bound is not necessarily sharp, and that Uglov multi-

partitions are likely to stabilise under weaker conditions. In fact, when π = Id, Proposition 5.5 gives

a bound (namely n + 1) on each si − s j beyond which Φs(n) = KCe
(n), but which is less precise than

the one given in Proposition 5.1 (namely n−e+1). However, when π , Id, the bound n+1 is optimal

for the orders ≺(s,e) and ≺π
K

to coincide.

Remark 5.8. Let s and π be as in Corollary 5.6, i.e. Φs(n) = Kπ
Ce

(n).

It is important to notice that for all σ ∈ Sl,

Φsσ(n) = σ(KπCe
(n)). (5)

Indeed, this directly follows from the definition of the Kleshchev order on i-nodes. Since in this case

Φs(n) is a set of (π-twisted) Kleshchev multipartitions, it is equivalent to either

• twist the multicharge via s 7→ sσ and build the corresponding Uglov crystal, or

• twist via λ 7→ λσ these π-twisted Kleshchev l-partitions.

In other terms, replacing σ by σ−1, (5) is equivalent to:

σ(Φ
sσ
−1 (n)) = KπCe

(n).

In particular, this shows that the canonical basic set σ(Φ
sσ
−1 (n)) of Proposition 4.5 is always equal

to Kπ
Ce

(n), for any value of σ ∈ Sl.

We can now define asymptotic multicharges and weight sequences.

Definition 5.9.

1. Let s ∈ Ce. We say that s is asymptotic if Φs(n) = Kπ
Ce

(n) for some π ∈ Sl (in which case π is

the reordering permutation of s).

2. Let m ∈ Ql. We say that m is asymptotic if the m-adapted multicharge (see Proposition 4.5) is

asymptotic.

Remark 5.10. According to Remark 5.8, s is asymptotic if and only if for all σ ∈ Sl,

σ(Φ
sσ
−1 (n)) = Kπ

Ce
(n).

Let us now focus on the question of the existence of canonical basic sets, given an asymptotic

weight sequence m. In the case where m < P , m is regular, and we have already shown in Propo-

sition 4.5 that (Hk,n, r) admits a canonical basic set with respect to ≪m, namely the set σ(Φ
sσ
−1 (n))

where s is the m-adapted multicharge and σ the m-adapted permutation. In virtue of Remark 5.8,

these sets of l-partitions are all equal to Kπ
Ce

(n). We will show that in the remaining asymptotic

cases, the order≪m yields a canonical basic set for (Hk,n, r) which is also a set of twisted Kleshchev

multipartitions.

5.2 Kleshchev multipartitions as canonical basic sets

Fix m ∈ P such that m is asymptotic. Because of Lemma 3.12, this means that m ∈
⋃

(i, j)∈J Pi, j(s),

where s is the m-adapted multicharge and is asymptotic, and where J ⊂ ~1, l�2.

In order to understand the phenomenon that appears, it is interesting to keep in mind the results

of Uglov in [32]. They have also been reformulated in the thesis of Yvonne [33]. In his paper, Uglov

defined a combinatorial order ≤U to study the matrix of the canonical basis of Fs. First, he showed

that the Fock space can be endowed with a so-called (positive) canonical basis, which generalises the

notion of canonical bases for integrableUq(ŝle)-modules. The elements of this basis are indexed by

l-partitions. Therefore, there is a transition matrix between this basis and the basis of l-partitions ∆,

whose rows and columns are indexed by Πl(n). It turns out that one can recover the decomposition
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matrix D of the Ariki-Koike algebra Hk,n by specialising ∆ at q = 1, and by keeping only the columns

indexed by Uglov multipartitions associated to s. The interesting part is that this property holds for

any multicharge s ∈ Ce even though the matrices ∆ associated to s and s′ are different in general!

Moreover, Uglov proved that ∆ is always unitriangular with respect to ≤U, see [32, Proposition

4.11]. This implies that (Hk,n, r) has a canonical basic set with respect to ≤U, namely the set of Uglov

l-partitions. Now, when s is "asymptotic enough", one can show that the order≪m is a refinement of

≤U, that is

µ ≤U λ⇒ µ ≪m λ. (6)

Thus, if m ∈ Pi, j(s) for such an s, we are ensured that the set of Uglov multipartitions (which coincide

with some π-twisted Kleshchev multipartitions) is the canonical basic set for (Hk,n, r) with respect to

≪m.

