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WEIGHTED TENT SPACES WITH WHITNEY AVERAGES:

FACTORIZATION, INTERPOLATION AND DUALITY

YI HUANG

Abstract. In this paper, we introduce a new scale of tent spaces which covers,
the (weighted) tent spaces of Coifman-Meyer-Stein and of Hofmann-Mayboroda-
McIntosh, and some other tent spaces considered by Dahlberg, Kenig-Pipher and
Auscher-Axelsson in elliptic equations. The strong factorizations within our tent
spaces, with applications to quasi-Banach complex interpolation and to multiplier-
duality theory, are established. This way, we unify and extend the corresponding
results obtained by Coifman-Meyer-Stein, Cohn-Verbitsky and Hytönen-Rosén.

0. Basic notations and article structure

Let Rn+1
+ = Rn×R+ = Rn×(0,∞) be the usual upper half space in Rn+1. Points in

Rn (respectively in Rn+1
+ ) will be generally denoted by the letters x or z (respectively

by (y, t) or (z, s)). For a point (y, t) in Rn+1
+ , we let B(y, t) = {z ∈ Rn | |z − y| < t}

lie in the boundary Rn = ∂Rn+1
+ . Here and below, the capital letter B denotes an

open ball in Rn, and | · | denotes the Euclidean distance on Rn.
Given α > 0, we shall denote the cone, of aperture α and with vertex x ∈ Rn, by

Γα(x) := {(y, t) ∈ Rn+1
+ | |y − x| < αt} = {(y, t) ∈ Rn+1

+ | B(y, αt) ∋ x},

and shall denote the tent, of aperture α and with base B ⊂ Rn, by

B̂α :=

( ⋃

x∈Bc

Γα(x)

)c

= {(y, t) ∈ Rn+1
+ | B(y, αt) ⊂ B}.

If α = 1, we write the two standard objects simply as Γ(x) and B̂.
Surrounding a point (y, t) ∈ Rn+1

+ , we construct its Whitney box as

W (y, t) := {(z, s) ∈ Rn+1
+ | |z − y| < α1t, α

−1
2 t < s < α2t}.

Here, the two numbers (α1, α2) with α1 > 0 and α2 > 1, are called the Whitney
parameters. They are said to be consistent if 0 < α1 < α−1

2 < 1.
Throughout this article, the set of Vinogradov notations {.,≃,&} will be used.

For two quantities a and b, which can be function values, set volumes, function
norms or anything else, the term a . b means that there exists a constant C > 0,
which depends on parameters at hand, such that a ≤ Cb. In a similar way, a & b
means b . a, and, a ≃ b means both a . b and a & b.
This paper is organized as follows.
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⋆ Section 1. We define in Definition 1.1 our scale of tent spaces T p,r
q,β system-

atically. At the end of this section, we will also discuss some basic function
space properties, such as convexity and separability, of these new tent spaces.

⋆ Section 2. We show that the definition of our tent spaces is independent of
the aperture used in cones and tents, and of the pair of Whitney parameters
used in Whitney boxes. As a reward, we can see for r = q, the coincidence
(Theorem 2.2) of our tent spaces with the classical tent spaces of Coifman-
Meyer-Stein and the weighted tent spaces of Hofmann-Mayboroda-McIntosh.

⋆ Section 3 and Section 6. The core (endpoint) factorization theorem (Theorem
3.2) is presented in Section 3, with its full proof postponed to Section 6.
Together with a multiplication lemma, we show conditionally on Theorem
3.2 the general multiplication and factorization theorem (Theorem 3.4).

⋆ Section 4 and Section 5. Under the general multiplication and factorization
theorem, the quasi-Banach complex interpolation (Theorem 4.3) and the
multiplier-duality results (Theorem 5.2 and Theorem 5.4) will be established
in Section 4 and Section 5 respectively. There, we will also make a detailed
connection with the corresponding known results on interpolation, multipli-
cation, factorization and duality of tent spaces, which are mainly obtained
by Coifman-Meyer-Stein, Cohn-Verbitsky and Hytönen-Rosén.

1. Definitions of the tent spaces T p,r
q,β

Let r ∈ (0,∞]. By Lr
loc(R

n+1
+ ;C), we mean the class of complex-valued measurable

functions which are defined on Rn+1
+ and locally in Lr. This interpretation also makes

sense when r = ∞. For r ∈ (0,∞) and f ∈ Lr
loc(R

n+1
+ ;C), denote the (unweighted)

Lr-Whitney average of f on W (y, t) by

Wr(f)(y, t) := |W (y, t)|−1/r‖f‖Lr(W (y,t), dzds),

while for r =∞, we take the usual essential supremum interpretation

W∞(f)(y, t) := ess sup
(z,s)∈W (y,t)

|f(z, s)|.

Note that we use the curled W to distinguish it as an averaging functional.
Here and below, apart from the Euclidean distance, | · | also denotes the moduli

of complex values or the set volumes in Rn and Rn+1
+ .

Definition 1.1. I) For 0 < p, q ≤ ∞, we first define in Lq
loc(R

n+1
+ ;C) the scale T p

q

of tent spaces into the following four non-overlapping categories.
A) 0 < p, q <∞. In this case, we let

T p
q := {g | Aq(g) ∈ Lp(Rn)} and ‖g‖T p

q
:= ‖Aq(g)‖Lp,

where the conical q-functional Aq is defined as

Aq(g)(x) :=

(∫∫

Γ(x)

|g(y, t)|q
dydt

tn+1

)1/q

, x ∈ Rn.

B) 0 < q < p =∞. In this case, we let

T∞
q := {g | Cq(g) ∈ L∞(Rn)} and ‖g‖T∞

q
:= ‖Cq(g)‖L∞,
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where the Carleson q-functional Cq is defined as

Cq(g)(x) := sup
B∋x
|B|−1/q

(∫∫

B̂

|g(y, t)|q
dydt

t

)1/q

, x ∈ Rn.

C) 0 < p < q =∞. In this case, we let

T p
∞ := {g | N (g) ∈ Lp(Rn)} and ‖g‖T p

∞
:= ‖N (g)‖Lp,

where the non-tangential maximal functional N is defined as

N (g)(x) := sup
(y,t)∈Γ(x)

|g(y, t)|, x ∈ Rn.

D) p = q =∞. In this case, we simply let T∞
∞ := L∞(Rn+1

+ ).
Let β ∈ R. We also define the scale T p

q,β of weighted tent spaces by

T p
q,β := {g | g(y, t)t−β ∈ T p

q } and ‖g‖T p
q,β

:= ‖g(y, t)t−β‖T p
q
.

II) Given 0 < r ≤ ∞ and β ∈ R, and assume that the pair of Whitney parameters
(α1, α2) is consistent. Then corresponding to each category above, we define in
Lr
loc(R

n+1
+ ;C) the scale T p,r

q of tent spaces with Whitney averages by

T p,r
q := {f | Wr(f) ∈ T p

q } and ‖f‖T p,r
q

:= ‖Wr(f)‖T p
q
,

and the scale T p,r
q,β of weighted tent spaces with Whitney averages by

T p,r
q,β := {f | f(z, s)s−β ∈ T p,r

q } and ‖f‖T p,r
q,β

:= ‖f(z, s)s−β‖T p,r
q

.

In the above definitions, the Lr-Whitney average and the weight β are required for
the applications to boundary value problems of second order elliptic PDEs in [5]. In
practice the role of β is a regularity index, and the weight constraint β ∈ [−2/q, 0],
with β = 0 if q =∞, is taken in [5].

