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Département de mathématiques, site de Saint Martin,
2 avenue Adolphe Chauvin,

F-95000 Pontoise, France.
e-mail: thierry.jecko@u-cergy.fr

web: http://jecko.u-cergy.fr//

21-03-2013

Abstract

Motivated by the paper [SW] by B.T. Sutcliffe and R.G. Woolley, we present the
main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer
approximation for molecules. Based on mathematical works on this approximation
for molecular bound states, in scattering theory, in resonance theory, and for short
time evolution, we give an overview of rigourous results obtained up to now. We also
point out the main difficulties mathematicians are trying to overcome and speculate
on further developments. We contribute this way to the discussion on the Born-
Oppenheimer approximation initiated in [SW].
The paper neither contains mathematical statements nor proofs. Instead we try to
make accessible mathematically rigourous results on the subject to researchers in
Quantum Chemistry or Physics.

1 Introduction.

In the paper [SW], the authors, who are rechearcher in Chemistry, made a remarkable ef-
fort to understand the mathematical litterature on the Born-Oppenheimer approximation.
It was certainly not a easy task for them to extract relevant information for Chemistry
from papers, which often use elaborated mathematical tools and provide more or less
abstract results. For instance, they comment on the paper [KMSW], that makes use of
semiclassical pseudodifferential calculus and of an important, but rather complicated trick
(due to Hunziker in [Hu]) to control the Coulomb singularities appearing in the potential
energy of the molecule. They also pointed out to their colleagues in Chemistry some
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misunderstandings and too crude simplications in the traditional treatment of the Born-
Oppenheimer approximation for molecules. One may feel a slightly pessimistic note in the
paper [SW] on the possibility for Chemists to use the Born-Oppenheimer approximation
in a correct and accurate way and to benefit from mathematical works on the subject.
Here we shall give a description of the situation from the mathematical point of view,
which does show the present difficulties and limitations of the mathematical approach
but still leads to a quite optimistic impression.
In the last three decades, mathematically rigourous works on the validity of the Born-
Oppenheimer approximation for molecules were produced. We sort these works in two
(uncomplete) lists in alphabetic order. The first one contains articles that, strictly speak-
ing, study the Born-Oppenheimer approximation: [C, CDS, CS, Ha1, Ha2, Ha3, Ha4,
Ha5, Ha7, HH, HJ1, HJ2, HJ3, HJ6, HJ8, HRJ, J1, J2, J3, JKW, KMSW, KMW1,
KMW2, Ma1, Ma2, Ma3, Ma4, MM, MS1, MS2, PST, Ra, R, ST, TW]. In the sec-
ond list, we mention closely related works on semiclassical Schrödinger matrixoperators:
[DFJ, FG, FR, FLN, N, Ha6, HJ4, J4, HT]. In the first list, the papers essentially show
that a reduced Hamiltonian (a Schrödinger operator with matrix or operator valued po-
tential) is a good approximation of the true molecular Hamiltonian. In the second list,
the works obtain mathematical results on the reduced Hamiltonian, that are of physical
or chemical relevance for molecules.
In the present paper, we shall focus on the Born-Oppenheimer approximation, namely
the possibility to approximate the true molecular Hamiltonian by some effective Hamil-
tonian usually called the adiabatic operator. In Section 2, we introduce the Hamiltonian
of the system and proceed to the removal of the centre of mass motion in two ways, one
adapted to the study of bounds state and the other to scattering theory. In Section 3, we
present the core of the mathematical form of the Born-Oppenheimer approximation and
describe the construction of the adiabatic Hamiltonian. In Section 4, we explain selected
mathematical works and comment on the actual difficulties and limitations of the theory.
Finally, in Section 5, we sum up the main features in the mathematical Born-Oppenheimer
approximation and argue that further progress towards chemically relevant questions can
be reasonably achieved. Two figures used at many places in the text are added at the end
of the paper.
As pointed out in the abstract, we only present intuitive arguments and statements, that
do not respect at all the standard rigour in mathematics. But they do have a rigourous
counterpart in the mathematical literature.
Acknowledgement: The author is particularly grateful to S. Golénia who performs the
integration of the figures into the source file of the text.

2 The Hamiltonian.

We consider a molecule with M nuclei with positive masses m1, m2, · · · , mM respectively,
with positive charges Z1, Z2, · · · , ZM respectively, and with N electrons with mass set
equal to 1. We set the Planck constant ~ and the electronic charge e to 1. Denoting by
z1, z2, · · · , zM ∈ R3 the positions of the nuclei and by zM+1, zM+2, · · · , zM+N ∈ R3 the
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positions of the electrons, the Hamiltonian of the molecule is given by:

Pmol = K + W , (2.1)

K = −
M
∑

k=1

1

2mk

∆zk −
1

2

M+N
∑

j=M+1

∆zj , (2.2)

W =
∑

i,j∈{1,··· ,M}
i 6=j

ZiZj

|zi − zj |
+

∑

i,j∈{M+1,··· ,M+N}
i 6=j

1

|zi − zj |

−

M
∑

k=1

M+N
∑

j=M+1

Zk

|zj − zk|
. (2.3)

Here −∆zk denotes the Laplace operator in the zk = (z1k , z
2
k, z

3
k) variable, that is

−∆zk =
(

−i∂z1
k

)2
+

(

−i∂z2
k

)2
+

(

−i∂z3
k

)2
,

where ∂t stands for the partial derivative with respect to the variable t.

It is usual and physically relevant to remove from the Hamiltonian Pmol the motion of the
centre of mass of the molecule. This is done by an appropriate change of variables. There
is no canonical choice for this change of variables. This means in particular that one can
choose it according to the kind of study one wants to perform. To study bounds states
of the molecule or its time evolution, we shall use here the change of variables adopted
in [KMSW, MS2, SW]. To consider diatomic collisions (ion-ion, ion-atom, or atom-atom
scattering), we shall use another one (those in [KMW1, KMW2]). See p. 75-82 in [RS3]
for details on the removal of the centre of mass.