Unfortunately, this particular setting does not cover all the asymptotic cases. Indeed, the def-

inition of an asymptotic weight sequence given in 5.9 is not sufficient to deduce the compatibility

property (6) above. However, using only combinatorial arguments, we can show the more general

following result.

Proposition 5.11. Let m ∈P be an asymptotic weight sequence, let s be the m-adapted multicharge.

Then (Hk,n, r) admits a canonical basic set with respect to≪m, namely the set Kπ
Ce

(n), where π is the

reordering permutation of s.

In order to prove this, we need the following technical lemma. We introduce the following

notation. Given a weight sequence m, ε > 0 and I ⊂ ~1, l�, we define a new weight sequence by

m[ε,I] := (m
[ε,I]

i
)i=1...l where

m
[ε,I]

i
=

{
mi if i < I

mi + iε if i ∈ I

Example 5.12. Take l = 3 and I = {1, 3}. Then m[ε,I]
= (m1 + ε,m2,m3 + 3ε).

Lemma 5.13. Let m be an arbitrary weight sequence. Let λ, µ ⊢l n, λ , µ. Then there exists αλ,µ > 0

such that for all ε ∈]0, αλ,µ[,

1.

λ≪m µ ⇒

[
∀I ⊂ ~1, l�, either λ≪m[ε,I] µ or

λ and µ are not comparable with respect to ≪m[ε,I] ,

]

and

2. [
λ and µ are not comparable

with respect to ≪m

]
⇒

[
λ and µ are not comparable with

respect to ≪m[ε,I] , ∀I ⊂ ~1, l�.

]
,

This means that for a small perturbation of m, the order ≪m never reverses: at worst, λ and µ

become uncomparable. Moreover, one can never gain comparability between multipartitions uncom-

parable with respect to≪m when slightly perturbing m.

Proof. First, note that it is sufficient to prove these properties for the perturbations m[ε,k] of m defined

by m[ε,k]
= (m1, . . . ,mk−1,mk + ε,mk+1, . . . ,ml), for all k ∈ ~1, l�. Indeed, the result then follows by

induction, since m[ε,I] is constructed by iterating this procedure.

Recall that, by definition (Section 2.3), λ ≪m µ and λ , µ means that bm(λ) ⊲ bm(µ), where

bm(λ) = (b1m(λ), . . . , bhm(λ)) is the decreasing sequence consisting of the elements of Bm(λ).

Let us first prove Assertion 1.

Let λ ≪m µ. For k ∈ ~1, l�, consider the order ≪m[ε,k] . It is obtained from ≪m simply by

translating the k-th row of the symbols by ε, and taking the dominance order on the decreasing

sequences of these new elements. Informally, when we choose ε to be "small", one cannot have

µ≪m[ε,k] λ. Indeed, the fact that λ≪m µ creates a gap at some point between
∑

i b
i
m(µ) and

∑
i b

i
m(λ),

which cannot be recovered if ε is small enough.

Let us prove this properly. We also use a running example to illustrate the different points of the

coming proof. For simplicity, since m ∈ Pi, j(s) for some i, j and some s ∈ Zl, we can assume without

loss of generality that mi and m j are integers.

Example: Take e = 2, l = 3, n = 38, r = (1, 0, 0), m = (31/3, 7, 5) ∈ P2,3(1, 2, 0). Let λ =

(4.1, 42.3.23.1, 43.2.1) ⊢l n and µ = (4.2, 4.3.25, 5.42.12) ⊢l n. The shifted m-symbols of λ and µ of

size 1 are the following:
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Bm(λ) =


0 2 4 7 8 9

0 2 4 5 6 8 10 11

01/3 11/3 31/3 71/3



and

Bm(µ) =


0 2 3 7 8 10

0 3 4 5 6 7 9 11

01/3 11/3 41/3 71/3

 .

The corresponding sequences bm are

bm(λ) = (11, 10, 9, 8, 8, 71/3, 7, 6, 5, 4, 4, 31/3, 2, 2, 11/3, 01/3, 0, 0)

and

bm(µ) = (11, 10, 9, 8, 71/3, 7, 7, 6, 5, 41/3, 4, 3, 3, 2, 11/3, 01/3, 0, 0).