Remark 1.2. By definition T p
q,0 = T p

q and T p,r
q,0 = T p,r

q . Moreover, T p
q,β is isometric

to T p
q and T p,r

q,β is isometric to T p,r
q via f → f̃ with f̃(z, s) = f(z, s)s−β. Observe also

that since (z, s) ∈ W (y, t) implies s ≃ t, we have that f ∈ T p,r
q,β ⇐⇒Wr(f) ∈ T p

q,β.

Remark 1.3. The classical tent spaces of Coifman-Meyer-Stein in [10], where the
weight β = 0 and Category C) is smaller1, and the weighted tent spaces of Hofmann-
Mayboroda-McIntosh in [15], where only Category A) is considered, are all included
in our scale T p

q,β. The scale T p,r
q,β with Whitney averages covers the function spaces

which were introduced in [12] and [22], and further investigated in [5], [16] and
[26]. In this regard, see the concluding paragraphs of Section 5 for a detailed cor-
respondence. Note that we also bring in Category D), where if 0 < r < ∞, we call
functions in T∞,r

∞ the r-Whitney multipliers. In the trivial case p = q = r =∞, it is
not difficult to observe that T∞,∞

∞ = T∞
∞ = L∞(Rn+1

+ ).

1More precisely, [10] requires the additional boundary assumption g ∈ Cn.t.(R
n+1
+ ;C), meaning

that g is a complex-valued continuous function on Rn+1
+ and also has non-tangential convergence:

lim
Γ(x)∋(y,t)→x

g(y, t) exists for almost everyx ∈ Rn.
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We end this section with several function space properties of our tent spaces.
Convexity and completeness. Given the tent space T p,r

q,β , we let τ = min(p, q, r).

Observe that when τ ≥ 1, the space T p,r
q,β is Banach. In fact, the triangle inequality

simply follows from Minkowski’s inequality, and the completeness can be deduced
from the one of T p

q , as Wr(f(z, s)s
−β) ∈ T p

q if f ∈ T p,r
q,β . Note that we identify two

measurable functions the same if they only differ on a set with measure 0.
Power and convexification. For a quasi-Banach function space, the trick of taking

the powers is particularly useful. As for our tent spaces, let
[
T p,r
q,β

]θ
:= {f measurable | |f |1/θ ∈ T p,r

q,β}, θ ∈ (0, 1),

equipped with ‖f‖[T p,r
q,β ]

θ := ‖|f |1/θ‖θT p,r
q,β

. This way, we have the realization

[
T p,r
q,β

]θ
= T

p/θ,r/θ
q/θ,βθ , θ ∈ (0, 1).

Now for the quasi-Banach T p,r
q,β , with τ < 1,

[
T p,r
q,β

]τ
is then a convexification of T p,r

q,β .

Separability and density. Consider the covering of Rn+1
+ by rational rectangles,

which are of the product form
∏n+1

i=1 (ai, bi), where for 1 ≤ i ≤ n + 1, ai and bi are
in Q and an+1 > 0. Let E be the linear span on Q of the characteristic functions of
rational rectangles. If 0 < p <∞, one can show that the countable set E is dense in
T p,r
q,β . We also point out that if σ = max(p, q, r) < ∞, the Lr functions which have

compact support in Rn+1
+ are dense in T p,r

q,β .

2. Coincidence and change of geometry

A demanding reader may ask two natural questions: i) how do the inner (local)
Whitney averages Wr behave under the outer (boundary-reaching) Aq or Cq aver-
ages? ii) is our Definition 1.1 independent of the involved geometrical parameters?
Aiming at the question i), we will first investigate the relation between the classical
scale T p

q and our scale T p,r
q with Whitney averages. At the end of this section, we

will also give an observation on the question ii).
Let us start with the following result.

Observation 2.1 (Change of apertures). Define for 0 < q < ∞ and α > 0 the
following three α-apertured functionals as

Aα
q (g)(x) :=

(∫∫

Γα(x)

|g(y, t)|q
dydt

tn+1

)1/q

, x ∈ Rn,

N α(g)(x) := sup
(y,t)∈Γα(x)

|g(y, t)|, x ∈ Rn,

Cαq (g)(x) := sup
B∋x
|B|−1/q

(∫∫

B̂α

|g(y, t)|q
dydt

t

)1/q

, x ∈ Rn.

Similar to Definition 1.1, these functionals can also result in a scale of tent spaces
αT p

q , where we let αT∞
∞ = L∞ for the trivial case p = q =∞. It is well known that

we have the change of aperture equivalence αT p
q = T p

q , with

(1) C(n, α, p, q)‖g‖T p
q
≤ ‖g‖αT p

q
≤ C ′(n, α, p, q)‖g‖T p

q
, 0 < p, q ≤ ∞.

For the proof, see [13] for the simple situation 0 < p < q = ∞. For the case q = 2
and 0 < p <∞ (hence for 0 < p, q <∞ by taking the powers of g properly), see [10]
for a rough, and [29] for a refined argument on estimating C ′ when α > 1. By using
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the atomic decomposition and the interpolation method, the sharp determination
on both C and C ′ when α > 0, for the case q = 2 and 0 < p ≤ ∞, is obtained
recently in [4]. Note that the methods of [4] extend to the case q =∞ under minor
modifications. We also remark that, the vector-valued approach in [14] and [17] can
deal with the change of apertures in a very simple manner in the Banach case, and
then a convexification process takes care of the quasi-Banach case.

Theorem 2.2. We have the coincidence with equivalence of quasi-norms

T p,q
q,β = T p

q,β, 0 < p, q ≤ ∞, β ∈ R.

In particular, T p,q
q = T p

q , 0 < p, q ≤ ∞, showing that the classical tent spaces are
included in the tent spaces with Whitney averages.

Proof. By Remark 1.2, it is enough to prove

T p,q
q = T p

q , 0 < p, q ≤ ∞.

We start with the following Whitney box geometry : ∀ (z, s) ∈ Rn+1
+

W ) W∗(z, s) ⊂ {(y, t)|W (y, t) ∋ (z, s)} ⊂ W∗∗(z, s),

where W∗ and W∗∗ are the Whitney boxes associated to the Whitney parameters
(α1α

−1
2 , α2) and (α1α2, α2) respectively

2, and (α1, α2) is the pair of Whitney param-
eters which defines W and was used in Definition 1.1. We only need to verify the
choices of α1α

−1
2 and α1α2, as the determination on α2 is straightforward. To see the

first inclusion in W ), given any (y, t) ∈ W∗(z, s), we have |z − y| < α1α
−1
2 s < α1t,

which implies W (y, t) ∋ (z, s). To see the second inclusion, given any (y, t) with
W (y, t) ∋ (z, s), we have |y − z| < α1t < α1α2s, which implies (y, t) ∈ W∗∗(z, s).
This proves the Whitney box geometry W ).
For the cone geometry, let α0 = α−1

2 (1− α1). We have that: ∀ x ∈ Rn

C1) (z, s) ∈ Γα0(x) and (y, t) ∈ W∗(z, s) =⇒ (y, t) ∈ Γ(x).

Indeed, we can compute as follow

|y − x| ≤ |y − z|+ |z − x| < α1α
−1
2 s+ α−1

2 (1− α1)s < t.

