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Thomas Gerber
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Abstract

Let H be a non semi-simple Ariki-Koike algebra. According to [18] and [14], each "cy-

clotomic" specialisation induces a natural order on Specht modules. In some cases, Geck and

Jacon have proved that this order makes unitriangular the decomposition matrix of H . The

algebra H is then said to admit a "canonical basic set". We fully classify which cyclotomic

specialisations afford a canonical basic set for H and which do not. When this is the case,

we describe these sets in terms of "twisted Uglov" or "twisted Kleshchev" multipartitions.

1 Introduction

Over a field of characteristic 0, the representation theory of the symmetric group Sn is well-

known. In particular, Maschke’s semi-simplicity criterion ensures that it is sufficient to un-

derstand its irreducible representations. In fact, they are parametrised by partitions of n, via

an explicit bijection. It is then possible to study the representations of Sn in a combinatorial

manner (using the notion of Young tableaux), and deduce for instance the classic "hook-length

formula" to compute the dimension of any irreducible representation.

In the so-called "modular" case, that is when the ground field is of prime characteristic

e, one loses many convenient properties, notably the semi-simplicity of the theory. One can

however gather some information. For instance, the irreducible representations are known to

be parametrised by "e-regular" partitions of n (that is, the partitions of n with at most e − 1

equal parts). Also, the study of the "decomposition matrix", which measures the default of

semi-simplicity, is of vivid interest in modular representation theory. This matrix is known

to have a unitriangular shape with respect to the dominance order on the set of e-regular

partitions, which parametrise its columns. It is natural to try to extend this property to the

more general groups G(l, 1, n) = (Z/lZ) ≀ Sn, and to their quantizations, which are known as

"Ariki-Koike algebras".

Inspired by this typical example, Geck and Rouquier introduced in [9] and [16] the notion

of "canonical basic set" for a non semi-simple Hecke algebraH . This approach formalises the

fact that the decomposition matrix D ofH is unitriangular, with respect to a certain ordering

of its columns. Besides, it yields a bijection between Irr(H) and a subset B of Irr(H), where H

is the semi-simple generic Hecke algebra which specialises toH . The columns of D are then

parametrised by B, which is endowed with a natural order induced by Lusztig’s a-function,

the order on the so-called "a-invariants".

In this paper, we focus on Ariki-Koike algebras, that is, Hecke algebras Hk,n of the com-

plex reflection groups G(l, 1, n). When Hk,n is non semi-simple, it is regarded as a specialisa-

tion, parametrised by a pair (e, r) (where e ∈ Z>0 ∪ {∞} and r ∈ Zl) , of a generic Ariki-Koike

algebra Hn. The irreducible representations of Hn are known to be parametrised by l-partitions

of n. Using Broué and Malle’s "cyclotomic Hecke algebras", see [5], Jacon defined in [18]

a-invariants for Ariki-Koike algebras, depending on a parameter m ∈ Ql, which induce an

order on the set of l-partitions of n. In [14], Geck and Jacon showed compatibility between

this order, which has several geometric interpretations, and a combinatorial order≪m defined

using Lusztig’s "symbols". It turns out that the order ≪m naturally arises when it comes to

the study of G(l, 1, n), for instance in Kazhdan-Lusztig theory in type Bn (that is when l = 2),

see [12], or via the representations of Cherednik algebras, as studied in [6] or [26].

Ariki’s proof in [2] of the LLT conjecture ([23]) enables us to compute the decomposition

numbers of Hk,n, when char(k) = 0, via the canonical basis of the Fock space Fr (Theorem
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3.6). With this approach, Geck and Jacon showed (see [14, Theorem 6.7.2]) that it is always

possible to find a canonical basic set B for Hk,n for an appropriate choice of the parameter m.

In fact, they showed that B is the set Φr(n) of Uglov l-partitions of rank n associated to r.

We study here the canonical basic set for Hk,n with respect to≪m in full generality: given

an element m ∈ Ql, is there a canonical basic set for Hk,n with respect to≪m? After defining

a certain finite set of hyperplanes P∗ ∈ Ql, we establish the following classification (see

Theorem 6.10):

• If m < P∗, then there exists a canonical basic set, which we explicitely determine. It

can be regarded as a generalisation of the canonical basic set of Uglov multipartitions

determined by Geck and Jacon.

• If m ∈P∗, then there is no canonical basic set for Hk,n.

The paper is structured as follows. In Section 2 we recall some background on the rep-

resentation theory of Ariki-Koike algebras in the non semi-simple case. We also introduce

cyclotomic Ariki-Koike algebras, and the order ≪m we use throughout this article, and we

formulate the precise question we are interested in. Section 3 summarizes the results of Geck

Jacon in [14, Chapters 5 and 6] which are relevant for our purpose. We introduce the Fock

space, which is a Uq(ŝle)-module, and its highest weight submodule V(r) which appears in

Ariki’s theorem. In Section 4 we show, using Theorem 3.8, that any so-called "regular" ele-

ment m affords a canonical basic set, which we describe in terms of "twisted Uglov multipar-

titions". Section 5 is devoted to the "asymptotic" case, which roughly speaking corresponds

to the case where the difference between two arbitrary components of m is large. After ex-

plaining the particularity of this setting, we establish the existence of a canonical basic set

with respect to≪m, namely the set of some "twisted Kleshchev multipartitions". In the final

Section 6, we prove that when m is "singular", that is when m ∈ P∗, there is no canonical

basic set with respect to≪m. We sum up these results in Theorem 6.10.

2 Preliminaries

2.1 General notations

We start with some notations about partitions and multipartitions.

Let n ∈ Z≥0 and l ∈ Z>0. A partition of n is a decreasing sequence of non-negative integers

λ = (λ1, λ2, . . . ) such that
∑

i λi = n. We write |λ| = n, the rank of n. The elements λi are

called the parts of λ. We consider that a partition λ has an infinite number of parts λi = 0.

We denote by Π(n) the set of partitions of n, and we write λ ⊢ n if λ ∈ Π(n). A l-partition

of n (also referred to as a multipartition) is a sequence of partitions λ = (λ1, λ2, . . . , λl) such

that |λ1| + · · · + |λl| = n. We define Πl(n) the set of l-partitions of n, and we write λ ⊢l n if

λ ∈ Πl(n). The integer |λ| = n is called the rank of λ.

Let λ ⊢l n. The Young diagram of λ is the set

[λ] := {(a, b, c) ; a ≥ 1, c ∈ ~1, l�, and 1 ≤ b ≤ λc
a}.

The elements of [λ] are called the nodes of λ. For the sake of simplicity, we sometimes

identify a multipartition with its Young diagram. A node γ of [λ] is called a removable node

if the element µ such that [µ] = [λ]\{γ} is still a multipartition (of rank n − 1). In this case, γ
is also called an addable node of [µ].

A multicharge is an element r = (r1, . . . , rl) ∈ Z
l. Given e ∈ Z>1, a multicharge r and a

multipartition λ ⊢l n, we can associate to each node γ = (a, b, c) of [λ] its residue modulo e

re(γ) := rc + b − a mod e. For i ∈ ~0, e − 1�, we call γ an i-node if re(γ) = i.

We recall the classic dominance order on Π(n). Let λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . )
be two partitions of n. We say that that λ dominates µ, and we write λ D µ, if

∑
1≤i≤d λi ≥∑

1≤i≤d µi for all d ≥ 1. More generally, we introduce a dominance order on the the set

of sequences of rational numbers in the same manner. Precisely, if α = (α1, α2, . . . ) and

β = (β1, β2, . . . ) are such sequences, we define α D β by
∑

1≤i≤d αi ≥
∑

1≤i≤d βi for all d ≥ 1.

We write α ⊲ β if α D β and α , β.
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These are partial orders. In the following sections, we shall also consider other orders on

the set Πl(n) of multipartitions.

We also need to introduce the extended affine symmetric group.

Let l ∈ Z>0. Denote by Sl the symmetric group on ~1, l�, and by σi, i ∈ ~1, l − 1�

its generators in its Coxeter presentation. Let {y1, . . . , yl} be the standard basis of Zl. The

extended affine symmetric group Ŝl is the group with the following presentation:

• Generators: σi, i ∈ ~1, l − 1� and yi, i ∈ ~1, l�.

• Relations :

– σ2
i
= 1 for all i ∈ ~1, l − 1�,

– σiσi+1σ = σi+1σiσi+1 for all i ∈ ~1, l − 2�,

– σiσ j = σ jσi whenever i − j , 1 mod l,

– yiy j = y jyi for all i, j ∈ ~1, l�,

– σiy j = y jσi for all i ∈ ~1, l − 1� and j ∈ ~1, l� such that j , i, i + 1 mod l,

– σiyiσi = yi+1 for all i ∈ ~1, l − 1�.

Note that Ŝl is not a Coxeter group. Also, this group can be seen as the semi-direct product

Zl ⋊ Sl.

Given e ∈ Z>1, there is an action of Ŝl on Zl, via the formulas:

• σir = (r1, . . . , ri−1, ri+1, ri, . . . , rl) for all i ∈ ~1, l − 1�, and

• yir = (r1, . . . , ri−1, ri + e, ri+1, . . . , rl) for all i ∈ ~1, l�,

where r = (r1, . . . , rl) ∈ Z
l.

The set {r ∈ Zl | 1 ≤ r1 ≤ · · · ≤ rl ≤ e} is a fundamental domain for this action.

2.2 Ariki-Koike algebras and decomposition maps

Let l ∈ Z>0 and n ∈ Z>1. Let R be a subring of C, u,V1, . . . ,Vl be independent indeterminates,

and set A = R[u±1,V1, . . . ,Vl].

Definition 2.1. The generic Ariki-Koike algebra Hn = HA,n(u,V1, . . . ,Vl) is the unital asso-

ciative A-algebra with generators Ti, i = 0, . . . , n − 1, and relations

• (Ti − u)(Ti + 1) = 0 for all i ∈ ~1, n − 1�.

• (T0 − V1) . . . (T0 − Vl) = 0

• T0T1T0T1 = T1T0T1T0

• TiTi+1Ti = Ti+1TiTi+1 for all i ∈ ~1, n − 2�

• TiT j = T jTi whenever |i − j| > 1

Let K be the field of fractions of A. We set HK,n = K ⊗A Hn. We denote by Irr(HK,n) the set of

irreducible HK,n-modules.

Theorem 2.2 (Ariki, [4]). The algebra HK,n is split semi-simple.

As a consequence, if R contains ξl = exp(2iπ/l), Tits’ deformation theorem implies that

the irreducible representations of HK,n are in one-to-one correspondence with the irreducible

representations of the complex reflection group Wn = G(l, 1, n) over K = Frac(R). It is known

that these representations are in one-to-one correspondence with Πl(n), the set of l-partitions

of n. Therefore, we can write

Irr(HK,n) = {Eλ; λ ⊢l n}.

The representations Eλ, λ ⊢l n, are called the Specht representations. The correspondence

Πl(n)→ Irr(HK,n), λ 7→ Eλ is explicitely described in [4, Section 3].
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2.2.1 Specialisations

We have the following criterion of semi-simplicity for specialised Ariki-Koike algebras.

Theorem 2.3 (Ariki, [1]). Let θ : A −→ k be a specialisation, with k = Frac(θ(A)). Denote

η = θ(u) and ηi = θ(Vi), for all i ∈ ~1, l�. Then the specialised algebra Hk,n(η, η1, . . . , ηl) =

k ⊗A Hn is (split) semi-simple if and only if

(
∏

−n<d<n

∏

1≤i< j≤l

(ηdηi − η j))(
∏

1≤i≤n

(1 + η + · · · + ηi−1)) , 0.