Since λ ≪m µ and λ , µ, there exists a smallest integer p such that b
p
m(λ) > b

p
m(µ). Denote

δ = b
p
m(λ) − b

p
m(µ).

In our example, p = 5 and δ = 2/3, since bim(λ) = bim(µ)∀i < 5 and b5m(λ) = 8 and b5m(µ) = 71/3.

Now for all i, denote {mi} = mi − ⌊mi⌋ the fractional part of mi, whenever mi < Z. Set βi =

min({mi}, 1 − {mi}) (for all mi < Z), and β = mini βi. If mi ∈ Z for all i, then set β = 1. In particular

β ≤ δ. In the example, β = 1/3.

Hence, set 0 < ε < β. Now, for all k ∈ ~1, l�, consider the m[ε,k]-symbols of λ and µ. In our

example, for k = 3 for instance, we get

Bm[ε,1] (λ) =


0 + ε 2 + ε 4 + ε 7 + ε 8 + ε 9 + ε

0 2 4 5 6 8 10 11

01/3 11/3 31/3 71/3



and

Bm[ε,1] (µ) =


0 + ε 2 + ε 3 + ε 7 + ε 8 + ε 10 + ε

0 3 4 5 6 7 9 11

01/3 11/3 41/3 71/3

 .

Since ε < β, the "perturbed" elements (ofBm[ε,k] ) are ordered in the same way as the original ones

(those of Bm). Precisely, for all i, we either have

b
i
m[ε,k] (λ) =

{
b

i
m(λ) or

b
i
m(λ) + ε,

(7)

and similarly for µ.

Now, let αλ,µ = min(β, δ/p) and take 0 < ε < αλ,µ. One can then compute
∑s

i=1 b
i
m[ε,k] (λ) and∑s

i=1 b
i
m[ε,k] (µ)for all s < p. Clearly, it is possible to have

∑s
i=1 b

i
m[ε,k] (λ) <

∑s
i=1 b

i
m[ε,k] (µ). This is the

case in the example, for k = 3, since if we take s = 2, we have b1
m[ε,1] (λ) + b

2
m[ε,1] (λ) = 11 + 10 <

11 + 10 + ε = b1
m[ε,1] (µ) + b2

m[ε,1] (µ). Hence, one can have λ3m[ε,k] µ.

However, we necessarily have:

•

p−1∑

i=1

b
i
m[ε,k] (µ) −

p−1∑

i=1

b
i
m[ε,k] (λ) ≤ (p − 1)ε, and

• b
p

m[ε,k] (λ) − b
p

m[ε,k] (µ) ≥ δ − ε since b
p
m(λ) − b

p
m(µ) = δ.

Thus,
p∑

i=1

b
i
m[ε,k] (λ) −

p∑

i=1

b
i
m[ε,k] (µ) ≥ −(p − 1)ε + δ − ε

= −pε + δ

> −p
δ

p
+ δ since ε <

δ

p

= 0.

Hence one can never have µ ≪m[ε,k] λ, which proves the first point.
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The proof of Assertion 2. is completely similar. First, if λ and µ are not comparable with respect

to≪m, then there exist minimal integers p1 and p2 such that

p1∑

i=1

b
i
m(λ) >

p1∑

i=1

b
i
m(µ) and

p2∑

i=1

b
i
m(λ) <

p2∑

i=1

b
i
m(µ).

We can assume without loss of generality that p1 < p2. We denote δ1 = b
p1

m (λ) − b
p1

m (µ) > 0 and

δ2 = b
p2

m (µ)− b
p2

m (λ) > 0. We take αλ,µ = min{β, δ1/p1, δ2/p2}, where β is as in the proof of Assertion

1. Again, because ε < β, we know that

b
i
m[ε,k] (λ) =

{
b

i
m(λ) or

b
i
m(λ) + ε,

Now, on the one hand, we have

•

p1−1∑

i=1

b
i
m[ε,k] (µ) −

p1−1∑

i=1

b
i
m[ε,k] (λ) ≤ (p1 − 1)ε, and

• b
p1

m[ε,k] (λ) − b
p1

m[ε,k] (µ) ≥ δ1 − ε since b
p1

m (λ) − b
p1

m (µ) = δ1.