In the first mentioned situation, we take the nuclear centre of mass (which is close to the
centre of mass of the molecule), Jacobi coordinates for the nuclei, and atomic coordinates
for the electrons. Let C : (z1, · · · , zM+N) 7→ (R; x1, · · · , xM−1, y1, · · · , yN) the change of
variables defined by

m =

M
∑

k=1

mk , R =
1

m

M
∑

k=1

mkzk , (2.4)

for 1 ≤ j ≤ M − 1 , xj = zj+1 −
1

∑

k≤j mk

∑

k≤j

mkzk , (2.5)

for 1 ≤ j ≤ N , yj = zM+j − R . (2.6)

R is the centre of mass of the nuclei, the xj are the new “nuclear” coordinates, and the
yj are the new electronic variables. For an appropriate constant C, that only depends on
the masses and on N , we define, for any L2 function f of the variables (z1, · · · , zM+N),

(Uf)(R; x1, · · · , xM−1, y1, · · · , yN) = Cf
(

C−1(R; x1, · · · , xM−1, y1, · · · , yN)
)

. (2.7)

The constant C is chosen such that, for all f , f and Uf have the same L2-norm (U is
unitary), keeping unchanged the physical interpretation of the L2-norm. Looking at the
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Hamiltonian Pmol in the new variables (R; x1, · · ·xM−1, y1, · · · , yN) means that we consider
the operator

UPmolU
−1 = −

1

2m
∆R + H ,

where H only acts on the variables (x1, · · · , xM−1, y1, · · · , yN). Forgetting about the
kinetic operator of the nuclear centre of mass, we focus on the physically relevant Hamil-
tonian H . Denoting by ∇t the gradient operator in the variable t and setting,

for 1 ≤ j ≤M−1 , µ−1
j = m−1

j+1+
(

∑

k≤j

mk

)−1

, x = (x1, · · · , xM−1) , and y = (y1, · · · , yN) ,

the latter is given by

H = H0 + THE , (2.8)

H0 = −

M−1
∑

j=1

1

2µj
∆xj

+ Q(x) , (2.9)

THE =
∑

1≤k<j≤N

ckj∇yk · ∇yj , (2.10)

Q(x) = −
N
∑

k=1

∆yk + W (x; y) (2.11)

whereW (x; y) is just the functionW in (2.3) composed with the inverse change of variables
C−1. We observe that Q(x) is an operator in the electronic y variables that depends only
parametrically from the nuclear x variables and does not depend on R. The operator THE

is usually called the Hughes-Eckart term. For each nuclear configuration x, the operator
Q(x) is refered to as the electronic Hamiltonian in the configuration x (it is called the
clamped-nuclei Hamiltonian in [SW]). Note that the coefficients µj in H are missing in
[KMSW]. This has no consequence on the validity of the results in this paper, that also
hold true for the present Hamiltonian H .

Now we turn to scattering situation we annonced. For simplicity, we restrict ourselves to
the diatomic case (i.e. M = 2). We still look at the Hamiltionian Pmol but we want now
to describe the collision of two ions (or two atoms, or an atom and an ion). It is useful to
choose a change of variable, that allows a easy description of the system at the beginning
of the collision process (and another one, to describe the system after the collision). To
this end, we introduce a cluster decomposition c = {c′1,c

′
2} with c′j = {j}∪ cj , for j = 1,2,

and c1, c2 form a partition of the set {3, · · · , N + 2}. At the beginning of the scattering
process, the particles are gathered in two clusters described by c′1 and c′2. Each cluster
constains a nucleus illustrating the fact that we consider a collision of two ions (and not
a collision of some electrons with a molecule). Since the motion of the centre of the
system is not relevant for scattering, we shall remove it. In order to do so, we use the
particular change of variables in [KMW1, KMW2], which also allows a good description
of the scattering processes associated to the decomposition c.
For k ∈ {1; 2}, denote by |ck| the number of electron in the cluster k. Its mass is then
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m′
k := mk + |ck| and its mass centre is located at:

Rk :=
1

Mk

(

mkzk +
∑

j∈ck

zj

)

. (2.12)

In particular, the total mass m of the molecule is m = m1 + m2 + N = m′
1 +m′

2. The
new variables are, for k ∈ {1; 2},

R :=
1

M

(

m1z1 +m2z2 +

N+2
∑

j=3

zj

)

, x := R1 −R2 , yj := zj − zk , for j ∈ ck . (2.13)

We set, for y ∈ R3N ,

ℓ(y) :=
1

M1

∑

j∈c1

yj −
1

M2

∑

j∈c2

yj . (2.14)

As above, this change of variables Cc induces a unitary map Uc by

(Ucf)(R; x, y1, · · · , yN) = Ccf
(

C−1
c (R; x, y1, · · · , yN)

)

. (2.15)

Looking at Pmol in the new variables amounts to consider

UcPmolU
−1
c = −

1

2m
∆R + H ′ ,

where H ′ only acts on the variables (x, y1, · · · , yN). Taking away the motion of the centre
of mass of the full system again, we keep our attention on H ′, which is given by

H ′ := −
1

2

( 1

m′
1

+
1

m′
2

)

∆x + T ′
HE + Qc(x) , (2.16)

T ′
HE = −

2
∑

k=1

1

2mk

∣

∣

∣
−
∑

j∈ck

i∇yj

∣

∣

∣

2

(2.17)

Qc(x) := Qc + Ic(x) , (2.18)

Qc :=
2

∑

k=1

{

∑

j∈ck

(

−
1

2
∆yj −

Zk

|yj|

)

+
∑

i,j∈ck,i 6=j

1

|yi − yj|

}

, (2.19)

Ic(x) := −
∑

j∈c1

Z2

|yj + x− ℓ(y)|
−

∑

j∈c2

Z1

|yj − x+ ℓ(y)|
+

Z1Z2

|x− ℓ(y)|
(2.20)

+
∑

i∈c1, j∈c2

1

|yi − yj + x− ℓ(y)|
+

∑

i∈c2, j∈c1

1

|yi − yj − x+ ℓ(y)|
,

H ′
c := H ′ − Ic(x) . (2.21)

Qc stands for the Hamiltonian of separated (noninteracting) clusters while Ic contains all
extracluster interactions. The electronic Hamiltonian for the nuclear position x is Qc(x).
The term T ′

HE is the Hughes-Eckart term in this situation. As usual in scattering theory,
we should mention the reference (or free) dynamics to which the full dynamics has to be
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compared (for time tending to −∞). The free dynamics is generated by the Hamiltonian
H ′

c in (2.21), that is, up to the Hughes-Eckart term T ′
HE, the Hamiltonian of freely moving

clusters c1 and c2. If the scattering process under consideration produces at the end (i.e.
for time tending to +∞) a cluster decomposition d of the system then the free dynamics
for large positive times is given by H ′

d.