Let αC = α2 + α1α2. There also holds: ∀ x ∈ Rn

C2) (y, t) ∈ Γ(x) and (z, s) ∈ W (y, t) =⇒ (z, s) ∈ ΓαC
(x).

Indeed, we can compute as follow

|z − x| ≤ |z − y|+ |y − x| < α1t + t < (α2 + α1α2)s.

Now from W ) + C1), we have: ∀ x ∈ Rn

χΓα0 (x)
(z, s)χW∗(z,s)(y, t) ≤ χΓ(x)(y, t)χW (y,t)(z, s),

and from W ) + C2), we have: ∀ x ∈ Rn

χΓ(x)(y, t)χW (y,t)(z, s) ≤ χΓαC
(x)(z, s)χW∗∗(z,s)(y, t).

Then it follows from an integration in (y, t) that: ∀ x ∈ Rn

χΓα0 (x)
(z, s) .

∫∫

Rn+1
+

χΓ(x)(y, t)
χW (y,t)(z, s)

tn+1
dydt . χΓαC

(x)(z, s),

2The pair of Whitney parameters defining W∗∗ is not necessarily consistent, but for the purpose
here, the consistency is not needed.
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where in dividing sn+1, we use the similarity s ≃ t implicitly.
If 0 < q <∞, multiplying by |f(z, s)|q the above inequalities and then integrating

in (z, s), we have from Fubini’s theorem that

Aα0
q (f)(x) . Aq(Wq(f))(x) . A

αC
q (f)(x), ∀ x ∈ Rn.

If q =∞, there holds a similar functional relation

N α0(f)(x) . N (W∞(f))(x) . N αC (f)(x), ∀ x ∈ Rn.

For 0 < p <∞, taking an Lp integration in x in the above two functional relations
and using the change of aperture equivalence in Observation 2.1 lead us to the
coincidence T p,q

q = T p
q in Category A) and Category C).

For the tent geometry, let αT = α2 + α1α
−1
2 . We have that: ∀B ⊂ Rn

T1) (z, s) ∈ B̂αT and (y, t) ∈ W∗(z, s) =⇒ (y, t) ∈ B̂.

Indeed, given B ⊂ Rn, (z, s) ∈ B̂αT and (y, t) ∈ W∗(z, s), then B(z, αT s) ⊂ B. Thus

B(y, t) ⊂ B(z, t + |z − y|) ⊂ B(z, t + α1α
−1
2 s) ⊂ B(z, αT s),

so B(y, t) ⊂ B. Recall that α0 = α−1
2 (1− α1). There also holds: ∀B ⊂ Rn

T2) (y, t) ∈ B̂ and (z, s) ∈ W (y, t) =⇒ (z, s) ∈ B̂α0 .

Indeed, given B ⊂ Rn, (y, t) ∈ B̂ and (z, s) ∈ W (y, t), then B(y, t) ⊂ B. Thus

B(z, α0s) ⊂ B(y, α0s+ |z − y|) ⊂ B(y, α0s+ α1t) ⊂ B(y, t),

so B(z, α0s) ⊂ B and (z, s) ∈ B̂α0 .
Now from W ) + T1), we have: ∀B ⊂ Rn

χB̂αT
(z, s)χW∗(z,s)(y, t) ≤ χB̂(y, t)χW (y,t)(z, s),

and from W ) + T2), we have: ∀B ⊂ Rn

χB̂(y, t)χW (y,t)(z, s) ≤ χB̂α0
(z, s)χW∗∗(z,s)(y, t).

Then it follows from an integration in (y, t) that: ∀B ⊂ Rn

χB̂αT
(z, s) .

∫∫

R
n+1
+

χB̂(y, t)
χW (y,t)(z, s)

tn+1
dydt . χB̂α0

(z, s),

where in dividing sn+1, we again use the similarity s ≃ t implicitly.
If 0 < q < ∞, multiplying by |f(z, s)|q the above inequalities then integrating in

(z, s) and taking a supremum over B ∋ x, we have from Fubini’s theorem that

CαT
q (f)(x) . Cq(Wq(f))(x) . C

α0
q (f)(x), ∀ x ∈ Rn.

Taking an L∞ norm in the above functional relation and using the change of aperture
equivalence in Observation 2.1 lead us to the coincidence T p,q

q = T p
q in Category B).

Together with the trivial Category D), we can thus conclude the proof. �

Remark 2.3. For the coincidence with the “classical” tent spaces in Category C),
we mean in fact T p,∞

∞ ∩ Cn.t. = T p
∞ ∩ Cn.t., 0 < p <∞.

We end this section with another geometrical result, which will be needed in
Section 6 for the proof of F1) in Theorem 3.2.



WEIGHTED TENT SPACES WITH WHITNEY AVERAGES 7

Observation 2.4 (Change of Whitney parameters). Note that we have frozen two
consistent parameters (α1, α2) in Definition 1.1. Instead of considering different
apertures as in Observation 2.1, here we replace (α1, α2) by another pair of consistent
Whitney parameters (α′

1, α
′
2), with a prescribed chain condition

0 < α1 < α′
1 < 1/α′

2 < 1/α2 < 1.

Following the way in Definition 1.1, we can also define a scale of tent spaces asso-
ciated to (α1, α2). Denoted by (α′

1,α
′
2)T p,r

q , they should not be mistaken for the scale
αT p

q in Observation 2.1. We have the change of Whitney parameters equivalence

(2) C(α1, α
′
1, α2, α

′
2)‖f‖T p,r

q
≤ ‖f‖(α′

1,α
′
2)T p,r

q
≤ C ′(α1, α

′
1, α2, α

′
2)‖f‖T p,r

q
,

where the constants C and C ′ also implicitly depend on n, p, q and r.
The former part of this equivalence can be inspected from the chain condition

satisfied by (α1, α2) and (α′
1, α

′
2). We prove the right hand inequality as follows.

For (y, t) ∈ Rn+1
+ , denote W̃ (y, t) = B(y, γ1t) × (γ−1

2 t, γ2t), with γ1 ≥ α′
1/α1 and

γ2 ≥ α′
2/α2. Then one can find an integer N = N(n, α1, α2, α

′
1, α

′
2) such that, for

any (y, t) ∈ Rn+1
+ , there exist N points PN(y, t) in W̃ (y, t) with

χW ′(y,t)(z, s) ≤
∑

(ȳ,t̄)∈PN (y,t)

χW (ȳ,t̄)(z, s),

where W ′ is the Whitney average associated to the Whitney parameters (α′
1, α

′
2).

Now using (1) in Observation 2.1 and the geometries {W ), C1), C2), T1), T2)} in
proving Theorem 2.2, there exists α = α(α1, α2, α

′
1, α

′
2) such that

‖f‖(α′
1,α

′
2)T p,r

q
. ‖f‖αT p,r

q
. ‖f‖T p,r

q
.

We leave open the sharp determination on the bounds C and C ′ in (2).

3. Multiplication and factorization

The main goal of this paper, is to obtain in the spirit of [9], the corresponding
multiplication and factorization results for our new scale of tent spaces T p,r

q,β . Some
notations and definitions in function space theory are needed.
Denote by Σ the σ-finite measure space (Ω, µ), and by L0 the collection of µ-

measurable complex-valued functions on Ω. A quasi-Banach function lattice X on
Σ is a non-empty subspace of L0, which is equipped with a quasi-norm ‖ · ‖X such
that, (X, ‖ · ‖X) is complete and X satisfies the lattice property :

∀ f ∈ X, ∀ g ∈ L0, with |g| ≤ |f | µ− a.e.