This gives

p1∑

i=1

b
i
m[ε,k] (λ) −

p1∑

i=1

b
i
m[ε,k] (µ) ≥ −(p1 − 1)ε + δ1 − ε

= −p1ε + δ1

> −p1
δ1
p1
+ δ1 since ε < δ1

p1

= 0.

On the other hand, we have

•

p2−1∑

i=1

b
i
m[ε,k] (λ) −

p2−1∑

i=1

b
i
m[ε,k] (µ) ≤ (p2 − 1)ε, and

• b
p2

m[ε,k] (λ) − b
p2

m[ε,k] (µ) ≤ −δ2 + ε since b
p2

m (µ) − b
p2

m (λ) = δ2.

This gives

p2∑

i=1

b
i
m[ε,k] (λ) −

p2∑

i=1

b
i
m[ε,k] (µ) ≤ (p2 − 1)ε + (−δ2 + ε)

= p2ε − δ2

< p2
δ2
p2
− δ2 since ε < δ2

p2

= 0.

This implies in particular that λ and µ are not comparable with respect to the perturbed order

≪m[ε,k] .

�

The following corollary is then immediate.

Corollary 5.14. Under the assumptions of Lemma 5.13, if λ≪m[ε,I] µ, then λ≪m µ.

Proof of Proposition 5.11. Recall that we have fixed a weight sequence m which is asymptotic

and belongs to P . Denote then Pi, j(s), for (i, j) ∈ J, the hyperplanes containing m, where s is the

m-adapted multicharge and is asymptotic. Set also I = {i, j ; (i, j) ∈ J}. Since s is asymptotic, we

have si , s j for all i , j. Let π be the reordering permutation of s, that is, the element ofSl verifying

[π(i) < π( j)⇒ si > s j].

Denote also δ = min
(i, j)<J, j∈I

s′∈Ce

d(m,Pi, j(s
′), that is the minimal distance (in the usual sense) between m

and the set of hyperplanesPi, j(s
′) with j ∈ I but (i, j) < J (hence it is positive).

For M ∈ Irr(Hk,n), write S (M) = {µ ⊢l n | dµ,M , 0}, as in Definition 2.7. Set α = min
µ∈S (M)

(αλ,µ),

where the elements αλ,µ are defined in Lemma 5.13, and take 0 < ε < min(α, e/l, δ/l).

Consider now the perturbed weight sequence m[ε,I]
= (m

[ε,I]

1
, . . . ,m[ε,I]

l
). Because m ∈ Pi, j(s) for

all (i, j) ∈ J, we have

m j − mi = s j − si. (8)
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Figure 2: The perturbation m[ε,{1,2}] of m in level 2.

Hence, for all (i, j) ∈ J, we have

m
[ε,I]
j
− m

[ε,I]
i

= (m j + jε) − (mi + iε)

= m j − mi + ( j − i)ε
= s j − si + ( j − i)ε.

We have −l < j − i < l. Because we have chosen ε < e/l, we have ( j − i)ε < e. But for s′, s′′ ∈ Ce,

we have s′′
i
= s′

i
+ Nie for some Ni ∈ Z and for all i ∈ ~1, l�. This implies that the weight sequence

m[ε,I] no longer belongs to any hyperplane of the form Pi, j(s
′), with s′ ∈ Ce and i, j ∈ I.

Also, since m
[ε,I]

i
= mi for all i < I and because of (8), we know that m[ε,I] does not belong to any

hyperplane of the form Pi, j(s) for all i, j < I and for all s ∈ Cs.

Finally, consider a pair (i, j) with i < I and j ∈ I, so that m
[ε,I]
i
= mi and m

[ε,I]
j
= m j + jε. Then

we have
m

[ε,I]

j
− m

[ε,I]

i
= m j + jε − mi + iε

= m j − mi + jε
= s j − si + jε.

We have j ≤ l, and since ε < δ/l, we have jε < δ. Therefore, the new weight sequence does not

m[ε,I] belong to any hyperplane of the form Pi, j(s
′) with j ∈ I, (i, j) < J and s′ ∈ Ce.

To sum up, we have just proved that m[ε,I] <P .

Therefore, by Proposition 4.5, (Hk,n, r) admits a canonical basic set with respect to≪m[ε,I] , namely

a set of twisted Uglov l-partitions, which is equal to the set Kπ
Ce

(n) (see Remark 5.8 for instance),

where π is the reordering permutation of s. Denote B = Kπ
Ce

(n).