Using Kato’s pertubation argument and Hardy’s inequality (cf. [K, RS2]), one can show
that H can be realized as a self-adjoint operator. This means that H can be defined on
an appropriate subspace of the L2 functions of the variables (x1, · · · , xM−1, y1, · · · , yN)
and the resulting operator is self-adjoint. In fact, this subspace is the definition domain
of the Laplace operator in all variables (x1, · · · , xM−1, y1, · · · , yN). The same holds true
for H0. In the same way, Pmol (respectively H ′) is self-adjoint on the domain of the
Laplace operator of all variables z1, · · · , zM+N (respectively x, y1, · · · , yN). For fixed x,
if we view Q(x) (respectively Qc(x)) as an operator on the variables y1, · · · , yN , it also
has a self-adjoint realization by the same argument. If we view Q (respectively Qc) as an
operator on the variables x, y1, · · · , yN , it can be written as a direct integral of self-adjoint
operators (cf. [SW]) and therefore has also a self-adjoint realization (cf. p. 284 in [RS4]).

3 Mathematical approach of the Born-Oppenheimer

approximation.

Here we want to present the main ideas behind the mathematical treatment of the Born-
Oppenheimer approximation, which was initiated in [C, CDS, CS]. Since its validity
should rest on the fact that the nuclei are much heavier than the electrons, one introduces
a small, positive parameter h related to the nucleon/electron mass ratio. For instance, in
[KMSW], the nuclear masses mk are given by mk = h2λk, where the λk are of order 1, and,
in [KMW1, KMW2], one uses h2 =M−1

1 +M−1
2 (with the notation of Section 2). Anyhow

the main point is that h is always sent to 0. This means that the results proved hold
true for “small enough” h and, most of the time, one has no concrete idea of how small
h should be. This restriction is of course a drawback for physical or chemical perposes
but it is useful to understand the small h limit and it gives often correct results when
compared with the observed behaviour of the physical system.
Now we come to the main features that ensure the validity of the Born-Oppenheimer
approximation. Let us consider a normalized, bound state ϕ of energy E of the operator
H in (2.8). We note that µ−1

j = h2µ′
j, where the µ′

j do not depend on h. Let us fix the
nuclear variable x. Typically the spectrum of Q(x) starts with some isolated eigenvalues
λ1(x), · · · , λJ(x) with finite multiplicity and has above a continuous part σc(Q(x)) (see
fig. 1 in the diatomic case). Since Q(x) is a self-adjoint Schrödinger operator, we can
decompose ϕ(x; ·) in a basis of electronic “eigenvectors” of Q(x):

ϕ(x, ·) =

J
∑

j=1

〈ϕ(x; ·), ψj(x; ·)〉yψj(x; ·) +

∫

λ≥inf σc(Q(x))

Eλ(x)ϕ(x; ·) dλ , (3.1)
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where the ψj(x; ·) form a basis of true eigenvectors of Q(x) associated to λj(x) respectively
and the Eλ(x) are spectral projectors of Q(x) with energy λ (Here 〈·, ·〉y denotes the usual
scalar product in the y variables). We assume that E belongs to a small open energy
interval (E−;E+) below the infimum over all x of σc(Q(x)) (as in fig. 1). Since the
coefficients ckj in (2.10) contain h2, the Hughes-Eckart term THE is small compared to the
electronic Hamiltonian Q in (2.11). To compute E and ϕ, the idea is that only the part
of the spectrum of Q(x) less or equal to E+ should be relevant. Define J+ as the largest
j ≤ J such that there exists some x with λj(x) ≤ E+. In (3.1), we expect that

ϕ(x, ·) =

J+
∑

j=1

〈ϕ(x; ·), ψj(x; ·)〉yψj(x; ·) + small term .

Let Π(x) the orthogonal projection on the first J+ levels of Q(x) that is, for an electronic
wave function ψ,

Π(x)ψ =

J+
∑

j=1

〈ψ, ψj(x; ·)〉yψj(x; ·) . (3.2)

To implement this idea, it is natural to try as effective, self-adjoint Hamiltonian an oper-
ator of the form ΠGΠ where G may be H or H0. It acts on a total wave function ψ(x, y)
as follows: for each x, one projects ψ(x, ·) as in (3.2) then one let act G on the result
and, finally, one projects again according to (3.2). Thus, the spectral subspaces of Q(x)
corresponding to energies above E+ are removed. Such an operator is usually called an
adiabatic operator. We expect that, among the eigenvalues in (E−;E+) and corresponding
eigenvectors of ΠGΠ, there is a good approximation of E and ϕ. Let us try to intuitively
justify this claim.
Assume that (E−;E+) is a small interval around the infimum of the function λ1 that is
attained in some region Γ (in the diatomic case, λ1 only depends on the norm of x and Γ
can be a sphere) and that J+ = 1 (for instance (E−;E+) = (E0

−;E
0
+) in fig. 1). We set

Π⊥(x) = 1− Π(x). Using the positivity of the nuclar kinetic energy, H ≥ Q+ THE thus

E = 〈ϕ,Hϕ〉 ≥

∫

〈ϕ(x, ·), Q(x)Π(x)ϕ(x, ·)〉y dx

+

∫

〈ϕ(x, ·), Q(x)Π⊥(x)ϕ(x, ·)〉y dx

+

∫

〈ϕ(x, ·), THEϕ(x, ·)〉y dx .