=⇒ g ∈ X, with ‖g‖X ≤ ‖f‖X .

Clearly, for any f in a quasi-Banach function lattice X , ‖f‖X = ‖|f |‖X.

Definition 3.1. Let {Xi}ni=0 be a collection of quasi-Banach function lattices on Σ.
M) By the multiplication: X0 ← X1 · · ·Xn, we mean that for any fi ∈ Xi,

1 ≤ i ≤ n, we have f1 · · · fn ∈ X0 and

‖f1 · · · fn‖X0 . ‖f1‖X1 · · · ‖fn‖Xn ,

where the implicit constant is independent of f1, · · · , fn.
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F) By the (strong) factorization: X0 → X1 · · ·Xn, we mean that for any f0 ∈ X0,
there exist fi ∈ Xi, 1 ≤ i ≤ n, such that |f0| = |f1| · · · |fn| and

‖f1‖X1 · · · ‖fn‖Xn . ‖f0‖X0 ,

where the implicit constant does not depend on f0, f1, · · · , fn.
When M) and F) are both satisfied, we write X0 ↔ X1 · · ·Xn.

In this paper, our central task is to prove

Theorem 3.2. For any 0 < p0, q0, r0 ≤ ∞, we have the following factorizations

F1) T
p0,r0
q0 → T p0,∞

q0 · T∞,r0
∞ ,

F2) T
p0,r0
q0 → T p0,∞

∞ · T∞,r0
q0 ,

F3) T
p0,r0
q0

→ T p0,∞
∞ · T∞,∞

q0
· T∞,r0

∞ .

The proof of this endpoint factorization theorem will be postponed to Section 6.
Meanwhile, there holds an endpoint multiplication result.

Lemma 3.3. For any 0 < p0, q0, r0 ≤ ∞, we have the following multiplications

M1) T
p0
q0
← T p0

∞ · T
∞
q0
,

M2) T
p0,r0
q0

← T p0,∞
∞ · T∞,∞

q0
· T∞,r0

∞ .

Proof of Lemma 3.3. If max(p0, q0) = ∞, there is nothing to prove for M1). If
max(p0, q0) <∞, then the multiplication M1) is essentially in [9, Lemma 2.1]. The
multiplication M2) is a consequence of Hölder’s inequality and M1). In fact, we have

‖fgh‖T p0,r0
q0
≤ ‖W∞(f)W∞(g)Wr0(h)‖T p0

q0

. ‖W∞(f)‖T p0
∞
‖W∞(g)‖T∞

q0
‖Wr0(h)‖T∞

∞

= ‖f‖T p0,∞
∞
‖g‖T∞,∞

q0
‖h‖T∞,r0

∞
,

where f , g and h are all measurable functions on Rn+1
+ .

Note that for M1), the starting point of [9, Lemma 2.1] is the following inequality
for Carleson measures (see [28, p. 58–61] for example)

∫∫

R
n+1
+

|f(y, t)|p|dµ|(y, t) . ‖f‖p
T p
∞

sup
B⊂Rn

|µ|(B̂)

|B|
,

which holds true for any Borel measure dµ on Rn+1
+ and any measurable f such that

N (f) ∈ Lp, 0 < p <∞. This is also why we define the Category C) tent spaces T p
∞

without restricting them in the class Cn.t.(R
n+1
+ ;C). �

For 0 < p1, p2 ≤ ∞, define the Hölderian triplet (p1, p2, (p1, p2)H) by the relation
(p1, p2)

−1
H = p−1

1 + p−1
2 , where as usual, we will admit 1/∞ = 0.

Combining F3) in Theorem 3.2 and M2) in Lemma 3.3, we can deduce an inter-
mediate claim where the Hölderian triplets enter.

Theorem 3.4. Suppose for i ∈ {0, 1, 2}, T pi,ri
qi,βi

lies in the scale of weighted tent
spaces with Whitney averages in Definition 1.1. Assume the Hölderian relation (H):

p0 = (p1, p2)H , q0 = (q1, q2)H , r0 = (r1, r2)H and β0 = β1 + β2.

Then we have the multiplication and factorization

T p0,r0
q0,β0

↔ T p1,r1
q1,β1
· T p2,r2

q2,β2
.
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Proof of Theorem 3.4. By Remark 1.2 and Definition 3.1, it is enough to assume
βi = 0, i ∈ {0, 1, 2}. Thus, we are only meant to show

T p0,r0
q0

↔ T p1,r1
q1
· T p2,r2

q2
.

Call extremal tent spaces those T p,r
q with at least two among p, q, r equal to ∞.

Therefore, T p0,r0
q0

↔ T p1,r1
q1
· T p2,r2

q2
holds trivially if T p0,r0

q0
is an extremal tent space.

Indeed, multiplication is just a consequence of Hölder’s inequality, and factorization
follows from the trick of taking powers: |f | = |f |1−θ|f |θ, with 0 ≤ θ ≤ 1.
Now the general factorization can be proved as follows. With the Hölderian re-

lation (H) in mind, factorizing T p0,r0
q0

through F3) in Theorem 3.2 into extremal
tent spaces, using the known factorization for extremal tent spaces, and multiplying
through M2) in Lemma 3.3, we then have

T p0,r0
q0 → T p0,∞

∞ · T∞,∞
q0 · T∞,r0

∞

→ T p1,∞
∞ · T p2,∞

∞ · T∞,∞
q1 · T∞,∞

q2 · T∞,r1
∞ · T∞,r2

∞ → T p1,r1
q1 · T p2,r2

q2 .

Finally, the general multiplication can be proved as follows. With the Hölderian
relation (H) in mind, factorizing T pi,ri

qi
(i = 1, 2) through F3) in Theorem 3.2 into

extremal tent spaces, using the known multiplication for extremal tent spaces, and
multiplying through M2) in Lemma 3.3, we then have

T p1,r1
q1
· T p2,r2

q2
→ T p1,∞

∞ · T∞,∞
q1

· T∞,r1
∞ · T p2,∞

∞ · T∞,∞
q2

· T∞,r2
∞

→ T p0,∞
∞ · T∞,∞

q0 · T∞,r0
∞ → T p0,r0

q0 .

The quasi-norm inequalities in each proof can be obtained by inspection. �

4. quasi-Banach complex interpolation

We begin with a second look at the symbol “↔” for multiplication and factoriza-
tion, which we formulated in last section in Definition 3.1.

Definition 4.1. Given two quasi-Banach function lattices X1 and X2, we define
their Calderón’s product X1 •X2 as the class of u ∈ L0 for which

‖u‖X1•X2 := inf{‖v‖X1‖w‖X2 | |u| = |v||w|, v ∈ X1, w ∈ X2} <∞.

Clearly, the usual product X1 · X2 = {vw | v ∈ X1, w ∈ X2} is contained in the
Calderón’s productX1•X2. In other words, X1•X2 is the completion ofX1·X2 under
the quasi-norm ‖ · ‖X1•X2 . Moreover, X0 ↔ X1 ·X2 amounts to say X0 = X1 •X2,
where we interpret the equality by the equivalence of quasi-norms.
This new product X1 • X2, was first used by Calderón in [8] as an intermediate

space for the complex interpolation of a couple of Banach function lattices (X1, X2).
For the underlying measure space Σ = (Ω, µ), assume that Ω is a complete separable
metric space, and µ is a σ-finite Borel measure on Ω. In a (most) natural extension
of Calderón’s interpolation method to the quasi-Banach setting, Kalton and Mitrea
establish in [21, Section 3] (see also [19]) that, for a couple of analytically convex
separable quasi-Banach function lattices (X1, X2) on Σ, there holds the generalized
Calderón’s product formula (see [21, Theorem 3.4]) that

(X1, X2)θ = [X1]
1−θ • [X2]

θ, 0 < θ < 1.