Moreover, we have this result by Dipper and Mathas:

Theorem 2.4 (Dipper and Mathas, [7]). Let E = {η1, . . . , ηl} and suppose that there exists a

partition E = E1 ⊔ · · · ⊔ Es such that

∏

1≤α<β≤s

∏

(Vi,V j)∈Eα×Eβ

∏

−n<a<n

(ηaηi − η j) , 0.

Then Hk,n(η, η1, . . . , ηl) is Morita equivalent to the algebra

⊕

n1+···+ns=n
n1,...,ns≥0

Hk,n1
(η,E1) ⊗k · · · ⊗k Hk,ns

(η,Es).

As a consequence, in order to study non semi-simple Ariki-Koike algebras, it is sufficient

to consider the specialisations Hk,n(η, η1, . . . , ηl) of Hn defined via

θ : A −→ k

u 7−→ ζ
Vi 7−→ ζri ,

where ζ is a primitive root of unity of order e (possibly infinite), and ri ∈ Z for all i ∈ ~1, l�.
Hence each specialisation considered in the sequel will be characterised by a pair (e, r) where

e is the multiplicative order of ζ = θ(u), and r = (r1, . . . , rl) ∈ Z
l. We will denote equally

Hk,n(ζ, ζr1 , . . . , ζr j ) = H
(e,r)

k,n
the specialised Ariki-Koike algebra corresponding to (e, r). We

also denote θ(e,r) the associated specialisation map.

Consider the specialisation θ(e,r) : A −→ k with k = Frac(θ(e,r)(A)). In accordance with

[15], there is an associated decomposition map dθ(e,r)
: R0(HK,n) −→ R0(H

(e,r)

k,n ), and we can

write

dθ(e,r)
([Eλ]) =

∑

M∈Irr(H
(e,r)

k,n )

dλ,M[M].

The decomposition matrix of H
(e,r)

k,n is the matrix

Dθ(e,r)
= (dλ,M)λ⊢ln

M∈Irr(H
(e,r)

k,n )

.

The elements dλ,M are called the decomposition numbers of H
(e,r)

k,n . If the specialised algebra

is semi-simple, the decomposition map is trivial and Dθ(e,r)
is the identity matrix. In general,

this matrix has a rectangular shape, since |Irr(H
(e,r)

k,n )| ≤ |{Eλ; λ ⊢l n}|.

Terminology: For simplicity, we say that λ appears in the column C indexed by M if

dλ,M , 0. We also say that C contains λ.

Actually, we can recover this matrix Dθ(e,r)
from any specialisation H

(e,s)

k,n where s is in the

class of r modulo Ŝl. It is important to understand the consequences of choosing another

multicharge to get the decomposition matrix.

Denote by C(r) (or simply C) the class of r modulo Ŝl, and by Ce(r) (or simply Ce) the

class of r modulo the subgroup 〈y1, ..., yl〉 of Ŝl (i.e. the set of all s = (s1, ..., sl) ∈ Z
l such that

∀1 ≤ i ≤ l, si = ri mod e).

• If s ∈ Ce, then it is clear that H
(e,s)

k,n = H
(e,r)

k,n . Besides, the decompositions maps are the

same. Therefore, the decomposition matrices are strictly equal.
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• If s ∈ C, one still has H
(e,s)

k,n = H
(e,r)

k,n . We therefore denote Hk,n this algebra. However,

the decomposition maps do not necessarily coincide. In fact, if we have s = σ(r),

for some σ ∈ Sl, denote θ := θ(e,r) and θσ := θ(e,s). Then we can write dθ([E
λ]) =∑

M∈Irr(Hk,n) dλ,M[M] and dθσ([E
λ]) =

∑
M∈Irr(Hk,n) dσ

λ,M
[M].

Now since θσ(Vi) = ζ
si = ζrσ(i) = θ(Vσ(i)), we have

dσλ,M = dλσ ,M, ∀λ ⊢l n , ∀M ∈ Irr(Hk,n)

where λσ = (λσ(1), . . . λσ(l)).

This means that the decomposition matrices are equal up to a permutation of the rows.

Equivalently, they are strictly equal (denoted by D) provided the parametrisation of the

rows is changed: the row of D labeled by λ with respect to the parametrisation afforded

by r is labeled by λσ with respect to the parametrisation afforded by s = σ(r).

To sum up, the specialised Ariki-Koike algebra only depends on C. We denote it by Hk,n.

Hence we consider that for any s ∈ C, we obtain one genuine matrix, that we denote dy D, but

that each element s ∈ C affords a different (in general) parametrisation of the rows of D.

In our purpose to study canonical basic sets, introduced in the next section, it is crucial to

understand which parametrisation we use. In fact, we will fix a multicharge r once and for

all, and this will fix a parametrisation of the rows of D.

In the sequel, we will be interested with the shape of this decomposition matrix. One of

the classic problems is to find an indexation of the simple Hk,n-modules so that D is upper

unitriangular, that is

D =

Irr(Hk,n)︷          ︸︸          ︷


1 0 . . . 0

⋆ 1 . . . 0
... ⋆

. . .
...

...
...
. . . 1

...
... ⋆

...
... . . .

...





Πl(n)

More precisely, we ask for an order ≤ on Irr(Hk,n) such that D has the above shape with

respect to this order, that is i > j ⇒ Mi ≤ M j, if Mi ∈ Irr(Hk,n) parametrises the i-th column

of D. These problems have been solved in [14], using the theory of canonical basic sets. This

approach enables us find a bijection between Irr(Hk,n) and a subset of Πl(n), and therefore to

label the simple Hk,n-modules by certain l-partitions, the Uglov multipartitions.

In this paper, we address the "converse" question: given a certain natural order on the

set of multipartitions (coming from some cyclotomic Hecke Algebra), is it possible to find a

parametrisation of Irr(Hk,n) by a subset ofΠl(n) such that D is upper unitriangular with respect

to this order? We first need to precise which specific orders we are interested in, and some

background about canonical basic sets.

2.3 Cyclotomic specialisations and canonical basic sets

We introduce a new kind of specialisation of Hn, independent of the previous non semi-simple

specialisation. This so-called cyclotomic specialisation yields a one-parameter algebra, which

enables us to construct an "algebraic" order on the simple modules of HK,n.

Precisely, a cyclotomic specialisation is any specialisation

θy : A −→ K(y)

Vi 7−→ ηi = ytiξi−1
l

for i ∈ ~1, l�
u 7−→ η = yt,

where y is an indeterminate, t ∈ Z>0 and (t1, . . . , tl) ∈ Z
l. We recall that ξl = exp(2iπ/l).

We denote by HK(y),n the corresponding specialised algebra, which we call cyclotomic

Ariki-Koike algebra. Since

(
∏

−n<d<n

∏

1≤i< j≤l

(ηdηi − η j))(
∏

1≤i≤n

(1 + η + · · · + ηi−1)) , 0,
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the algebra HK(y),n is (split) semi-simple by Theorem 2.3. Hence, the irreducible representa-

tions of HK(y),n are parametrised by l-partitions. We denote Irr(HK(y),n) = {Eλy ; λ ⊢l n}. These

representations can be seen as reductions of the elements Eλ of Irr(Hk,n) via θy.

For such a cyclotomic specialisation, we also set mi = ti/t for all i ∈ ~1, l�, and m =

(m1, . . . ,ml) ∈ Q
l. This element m is called a weight sequence.

Note that any (non semi-simple) algebra H
(e,r)

k,n
= Hk,n can be obtained by specialising a

certain cyclotomic algebra. Denote θ(e,r)(u) = ζ = exp(2ikπ/e) with gcd(k, e) = 1. In fact, if

t ∈ Z>0 is arbitrary and mi = ri − e(i − 1)/kl, we have a cyclotomic algebra HK(y),n depending

on a parameter y, which can be specialised via y 7→ ζ1/t
= exp(2ikπ/et). One can check that

the resulting algebra is indeed Hk,n. In other terms, the following diagram commutes:

Hn

θ(e,r)

��

θy

##
HH

HH
HH

HH
H

HK(y),n

θ̃{{xx
xx
xx
xx

H
(e,r)

k,n

where θy : A −→ K(y)

u 7−→ yt with t such that t(ri −
e(i−1)

kl
) ∈ Z,

Vi 7−→ yt(ri−
e(i−1)

kl
)ξi−1

l
for i ∈ ~1, l�,

and θ̃ : K(y) −→ k such that ζ1/t ∈ k

y 7−→ ζ1/t.

Let HK(y),n be a cyclotomic Ariki-Koike algebra with parameter t ∈ Z>0 and weight se-

quence m. We can compute the Schur elements cλy of the simple HK(y),n-modules Eλy , by

specialising (via θy) the Schur elements cλ of Eλ. Explicit formulas for cλ have been given

independently in [13] and [28]. We can then set

a(m,t)(λ) = min{s ∈ Z | yscλy ∈ R[y]}.

These elements are called the a-invariants for Eλy . In particular, when l = 1, the map Eλ 7→

a(m,t)(λ) = a(λ) coincides with Lusztig’s a-function, in the sense of [27]. The a-invariants

induce an order on Specht modules, namely Eλ ⊑ Eµ ⇔ [λ = µ or a(m,t)(λ) < a(m,t)(µ)].

The general notion of canonical basic sets requires an order on the Specht modules. In the

case of Ariki-Koike algebras, it is natural to use this algebraic order. In fact, we will use

a combinatorial order ≪m which contains the order ⊑ above. This is the order on shifted

m-symbols defined in [14].

Recall that the shifted m-symbol of λ = (λ1, . . . , λl) ⊢l n of size p ∈ Z is the l-tuple

Bm(λ) = (B1
m(λ), . . . ,Bl

m(λ)), where B
j
m(λ) = (B

j

p+⌊m j⌋
(λ), . . . ,B

j

1
(λ)), with B

j

i
(λ) = λ

j

i
− i +

p + m j, for all j ∈ ~1, l� and i ∈ ~1, p + ⌊m j⌋�. Note that p must be sufficiently large, so that

p + ⌊m j⌋ ≥ 1 for all j ∈ ~1, l�. This ensures that each B
j
m(λ) is well defined. As usual, we

consider that each partition λ j of λ has an infinite number of parts λ
j

i
= 0.

The shifted m-symbol Bm(λ) is pictured by an array whose j-th line (numbered from

bottom to top) corresponds to B
j
m(λ).

Example 2.5. Let m = (1/2, 2,−1) and λ = (1.1, ∅, 2) ⊢3 4. We choose p = 3. Then

Bm(λ) =


0 3

0 1 2 3 4

1/2 5/2 7/2

 .

Note that this symbol can easily be obtained from the shifted m-symbol of the empty l-

partition, by adding the parts of λi to the i-th row (numbered from bottom to top) of Bm(∅),

from right to left.

The symbol Bm(λ) has h = lp +
∑

1≤ j≤l⌊m j⌋ elements.
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Write bm(λ) = (b1m(λ), b2m(λ), . . . , bhm(λ)) the sequence of elements inBm(λ), in decreasing

order. For λ, µ ∈ Πl(n), we define the order≪m by

λ≪m µ
def
⇐⇒ λ = µ or bm(λ) ⊲ bm(µ),

in the general sense of dominance order on sequences of rational numbers defined in section

2.1.