Since THE is small compared to Q, one can show that
∫

〈ϕ(x, ·), THEϕ(x, ·)〉y dx = O(h2) and
∥

∥THEϕ
∥

∥ = O(h2) , (3.3)

where ‖ · ‖ is the L2-norm in the variables (x, y1, · · · , yN). Therefore

E ≥

∫

λ1(x)
∣

∣〈ϕ(x, ·), ψ1(x; ·)〉y
∣

∣

2
dx

+E+

∫

‖Π⊥(x)ϕ(x, ·)‖2y dx + O(h2) , (3.4)
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where ‖ · ‖y is the L2-norm in the y variables. Since

1 = ‖ϕ‖2 =

∫

∣

∣〈ϕ(x, ·), ψ1(x; ·)〉y
∣

∣

2
dx +

∫

‖Π⊥(x)ϕ(x, ·)‖2y dx ,

the integral in (3.4) and the term
∣

∣〈ϕ(x, ·), ψ1(x; ·)〉y
∣

∣

2
for x far from Γ should be small.

In particular, in (3.1), we should have

ϕ(x, ·) = χ(x)〈ϕ(x; ·), ψ1(x; ·)〉yψ1(x; ·) + small term ,

where χ is the characteristic function of a neighbourhood of Γ. The relevant part of ϕ
is then its projection onto the electronic level ψ1(x; ·). Since the lower bound in (3.4) is
close to E and does not contain the nuclear kinetic energy, the latter must be small.
Note that this is not sufficient if the interval (E−;E+) is placed much higher (as in fig. 1).
Let us now produce a better argument in this more general situation. Using the second
estimate in (3.3), one can show that, close to E and ϕ respectively, there are an energy
E0 and a normalized L2-function ϕ0 such that H0ϕ0 = E0ϕ0. We assume E0 ∈ (E−;E+).
In particular, Π(H0−E0)ϕ0 = 0 and Π⊥(H0−E0)ϕ0 = 0. Using Π+Π⊥ = 1 and Π2 = Π,

(ΠH0Π− E0)Πϕ0 = −ΠH0Π
⊥ϕ0 , (3.5)

(Π⊥H0Π
⊥ − E0)Π

⊥ϕ0 = −Π⊥H0Πϕ0 . (3.6)

Since Π(x)⊥Π(x) = 0 and Π(x) commutes with Q(x),

ΠH0Π
⊥ = −Π

(

M−1
∑

j=1

1

2µj
∆xj

)

Π⊥ = h2
M−1
∑

j=1

1

2µ′
j

Π[∆xj
,Π] .

Now h2 times the commutator [∆xj
,Π] equals 2h(∇xj

Π)(x) · h∇xj
+ h2(∆xj

Π)(x). Since

∫

1

2µj

∣

∣∇xj
ϕ0

∣

∣

2
dx ≤

∫ M−1
∑

k=1

1

2µk

∣

∣∇xk
ϕ0

∣

∣

2
dx

and the nuclear kinetic energy remains bounded (this is due to the self-adjointness of H0

on the domain of the Laplace operator), the right hand sides of (3.5) and (3.6) are O(h).
Since Π⊥H0Π

⊥ ≥ E+, the operator Π
⊥H0Π

⊥ −E0 is invertible with bounded inverse and
(3.6) shows that Π⊥ϕ0 is O(h). In particular, Πϕ0 is almost an eigenfunction of ΠH0Π
with L2-norm close to 1 so is close to a true normalized eigenfunction of ΠH0Π. Thus ϕ0

(and also ϕ) should be also close to a normalized eigenfunction of ΠH0Π. Notice that, by
(3.5), the nuclear kinetic energy in the state Πϕ0 is close to the quantity

∫

〈Πϕ0 , (Q(x)−E0)Πϕ0〉y dx

which has no reason to be small in general. Indeed, if E0 is clearly above the infimum of
λ1 and below the infimum of λ2, J+ = 1 and this term equals

∫

(λ1(x)−E0)
∣

∣〈ϕ0(x, ·), ψ1(x; ·)〉y
∣

∣

2
dx
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and it is possible to show that the squared function essentially lives in the “well” :
{x;λ1(x) ≤ E0}.
In the above argument, we used the fact that we can derivate Π twice with respect to the
variable x. This is not obvious at all when one looks at the x-dependence in Q(x) (see
(2.11)) which involves the rather irregular function W in (2.3). Thanks to a trick due
to Hunziker in [Hu], one can prove that x 7→ Π(x) is smooth away from the set of the
nuclear collisions (this is actually sufficient for our argument above since one can show,
by energy arguments, using the repulsive nature of nuclear interaction, that the wave
function is concentrated away from these collisions). This trick is also used in [KMSW]
and is partially responsible for the technical complications in this paper. The idea here is
to perform a x-dependent change of variables on the y variables in Q(x) that makes the
x-dependent singularities in the function W (x, y) in (2.11) x-independent. This can be
done only locally in x i.e. for x close enough to any fixed position x0 (see Lemma 2.1 in
[J5] for details).
The regularity of Π allows the contruction of J+ globally defined, smooth functions x 7→
ψj(x, ·) with values in the L2 electronic functions such that, for each x, ψ1(x, ·), · · · , ψJ+(x, ·)
is a orthogonal basis of the image of the projection Π(x). Because of the possible pres-
ence of eigenvalues crossing (see fig. 1), it is not always possible to choose these functions
ψj(x, ·) among the eigenvectors of Q(x).
We have seen that, up to an error of size O(h), one can reduce the eigenvalue problem for
H to the one for ΠH0Π. One can compute explicitely ΠH0Π in terms of the electronic
wave functions ψ1(x, ·), · · · , ψJ+(x, ·) (see [PST]) and again remove terms that are also