Here, X analytically convex (A-convex for short) means that, for any analytic3

function Φ : S = {z ∈ C | Re z ∈ (0, 1)} → X , which is also continuous to the

3See [21, p. 3911] for the precise definitions of analyticity and A-convexity.
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closed strip S = S ∪ ∂S, we have the maximum modulus principle

max
z∈S
‖Φ(z)‖X . max

z∈∂S
‖Φ(z)‖X .

Under this A-convexity requirement, X1+X2 is also A-convex, and then Calderón’s
method adapts to the quasi-Banach case. In the same spirit, this analytical approach
to the interpolation of quasi-Banach function lattices was also considered in [7],
where the ambient A-convex space is not necessarily the usual X1 +X2.
It was obtained in [18] that X analytically convex is equivalent to X r-convex for

some r > 0. Here, X (lattice) r-convex means that, for any n ∈ N+ and any fi ∈ X ,
i = 1, . . . , n, we have the inequality

∥∥∥∥
( n∑

i=1

|fi|
r

)1/r∥∥∥∥
X

≤

( n∑

i=1

‖fi‖
r
X

)1/r

.

This convexification/normalization process is trivial for Banach function lattice X ,
as we can always take r = 1 in the above inequality. Thus for our purpose here, we
can change A-convex to r-convex.
Now we turn to the separability issue. Recall that a Banach function lattice X is

said to satisfy the Fatou property [25, Remark 2 on p. 30], or maximality in L0, if

∀ 0 ≤ fn ∈ X and sup
n∈N+

‖fn‖X <∞, with fn ↑ f ∈ L0 µ− a.e.

=⇒ f ∈ X and ‖f‖X = lim
n→∞

‖fn‖X .

It was observed4 in [19] that, if both X1 and X2 satisfy the Fatou property, we only
need to assume for the interpolation that either X1 or X2 is separable.
For further information on the applicability of Calderón’s product formula, see

[21, Section 3] and [20, Section 7] directly. Therefore, for two quasi-Banach function
lattices X1 and X2, if Xi (i = 1, 2) is ri-convex and has the Fatou property, and if
either X1 or X2 is separable, then we have the desired interpolation realization:

(X1, X2)θ = [X1]
1−θ • [X2]

θ, 0 < θ < 1.

Let us apply these to tent spaces.

Lemma 4.2. All the tent spaces T p,r
q,β have the Fatou property.

Proof. This is an easy consequence of the monotone convergence theorem and simple
measure theoretic arguments. �

For 0 < p1, p2 ≤ ∞ and θ ∈ (0, 1), define the θ-Hölderian triplet (p1, p2, (p1, p2)θ)
by the relation (p1, p2)

−1
θ = (1− θ)/p1 + θ/p2, where we again admit 1/∞ = 0.

Theorem 4.3. Let 0 < θ < 1. Suppose for i ∈ {0, 1, 2}, T pi,ri
qi,βi

lies in the scale of
weighted tent spaces with Whitney averages in Definition 1.1. Assume min(p1, p2) <
∞ and the θ-Hölderian relation (H)θ :

p0 = (p1, p2)θ, q0 = (q1, q2)θ, r0 = (r1, r2)θ and β0 = (1− θ)β1 + θβ2.

Then under the Kalton-Mitrea complex interpolation method, we have

(T p1,r1
q1,β1

, T p2,r2
q2,β2

)θ = T p0,r0
q0,β0

.

4In this regard, see also the second remark following Theorem 7.9 of [20], where X1 and X2 are
assumed to be sequence spaces. In fact, only the Fatou property is needed in the arguments there.
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Proof. With (H)θ and Theorem 3.4, we have

T p0,r0
q0,β0

↔ T
p1/(1−θ),r1/(1−θ)
q1/(1−θ),β1(1−θ) · T

p2/θ,r2/θ
q2/θ,β2θ

,

which is equivalent to say

T p0,r0
q0,β0

= T
p1/(1−θ),r1/(1−θ)
q1/(1−θ),β1(1−θ) • T

p2/θ,r2/θ
q2/θ,β2θ

.

Under the condition min(p1, p2) <∞, at least one quasi-Banach function lattice in
the interpolation couple (T p1,r1

q1,β1
, T p2,r2

q2,β2
) is separable. And it follows from Minkowski’s

inequality that, for i = 1, 2, the quasi-Banach function lattice T pi,ri
qi,βi

is min(τi, 1)-
convex, where τi = min(pi, qi, ri). In fact, it suffices to apply

‖f‖τi
T

pi,ri
qi,βi

= ‖|f |τi‖
T

pi/τi,ri/τi
qi/τi,βiτi

, i = 1, 2,

to the criterion of r-convexity, and notice that T
pi/τi,ri/τi
qi/τi,βiτi

(i = 1, 2) are Banach func-

tion lattices. Using the generalized Calderón’s product formula, we have

(T p1,r1
q1,β1

, T p2,r2
q2,β2

)θ =
[
T p1,r1
q1,β1

]1−θ
•
[
T p2,r2
q2,β2

]θ

= T
p1/(1−θ),r1/(1−θ)
q1/(1−θ),β1(1−θ) • T

p2/θ,r2/θ
q2/θ,β2θ

= T p0,r0
q0,β0

.

This proves the wanted complex interpolation formula. �

The above interpolation result is plausibly new, in view of the novel Whitney
averaging factor. For the tent spaces without Whitney averages and with β = 0, the
quasi-Banach complex interpolation

(T p1
q1
, T p2

q2
)θ = T p0

q0
, 0 < θ < 1,

where 1/p0 = (1 − θ)/p1 + θ/p2 and 1/q0 = (1 − θ)/q1 + θ/q2, was considered
in [6, Bernal], by another analytical method and for the almost full range 0 <
p1, p2, q1, q2 < ∞. For earlier results on the Banach complex interpolation, see the
references in [6]. Using the Kalton-Mitrea complex interpolation method, [9, Cohn-
Verbitsky] recover the result in [6] and obtain additionally

(T∞
q , T p

∞)θ = T
p/θ
q/(1−θ), 0 < θ < 1,

where 0 < p, q <∞. For the weighted analogue of [9], see [15, Hofmann-Mayboroda-
McIntosh], where the weight β can also be any real number.
Here, by bringing in the endpoint space T∞

∞ , we have under Theorem 4.3 and the
coincidence theorem that, for the full range 0 < p1, p2, q1, q2 ≤ ∞, we have

(T p1
q1
, T p2

q2
)θ = T p0

q0
, 0 < θ < 1,

when min(p1, p2) <∞, 1/p0 = (1− θ)/p1+ θ/p2 and 1/q0 = (1− θ)/q1 + θ/q2. With
this mild requirement min(p1, p2) <∞

5, we then cover all the complex interpolation
results obtained in [6], [9] and [15].