Set also nm(λ) =
∑

1≤i≤h(i − 1)bim(λ). By [14, Proposition 5.5.11], we can compute the

a-invariant of λ using symbols, namely a(m,t)(λ) = t(nm(λ)− nm(∅)). As a direct consequence,

we have the following compatibility property ([14, Proposition 5.7.7]):

[λ≪m µ and λ , µ] ⇒ a(m,t)(λ) < a(m,t)(µ). (1)

This order on symbols has the advantage of being easier to handle, since it is purely com-

binatorial. Besides, it naturally appears in the representation theory of the complex reflection

groups of type G(l, 1, n). For instance, when l = 2, Geck and Iancu showed in [12, Theorem

7.11] that this order is compatible with an order �L, defined (in [11]) on Irr(G(l, 1, n)) using

Lusztig’s families (and related to the order ≤LR defining Kazhdan-Lusztig cells). In fact, they

showed that in general, one has λ �L µ⇒ λ≪m µ, and that in some particular cases, both or-

ders are equivalent. Note that the version of the order≪m defined in [12, Section 3] is slightly

different from the one we just defined. In another vein, Chlouveraki, Gordon and Griffeth

have used the compatibility property (1) above to deduce information on the decomposition

of standard modules of Cherednik algebras, [6, Theorem 5.7]. Also, Liboz showed in [26]

that the order≪m contains the order induced by the "c-function" on Irr(G(l, 1, n)) used in the

representation theory of Cherednik algebras.

We can now state the definition of a canonical basic set in the sense of [10], using the

order≪m instead of the order induced by the a-invariants.

Fix r ∈ Zl and e ∈ Z>1 ∪ {∞}. Consider the specialised algebra H
(e,r)

k,n
= Hk,n. For

M ∈ Irr(Hk,n), set S (M) = {λ ⊢l n | dλ,M , 0}. Note that this set strongly depends on the

choice of r (which is fixed once and for all), as explained on page 4.

Definition 2.6. Assume that the following conditions hold:

1. For M ∈ Irr(Hk,n), there exists a unique element λM ∈ S (M) such that for all µ ∈

S (M), λ≪m µ.

2. The map Irr(Hk,n)→ Πl(n), M 7→ λM is injective.

3. We have dλM ,M = 1, for all M ∈ Irr(Hk,n).

Then the set B := {λM; M ∈ Irr(Hk,n)} ⊆ Πl(n) is in one-to-one correspondence with Irr(Hk,n).

It is called a canonical basic set for (Hk,n, r) with respect to≪m.

Remark 2.7. As a direct consequence, if there exists a canonical basic set for (Hk,n, r) with

respect to ≪m, it is unique. Moreover, the three conditions of Definition 2.6 encode the fact

that D is upper unitriangular with respect to≪m.

Remark 2.8. Just like decomposition matrices, it is important to understand how the notion of

canonical basic set depends on r. Indeed, this multicharge determines a parametrisation of the

rows of D. This parametrisation being invariant in the class Ce, we are ensured that for s ∈ Ce,

if (Hk,n, s) admits a canonical basic set B (with respect to≪m), then B is the canonical basic

set for (Hk,n, r) (with respect to≪m).

However, this is not true for general s ∈ C. For such a multicharge, it is sometimes

possible to find a canonical basic set for (Hk,n, s), even if (Hk,n, r) does not admit a canonical

basic set and both algebras are equal, see Example 6.9. Also, if B is the canonical basic set

for (Hk,n, r), it is sometimes possible to find s ∈ C such that (Hk,n, s) admits a canonical basic

set B′ and B′ ,B, see Example 4.3.

Fix r ∈ Zl, n, l ∈ Z>1, e ∈ Z>1 ∪ {∞}. We want to review which values of m ∈ Ql afford

a canonical basic set for (Hk,n, r), and which do not. We will see that unless m belongs to

some hyperplanes of Ql, the algebra (Hk,n, r) admits a canonical basic set with respect to≪m,

which we can explicitely describe.
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Remark 2.9. We could have adressed a slightly different question. Since we can recover the

decomposition matrix from any s ∈ C (up to a change of parametrisation of the rows), we

could also ask which weight sequences m afford a canonical basic set for (Hk,n, s), for some

s ∈ C. Note that solving the first question automatically solves this weaker question, by taking

the reunion over s ∈ C of all weight sequences m that afford a canonical basic set for (Hk,n, s).

First, let us recall what particular values of m are known to afford canonical basic sets for

(Hk,n, r).

3 Existence of canonical basic sets for appropriate parame-

ters

Consider the specialised Ariki-Koike algebra Hk,n = H
(e,r)

k,n where e ∈ Z>1 ∪ {∞}, and r =

(r1, . . . , rl) ∈ Z
l. We want to find a canonical basic set for (Hk,n, r), in the sense of Definition

2.6. The following results prove that it is always possible to find m ∈ Ql such that (Hk,n, r)

admits a canonical basic set with respect to ≪m. Besides, they can be explicitely described,

either "directly" (FLOTW l-partitions) or recursively (Uglov l-partitions). These results can

be found in [14].

3.1 FLOTW multipartitions as canonical basic sets

Let S l
e = {r = (r1, . . . , rl) ∈ Z

l | 0 ≤ r j − ri < e for all i < j}. In this section, we assume that

r ∈ S l
e .

The following definition is due to Foda, Leclerc, Okado, Thibon and Welsh, see [8].

Definition 3.1. Let λ = (λ1, . . . , λl) ⊢l n and r ∈ S l
e . Then λ is called a FLOTW l-partition if:

1. For all j ∈ ~1, l − 1�, λ
j

i
≥ λ

j+1

i+r j+1−r j
,∀i ≥ 1; and λl

i
≥ λ1

i+e+s1−sl
,∀i ≥ 1.

2. The residues of the rightmost nodes of the length p rows (for all p > 0) of λ do not

cover ~0, e − 1�.

Denote by Ψ(r,e) the set of FLOTW l-partitions associated to r ∈ S l
e , and by Ψ(r,e)(n) ⊂ Ψ(r,e)

the ones of rank n.

Remark 3.2. If l = 1, the FLOTW l-partitions are exactly the e-regular partitions.

We have the following result by Geck and Jacon.

Theorem 3.3 ([14, Theorem 5.8.2]). Let r ∈ S l
e , v = (v1, . . . , vl) ∈ Q

l such that i < j ⇒ 0 <
v j − vi < e, and set m = r − v = (r1 − v1, . . . , rl − vl). Then (Hk,n, r) admits a canonical basic

set with respect to≪m, namely the set Ψ(r,e)(n).

Despite the restriction that r must be in S l
e , this is however relevant since S l

e contains a

fundamental domain for the action of Ŝl on Zl (the one described in section 2.1), and since

Hk,n depends only on the class C of r modulo Ŝl. Besides, this theorem holds regardless of

the characteristic of the field k, and Ψ(r,e)(n) has the advantage of being directly computable.

3.2 Ariki’s theorem and Uglov multipartitions as canonical basic sets

We now want to find a canonical basic set for (Hk,n, r) for an arbitrary value of r. In the

sequel, we will need to assume that char(k) = 0. Indeed, this is an essential condition for

Ariki’s theorem to apply. This result links the theory of canonical bases (in the sense of

Kashiwara, or Lusztig) of quantum groups with the modular representation of Ariki-Koike

algebras.

We do not recall here the theory of quantum groups. We refer to [3] and [17] for detailed

background onUq(ŝle) in particular. We denote by ei, fi, ti, t
−1
i
, d, d−1 the generators ofUq(ŝle),

and by ωi, i ∈ ~0, e − 1�, the fundamental weights ofUq(ŝle).

We redefine the Fock space and its properties. Let r ∈ Zl, q be an indeterminate. The Fock

space Fr is the Q(q)-vector space with formal basis |λ, r〉 where λ ⊢l n, i.e.

Fr =

⊕

n∈Z≥0

⊕

λ⊢ln

Q(q)|λ, r〉.
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We define an order on the set of addable or removable i-node of a l-partition λ. Let

γ = (a, b, c) and γ′ = (a′, b′, c′) be two removable or addable i-nodes of λ ⊢l n. We write

γ ≺(r,e) γ
′ if

{
b − a + sc < b′ − a′ + sc′ or

b − a + sc = b′ − a′ + sc′ and c > c′.

Let λ ⊢l n and µ ⊢l n + 1 such that [µ] = [λ] ∪ {γ} where γ is an i-node. We set

N≺i (λ, µ) =♯{addable i-nodes γ′ of λ such that γ′ ≺(s,e) γ}−

♯{removable i-nodes γ′ of µ such that γ′ ≺(s,e) γ},

N≻i (λ, µ) =♯{addable i-nodes γ′ of λ such that γ′ ≻(s,e) γ}−

♯{removable i-nodes γ′ of µ such that γ′ ≻(s,e) γ},

Ni(λ) = ♯{addable i-nodes of λ} − ♯{removable i-nodes of λ},

and Nd(λ) = ♯{0-nodes of λ}.

The following result is due to Jimbo, Misra, Miwa and Okado.

Theorem 3.4 ([21]). The formulas

ei |λ, r〉 =
∑

re([λ]\[µ])=i

q−N≺
i

(µ,λ) |µ, r〉 ,

fi |λ, r〉 =
∑

re([µ]\[λ])=i

q−N≻
i

(λ,µ) |µ, r〉 ,

ti|λ, r〉 = qNi(λ)|λ, r〉 and

d|λ, r〉 = −(∆(r) + Nd(λ))|λ, r〉, for all i ∈ ~0, e − 1�

endow Fr with the structure of an integrableUq(ŝle)-module. Here, ∆(r) is rational number

defined in [29].

The element |∅, r〉 ∈ Fr is a highest weight vector, of highest weight Λr := ωr1mode + · · · +

ωrlmode. We denote by V(r) ⊂ Fr the irreducible highest weight Uq(ŝle)-module spanned by

|∅, r〉. This module V(r) is endowed with a crystal basis, a crystal graph Gr, and a canonical (or

global) basis, in the sense of [22]. Define the Uglov l-partitions to be the elements labelling

the vertices of Gr. In order to determine these so-called Uglov multipartitions, we need to

recall the definition of good addable and good removable i-nodes. Denote by Φr the set of

Uglov l-partitions, labelling the vertices of V(r), and by Φr(n) the ones of rank n.

Let λ ⊢l n. Consider the set of its addable and removable i-nodes, ordered with respect to

≺(r,e). Encode each addable (resp. removable) i-node with the letter A (resp. R). This yields

a word of the form Aα1 Rβ1 . . . Aαp Rβp . Delete recursively all the occurences of type RA in this

word. We get a word of the form AαRβ. Denote it by wi(λ). Let γ be the rightmost addable

(resp. leftmost removable) i-node in wi(λ). Then γ is called the good addable (resp. good

removable) i-node of λ.

Theorem 3.8 in [21] gives a way to describe the crystal graph of the whole Fock space Fr,

which also is an integrable Uq(ŝle)-module. Taking the connected component of this graph

containing |∅, r〉, we get Gr. Precisely, we have the following result:

Theorem 3.5 ([14, Proposition 6.2.14]). The set Φr is recursively characterised by:

• ∅ ∈ Φr,

• If µ ∈ Φr, then any λ obtained from µ by adding a good addable node is also in Φr.

Precisely, Gr consists of vertices |λ, r〉 with λ ∈ Φr and arrows |µ, r〉
i

−−−−−→ |λ, r〉 if and only

if [λ] = [µ] ∪ {γ} where γ is the good removable i-node of µ.
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We can now state Ariki’s theorem, proved in [2].