O(h). Writing the approximate eigenstate ϕ̃ of energy Ẽ as

ϕ̃ =

J+
∑

j=1

θj(x)ψj(x; ·) ,

one ends up, in the diatomic case for simplicity, with the uncoupled equations −h2∆xθj +
λjθj = Ẽθj , if the ψj(x; ·) are eigenvectors of Q(x). If the latter is not true (it can be the
case when eigenvalues crossing occur), one has coupled partial differential equations in
the x variables for the θj with coefficients depending on the λj and on the 〈ψj , ψk〉y. Now,
if we demand an accuracy of O(h2), then ΠH0Π still provides a good approximation but
less terms can be removed. In particular, one has to keep terms containing the so-called
Berry connection, i.e. factors of the form 〈ψj,∇xp

ψk〉y. We see that the variation of the
ψj (or of Π) has to be taken into account. We refer to [PST] for details.
If one wants to improve the accuracy to O(h3) (or better), one needs to include the
Hughes-Eckart term THE in Q(x) and to replace Π(x) by an appropriate projector Πg(x)
which is essentially of the form Π(x) + hΠ1(x) + h2Π2(x). Then one uses as adiabatic
operator ΠgHΠg (cf. [MS2, PST]).
In the scattering situation mentioned in Section 2, one choose the total energy E in an
energy range (Ec

+, E
c
−) like in fig. 2 and take ΠH ′Π as an effective Hamiltonian. In this

case, it is important to choose the projections Π(x) as spectral projections of the operators
Qc(x) + T ′

HE (because the Hughes-Eckart term T ′
HE has no decay in x at infinity).
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4 Review of mathematical results.

In this section, we present some rigorously proved results on the Born-Oppenheimer ap-
proximation that illustrate the main ideas developed in Section 3. Since we cannot review
all results, we choosed one of them in the following fields: bound states, resonances, scat-
tering process (collision) and time evolution. These choices may be detected as abritrary
(they reflect the way the author senses the subject) but we tried to present results with
the highest degree of generality. Nevertheless we also comment on other results in these
fields. At the end of the present section, we add some remarks when symmetries of the
particles are taking into account.

Let us begin with the study of bound states of a molecule which was performed in the pa-
per [KMSW] (previous results were obtained in [Ha3, Ha4]). One studies the eigenvalues
of the operator H (cf. (2.8)) in the framework introduced in Section 3. In particu-
lar, the adiabatic operator ΠHΠ is used as first effective Hamiltonian but in a slightly
different way. The authors use a so-called Grushin problem and pseudodifferential tech-
nics to produce a more accurate effective Hamiltonian F (E) (depending of the searched
energy E ∈ (E−;E+)), which is a pseudodifferential matrix-operator. F (E) essentially
corresponds to the operator that defines the (a priori) coupled equations on the θj we
mentioned at the end of Section 3. Then E is an eigenvalue of H (essentially) if and
only if 0 is an eigenvalue of F (E) (cf. Theorem 2.1). Here we mean that, if E is a true
eigenvalue of H , then 0 is an eigenvalue of F (E ′) where |E −E ′| = O(hN), for all integer
N , and also that, if 0 is an eigenvalue of F (E ′) then H has an eigenvalue E such that
|E −E ′| = O(hN), for all integer N . An explicit but rather complicated, infinite contruc-
tion produces the operators F (E). For practical purpose, one follows only an appropriate
finite number of steps of this construction to get an operator Fp(E) such that the above
errors are O(hp). A concrete example is given Proposition 1.5, where eigenvalues of H
in some particular energy range are computed up to O(h5/2). For diatomic molecules,
the authors consider an energy range close to the infimum of λ1 (like (E0

−;E
0
+) in fig. 1).

Recall that, for all nuclear positions x, λ1(x) is the lowest eigenvalue of the electronic
Hamiltonian Q(x), which is simple. Actually, one does not need to consider the lowest
eigenvalue but it is important that it is simple and that the rank of the projection Π(x)
is always 1. In the mentioned energy range, the eigenvalues of H and the corresponding
eigenvectors are computed by an asymtotic expansion in power of h of WKB type. For
polyatomic molecules, the same situation is studied but two cases occur. Recall that Γ de-
notes the set of nuclear positions x = (x1, · · · , xM−1) ∈ R3(M−1) where the infimum of λ1
is attained. It turns out that Γ is the set of all points (Ox01, · · · , Ox

0
M−1) where O ranges

in the set of all orthogonal linear transformations in R3 and x0 = (x01, · · · , x
0
M−1) ∈ Γ.

One can check if the points x01, · · · , x
0
M−1 ∈ R

3 lies on a line, or on a plane, or generates
the whole space R3. The molecule is “linear”, “planar”, and “non-planar” respectively. For
a linear or planar molecule, it is shown that, in an appropriate neighbourhood of λ1’s
infimum, there is exactly one eigenvalue of H which is given by a complete asymptotic
expansion in h. A corresponding eigenvector can also be obtained by such an asymptotic
expansion. The distance from this eigenvalue to the rest of the spectrum of H is of order
h5/2. In the non-planar case, two different simple eigenvalues of H are present in the men-
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tioned neighbourhood. The splitting (that is the distance between these two eigenvalues)
is exponentially small in h. The eigenvalues and the corresponding eigenvectors are again
given by an asymtotic expansion in power of h. These eigenvectors can be related to one
another with the help of the reflextion ϕ(x, y) 7→ ϕ(−x,−y).
In the above framework, we mention a modification of the Born-Oppenheimer approxima-
tion performed in [HJ6, HJ7, HJ8] in order to make apparent chemical hydrogen bounds
in molecules. The main idea is to take the hydrogen mass of order h3/2, while the mass
of heavier atom and the electronic mass are still of order h2 and h0 = 1, respectively. In
this setting, one can reduce the eigenvalue problem to an effective one in a similar way as
in Section 3. However, the authors use a multiscale analysis as in [Ha3, Ha4].
Next we describe the paper [MM] on the resonances of the operatorH in the diatomic case.
As we shall see, resonances are complex eigenvalues of an appropriate distorsion of H . It
is believed that they give information for the long time evolution of the molecules (scat-
tering). This link has been done in other (simpler) situations but, to our best knowledge,
not in the present framework, i.e. for molecules in the Born-Oppenheimer approximation.
Actually the authors consider the diatomic version of the operator H0 (cf. (2.9)), that
is the relevant molecular Hamiltonian without the Hughes-Eckart term. To explain the
announced distorsion, we need some notation. Let ω : R3 → R3 a smooth function, which
is 0 near 0 and equals the identity map (i.e. ω(x) = x) for |x| large. For real numbers µ,
one introduces the transformation Uµ defined on total wave functions ϕ(x, y) by