5For the case min(p1, p2) =∞, there exist some results in a different context. For α ∈ [0, 1] and
the space of Carleson measures of order α

V α :=

{
dµ

∣∣∣∣ sup
B⊂Rn

|µ|(B̂)

|B|α
<∞

}
,

the complex interpolation (V 0, V 1)α was identified in [3, Theorem 3-(ii)] to a space which is strictly
smaller than V α. In this respect, see also [1] and [2] for relevant results.
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5. Multipliers and standard duality

Now we turn to the multiplier issue, which from the multiplication point of view,
is more straightforward than the quasi-Banach complex interpolation.
Similarly to the last section, we restrict ourselves to the setting of (Banach) func-

tion lattices, and the underlying measure space Σ = (Ω, µ) is assumed to be complete
and σ-finite. Here, “complete” is with respect to the measure, meaning that

∀E ⊂ Ω, µ(E) = 0 =⇒ ∀E ′ ⊂ E, µ(E ′) = 0.

Recall that L0 is the collection of all complex-valued µ-measurable functions on Ω.

Definition 5.1. Given two Banach function lattices X0 and X1, we say that w ∈ L0

is a multiplier from X1 to X0, if the associated multiplication mapping

Mw : X1 → X0, v 7→ vw

satisfies

‖Mw‖X1→X0 := sup
v 6=0

‖vw‖X0

‖v‖X1

<∞.

Denote all the multipliers from X1 to X0 by M(X1, X0), equipped with

‖w‖M(X1,X0) = ‖Mw‖X1→X0 .

Before proceeding to our main results in this section, we review a cancellation
result concerning Calderón’s product. It was obtained in [27, Theorem 2.5 and
Corollary 2.6] that for three Banach function lattices {E, F,G} on Σ, all with the
Fatou property, we have the following cancellation formula

E • F = E •G =⇒ F = G.

There also holds (see [27, Theorem 2.8]) that

F = M(E,E • F ),

if both E and F have the Fatou property. In particular situations, the above mul-
tiplier representation can also be found in [11, Theorem 3.5], which served to prove
the uniqueness theorem of Calderón-Lozanovskii’s interpolation method. We men-
tion that in the literature, the construction of Calderón for intermediate spaces was
further investigated by Lozanovskii in a series of papers ([23], [24]).
Let us apply these to our tent spaces.

Theorem 5.2. With the same assumptions as in Theorem 3.4 and 1 ≤ pi, qi, ri ≤ ∞
for i ∈ {0, 1, 2}, we have the multiplier identification

T p2,r2
q2,β2

= M(T p1,r1
q1,β1

, T p0,r0
q0,β0

).

Proof. For i ∈ {0, 1, 2}, 1 ≤ pi, qi, ri ≤ ∞ implies τi = min(pi, qi, ri) ≥ 1, thus T pi,ri
qi,βi

is a Banach function lattice. Using the multiplier representation cited above, with
the Fatou property guaranteed by Lemma 4.2, we have

T p2,r2
q2,β2

= M(T p1,r1
q1,β1

, T p1,r1
q1,β1
• T p2,r2

q2,β2
) = M(T p1,r1

q1,β1
, T p0,r0

q0,β0
),

where the last equality is from Theorem 3.4: T p0,r0
q0,β0

= T p1,r1
q1,β1
• T p2,r2

q2,β2
. �
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Finally, we look at the duality theory. Given β0 ∈ R, we will consider the following
β0-weighted pairing

(f, h)β0 :=

∫∫

R
n+1
+

f(y, t)h(y, t)t−β0−1dydt.

Let p′, q′ and r′ be the dual indice of 1 ≤ p, q, r ≤ ∞.

Definition 5.3. The β0-weighted Köthe dual of the Banach T p,r
q,β is defined as

(T p,r
q,β )

∗
β0

:= M(T p,r
q,β , L

1(Rn+1
+ , t−β0−1dydt)) = M(T p,r

q,β , T
1,1
1,β0

).

Here, unlike the continuous functional dual (·)′, “Köthe” means the dual within
the class of Banach function lattices. For a general account on this aspect, see
[25]. By the standard duality, we mean the (Köthe) dual of the Banach T p,r

q,β when
1 ≤ p <∞, β ∈ R and particularly 1 ≤ min(q, r) ≤ max(q, r) <∞.

Theorem 5.4. Under the pairing (·, ·)β0, we have the following standard duality

T p′, r′

q′, β0−β = (T p,r
q,β )

′, 1 ≤ p, q, r <∞, β ∈ R.

Proof. By Theorem 5.2 and the definition of (·)∗β0
, we have

T p′, r′

q′, β0−β = M(T p,r
q,β , T

1,1
1,β0

) = (T p,r
q,β )

∗
β0
⊂ (T p,r

q,β )
′,

where the last inclusion follows from the straightforward identification of multipliers
to continuous linear functionals, through the pairing (·, ·)β0.
For the converse, suppose that we are given a continuous linear functional l on

T p,r
q,β . Then whenever K is a compact set in Rn+1

+ , and whenever f is supported in

K, with f ∈ Lr(K), then Wr(f) ∈ T p
q,β with

‖f‖T p,r
q,β

= ‖Wr(f)‖T p
q,β
≤ CK‖f‖Lr .

Here, CK is a constant which depends on the compact set K, and also implicitly on
the indice p, q, r and β. Thus l induces a continuous linear functional on Lr(K)
and is representable by hK ∈ Lr′(K), as 1 ≤ r <∞. Taking an increasing family of
such K which exhausts Rn+1

+ , gives us an h ∈ Lr′

loc such that

l(f) = (f, h)β0 =

∫∫

R
n+1
+

f(y, t)h(y, t)t−β0−1dydt,

whenever f ∈ Lr and has compact support. By density arguments, this represen-
tation of l by h extends to all f ∈ T p,r

q,β , as we further have 1 ≤ p, q < ∞. By the
representation through (·, h)β0, we have ‖l‖ = ‖Mh‖T p,r

q,β→T 1,1
1,β0

, which means

(T p,r
q,β )

′ ⊂M(T p,r
q,β , T

1,1
1,β0

) = (T p,r
q,β )

∗
β0

= T p′,r′

q′, β0−β.

This then proves the desired standard duality. �

To end this section, we deduce as corollaries some corresponding known results
on multiplication, factorization and duality, mainly obtained in the articles [10,
Coifman-Meyer-Stein], [9, Cohn-Verbitsky] and [16, Hytönen-Rosén].
Relation with Coifman-Meyer-Stein. For the standard duality, it was shown in

[10, Theorem 1-(b) and Theorem 2] that

T p′

2 = (T p
2 )

∗
0 = (T p

2 )
′, 1 ≤ p <∞,
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which upon using Theorem 2.2 on the coincidence for r = q = 2, then corresponds
to our Theorem 5.4 in the particular case

T p′,2
2,0 =

(
T p,2
2,0

)∗
0
=

(
T p,2
2,0

)′
, 1 ≤ p <∞.

By the Carleson duality, we mean the continuous functional dual of T p,r
q,β for 1 ≤

p <∞, β ∈ R and particularly 1 ≤ min(q, r) ≤ max(q, r) =∞. Let B̂ := B̂ be the

closed tent on base B, and denote the Carleson measures on Rn+1
+ by

C :=

{
dµ

∣∣∣∣ sup
B⊂Rn

|µ|
(
B̂
)

|B|
<∞

}
.

Let N = T 1
∞ ∩Cn.t.. The classical Carleson duality ([10, Proposition 1]) states that

C =
(
N )′.