Since B is the canonical basic set with respect to≪m[ε,I] , there exists a unique λ ∈B verifying:

λ≪m[ε,I] µ ∀µ ∈ S (M). (9)

Suppose that B is not the canonical basic set for (Hk,n, r) with respect to≪m. Then either:

1. there exists µ ∈ S (M) such that µ ≪m λ. Because ε < α, Lemma 5.13 applies. In particular,

Assertion 1. ensures that one can never find I such that λ≪m[ε,I] µ, which contradicts (9).

2. there exists λ′ , λ such that λ′ is also minimal in S (M) with respect to ≪m. In this case, by

Point 2. of Lemma 5.13, λ and λ′ are not comparable with respect to≪m[ε,I] . Therefore, λ and

λ′ are both minimal with respect to≪m[ε,I] , which contradicts (9).

�
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6 Canonical basic sets for singular m

Denote by P∗ the set of all m in P such that m is not asymptotic. If m ∈ P∗, we say that m is

singular.

In the previous section, we have considered perturbations m[ε,I] of m. In this section we will need

more general perturbations. In fact, for ρ ∈ Sl, I ⊂ ~, 1, l� and ε > 0, we define the weight sequence

m[ε,I,ρ]
= (m

[ε,I,ρ]
1
, . . . ,m

[ε,I,ρ]
l

) by:

m
[ε,I,ρ]
i

=

{
mi if i < I

mi + ρ(i)ε if i ∈ I

Remark 6.1. Note that, in particular, m[ε,I,Id]
= m[ε,I].

In this section, since m is singular, the m-adapted multicharge s is non-asymptotic and m belongs

to
⋃

(i, j)∈J Pi, j(s) for some J. Recall that if we set I = {i, j ; (i, j) ∈ J} as in Section 5.2, we have, for

all (i, j) ∈ J

m
[ε,I,Id]
j

− m
[ε,I,Id]
i

= s j − si + ( j − i)ε (10)

One can now consider the perturbations m[ε,I,(i j)], for (i, j) ∈ J (that is, associated to the transpo-

sition (i j). They verify

m
[ε,I,(i j)]

j
− m

[ε,I,(i j)]

i
= s j − si + (i − j)ε (11)

Looking at (10) and (11), we see that m[ε,I,Id] and m[ε,I,(i j)] are on opposite sides of Pi, j(s). We

are now ready to prove the following proposition.

Proposition 6.2. Let m be a singular weight sequence. Then (Hk,n, r) does not admit any canonical

basic set with respect to≪m.

Proof. Suppose that there exists a canonical basic set B for (Hk,n, r) with respect to≪m.

For M ∈ Irr(Hk,n), recall that we have denoted S (M) = {µ ⊢l n | dµ,M , 0}. By definition, there

exists a unique element λM ∈ S (M) such that λM ≪m µ for all µ ∈ S (M).

We follow the same notation as in the proof of Proposition 5.11, and take 0 < ε < min(α, β).
Then, for the same reason as in that proof, m[ε,I,ρ] is regular for all ρ ∈ Sl. Hence by Proposition 4.5,

there exists a canonical basic set B[ρ] for (Hk,n, r) with respect to ≪m[ε,I,ρ] , namely the set of some

twisted Uglov l-partitions. Since s is not asymptotic, Remark 5.10 implies that there exists ρ1 and ρ2

such that

B
[ρ1]
,B

[ρ2]. (12)

Note that this is true for ρ1 = Id and ρ2 = (i j) for some (i, j) ∈ J because of the remark following

(10) and (11). Since B[ρ1] is the canonical basic set with respect to ≪m[ε,ρ1 ] , there exists a unique

element λ
[1]
M

such that for all µ ∈ S (M), λ
[1]
M
≪m[ε,ρ1 ] µ. Similarly, there exists a unique element λ

[2]
M

such that for all µ ∈ S (M), λ
[2]
M
≪m[ε,ρ2 ] µ.

Now by (12), there exists a particular M0 ∈ Irr(Hk,n) such that

λ
[1]
M0
, λ

[2]
M0
. (13)

Thus, we have:

• λ
[1]

M0
≪m[ε,ρ1 ] λM0

and λM0
≪m λ

[1]

M0
. But by Lemma 5.13 (which applies since ε < α), this not

possible if λM0
, λ

[1]
M0

. Hence λM0
= λ

[1]
M0

.