(Uµϕ)(x, y) = |Jµ(x, y)|
1/2 ϕ(x+ µω(x), y1 + µω(y1), · · · , yN + µω(yN)) ,

where the function Jµ is the Jacobian of the change of variables (x, y) 7→ (x+µω(x), y1+
µω(y1), · · · , yN + µω(yN)). It turns out that one can extend Uµ to small enough complex
values of µ. The distored Hamiltonian is given by Hµ = UµH0U

−1
µ . Since Uµ is unitary

for real µ, Hµ has the same spectrum as H0 inside the real line but, for complex µ, the
continuous part of the spectrum of Hµ is obtained from the one of H0 by some rotations.
Furthermore, between the continuous spectra of H0 and Hµ, eigenvalues of Hµ of finite
multiplicity appear. They actually do not depend on µ and are called the resonances
of H0. They are close to the continuous spectra of H0, which is responsible for the
scattering processes governed by H0. One wants to compute these resonances. To this
end, one faces an eigenvalue problem as above in [KMSW] but now for the operator Hµ.
In [MM], it is shown that one can adapt the arguments of [KMSW] to show that E is
a resonance of a modified version of H0 if and only if 0 is an eigenvalue of E-dependent
pseudodifferential matrix-operator. Due to a technical difficulty, the authors have to
smooth out the repulsive, nuclear interaction, leading to the modified version of H0. Thus
it is still open whether a similar result holds true for resonances of H0. Anyhow, the
imaginary part of these resonances is expected to be of order e−c/h in h with c > 0 (as
shown in [Ma2, Ma3] in a simpler framework). Since the inverse of the imaginary part of
a resonance is interpreted as the lifetime of the corresponding resonant state, the resonant
states in the present situation should live on a time scale of order ec/h.

Next we are interested in the non-resonant scattering (or collision) theory for diatomic
molecules. We use the framework presented in Section 3 for the operator H ′ (cf. (2.16))
but we impose a stronger decay of the pair interactions. We replace the Coulomb inter-
action | · |−1, which has long range, by a short range potential V (essentially of the type
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| · |−1−ǫ, for some ǫ > 0). To present the result in [KMW2], we need a short review of the
short range scattering theory (see details in Section XI.5 p. 75 in [RS3]).
Recall that the free dynamics for large negative time is generated by H ′

c in (2.21), which
can be written as

H ′
c = −

1

2

( 1

m′
1

+
1

m′
2

)

∆x + T ′
HE + Qc .

We choose an eigenvalue Ec and a corresponding eigenvector ψc of Q
c+T ′

HE and consider
the scattering process that begins for t→ −∞ by the free motion with kinetic energy

−
1

2

( 1

m′
1

+
1

m′
2

)

∆x ,

of two clusters that are in the state ψc(y). The initial state is described by a wave function
τ(x)ψc(y), where τ is a “nuclear” wave function and ψc(y) is actually the product of an
electronic wave function of the cluster c1 by one of the cluster c2. If we forget about
the Hughes-Eckart contribution T ′

HE, these latter wave functions represent respectively an
electronic bound state in the atom/ion c1 and another in the atom/ion c2. It turns out
that we can find a wave function ϕ+(x, y) such that, for t → −∞, the real evolution of
ϕ+(x, y) is close to the free evolution of τ(x)ψc(y), that is

∥

∥e−itH′

ϕ+ − e−itH′

cτ(x)ψc(y)
∥

∥ → 0 .

We denote by Ω+ the operator τ(x)ψc(y) 7→ ϕ+. Similarly, the final state is descbribed
by τ ′(x′)ψ′

d(y
′) corresponding to some cluster decomposition d (with a priori different

coordinates) and one can find a wave function ϕ−(x
′, y′) such that, for t→ +∞,

∥

∥e−itH′

ϕ− − e−itH′

dτ ′(x′)ψ′
d(y

′)
∥

∥ → 0 .

We define Ω−(τ
′(x′)ψ′

d(y
′)) = ϕ− and we can check that τ ′(x′)ψ′

d(y
′) can be recovered from

ϕ−(x
′, y′) by application of the adjoint Ω∗

− of Ω−. Thus the operator S = Ω∗
−Ω+ sends

the initial state to the final state of the scattering process we choosed. It is the scattering
operator for this process while Ω+ and Ω− are the wave operators. The strange sign con-
vention for the wave operators can be interpreted in the following way: e−itH′

Ω+τ(x)ψc(y)
represents the future (+) evolution for the interactive dynamics (defined by H ′) of the
free state τ(x)ψc(y). When c = d, τ = τ ′, and ψc = ψ′

d, we have an elastic scattering
process. When c = d but ψc and ψ

′
d are orthogonal, the inelastic process corresponds to

a change of electronic level in the cluster (an exitation of an electron in c1 for instance).
When c 6= d but c1 and d1 contain the same nucleus and so do c2 and d2, an electron
at least has moved from one nucleus to the other. We can also consider the case where
c is as above while d1 contains the two nuclei and d2 only electrons (for instance, two
ions form a molecule and loose some electrons). Among the inelactic processes we just
described, the two last ones might be interesting for Chemistry. The above construction
of a scattering operator can be done for all possible cluster decompositions c and d and
the collection of S operators completely describes the possible scattering processes. The
same construction can also be performed for molecules with more than 2 nuclei with a
richer family of processes of chemical interest.
We point out that a scattering theory exists for long range interaction (like the Coulomb
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one). Essentially, one has to modify the construction of the wave operators, which become
technically more involved.
We come back to the situation studied in [KMW2], that is for a diatomic molecule with
d = c given as in Section 2 but with short range interactions. We choose an energy range
(Ec