Consider the canonical basis Br of V(r). It is indexed by Uglov l-partitions. We write

Br = {G(µ, r) ; µ ∈ Φr}. Each element of Br decomposes on the basis of l-partitions. Write

G(µ, r) =
∑
λ⊢ln

cλ,µ(q)|λ, r〉.
Let B1

r be the specialisation of Br at q = 1, that is

B1
r = {

∑

λ⊢ln

cλ,µ(1)|λ, r〉 ; µ ∈ Φr}.

Recall that the elements dλ,M ∈ Z>0, λ ⊢l n, are the decomposition numbers associated to

M ∈ Irr(Hk,n). Define

B(M, r) =
∑

λ⊢ln

dλ,M |λ, r〉.

Theorem 3.6 ([3, Theorem 12.5]). Suppose that char(k) = 0. Then

B1
r = {B(M, r) ; M ∈ Irr(Hk,n), n ∈ Z≥0}.

Hence we have the following result concerning the decomposition matrix D of Hk,n:

Corollary 3.7. Set C = (cλ,µ(1))λ⊢ln,µ∈Φr
. Then C = D up to a reordering of the columns.

In other words, if char(k) = 0, it is sufficient to compute the canonical basis of the ir-

reducible highest weight Uq(ŝle)-module V(r) in order to recover the decomposition matrix

D.

Uglov, in [29], determined the canonical basisBr of V(r), generalising the work of Leclerc

and Thibon in [25]. Another good reference is the thesis of Yvonne, [30]. This requires some

theory about the affine Hecke algebra of type A and q-wedge products. This approach permits

us to establish the existence of a "canonical" basis of the whole Fock space, and also to

compute Br.

We introduce one more notation. Let s = (s1, . . . , sl) ∈ C. For m = (m1, . . . ,ml) ∈ Q
l, we

set v = (v1, . . . , vl) = (s1 − m1, . . . , sl − vl), and we define

Ds = {m ∈ Q
l | i < j⇒ 0 < v j − vi < e}.

Using Uglov’s canonical basis of the Fock space, Geck and Jacon have proved the follow-

ing result about canonical basic sets ([14], ):

Theorem 3.8 ([14, Theorem 6.7.2]). Suppose that char(k) = 0.

Let r ∈ Zl and m ∈ Ql. If m ∈ Dr, then (Hk,n, r) admits a canonical basic set with respect

to≪m, namely the set Φr(n).

In the sequel, we will assume that char(k) = 0, so that Ariki’s theorem (and hence Theorem

3.8) holds.

We now wish to review the existence or non-existence of a canonical basic set for (Hk,n, r)

with respect to ≪m, depending on the values of m, and explicitely describe these sets when

they exist.

In the following sections, we will denote by P the following subset of Ql:

P = {m ∈ Ql | ∃ i , j such that (ri − mi) − (r j − m j) ∈ eZ}

Precisely, P consists in the union of the hyperplanes

Pi, j(s) = {m ∈ Ql | (si − mi) − (s j − m j) = 0}

= {m ∈ Ql | vi − v j = 0} (where vi := si − mi ∀i ∈ ~1, l�)

over all s ∈ Ce and all 1 ≤ i < j ≤ l.

Indeed, for k ∈ Z, we have

(ri − mi) − (r j − m j) = ke ⇔ (ri − mi) − (r j + ke − m j) = 0

⇔ (si − mi) − (s j − m j) = 0

⇔ vi − v j = 0
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e

e

Ds

P1,2((r1, r2 − e))

s ∈ Ce r = (r1, r2)

P1,2((r1, r2 + e)) = P1,2(s)

P1,2(r)

Figure 1: The set P and the domains Ds in level 2.

with s = (s1, . . . , si, . . . , s j, . . . , sl) = (r1, . . . , ri, . . . , r j + ke, . . . , rl).

Clearly, this is not a disjoint union, since Pi, j(s) = Pi, j(s̃) whenever s̃i = si + pe and

s̃ j = s j + pe for some p ∈ Z. Also, when l > 2, the hyperplanes Pi, j(s) and Pi′, j′ (s) always

intersect, even when (i, j) , (i′, j′).

4 Canonical basic sets for regular m

If m ∈ Ql\P , we say that m is regular. In this section, we show that any regular m defines

an order≪m with respect to which Hk,n admits a canonical basic set. We use the fact that, for

s ∈ Ce, if B is the canonical basic set for (Hk,n, s) with respect to≪m, then B is the canonical

basic set for (Hk,n, r) with respect to≪m (see Remark 2.8). We first study the case l = 2, and

then the general case.

4.1 l = 2

Here we have r = (r1, r2) ∈ Z2, and P is just a collection of parallel lines, namely the lines

passing through (s1, s2) ∈ Ce with slope 1. The set Ds is the domain strictly between the lines

passing through (s1, s2) and (s1, s2 − e), see Figure 1.

Notation: For s = (s1, s2) ∈ C, we denote s̃ = (s1, s2 + e).

Proposition 4.1. Let m = (m1,m2) ∈ Q2\P . Then (Hk,n, r) admits a canonical basic set with

respect to≪m, namely either Φs(n) or Φs̃(n), where s ∈ Ce is explicitely determined.

Proof. The idea is to show that any such m belongs to a certain Dŝ, for ŝ ∈ Ce.

In fact, for such an m, we can find an element s ∈ Ce which is "close" to m in the following

sense: there exists s ∈ Ce such that 0 ≤ |si − mi| ≤
e
2
, i = 1, 2. We set vi = si − mi.

In other terms, there exists s ∈ Ce such that m is in the closed ball (with respect to the

infinity norm) of radius e
2

centered at s. This is clear since these balls form a cover of R2.

Hence we have 0 ≤ |v1 − v2| ≤ e.

Moreover the fact that m is not located on a hyperplane of P (and that s is obtained from

r after translation of each coordinate by an element of eZ) ensures that these inequalities are

strict, i.e. that 0 < |v1 − v2| < e.

• If 0 < v2 − v1 < e, then m ∈ Ds. By Theorem 3.8, the set Φs(n) is the canonical basic

set for the algebra H
(e,s)

k,n with respect to the order≪m. Therefore, by Remark 2.8, Φs(n)

is the canonical basic set for (Hk,n, r) with respect to≪m.
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• If 0 < v1 − v2 < e, then 0 < (v2 + e) − v1 < e. Hence m ∈ Ds̃ (where we recall that

s̃ = (s1, s2 + e)), so that by Theorem 3.8, the set Φs̃(n) is the canonical basic set for

(Hk,n, s̃) with respect to the order ≪m. Since s̃ ∈ Ce, using Remark 2.8, Φs̃(n) is the

canonical basic set for (Hk,n, r) with respect to≪m.

�

Remark 4.2. In level 2, the domains Ds, s ∈ Ce, actually tile Q2\P . In higher level this does

not hold anymore, and we need to find other canonical basic sets than Uglov multipartitions.

Note that we can sometimes find different canonical basic sets for (Hk,n, r) and (Hk,n, s)

with respect to the same order≪m if s ∈ C\Ce, as mentioned in Remark 2.8. This is what the

following example shows.

Example 4.3. Let l = 2, e = 4, r = (1, 0) and s = rσ = (0, 1) (where σ = (12)). Take

m = (1,−1). Then s < Ce.

Then m ∈ Dr since r − m = (0, 1). Hence Φr(n) is the canonical basic set for (Hk,n, r).

Besides, m ∈ Ds since s − m = (−1, 2). Hence Φs(n) is the canonical basic set for (Hk,n, s),

but Φs(n) , Φr(n) for n ≥ 2 (which one can easily check).

4.2 l > 2

In the sequel we use the following notations. For α = (α1, . . . αl) ∈ Q
l and σ ∈ Sl, we denote

ασ = (ασ(1), . . . ασ(l)). Similarly, for λ = (λ1, ..., λl) ⊢l n, we write λσ = (λσ(1), . . . , λσ(l)).

Let m = (m1, ...,ml) be an element of Ql\P .

Proposition 4.4. Let s ∈ C and σ ∈ Sl. If Φs(n) is the canonical basic set for (Hk,n, s) with

respect to≪m, then the set

σ(Φs(n)) := {λσ ; λ ∈ Φs(n)}

of σ-twisted Uglov l-partitions is the canonical basic set for (Hk,n, s
σ) with respect to≪mσ .

Proof. In order to prove this result, we need to define a twisted Fock space F σsσ , which, as a

vector space, is the Fock space Fsσ , but has a σ-twistedUq(ŝle)-action.

Recall that the action of Uq(ŝle) on the Fock space Fs is derived from an order on the

i-nodes of l-partitions. We define a twisted order on the removable and addable i-nodes of a

multipartition in the following way : let γ = (a, b, c) and γ′ = (a′, b′, c′) be two removable or

addable i-nodes of λ ⊢l n. We write

γ ≺σ(sσ,e) γ
′ if

{
b − a + sσ(c) < b′ − a′ + sσ(c′) or

b − a + sσ(c) = b′ − a′ + sσ(c′) and σ(c) > σ(c′).

Now, if γ = (a, b, c) is a removable (resp. addable) i-node of λ = (λ1, ..., λl), then γσ :=

(a, b, σ−1(c)) is a removable (resp. addable) i-node of λσ := (λσ(1), ..., λσ(l)), so that we have

γσ ≺σ(sσ,e) γ
′σ ⇔ γ ≺(s,e) γ

′.

This order enables us to define the numbers N≺
σ

i
and N≻

σ

i
. Let λ ⊢l n and µ ⊢l n + 1 such

that [µ] = [λ] ∪ {γ} where γ is an i-node. Then set

N≺
σ

i (λ, µ) =♯{addable i-nodes γ′ of λ such that γ′ ≺σ(sσ,e) γ}−

♯{removable i-nodes γ′ of µ such that γ′ ≺σ(sσ,e) γ}

and
N≻

σ

i (λ, µ) =♯{addable i-nodes γ′ of λ such that γ′ ≻σ(sσ,e) γ}−

♯{removable i-nodes γ′ of µ such that γ′ ≻σ(sσ,e) γ}

We abuse the notation by denoting σ the isomorphism of vector spaces

σ :
Fs −→ Fsσ

|λ, s〉 7−→ |λσ, sσ〉
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Now we want do define a twisted action ofUq(ŝle) on Fsσ .

The action of ei and fi, denoted by eσ
i
. |λσ, sσ〉 and f σ

i
. |λσ, sσ〉, are defined as follows:

eσi . |λ
σ, sσ〉 =

∑

re([λσ]\[µσ])=i

q−N≺
σ

i
(µσ ,λσ) |µσ, sσ〉 .

Then we have
eσi . |λ

σ, sσ〉 =
∑

re([λ]\[µ])=i

q−N≺
i

(µ,λ)σ( |µ, s〉)

= σ(
∑

re([λ]\[µ])=i

q−N≺
i

(µ,λ) |µ, s〉)

that is eσ
i

acts as σeiσ
−1.

Similarly, if we set

f σi . |λ
σ, sσ〉 =

∑

re([µσ]\[λσ])=i

q−N≻
σ

i
(λσ,µσ) |µσ, sσ〉 ,

we have
f σi . |λ

σ, sσ〉 =
∑

re([µ]\[λ])=i

q−N≻
i

(λ,µ)σ( |µ, s〉)

= σ(
∑

re([µ]\[λ])=i

q−N≺
i

(λ,µ) |µ, s〉)

that is f σ
i

acts as σ fiσ
−1.