Obviously, our Theorem 5.4 on standard duality can not cover the Carleson duality.
Nevertheless, we shall mention in Remark 6.2 a consequence of our method of proof

toward factorization of bounded Borel measures on Rn+1
+ by Carleson measures.

Relation with Hytönen-Rosén. To relate their notations, Np,q and Cp′,q′ in [16] for

Banach cases are just the scales T p,q
∞,0 and T p′,q′

1,−1 here, and their duality claim is

Np,q = (Cp′,q′)
′, 1 < p <∞, 1 < q ≤ ∞.

This Carleson (pre-)duality, stated in [16, Theorem 3.2], then corresponds to our
Theorem 5.4 in the particular case

T p,r
∞,0 = (T p′,r′

1,−1)
∗
−1 = (T p′,r′

1,−1)
′, 1 < p <∞, 1 < r ≤ ∞.

At the multiplication side, Theorem 3.1 of [16] states

T r,r
r,−1/r ← T p,q

∞,0 · T
p̃,q̃
r,−1/r, 1 ≤ r <∞, r ≤ p <∞, r ≤ q ≤ ∞,

with r = (p, p̃)H = (q, q̃)H . Again, this is a particular case of our Theorem 3.4.
Relation with Cohn-Verbitsky. Under the coincidence theorem and Remark 6.3,

part F2) in Theorem 3.2 for r0 = q0 corresponds to Cohn-Verbitsky

T p0
q0

= T p0,q0
q0

→ T p0,∞
∞ · T∞,q0

q0
= T p0

∞ · T
∞
q0
.

Meanwhile, with the help of F1) to produce Whitney multipliers, our result F3) is a
further (polarized) factorization of the tent space T p0,r0

q0
. Of course, we also bring in

the endpoint spaces T∞
∞ and T∞,r0

∞ , which makes the statement broader. Moreover,
we continue with a multiplier discussion basing on the factorization result, which is
seemingly new even in the situation of classical tent spaces.
We also remark that the multiplication side of Theorem 3.4 covers Lemma 5.5

in [5] and Lemma 2.4.3 in [26]. To relate the notations again, the two tent spaces
X and E in [5], originally introduced by Kenig-Pipher in [22] and by Dahlberg in
[12] respectively, correspond to T 2,2

∞,0 and T∞,∞
2,0 here. Our full scale T p,r

q,β , mainly

interested by X p := T p,2
∞,0 and Yp

± := T p,2

2,−1±1
2

for p in some interval containing 2, will

be used as natural function spaces in part of a continuation work of [5], where more
backgrounds on boundary value problems of elliptic PDEs can be referred.
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6. Proof of Theorem 3.2 on factorization

To prove F3) it suffices to show F1) and F2) respectively. Indeed, factorizing T p0,r0
q0

through F1) first, then using F2) yields F3) immediately. Thus to prove Theorem
3.2, we show F1) and F2) in order.

Proof of F1). Let W
∗(y, t) and W∗

r (·)(y, t) be the Whitney box and the Lr-Whitney
average associated to the point (y, t) ∈ Rn+1

+ , and to the Whitney parameters

α∗
1 = α1

(
1 + α

1/2
2

)−1
and α∗

2 = α
1/2
2 ,

where (α1, α2) is the pair of consistent Whitney parameters we used in Definition
1.1. Similarly, let W ∗∗ and W∗∗

r (·) be the Whitney objects associated to

α∗∗
1 = α1

[
2
(
1 + α

1/2
2

)
α
1/4
2

]−1

and α∗∗
2 = α

1/4
2 .

Note that the two resulted pairs of Whitney parameters are also consistent, with

0 < α∗∗
1 < α∗

1 < α1 < α−1
2 < (α∗

2)
−1 < (α∗∗

2 )−1 < 1.

Moreover, for any (y, t) ∈ Rn+1
+ , we have the geometrical relations

(3)
⋃

(z,s)∈W ∗(y,t)

W ∗(z, s) ⊂W (y, t)

and

(4)
⋂

(z,s)∈W ∗∗(y,t)

W ∗(z, s) ⊃W ∗∗(y, t).

The verification on α∗
2 and α∗∗

2 is straightforward. For the first inclusion, given any
(z, s) ∈ W ∗(y, t) and any (z0, s0) ∈ W ∗(z, s), we have

|z0 − y| ≤ |z0 − z|+ |z − y| < α∗
1s+ α∗

1t < α∗
1(α

∗
2 + 1)t = α1t,

which implies (z0, s0) ∈ W (y, t). For the second inclusion, given any (z0, s0) ∈
W ∗∗(y, t) and any (z, s) ∈ W ∗∗(y, t), we have

|z0 − z| ≤ |z0 − y|+ |y − z| < 2α∗∗
1 t < 2α∗∗

1 α∗∗
2 s = α∗

1s,

which implies (z0, s0) ∈ W ∗(z, s). This proves the two relations (3) and (4).
Now for any u ∈ T p0,r0

q0 , we construct v =W∗
r0(u). Then we have from (3) that

sup
(z,s)∈W ∗(y,t)

W∗
r0(u)(z, s) .Wr0(u)(y, t)

is valid for any (y, t) ∈ Rn+1
+ , thus we know

W∗
∞(v) .Wr0(u) and ‖W∗

∞(v)‖T p0
q0

. ‖u‖T p0,r0
q0

.

For w = u/W∗
r0
(u), we then have from (4) that

inf
(z,s)∈W ∗∗(y,t)

W∗
r0
(u)(z, s) &W∗∗

r0
(u)(y, t)

is valid for any (y, t) ∈ Rn+1
+ , thus we know

W∗∗
r0
(w) . 1 and ‖W∗∗

r0
(w)‖T∞

∞
. 1.

Using the change of Whitney parameters equivalence in Observation 2.4, u = vw
is then the desired factorization for T p0,r0

q0
→ T p0,∞

q0
· T∞,r0

∞ , 0 < p0, q0, r0 ≤ ∞. �
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Proof of F2). Observe that we can suppose 0 < max(p0, q0) < ∞. In fact, nothing
has to be done if p0 =∞, and the case q0 =∞ is already included in F1).
We base our arguments on the constructive proof in [9]. From the consistency of

Whitney parameters, we have 0 < α1 < α−1
2 < 1. Then the following relations

(5)
⋂

(z,s)∈W (y,t)

B(z, s) ⊃ B(y, (α−1
2 − α1)t)

and

(6)
⋃

(z,s)∈W (y,t)

B(z, s) ⊂ B(y, (α2 + α1)t)

hold for any (y, t) ∈ Rn+1
+ . In fact, for the verification of the first inclusion, given

any x ∈ B(y, (α−1
2 − α1)t) and any (z, s) ∈ W (y, t), we compute as follow

|x− z| ≤ |x− y|+ |y − z| < (α−1
2 − α1)t+ α1t < s,

which implies x ∈ B(z, s). Similarly, to verify the second inclusion, given any
(z, s) ∈ W (y, t) and any x ∈ B(z, s), we compute as follow

|x− y| ≤ |x− z| + |z − y| < s+ α1t < (α2 + α1)t,

which implies x ∈ B(y, (α2 + α1)t). This proves the two relations (5) and (6).
As 0 < max(p0, q0) < ∞, the tent space T p0,r0

q0
lies in Category A) and can be

determined by the conical functional Aq0. Therefore, ũ = Aq0(Wr0(u)) ∈ Lp0(Rn).
Denote by P0[h](y, t) the average of h on B(y, t) ⊂ Rn, and construct v = P0[ũ

p̃]1/p̃

for some p̃ < p0. Let α
∗ = α2 + α1 > 1, then by (6), for any (y, t) ∈ Rn+1

+

sup
(z,s)∈W (y,t)

v(z, s) . v(y, α∗t) =: v∗(y, t).