−, E
c
+) as in fig. 2. In particular, it is above the infimum of the spectrum of H ′

c in
(2.21) thus, by the HVZ Theorem (see Theorem XIII.17 p. 121 in [RS4]), this energy
range is included in the continuous part of H ′ but might contain eigenvalues. We focus on
scattering processes with total energy E ∈ (Ec

−, E
c
+). In view of Section 3, we replace E+

by Ec
+ and consider eigenvalues λj(x, h) of Qc(x) + T ′

HE that are somewhere less or equal
to Ec

+. One then contructs the associated projections Π(x, h) and consider the adiabatic
operator ΠH ′Π. Let Ωc

± be wave operators associated to the decomposition c as above
such that the electronic energy Ec of the initial state satisfies Ec < Ec

− (Ec is close to
some eigenvalue Ec(0) of Qc, see fig. 2). Now one can also compare the dynamics of ΠH ′Π
and the free dynamics generated by H ′

c and construct so-called adiabatic wave operators
ΩAD

± . The goal is to show that

‖Ωc
± − ΩAD

± ‖ = O(h) , (4.1)

when the wave operators act on wave functions with energy in (Ec
−, E

c
+). To this end, one

needs an important assumption, the non-trapping condition, on the classical mechanics
generated by the classical Hamilton functions hj(q, p) = ‖p‖2 + λj(q, 0) (with h = 0 and
for the above selected eigenvalues λj) at energy in (Ec

−, E
c
+). This non-trapping condition

says that all classical trajectories of energy E ∈ (Ec
−, E

c
+) for any Hamilton function hj go

to space infinity in both time directions. It implies the absence of eigenvalue in (Ec
−, E

c
+)

and prevents from resonance phenomena. In fig. 2, this assumption is satisfied.
Under the additional assumption that only the simple eigenvalue λ1 is somewhere less or
equal to Ec

+ (in particular the image of Π(x, h) is always of dimension 1), the approxima-
tion (4.1) is proved in [KMW2]. An important step in the proof is to etablish an appro-
priate estimate on the resolvents C \R ∋ z 7→ (z−H ′)−1 and C \R ∋ z 7→ (z−ΠH ′Π)−1

of H ′ and ΠH ′Π respectively and this is done for long range interactions (in particular
for the Coulomb one). Because of the additional assumption, only elastic scattering is
covered. In this framework, we mention the papers [J2] on the scattering operator and
[JKW] on scattering cross-sections.
If one removes the above additional assumption, one can obtain the approximation (4.1)
but under the condition that the eigenvalues λj do not cross (see [J1]). In this situation,
a similar approximation holds true for scattering cross-sections and it can be shown that
the inelastic scattering is disadvantaged compared to the elastic one (see [J3]). In the
simplified framework of Schrödinger operator with matrix potential, it is even shown in
[BM] that the inelastic scattering is exponentially small in h. Therefore, to study it, we
have to accept eigenvalues crossings and we need to control their effect on the scattering.
As mentioned before, the projection Π is still smooth but the eigenvalues λj might be only
continuous and the corresponding eigenvectors ψj might be discontinuous at the crossing.
In this situation, we mention the work by [FR] on Schrödinger operators with matrix po-
tential and for a special case of crossing (crossing at just one point), where the resolvents
estimates mentioned above are derived. For some type of crossing, the λj and ψj are
smooth and one can prove the same result (see [J4, DFJ]). This is the case for diatomic
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molecule thanks to the radial symmetry of the molecule with respect to the x variable. In
the work in progress [JS], one uses this property to get the resolvents estimates and also
the approximation (4.1) for diatomic molecules.

Now we come to the last field we wanted to consider, namely the time evolution of
molecules in the Born-Oppenheimer approximation, and present results obtained in [MS2].
We consider again the operator H in (2.8) but we look for an approximation of the evolu-
tion operator e−itH/h (i.e. the molecular evolution on a time scale 1/h). As in Section 3,
the authors choose a certain energy range (like (E−;E+) in fig. 1) and construct, starting
from the operator Π adapted to this energy range, a better projection Πg. The estimate of
the commutator [H,Π] = O(h) is improved this way in the estimate [H,Πg] = O(hp), for
all integer p. With the help of Πg, the authors introduce a map W that transforms wave
functions ϕ(x, y) for the full molecule into wave functions in x only but with values in the
L-dimensional vectors (L being the constant dimension of the image of the Π(x)). This
map replaces the electronic waves functions, that lives in an infinite dimensional space,
by a finite number of degrees of freedom, namely the coordinates of the L-dimensional
vectors. We point out here that no restriction on the number of nuclei is required and
that eigenvalues crossings are allowed. There exists a L×L-matrix operator A acting on
the range of W such that, for a large class of initial state ϕ, for all integer p, the time
evolution of ϕ is given by

e−itH/hϕ = W∗e−itA/hWϕ + O((1 + |t|)hp) , (4.2)

where t ranges in some bounded, p- and h-independent interval. So, to compute a good
approximation of the time evolution of ϕ, one first lets act W then follow the evolution
of Wϕ generated by A (a much simpler evolution) and then lets act the adjoint of W.
The operator A is obtained by an infinite but explicit procedure. If one accepts to have
an error of size O((1 + |t|)hp), for a fixed p, one can replace A by an operator Ap which
is obtained by a finite procedure.
As a consequence of the previous approximation, the authors derive for L = 1 a rather
precise description of the time evolution of coherent states (which are probably the sim-
plest states), completing this way previous results of this type (for instance [Ha1, Ha5]).
The assumption L = 1 prevents from eigenvalues crossings. For the time evolution of co-
herent states, the effect of eigenvalues crossings was studied in [Ha7]. Even for this states,
this effect is complicated in general and another approach were followed by considering
so-called avoided crossings (see [HJ1, HJ2]). Instead of having a crossing of the electronic
eigenvalues λ1 and λ2, one assumes that, for some particular nuclear position, the nonzero
difference λ1−λ2 is small (with an appropriate size compared to h). This approach avoids
the technical difficulties carried by true crossings but allows inelastic phenomena (like the
transfer of a wave packet from the electronic level λ1 to λ2). In a simplified framework
(compared to the molecular setting) but for the time evolution through true eigenvalues
crossings, we mention [FG] in a special case where the λj and the eigenvectors ψj are not
smooth and [DFJ] where the latter are smooth. In [FG] a Landau-Zener formula plays
an important rôle. In [DFJ], although the coupling of the smooth crossing eigenvalues
vanishes formally at h = 0, a coupling effect between them is proved in a very special
situation, that should be unphysical. Finally we quote the paper [TW] where the Born-
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Oppenheimer approximation for the time evolution of molecules coupled to a quantized
radiation field is analysed.