Hence by Theorem 3.4, these new formulas, combined with the formulas

ti. |λ
σ, sσ〉 = qNi(λ)|λ, s〉

and

d. |λσ, sσ〉 = −(∆(s) + Nd(λ))|λ, s〉

endow Fsσ with the structure of an integrableUq(ŝle)-module, that we denote by F σsσ .

We continue the construction as in the non-twisted case. Denote by V(sσ)σ the submodule

ofF σsσ generated by the empty l-partition |∅, sσ〉. This is an irreducible highest weightUq(ŝle)-

module for this twisted action, and the crystal basis of V(s) is mapped to the one of V(sσ)σ by

the isomorphism σ. In particular the vertices of the crystal graph of V(sσ)σ are the σ-twisted

Uglov l-partitions:

σ(Φs(n)) := {(λσ(1), ..., λσ(l)) ; (λ1, ..., λl) ∈ Φs(n)}.

It is an indexing set for the global basis of V(sσ)σ. Now this basis is also obtained from

the global basis of V(s) by applying σ. That is, if we denote by Gσ(λ, sσ) (λ ∈ σ(Φs(n))) the

elements of the canonical basis of V(sσ)σ, we have:

σ(G(λ, s)) = Gσ(λσ, sσ). (2)

Write Gσ(λ, sσ) =
∑

µσ⊢ln

dµσ,λσ (q) |µσ, sσ〉 the decomposition of Gσ(λ, sσ) on the basis of

all l-partitions. By (2), we have

σ(
∑

µ⊢ln

dµ,λ(q) |µ, s〉) =

∑

µσ⊢ln

dµσ,λσ(q) |µσ, sσ〉

i.e.
∑

µ⊢ln

dµ,λ(q) |µσ, sσ〉 =

∑

µ⊢ln

dµσ,λσ (q) |µσ, sσ〉 .

Hence ∀λ ∈ Φs(n), ∀µ ⊢l n, we have

dµσ ,λσ(q) = dµ,λ(q). (3)

In particular, this is true at q = 1.
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By Ariki’s theorem (Theorem 3.6), which holds for any realisation of the highest weight

Uq(ŝle)-module V(r), the matrix (dµ,λ(1))µ⊢ln,λ∈Φs(n) is the decomposition matrix D of Hk,n.

Hence by (3), one can also parametrise the irreducible modules of Hk,n by the elements of

σ(Φs(n)) and recover the same matrix by labelling the i-th column by λσi ∈ σ(Φs(n)) and the

j-th line by µσ
j
⊢l n.

Moreover, the fact that Φs(n) is the canonical basic set for (Hk,n, s) with respect to ≪m

means that D is upper unitriangular with respect to≪m. Since we have

λi ≪m λ j ⇔ λ
σ
i ≪mσ λ

σ
j ,

the matrix D (with columns indexed by σ(Φs(n)) ) is upper unitriangular with respect to≪mσ ,

i.e. σ(Φs(n))) is the canonical basic set for (Hk,n, s
σ).

�

We are now ready to prove the following general result.

Proposition 4.5. Let m = (m1, ...,ml) ∈ Q
l\P . Then (Hk,n, r) admits a canonical basic set

with respect to≪m, namely σ(Φ
sσ
−1 (n)), where s ∈ Ce and σ ∈ Sl are explicitely determined.

We then say that s is the m-adapted multicharge, and σ the m-adapted permutation.

Proof. As in the level 2 case, we start by finding a s ∈ Ce which is "close" to m.

Since the closed balls (with respect to the infinity norm) of radius e
2

centered at s, s ∈ Ce,

form a cover of Rl, m is in one of these balls. That is there exists s = (s1, ..., sl) ∈ Ce such that

for all i, 0 ≤ |si − mi| ≤
e
2
. We set vi = si − mi.

Now if m is not on the boundary of this ball, such an s is uniquely determined. If m is on

the boundary, there exists i ∈ ~1, l� such that |vi| =
e
2
. Then we choose the s such that vi =

e
2

if i > 1 and such that vi = −
e
2

if i = 1 (to be in accordance with what has been done in level

2), which determines uniquely s. Note that since m <P , at most one coordinate vi can verify

|vi| =
e
2
. Moreover one can never have |vi − v j| = 0 for i , j.

Hence, for this choice of s, we have that i , j⇒ 0 < |vi − v j| < e, which implies that

∃τ ∈ Sl such that i < j⇒ 0 < vτ( j) − vτ(i) < e. (4)

Since m = s − v, we have mτ = sτ − vτ. Because of (4), we see that mτ ∈ Dsτ , hence

by Theorem 3.8, Φsτ (n) is the canonical basic set for (Hk,n, s
τ). Since s ∈ Ce, sτ ∈ Ce(rτ) and

therefore (using Remark 2.8 again),Φsτ(n) is the canonical basic set for (Hk,n, r
τ) with respect

to≪mτ .

Thus by Proposition 4.4, τ−1(Φsτ(n)) is the canonical basic set for (Hk,n, r) with respect to

≪m. Setting σ = τ−1, we get the result.

�

Remark 4.6. When l = 2, the m-adapted multicharge coincides with the multicharge s of

Proposition 4.1.

In the particular level 2 case, we thus have two different approaches which yield canonical

basic sets. Let l = 2. Let m ∈ Q2, and take s the m-adapted multicharge. Denote σ = (12) (in

particular, σ = σ−1). Suppose that m < Ds. On the one hand, by Proposition 4.5, σ(Φsσ(n)) is

the canonical basic set for (Hk,n, r). On the other hand, we also have m ∈ Ds̃, so that Φs̃(n) is

the canonical basic set for (Hk,n, r) (this is precisely Proposition 4.1).

Hence one must have Φs̃(n) = σ(Φsσ(n)). In other terms,

Φ(s1,s2+e)(n) = {(λ2, λ1) ; (λ1, λ2) ∈ Φ(s2,s1)(n)}.

We recover a result by Jacon, namely Proposition 3.1 of [19]. However, in level l > 2, the

application λ 7−→ λσ is not a crystal isomorphism. Consequently, the canonical basic set

σ(Φ
sσ
−1 (n)) is not a priori a set of Uglov l-partitions. Let us detail which of these applications

are indeed isomorphisms between sets of some Uglov multipartitions.

The crystal isomorphisms between the different sets of Uglov multipartitions (associated

to s ∈ C) have been described by Jacon and Lecouvey in [20]. In particular, Proposition 5.2.1

of [20] claims that

Φ(s1,...,sl−1,sl+e)(n) = {(λ2, . . . , λl, λ1) ; (λ1, . . . , λl) ∈ Φ(sl,s1,...,sl−1)(n)}.
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This proves that the application

Φ
sσ
−1 (n) −→ Φs̃(n)

λ 7−→ λσ0 with σ0 = (1 2 . . . l),

where s̃ = (s1, . . . , sl−1, sl + e), is a crystal isomorphism. Applying several times ρ (which is

of order l), we obtain l − 1 different crystal isomorphisms λ 7−→ λσ0
k

.

Example 4.7. Take l = 3. Then σ0 = (1 2 3) and σ0
2
= (1 3 2). Then the following

applications are crystal isomorphisms:

Φ(s3,s1,s2)(n) −→ Φ(s1,s2,s3+e)(n)

(λ1, λ2, λ3) 7−→ (λ2, λ3, λ1)
,

Φ(s2,s3,s1)(n) −→ Φ(s3,s1,s2+e)(n)

(λ1, λ2, λ3) 7−→ (λ2, λ3, λ1)
.

As in the level 2 case, it is possible to recover these results by looking at the domains Ds,

s ∈ Ce. Indeed, even though these domains do not tile Ql (as already mentioned in Remark

4.2) some weight sequences m whose adapted permutation σ verify σ , Id can also lie in a

domain Dŝ, for some ŝ ∈ Ce. In that case we have two different constructions of the canonical

basic set for (Hk,n, r), which must therefore coincide. That is, for some values of σ ∈ Sl, the

set σ(Φ
sσ
−1 (n)) is necessarily a set of Uglov multipartitionsΦŝ(n), for some ŝ ∈ Ce.

Of course, it gets difficult to visualise the domains Ds when l ≥ 3. Moreover, this argument

does not hold whenever λ 7−→ λσ is not a crystal isomorphism between Uglov multipartitions.

In fact, these σ-twisted Uglov multipartitions yield in general new canonical basic sets for

(Hk,n, r).

5 Canonical basic sets for asymptotic m

5.1 Kleshchev multipartitions and asymptotic setting

Let s ∈ Ce. We show that when the difference between the values of s is large, the set of Uglov

multipartitions stabilises, and coincides with the set of Kleshchev multipartitions. This is what

we call the asymptotic case, and such an l-tuple s will be called asymptotic, see Definition 5.9.

Let us recall in detail the relation between Uglov l-partitions and Kleshchev l-partitions.

The Kleshchev l-partitions are defined in the same manner as the Uglov l-partitions, except

the order on i-nodes used to define an action ofUq(ŝle) on the Fock space is different. Indeed,

let γ = (a, b, c) and γ′ = (a′, b′, c′) be two removable or addable i-nodes of the same l-partition

of n. We define

γ ≺K γ
′ ⇔

{
c′ < c or

c′ = c and a′ < a.

Note that this order only depends on the class Ce, not on some particular s ∈ Ce anymore.

This permits us to giveFs the structure of integrableUq(ŝle)-module via the same formulas

used with ≺(s,e) in Theorem 3.4. We can then construct the crystal graph of the highest weight

submodule spanned by |∅, s〉, in the same way as the Uglov multipartions (Theorem 3.5). Its

vertices are labeled by what we call the Kleshchev l-partitions. We denote by KCe
(n) the set

of Kleshchev l-partitions of rank n.

Note that with this realisation as an Uq(ŝle)-module, Fs is actually a tensor product of

Fock spaces of level 1, see [29].

The following proposition connects both orders for certain values of s.

Proposition 5.1. Let s ∈ Ce such that i < j ⇒ si − s j ≥ n − e 1. Then for all m ≤ n,

Φs(m) = KCe
(m). In particular , Φs(n) = KCe

(n).

1Of course, this is equivalent to si − si+1 ≥ n − e for all i ∈ ~1, l − 1�.
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Proof. It is sufficient to show that in this case, both orders on i-nodes are equivalent, i.e.

γ ≺(s,e) γ
′ ⇔ γ ≺K γ

′, where γ = (a, b, c) and γ′ = (a′, b′, c′) are two removable or addable

i-nodes of λ ⊢l m.

Note that −n+1 ≤ b′−a′− (b−a) ≤ n−1. Indeed, the difference between b′−a′ and b−a

is minimal if and only if (λc′
= ∅ and λc

= (n)) or (λc′
= (1n) and λc

= ∅); and is maximal if

and only if (λc′
= (n) and λc

= ∅) or (λc′
= ∅ and λc

= (1n)).

First assume that γ ≺K γ
′. Then:

• If c′ < c, then sc′ − sc ≥ n− e, hence b′−a′+ sc′ − (b−a+ sc) ≥ −n+1+n− e = −e+1.

Since γ and γ′ have the same residue, this implies that b′ − a′ + sc′ and b − a + sc are

congruent modulo e, thus b′ − a′ + sc′ − (b − a + sc) ≥ 0, and therefore γ ≺(s,e) γ
′.

• If c′ = c and a′ < a. Then b < b′ since λc′
= λc is a partition and γ and γ′ are on the

border of λc. Hence b − a < b′ − a′, and b − a + sc < b′ − a′ + sc′ , hence γ ≺(s,e) γ
′.