• λ
[2]
M0
≪m[ε,ρ2 ] λM0

and λM0
≪m λ

[2]
M0

. Again, by Lemma 5.13, this not possible if λM0
, λ

[2]
M0

.

Hence λM0
= λ

[2]

M0
.

Hence, λ
[1]

M0
= λ

[2]

M0
, which contradicts (13). �

As previously mentioned in Remark 2.10, a singular weight sequence m can however yield a

canonical basic set for (Hk,n, s), but with s ∈ C\Ce (i.e. with a different parametrisation of the rows

of D). This is illustrated in the following example.

Example 6.3. Let l = 2, e = 3, n ≥ 4, r = (1, 0). In particular r is not asymptotic, which one

can check directly by computing Φr(n) and KCe
(n). Take s = rσ = (0, 1) (where σ = (12)), and

m = (0,−1). Then m ∈ P1,2(r) since r −m = (1, 1), and by Proposition 6.2, (Hk,n, r) does not admit

any canonical basic set with respect to≪m. However, s−m = (0, 2), so that m ∈ Ds. By Proposition

4.1, (Hk,n, s) admits a canonical basic set with respect to≪m, namely the set Φs(n).
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Remark 6.4. In the particular case where l = 2 and e = ∞ (i.e. when ζ is not a root of unity, cf.

Section 2.2), one can use a simpler argument to show that there is no canonical basic set. First, note

that in this case, Ce = {r}, and P consists of just the line passing through r with slope one. Also,

P∗
= P . There is a "natural" symbol which encodes the weight of a multipartition λ seen as an

element of the Fock space Fr. Because m is singular, this information is precisely the data carried

by the shifted m-symbol of λ. Now since e = ∞, one can then show that the decomposition numbers

dµ,λ are non-zero only if µ and λ are not comparable with respect to ≪m, which proves that there

cannot be a basic set with respect to≪m.

Note also that explicit formulas are known for computing the elements of the canonical basis of

the module V(r) in this case, see [26], which directly shows that all the elements appearing in the

decomposition of G∞(λ, r) have the same symbol up to a permutation of their elements.

Putting together Propositions 4.5, 5.11 and 6.2, we have proved:

Theorem 6.5. Given a multicharge r ∈ Zl and a weight sequence m ∈ Ql, we have the following

exhaustive classification:

• If m is regular, then (Hk,n, r) admits a canonical basic set with respect to ≪m, namely the set

of σ-twisted Uglov l-partitions σ(Φ
sσ
−1 (n)) where σ is the m-adapted permutation and s is the

m-adapted multicharge (cf. Proposition 4.5).

• If m is asymptotic, then (Hk,n, r) admits a canonical basic set with respect to ≪m, namely the

set of π-twisted Kleshchev l-partitions Kπ
Ce

(n), where π is the reordering permutation of the

m-adapted multicharge (cf. Corollary 5.6).

• If m is singular, then (Hk,n, r) does not admit any canonical basic set with respect to≪m.

Remark 6.6. Note that a weight sequence m can be simultaneously regular and asymptotic. In this

case, one must have σ(Φ
sσ
−1 (n)) = Kπ

Ce
(n), which is precisely what is stated in Remark 5.8.

Now that we have fully understood which values of m yield a canonical basic set for (Hk,n, r)

with respect to ≪m, we can state a similar result for the order induced by the a-function. Indeed,

by the compatibility property (1), if B is the canonical basic set with respect to ≪m, it is also the

canonical basic set with respect to the a-function. Hence, the first two assertions in Theorem 6.5 still

hold for this order. Further, on can prove using similar arguments that all of the results in the singular

case also hold for this order. This leads to:

Theorem 6.7.

• If m is regular, then (Hk,n, r) admits a canonical basic set with respect to the a-function, namely

the set of σ-twisted Uglov l-partitions σ(Φ
sσ
−1 (n)) where σ is the m-adapted permutation and

s is the m-adapted multicharge.

• If m is asymptotic, then (Hk,n, r) admits a canonical basic set with respect to the a-function,

namely the set of π-twisted Kleshchev l-partitions Kπ
Ce

(n), where π is the reordering permuta-

tion of the m-adapted multicharge.

• If m is singular, then (Hk,n, r) does not admit any canonical basic set with respect to the a-

function.
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