We end this section with some comment on the symmetries of particles. First one should
take into account that the electrons are fermions and consider only antisymmetric elec-
tronic wave functions. Second, if the molecule contains two identical nuclei for instance,
one should restrict the nuclear wave functions to the ones that are symmetric with respect
to the exchange of these two nuclei. In principle, such constraints can be included in a
mathematical framework but, in practice, this has not been done. Let us give some expla-
nation for this. Including these symmetries amounts to let act the operators on smaller
Hilbert spaces. So if one can perform the approximation in the full Hilbert space, it is also
valid on a smaller one. However, the electonic symmetry could change the spectrum of
the electronic Hamiltonian (the eigenvalue λ3 could be absent or its multiplicity could be
lowered) but this would change essentially the imput of the above mathematical treatment
and not the core of the approximation. Taking into account the nuclear symmetry could
give finer results but this would be hidden in the properties of the adiabatic operator or
the effective operator derived by the mathematical Born-Oppenheimer approximation. Up
to now, it seems that there was no clear motivation from the mathematical point of view
to include symmetries thus it was natural to avoid them and the technical complications
they carry.

5 Conclusion.

We have presented the essential structure of the mathematical justification of the Born-
Oppenheimer approximation and tried to illustrate it on concrete results on bounds states,
on the time evolution, and in scattering theory. In particular, we have seen that the basic
idea is close to the point of view presented in [BH, SW] and consists in writing the full
Hamiltonian as the sum of the nuclear kinetic energy, of an electronic Hamiltonian, and
of comparatively smaller terms, mimicking this way the usual framework for the well-
developed semiclassical analysis. Indeed, taking the favorite example of this analysis,
namely the semiclassical Schrödinger operator −h2∆x + V (x), the nuclear kinetic energy
stands for the semiclassical Laplace operator −h2∆x while the electronic Hamiltonian
plays the rôle of the potential V . We have explained how the full Hamiltonian can be
approximated by a so-called adiabatic operator, the construction of which essentially rests
upon the electronic Hamiltonian (or clamped-nuclei Hamiltonian). Even the construction
of the refined projection Πg, which leads to a very accurate approximation, completely
depends on this Hamiltonian. We point out that our intuitive argument to compute an
eigenvalue and an eigenvector of the full Hamiltonian (the operator H), up to an error
O(h), actually leads to Born-Huang’s proposition of approximated eigenvalue and eigen-
vector. Born-Huang’s approach is legitimate but not very accurate. To go beyond, as we
mentioned, one needs to take into account the variation of the electronic Hamiltonian with
respect to the nuclear variables. When we look for an eigenvalue close to the groundstate
energy (which is close to the infimum of the lowest electronic eigenvalue λ1), we have seen
that the nuclear kinetic energy is small, as a consequence of this closeness and not of the
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large size of the nuclear masses. In particular, the original computation in [BO] is legiti-
mate. The situation is different for higher energy but it can be handled with the help of
semiclassical analysis (see [KMSW]), as explained in Section 4. Concerning the scattering
(or collision) theory and the time evolution of molecules, we reviewed some results and
pointed out the main difficulty, namely the control of eigenvalues’ crossings. In particular,
this difficulty disturbs us to treat chemical relevant situations but we stressed that some
progress was made. Letting h tends to 0 instead of keeping its physical value is essential
in all the above mathematical works but, as we noticed, it might be unappropriate in
some physical or chemical situations.
In [SW], the authors subscribed to Löwdin’s impression (expressed in [L]), that it might
be difficult to extract from the molecular Hamiltonian concrete realization of chemical
concepts like isomerism, conformation, chirality. Probably, they are right but the situ-
ation is perhaps not hopeless. We pointed out the papers [HJ6, HJ7, HJ8] that try to
describe hydrogen bounds. In the paper [JKW], it was proved that some symmetries
in the ion-atom scattering influence the leading term of scattering cross-sections in the
Born-Oppenheimer approximation. The technics used in [KMSW] tells us that, near the
minimum of a nondegenerate electronic eigenvalue λj, one can find a bound state of the
molecule with low nuclear kinetic energy. In this state, the nuclei vibrate near an equilib-
rium position, located where the minimum is attained. If one can compute (numerically)
this position, one gets the nuclear structure of this bound state (internuclear distances,
symmetries). Because of computations error, it might be difficult to check if the molecule
is planar or not. By light exitation, one can measure the difference between the molecular
energies, that are the two closest levels to the minimum of λj. If the difference is “very”
small, then the molecule in this state is not planar and if the difference is big “enough”,
then it is planar, thanks to [KMSW]. Of course, these examples are limited from the
chemical point of view but show that simple properties of molecular structure can be
extracted from the molecular Hamiltonian. We also emphasize that there exist tools, like
the theory of (co-)representations, to take into account symmetries of molecules. An ex-
ample of such use in the molecular context is provided in [Ha7].
The actual mathematical treatment of the Born-Oppenheimer approximation for molec-
ular systems is expressed in a rather involved language and provides a theoretical infor-
mation on such systems, that might be considered as unsatisfactory from the physical or
chemical point of view. We tried to make it accessible to a large audience and to show
that, despite the real difficulties it has to face, it could be improved, taking more and
more into account physical and chemical preoccupations.
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