Conversely, assume that γ ≺(s,e) γ
′. Then:

• If b − a + sc < b′ − a′ + sc′ then suppose c′ > c. Then sc − sc′ ≥ n − e. Since

γ and γ′ have the same residue, we have b′ − a′ + sc′ − (b − a + sc) ≥ e, and thus

b′ − a′ − (b − a) ≥ e + n − e = n, whence a contradiction. Hence c′ ≤ c. If c′ < c then

γ ≺K γ
′, and if c′ = c then b′ − a′ > b − a thus a′ < a for the same reason as before,

and γ ≺K γ
′.

• If b − a + sc = b′ − a′ + sc′ and c′ < c then it is straightforward that γ ≺K γ
′.

Now since the rest of the constructions of the Uglov l-partitions on the one hand, and of

the Kleshchev l-partitions on the other hand are exactly the same, it is clear that both sets

coincide.

�

From this Proposition, we directly deduce:

Corollary 5.2. Suppose s ∈ Ce. When the difference si − s j, for all i < j, is sufficiently large,

the set of Uglov multipartitions Φs(n) stabilises, and is equal to KCe
(n).

Remark 5.3. Note that the bound n − e is not necessarily sharp (even though it is optimal for

the orders on i-nodes to coincide), it is a priori possible for Uglov multipartitions to stabilise

at a weaker condition on s.

Actually, the set of Uglov multipartitions stabilises in other directions, that is under other

conditions of s. Precisely, we will show that they stabilise whenever the difference between

any arbitrary coordinates of s (without the condition i < j) is "large enough".

In order to describe this phenomenon, we introduce the set of twisted Kleshchev multi-

partitions. Let π ∈ Sl. We define the π-twisted Kleshchev order on i-nodes as follows: Let

γ = (a, b, c) and γ′ = (a′, b′, c′) be two removable or addable i-nodes of the same l-partition

of n. We set

γ ≺π
K
γ′ ⇔

{
π(c′) < π(c) or

π(c′) = π(c) and a′ < a

This just means that the lexicographic convention on the coordinates of the l-partition is

twisted by π. The π-twisted Kleshchev l-partitions are then defined as in the non-twisted case

(and as the in the "Uglov" case): they label the vertices of the crystal graph of the same highest

weight module defined via the action ofUq(ŝle) derived from this order ≺π
K

. We denote them

by Kπ
Ce

(n).

Remark 5.4. Note that it is equivalent to either build the set of π-twisted Kleshchev multi-

partitions associated to Ce, or to twist via π the set of Kleshchev multipartitions associated to

Ce(rπ
−1

), i.e.

KπCe
(n) = π(K

Cπ
−1

e
(n)),

where Cπ
−1

e := Ce(rπ
−1

).

We have the following "asymptotic" property:
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Proposition 5.5. Let s ∈ Ce such that there exists π ∈ Sl verifying π(i) < π( j) ⇒ si − s j ≥ n.

Then Φs(m) = Kπ
Ce

(m) for all m ≤ n. In particular, Φs(n) = Kπ
Ce

(n).

Proof. It is very similar to the one of Proposition 5.1. Indeed, we show that for γ = (a, b, c)

and γ′ = (a′, b′, c′) two removable or addable i-nodes of λ ⊢l m, γ ≺(s,e) γ
′ ⇔ γ ≺π

K
γ′.

Assume that γ ≺π
K
γ′. Then:

• If π(c′) < π(c), then sc′ − sc ≥ n, hence b′ − a′ + sc′ − (b− a+ sc) ≥ −n+ 1+ n = 1 > 0.

Hence b′ − a′ + sc′ > (b − a + sc) and γ ≺(s,e) γ
′.

• If π(c′) = π(c) and a′ < a. Then c′ = c since π is a permutation. Thus b < b′ since

λc′
= λc is a partition and γ and γ′ are on the border of λc. Hence b − a < b′ − a′, and

b − a + sc < b′ − a′ + sc′ , hence γ ≺(s,e) γ
′.

Conversely, assume that γ ≺(s,e) γ
′. Then:

• If b − a + sc < b′ − a′ + sc′ then suppose π(c′) > π(c). Then sc − sc′ ≥ n, and thus

b′ − a′ − (b − a) > n, whence a contradiction. Hence π(c′) ≤ π(c). If π(c′) < π(c) then

γ ≺π
K
γ′, and if π(c′) = π(c) then c′ = c and b′ − a′ > b − a thus a′ < a , and γ ≺π

K
γ′.

• If b − a + sc = b′ − a′ + sc′ and π(c′) < π(c) then γ ≺π
K
γ′.

Now since the rest of the constructions of the Uglov l-partitions on the one hand, and of

the π-twisted Kleshchev l-partitions on the other hand are the same, it is clear that both sets

coincide.

�

Hence, we directly deduce the following stabilisation property, whenever the difference

between two arbitrary coordinates of s is large:

Corollary 5.6. Let s ∈ Ce and let π ∈ Sl. When the difference si − s j, for all π(i) < π( j), is

sufficiently large, then the set of Uglov l-partitions Φs(n) stabilises, and is equal to Kπ
Ce

(n).

Remark 5.7. As in Remark 5.3, note that the bound is not necessarily sharp, and that Uglov

multipartitions are likely to stabilise under weaker conditions. In fact, when π = Id, Proposi-

tion 5.5 gives a bound (namely n) on each si − s j beyond which Φs(n) = KCe
(n), but which is

less precise than the one given in Proposition 5.1 (namely n − e).

Remark 5.8. Let s be as in Corollary 5.6, i.e. Φs(n) = Kπ
Ce

(n).

It is important to notice that for all σ ∈ Sl,

Φsσ(n) = σ(KπCe
(n)). (5)

Indeed, this directly follows from the definition of the Kleshchev order on i-nodes. Since in

this case Φs(n) is a set of (π-twisted) Kleshchev multipartitions, it is equivalent to either

• twist the multicharge via s 7→ sσ and build the corresponding Uglov crystal, or

• twist via λ 7→ λσ these π-twisted Kleshchev l-partitions.

In other terms, replacing σ by σ−1, (5) is equivalent to:

σ(Φ
sσ
−1 (n)) = KπCe

(n).

In particular, this shows that the canonical basic set σ(Φ
sσ
−1 (n)) of Proposition 4.5 is al-

ways equal to Kπ
Ce

(n), for any value of σ ∈ Sl.

We can now define asymptotic multicharges and weight sequences.

Definition 5.9.

1. Let s ∈ Ce. We say that s is asymptotic if Φs(n) = Kπ
Ce

(n) for some π ∈ Sl.

2. Let m ∈ Ql. We say that m is asymptotic if either:

• there exists an asymptotic multicharge s and 1 ≤ i < j ≤ l such that m ∈ Pi, j(s), or
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• m is regular and the m-adapted multicharge (see Proposition 4.5) is asymptotic.

Remark 5.10. According to Remark 5.8, s is asymptotic if and only if for all σ ∈ Sl,

σ(Φ
sσ
−1 (n)) = Kπ

Ce
(n).

Let us now focus on the question of the existence of canonical basic sets, given an asymp-

totic weight sequence m. In the case where m <P , m is regular, and we have already shown

in Proposition 4.5 that Hk,n admits a canonical basic set with respect to ≪m, namely the set

σ(Φ
sσ
−1 (n)) where s is the m-adapted multicharge and σ the m adapted permuation. In virtue

of Remark 5.8, these sets of l-partitions are all equal to Kπ
Ce

(n). We will show that in the

remaining asymptotic cases, that is when m belongs to some hyperplanePi, j(s) with s asymp-

totic, the order ≪m affords a canonical basic set for (Hk,n, r) which is also a set of twisted

Kleshchev multipartitions.

5.2 Kleshchev multiparitions as canonical basic sets

Fix m ∈ P such that m is asymptotic, i.e. m = (m1, . . . ,ml) = (s1 − v1, . . . , sl − vl) where

vi = v j for some i and j, and where s is asymptotic.

In order to understand the phenomenon that appears, let us recall some results. In [29],

Uglov defined a combinatorial order≤K to study the matrix of the canonical basis of Fs. First,

he showed that the Fock space can be endowed with a so-called (positive) canonical basis,

which generalises the notion of canonical bases for integrableUq(ŝle)-modules. The elements

of this basis are indexed by l-partitions. Therefore, there is a transition matrix between this

basis and the basis of l-partitions ∆, whose rows and columns are indexed by Πl(n). The

coefficients appearing are elements of N[q], we denote them by δµ,λ(q) (µ, λ ⊢l n).

Besides, one can recover the decomposition matrix D of the Ariki-Koike algebra Hk,n by

specialising ∆ at q = 1, and by keeping only the columns indexed by Uglov multipartitions.

Let us recall briefly how the order ≤K is constructed. To each ordered pair (λ, s) where

λ ⊢l n and s is a multicharge, we associate uniquely an ordered pair (τ(λ), τ(s)) where τ(λ) is

a partition of some n′ ∈ N, and τ(s) = s1 + · · · + sl. Note that this integer n′ is not necessarily

the same for all λ ⊢l n. This is done by using the representation of (λ, s) by an l-abacus (see

[14] or [30]). The map τ is explicitely described in [29] and [30]. We just give an example to

illustrate this correspondence.

Example 5.11. Let l = 2 and e = 3, let s = (0, 1) and n = 3. Let λ = (2.1, ∅) ⊢2 3. Then the

associated l-abacusAl
s(λ) is the following:

 0

0

The i-th row of the abacus (numbered from bottom to top) represents the partition λi: the

parts of λi are obtained by counting the numbers of white beads appearing on the left of each

black bead. The multicharge s is recovered by moving the black beads to the left as much as

possible, and then determining the position of the rightmost bead with respect to the origin 0.

We can then divide the abacus into rectangles of height l and length e and index the beads

as follows:

0−1−2

−3−4−5

−8 −7 −6

−11 −10 −9

−14 −13 −12

−17 −16 −15 1 2 3

4 5 6

7 8 9

11 12 13

14 15 16

17 18 19

We then construct a 1-abacus by ordering the numbered beads on one single row. By

definition of τ, this is preciselyA1
τ(s)

(τ(λ)), the 1-abacus associated to τ(λ). Here, we get the

following 1-abacus:

20 1 3 4 5 6 7 8−1−2−3−4−5−6−7−8−9
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From this abacus, we get τ(λ) and τ(s) by the same procedure as previously explained. We

find τ(λ) = (3.2.1.1.1.1) = (3.2.14) ⊢ 9 and τ(s) = 1. Note that we have indeed τ(s) = s1 + s2.

Now that we have constructed this map τ, we can set a new definition.

Definition 5.12. Let λ, µ ⊢l n. We write λ ≤K µ if τ(λ)Eτ(µ), in the usual sense of dominance

on partitions.

Remark 5.13. Obviously, this is a partial order on the set of l-partitions of n, since E is a

partial order on the set of partitions. Besides, in order to write λ ≤K µ, τ(λ) and τ(µ) must be

partitions of the same integer m.

For this order ≤K , Uglov showed that the following unitriangularity property holds:

Proposition 5.14. Let λ, µ ⊢l n. Then δµ,λ(q) , 0 ⇒ µ ≤K λ. Moreover δλ,λ(q) = 1. In other

terms, ∆ is lower unitriangular with respect to (a total order on Πl(n) refining) ≤K .

Corollary 5.15. The decomposition matrix of Hk,n is lower unitriangular with respect to ≤K .

Now, when the difference between the values of s is large, say there exists π ∈ Sl such

that [π(i) < π( j)⇒ si − s j > 2n], one can see that the order≪m is a refinement of ≤K , that is,

for λ, µ ⊢l n,

µ ≤K λ⇒ µ ≪m λ (6)

for λ, µ ⊢l n.

Indeed, in this setting, Al
s(λ) can be partitioned into l sections, delimited vertically, each

of which encoding one of the parts λi of λ. This partitioning of Al
s(λ) is preserved by the

application λ 7−→ τ(λ), so that one can still recover the parts of λ simply by looking at

Aτ(s)(τ(λ)). Consequently, one can use the so-called dominance order on Πl(n) instead of

≤K : precisely, if λ and µ are comparable with respect to ≤K , then µ ≤K λ⇔ µ E
τ λ,

where

µ Eτ λ
def
⇐⇒ µτ E λτ

def
⇐⇒

∑

1≤ j≤k−1

|µτ( j)| +
∑

1≤i≤d

µτ(k)

i
≤

∑

1≤ j≤k−1

|λτ( j)| +
∑

1≤i≤d

λτ(k)

i
,

and where τ = π−1.

For the same reasons, one can also check that the order ≪m is also compatible with this

dominance order, so that ≤K and≪m are compatible in the sense of (6).

Since with respect to this construction, one labels the columns of D with the Uglov l-

partitions, which coincide with the π-twisted Kleshchev l-partitions, we have proved:

Proposition 5.16. Suppose that m ∈ Pi, j(s) for some i, j ∈ ~1, l�, with s verifying [π(i) <
π( j)⇒ si − s j > 2n] for some π ∈ Sl. In particular, s and m are asymptotic.

Then (Hk,n, r) admits a canonical basic set with respect to≪m, namely the set Kπ
Ce

(n).

Of course, this particular setting does not cover all the asymptotic cases. This just means

that when s is "asymptotic enough", any m ∈ Pi, j (for all i, j ∈ ~1, l�, i , j) affords a canonical

basic set, namely the set of π-twisted Kleshchev l-partitions, which is also the canonical basic

set with respect to≪m̃ whenever m̃ is a regular weight sequence "close" to m, see Proposition

4.5 and Remark 5.8.

Hence it is natural to try to extend this property whenever the canonical basic sets

σ(Φ
sσ
−1 (n)) of Proposition 4.5 stabilise to Kπ

Ce
(n). In fact, we have the following result:

Proposition 5.17. Let m ∈ P , say m ∈ Pi, j(s), be an asymptotic weight sequence. Then

(Hk,n, r) admits a canonical basic set with respect to≪m, namely the setKπ
Ce

(n), where π ∈ Sl

is such that [π(i) < π( j)⇒ si > s j].

In order to prove this, we need the following technical lemma. We introduce the following

notation. Given a weight sequence m, ε > 0 and ρ ∈ Sl, we define a new weight sequence by

m[ε,ρ] := (m1 + ε/ρ(1), . . . ,ml + ε/ρ(l)).

19



Lemma 5.18. Let m be an arbitrary weight sequence. Let λ, µ ⊢l n, λ , µ. Then there exists

αλ,µ > 0 such that for all ε ∈]0, αλ,µ[,

1.

λ≪m µ ⇒

[
λ≪m[ε,ρ] µ or λ and µ are not

comparable with respect to ≪m[ε,ρ] , ∀ρ ∈ Sl

]

and

2. [
λ and µ are not comparable

with respect to ≪m

]
⇒

[
λ and µ are not comparable with

respect to ≪m[ε,ρ] , ∀ρ ∈ Sl.

]
,

This means that for a small perturbation of m, the order ≪m never reverses: at worst, λ

and µ become uncomparable. Moreover, one can never gain comparability between multipar-

titions uncomparable with respect to≪m when slightly perturbing m.

Proof. First, note that it is sufficient to prove these properties for the perturbations m[ε,k] of

m defined by m[ε,k]
= (m1, . . . ,mk−1,mk + ε,mk+1, . . . ,ml), for all k ∈ ~1, l�. Indeed, the result

then follows by induction, since m[ε,ρ] is constructed by iterating this procedure.

Recall that, by definition (Section 2.3), λ ≪m µ and λ , µ means that bm(λ) ⊲ bm(µ),

where bm(λ) = (b1m(λ), . . . , bhm(λ)) is the decreasing sequence consisting of the elements of

Bm(λ).

Let us first prove Assertion 1.

Let λ ≪m µ. For k ∈ ~1, l�, consider the order≪m[ε,k] . It is obtained from≪m simply by

translating the k-th row of the symbols by ε, and taking the dominance order on the decreasing

sequences of these new elements. Informally, when we choose ε to be "small", one cannot

have µ ≪m[ε,k] λ. Indeed, the fact that λ ≪m µ creates a gap at some point between
∑

i b
i
m(µ)

and
∑

i b
i
m(λ), which cannot be recovered if ε is small enough.

Let us prove this properly. We also use a running example to illustrate the different points

of the coming proof. For simplicity, since m ∈ Pi, j(s) for some i, j and some s ∈ Zl, we can

assume without restriction that mi and m j are integers.

Example: Take l = e = 2, n = 38, r = (1, 0, 0), m = (31/3, 7, 5) ∈ P1,2(1, 2, 0). Let

λ = (4.1, 42.3.23.1, 43.2.1) ⊢l n and µ = (4.2, 4.3.25, 5.42.12) ⊢l n. The shifted m-symbols of λ

and µ of size 1 are the following:

Bm(λ) =


0 2 4 7 8 9

0 2 4 5 6 8 10 11

01/3 11/3 31/3 71/3



and

Bm(µ) =


0 2 3 7 8 10

0 3 4 5 6 7 9 11

01/3 11/3 41/3 71/3

 .

The corresponding sequences bm are

bm(λ) = (11, 10, 9, 8, 8, 71/3, 7, 6, 5, 4, 4, 31/3, 2, 2, 11/3, 01/3, 0, 0)

and

bm(µ) = (11, 10, 9, 8, 71/3, 7, 7, 6, 5, 41/3, 4, 3, 3, 2, 11/3, 01/3, 0, 0).

Since λ ≪m µ and λ , µ, there exists a smallest integer p such that b
p
m(λ) > b

p
m(µ).

Denote δ = b
p
m(λ) − b

p
m(µ).

In our example, p = 5 and δ = 2/3, since bim(λ) = bim(µ)∀i < 5 and b5m(λ) = 8 and

b
5
m(µ) = 71/3.

Now for all i, denote {mi} = mi − ⌊mi⌋ the fractional part of mi, whenever mi < Z. Set

βi = min({mi}, 1 − {mi}) (for all mi < Z), and β = mini βi. If mi ∈ Z for all i, then set β = 1. In

particular β ≤ δ. In the example, β = 1/3.
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Hence, set 0 < ε < β. Now, for all k ∈ ~1, l�, consider the m[ε,k]-symbols of λ and µ. In

our example, for k = 1 for instance, we get

Bm[1] (λ) =


0 + ε 2 + ε 4 + ε 7 + ε 8 + ε 9 + ε

0 2 4 5 6 8 10 11

01/3 11/3 31/3 71/3



and

Bm[1] (µ) =


0 + ε 2 + ε 3 + ε 7 + ε 8 + ε 10 + ε

0 3 4 5 6 7 9 11

01/3 11/3 41/3 71/3

 .

Since ε < β, the "perturbed" elements (of Bm[ε,k] ) are ordered in the same way as the

original ones (those of Bm). Precisely, for all i, we either have

b
i
m[ε,k] (λ) =

{
b

i
m(λ) or

b
i
m(λ) + ε,

(7)

and similarly for µ.

Now, let αλ,µ = min(β, 1/p) and take 0 < ε < αλ,µ. One can then compute
∑s

i=1 b
i
m[ε,k] (λ)

and
∑s

i=1 b
i
m[ε,k] (µ)for all s < p. Clearly, it is possible to have

∑s
i=1 b

i
m[ε,k] (λ) <

∑s
i=1 b

i
m[ε,k] (µ).

This is the case in the example, for k = 1, since if we take s = 2, we have b1
m[1] (λ) + b

2
m[1] (λ) =

11 + 10 < 11 + 10 + ε = b1
m[1] (µ) + b2

m[1] (µ). Hence, one can have λ3m[ε,k] µ.

However, we necessarily have:

•

p−1∑

i=1

b
i
m[ε,k] (µ) −

p−1∑

i=1

b
i
m[ε,k] (λ) ≤ (p − 1)ε, and

• b
p

m[ε,k] (λ) − b
p

m[ε,k] (µ) > 1 − ε since b
p
m(λ) − b

p
m(µ) = δ ≥ 1.

Thus,
p∑

i=1

b
i
m[ε,k] (λ) −

p∑

i=1

b
i
m[ε,k] (µ) > −(p − 1)ε + 1 − ε

= −pε + 1

> −p
1

p
+ 1 since ε <

1

p

= 0

Hence one can never have µ ≪m[ε,k] λ, which proves the first point.

The proof of Assertion 2. is completely similar: one shows that there exists p1 and p2

such that
p1∑

i=1

b
i
m(λ) >

p1∑

i=1

b
i
m(µ) and

p2∑

i=1

b
i
m(λ) <

p2∑

i=1

b
i
m(µ),

and such that for an appropriate ε > 0, one has

p1∑

i=1

b
i
m[ε,k] (λ) >

p1∑

i=1

b
i
m[ε,k] (µ) and

p2∑

i=1

b
i
m[ε,k] (λ) <

p2∑

i=1

b
i
m[ε,k] (µ),

for all k ∈ ~1, l�.

As mentioned at the beginning of the proof, both assertions thus still hold for the pertur-

bations m[ε,ρ] of m. Note that this also relies on the fact that whenever ε < αλ,µ, one has

ε/ρ(k) ≤ ε < αλ,µ for all ρ ∈ Sl and for all k ∈ ~1, l�.
�

Proof of Proposition 5.17. Since s is asymptotic, we have si , s j for all i , j. Let π be

the element of Sl verifying [π(i) < π( j)⇒ si > s j].
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Figure 2: The perturbations m[ε,Id] and m[ε,(12)] of m in level 2.

Now, let β = min
mi,m j

|mi − m j| and α = min
µ∈S (M)

(αλ,µ), where the elements αλ,µ are defined in

Lemma 5.18, and take 0 < ε < min(α, β). Since ε < β, the weight sequences m[ε,ρ] no longer

belong to P for all ρ ∈ Sl. Therefore, by Proposition 4.5, (Hk,n, r) admits a canonical basic

set with respect to≪m[ε,ρ] (for all ρ ∈ Sl), namely a set of twisted Uglov l-partitions, which is

always equal to the set Kπ
Ce

(n) (see Remark 5.8 for instance). Denote B = Kπ
Ce

(n).

For M ∈ Irr(Hk,n), write S (M) = {µ ⊢l n | dµ,M , 0}, as in Definition 2.6. Since B is the

canonical basic set with respect to≪m[ε,ρ] (for all ρ ∈ Sl), there exists λ ∈B verifying:

for all ρ ∈ Sl, λ≪m[ε,ρ] µ ∀µ ∈ S (M). (8)

Suppose that B is not the canonical basic set for (Hk,n, r) with respect to≪m. Then either:

1. there exists µ ∈ S (M) such that µ ≪m λ. Because ε < α, Lemma 5.18 applies. In

particular, Assertion 1. ensures that one can never find ρ ∈ Sl such that λ ≪m[ε,ρ] µ,

which contradicts (8).

2. there exists λ′ , λ such that λ′ is also minimal in S (M) with respect to ≪m. In this

case, by Point 2. of Lemma 5.18, λ and λ′ are not comparable with respect to ≪m[ε,ρ]

(for all ρ ∈ Sl). Therefore, λ and λ′ are both minimal with respect to ≪m[ε,ρ] , which,

again, contradicts (8).

6 Canonical basic sets for singular m

Denote by P∗ the set of all m in P such that m is not asymptotic. If m ∈P∗, we say that m

is singular. We want to show that (Hk,n, r) does not admit a canonical basic set with respect to

≪m whenever m belongs to P∗.

We start by a particular case.

6.1 l = 2 and e = ∞

In this section, we fix l = 2 and take e = +∞, i.e. ζ is not a root of unity.

Here, we have Ce = C∞ = {r} where r ∈ Z2. We write r = s.

Since e = ∞, P consits of just one hyperplane, namely the line passing through s =

(s1, s2) = (r1, r2) with slope one, and P∗
= P , see figure 3. This is what makes it easier to

study.
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r = s = (s1, s2)

P1,2(s) =P =P∗

Figure 3: The set P in level 2 with e = ∞.

In this level 2 case, we introduce a combinatorial tool: the algebraic s-symbol of an bipar-

tition λ, which we denote byAs(λ). It can be seen as the shifted s-symbolBs(λ) of λ, of infinite

size. On the other hand, it will permit us to read some algebraic properties of |λ, s〉 ∈ Fs.

When s1 ≤ s2, the empty algebraic s-symbol is the following symbol:

s2−s1

←−−−−−−−−−−−−−−→
(
. . . − j −( j − 1) . . . −1 0 . . . . . . . . . . . . s2 − 1 s2

. . . − j −( j − 1) . . . −1 0 . . . s1 − 1 s1

)

When s1 ≥ s2, then the second row will be shorter than the first one (numbered as usual

from bottom to top).

Now let λ = (λ1, λ2) ⊢2 n. Denote by λi
k

the parts of λi (i = 1, 2). Similarly to the

shifted symbols (see section 2.3), the algebraic s-symbol As(λ) of λ is obtained from the

empty algebraic s-symbol and by adding the parts of λi to the row i, from right to left:

s2−s1

←−−−−−−−−−−−−−−−−−−−−−−−−→
(
. . . − j −( j − 1) . . . . . . . . . . . . s2 − 1 + λ2

2
s2 + λ

2
1

. . . − j −( j − 1) . . . s1 − 1 + λ1
2

s1 + λ
1
1

)

Example 6.1. Let s = (1, 0) and λ = (2, 1.1.1) ⊢2 5. We have

As(λ) =

(
. . . −3 −1 0 1

. . . −3 −2 −1 0 3

)

Remark 6.2. This data is equivalent to the 2-abacus associated to λ and s up to another con-

vention for the indexation of the beads, in accordance with [14, Section 6.5].

The following proposition explains the algebraic meaning of As(λ). Recall that we denote

by ω j, j ∈ Z, the fundamental weights of Uq(sl∞). Set ε j = ω j+1 − ω j.

Proposition 6.3. Denote by wt(λ) the weight of |λ, s〉 as an element of Fs. Then wt(λ) can be

read on the algebraic s-symbol of λ. Precisely, the contribution of each j appearing in As(λ)

is equal to ε j.

Proof. The multipartition λ is a vertex in the connected component of the crystal graph of Fs

containing |∅, s〉, which is a highest weight vector of weight Λ = ωs1
+ · · · + ωsl

. The result

follows from the fact that each addition of an j-node decreases the weight by α j := ε j−1−ε j =

−ω j−1 + 2ω j − ω j+1.

�
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Proposition 6.4. Let λ ∈ Φs(n), let G∞(λ, s) be the corresponding element of the global basis

of V(s). Write the decomposition of G∞(λ, s) on the basis of all bipartitions:

G∞(λ, s) = λ +
∑

µ⊢2n

dµ,λ(q)|µ, s〉.

Then dµ,λ(q) , 0 only if As(λ) and As(µ) coincide up to some permutation of their ele-

ments.

Proof. In the expansion of G∞(λ, s), the elements |µ, s〉 appearing all have the same weight.

In other terms,

dµ,λ(q) , 0⇒ wt(µ) = wt(λ)

By proposition 6.3, wt(µ) = wt(λ) if and only if As(µ) and As(λ) have the same elements, i.e.

there is a permutation σ of the elements of As(λ) such that σ(As(λ)) = As(µ).

�

Remark 6.5. Note that in this case (l = 2 and e = ∞), we know explicit formulas for com-

puting the elements of the canonical basis (see [24]). These formulas directly show that the

elements appearing in the decomposition of G∞(λ, s) have the same algebraic symbol up to

some permutation of their elements.

Here we have used a more general argument, which is sufficient to prove the following

corollary, and which also holds in higher level.

Corollary 6.6. Let m be a singular element of Q2, i.e. m ∈ P . If |µ, s〉 and |ν, s〉 appear in

the expansion of G∞(λ, s), then µ and ν are not comparable with respect to≪m.

Proof. This relies on the fact that, in the singular case, the shifted m-symbol Bm and the

algebraic s-symbol As carry the same information.

Indeed, for λ ⊢2 n, one can first recover its shifted s-symbol of size p (for p sufficiently

large) Bs(λ) from its algebraic s-symbol As(λ) by:

1. truncatingAs(λ) in such a way that each line has the same number of elements asBs(λ),

2. translating this truncated symbol by p − 1, i.e. adding p − 1 to each element.

Now Bm(λ) is obtained from Bs(λ) by translating the line i by −vi (where vi = si − mi),

but since m is singular, v1 = v2. Hence Bm(λ) is obtained by translating the whole Bs(λ) by

−v1.

Consequently, if As(µ) and As(ν) have the same elements, then so do Bm(µ) and Bm(ν).

Hence by Proposition 6.4, if |µ, s〉 and |ν, s〉 appear in the expansion of G∞(λ, s), then Bm(µ)

and Bm(ν) have the same elements, and thus are not comparable with respect to≪m.

�

Let us get back to our initial problem, and the determination of the existence of a canonical

basic set with respect to≪m for a singular m. When e = ∞, by Theorem 2.3, we know that the

algebra Hk,n split semi-simple if and only if s2 − s1 ≥ n or s2 − s1 ≤ −n. Hence the interesting

case is when s2 − s1 ∈ ~−(n − 1), n − 1�, which is what we will assume in the sequel.

Actually, when l = 2 and e = ∞, we have already noticed that explicit formulas for

computing the expansion of the element of the canonical basis G∞(λ) are known ([24]). Using

these formulas, it is straightforward that if s2− s1 ≥ n or s2− s1 ≤ −n, then it is not possible to

find an element of the canonical basis whose expansion contains several bipartitions, therefore

the decomposition matrix is trivial.

Proposition 6.7. Assume Hk,n is non semi-simple. Let m ∈P . Then (Hk,n, r) does not admit

a canonical basic set with respect to≪m.
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Proof. We assumed that Hk,n was non semi-simple. In this case, there exists a non-trivial

column of the decomposition matrix D∞, i.e. there exists λ such that G∞(λ, s) = |λ, s〉 +∑
µ⊢2n dµ,λ(q)|µ, s〉 with at least one element µ such that dµ,λ(q) , 0.

Now by Corollary 6.6, all elements appearing in the expansion of G∞(λ, s) are pairwise

uncomparable with respect to≪m. Hence there cannot be a canonical basic set for (Hk,n, r).

�

6.2 General singular case

In order to solve the general case, we need once again lemma 5.18.

Proposition 6.8. Let m ∈ P∗. Then (Hk,n, r) does not admit a canonical basic set with

respect to≪m.

Proof. Suppose that there exists a canonical basic set B for (Hk,n, r) with respect to≪m.

For M ∈ Irr(Hk,n), recall that we have denoted S (M) = {µ ⊢l n | dµ,M , 0}. By definition,

there exists a unique element λ ∈ S (M) such that λ≪m µ for all µ ∈ S (M).

Since m ∈ P∗, there exists s ∈ Ce non-asymptotic and i, j ∈ ~1, l�, i < j such that

m ∈ Pi, j(s). As inthe proof of Proposition 5.17, let β = min
mi,m j

|mi − m j| and α = min
µ∈S (M)

(αλ,µ),

and set 0 < ε < min(α, β). Then all m[ε,ρ] are regular because ε < β. By Proposition 4.5,

there exists a canonical basic set B[ρ] for (Hk,n, r) with respect to ≪m[ε,ρ] , namely the set of

some twisted Uglov l-partitions. Since m (or, equivalently, s) is not asymptotic, Remark 5.10

implies that there exists ρ1 and ρ2 such that

B
[ρ1]
,B

[ρ2]. (9)

Since B[ρ1] is the canonical basic set with respect to≪m[ε,ρ1 ] , there exists a unique element

λ[1] such that for all µ ∈ S (M), λ[1] ≪m[ε,ρ1 ] µ. Similarly, there exists a unique element λ[2]

such that for all µ ∈ S (M), λ[2] ≪m[ε,ρ2 ] µ.

Now by (9), there exists a particular M ∈ Irr(Hk,n) such that

λ[1]
, λ[2]. (10)

Thus, we have:

• λ[1] ≪m[ε,ρ1] λ and λ ≪m λ
[1]. But by Lemma 5.18 (which applies since ε < α), this not

possible if λ , λ[1]. Hence λ = λ[1].

• λ[2] ≪m[ε,ρ2 ] λ and λ ≪m λ
[2]. Again, by Lemma 5.18, this not possible if λ , λ[2].

Hence λ = λ[2].

Hence, λ[1]
= λ[2], which contradicts (10). �

As previously mentioned in Remark 2.8, a singular weight sequence m can however afford

a canonical basic set for (Hk,n, s), but with s ∈ C\Ce (i.e. with a different parametrisation of

the rows of D). This is illustrated in the following example.

Example 6.9. Let l = 2, e = 3, n ≥ 4, r = (1, 0) (in particular r is not asymptotic), and

s = rσ = (0, 1) (where σ = (12)). Take m = (0,−1).

Then m ∈ P1,2(r) since r − m = (1, 1), and by Proposition 6.8, (Hk,n, r) does not admit

a canonical basic set with respect to ≪m. However, s − m = (0, 2), so that m ∈ Ds. By

Proposition 4.1, (Hk,n, s) admits a canonical basic set with respect to ≪m, namely the set

Φs(n).

Putting together Propositions 4.5, 5.17 and 6.8, we have proved:

Theorem 6.10. Given a multicharge r ∈ Zl and a weight sequence m ∈ Ql, we have the

following exhaustive classification:
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• If m is regular, then (Hk,n, r) admits a canonical basic set with respect to ≪m, namely

the set of σ-twisted Uglov l-partitions σ(Φs(n)) where σ is the m-adapted permutation

and s is the m-adapted multicharge (see Proposition 4.5).

• If m is asymptotic, then (Hk,n, r) admits a canonical basic set with respect to ≪m,

namely the set of π-twisted Kleshchev l-partitions fo rank Kπ
Ce

(n), where π is described

in Proposition 5.17.

• If m is singular, then (Hk,n, r) does not admit a canonical basic set with respect to≪m.

Remark 6.11. Note that a weight sequence m can be simultaneously regular and asymptotic.

In this case, one must have σ(Φs(n)) = Kπ
Ce

(n), which is precisely what is stated in Remark

5.8.
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