Thus we have W∞(v)(y, t) . v∗(y, t), and there holds

N (W∞(v))(x) . N (v∗)(x) ≤M(ũp̃)1/p̃(x), ∀ x ∈ Rn,

where N is the non-tangential maximal functional, M is the Hardy-Littlewood
maximal operator and the last estimate follows from the fact

⋂

(y,t)∈Γ(x)

B(y, α∗t) ∋ x, ∀ x ∈ Rn.

As p0/p̃ > 1, then by maximal theorem, we have

‖v‖T p0,∞
∞

. ‖M(ũp̃)1/p̃‖Lp0 . ‖ũ‖Lp0 = ‖u‖T p0,r0
q0

.

Now we turn to w = u/v. Let α∗ = α−1
2 − α1 ∈ (0, 1), then by (5)

inf
(z,s)∈W (y,t)

v(z, s) & v(y, α∗t)

is valid for any (y, t) ∈ Rn+1
+ . By Hölder’s inequality, there holds

(7) ‖h−1‖−1
Lq(dν) ≤ ‖h‖Lr(dν), ∀ q > 0, ∀ r > 0,

when dν is a probability measure on Rn. Applying this estimate with h = ũ, r = p̃,
q = q0 and dν(x) = |B(y, α∗t)|−1χB(y,α∗t)(x)dx, we have for any (y, t) ∈ Rn+1

+

inf
(z,s)∈W (y,t)

v(z, s) & P0[ũ
p̃]1/p̃(y, α∗t)

≥ P0[ũ
−q0]−1/q0(y, α∗t) & P0[ũ

−q0]−1/q0(y, t),
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where the last estimate follows from 0 < α∗ < 1 and −1/q0 < 0. We write ‖ · ‖c =
‖ · ‖T∞

1,−1
for the Carleson norm of measurable functions on Rn+1

+ , and let

dµ(y, t) = µ(y, t)dydt =Wr0(u)
q0(y, t)t−1dydt.

The above pointwise estimates on v further imply

‖Wr0(u/v)‖T∞
q0

. ‖P0[ũ
−q0]1/q0Wr0(u)‖T∞

q0

= ‖P0[ũ
−q0]µ‖1/q0T∞

1,−1
= ‖P0[A1(µ(y, t)t)

−1]µ‖1/q0c . 1.

In the last estimate, we used the lemma below.
Therefore, we can conclude the proof of F2). �

We record down the missing part in estimating ‖P0[A1(µ(y, t)t)
−1]µ‖c . 1. For a

non-negative measure dµ on Rn+1
+ , denote its (free) balayage by

A(dµ)(x) :=

∫∫

Γ(x)

dµ(z, s)

sn
, x ∈ Rn.

This way, we can reconstruct from the boundary value A(dµ) its (free) extension

E(dµ)(y, t) := P0[A(dµ)
−1](y, t), ∀ (y, t) ∈ Rn+1

+ .

Thus in the desired estimate, with dµ(y, t) = µ(y, t)dydt supported in Rn+1
+ , we have

P0[A1(µ(z, s)s)
−1](y, t)µ(y, t)dydt = E(dµ)(y, t)dµ(y, t).

The next lemma is very simple and can be found in [9, Lemma 2.2], or one can
refer to [3] directly. For the completeness, we still provide an argument here. Recall

that B̂ denotes the closed tent with base B ⊂ Rn.

Lemma 6.1. For any non-negative measure dµ on Rn+1
+ , we have

‖E(dµ)dµ‖C := sup
B⊂Rn

1

|B|

∫∫

B̂

E(dµ)dµ . 1.

Proof. For any ball B ⊂ Rn, we can estimate by Fubini’s theorem that
∫∫

B̂

[
1

|B(y, t)|

∫

B(y,t)

A(dµ)−1(x)dx

]
dµ(y, t)

≃

∫∫

B̂

[ ∫

B(y,t)

A(dµ)−1(x)dx

]
dµ(y, t)

tn

=

∫

Rn

A(dµ)−1(x)

[ ∫∫

B̂∩Γ(x)

dµ(y, t)

tn

]
dx

≤

∫

B

A(dµ)−1(x)A(dµ)(x)dx = |B|.

Taking a supremum over balls B ⊂ Rn then proves the Carleson estimate. �

Remark 6.2. Denote by V the class of bounded (signed and complex) Borel mea-

sures on Rn+1
+ . Note that the above lemma also implies the factorization

V → (T 1
∞ ∩ Cn.t.) · C,
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while the multiplication side V ← (T 1
∞ ∩ Cn.t.) · C is just the Carleson’s inequality

(see [28, p. 63] for example). Indeed, for dµ bounded on Rn+1
+ ,

|dµ| = E(|dµ|)−1 · E(|dµ|)|dµ|

is then the desire factorization. First, using the lemma above, we have

‖E(|dµ|)|dµ|‖C . 1.

And by (7), we see for any (y, t) ∈ Rn+1
+ that

E(|dµ|)−1(y, t) ≤

(
1

|B(y, t)|

∫

B(y,t)

A(|dµ|)p0(x)dx

)1/p0

, 0 < p0 < 1.

Then for any x ∈ Rn, we have

N (E(|dµ|)−1)(x) ≤M(A(|dµ|)p0)1/p0(x),

and by Lebesgue’s theorem E(|dµ|)−1 ∈ Cn.t.. By maximal theorem, we also have
E(|dµ|)−1 ∈ T 1

∞, with the factorization estimate

‖E(|dµ|)−1‖T 1
∞
. ‖A(|dµ|)‖L1 ≃ |µ|

(
Rn+1

+

)
.

Remark 6.3. In F1), the case r0 =∞ is trivial. Suppose 0 < r0 <∞ andWr0(u) ∈
Cn.t.. As the constructed v = W∗

r0
(u) is continuous and satisfies W∗

∞(v) . Wr0(u),
we have W∗

∞(v) ∈ Cn.t. after using the fact (3)

lim
Γ(x)∋(y,t)→x

W ∗(y, t) = lim
Γ(x)∋(y,t)→x

W (y, t) = x, ∀ x ∈ Rn,

and the dominated convergence theorem.
In F2), if 0 < max(p0, q0) < ∞, we can also verify that W∞(v) is continuous in

Rn+1
+ and has the property of non-tangential convergence. In fact,

vp̃(y, t) = |B(y, t)|−1

∫

B(y,t)

ũp̃(x)dx, ∀ (y, t) ∈ Rn+1
+ ,

where ũ ∈ Lp0 and p0 > p̃. Then v ∈ Cn.t. follows from Lebesgue’s theorem. As

v(y, α∗t) . inf
(z,s)∈W (y,t)

v(z, s) ≤ sup
(z,s)∈W (y,t)

v(z, s) . v(y, α∗t)

hold true for any (y, t) ∈ Rn+1
+ , we then have

W∞(v) = sup
(z,s)∈W (y,t)

v(z, s) ∈ Cn.t.,

which is an easy consequence of the dominated convergence theorem. In all, the
constructed factorization v is in (T p0,∞

∞ ∩ Cn.t.) = (T p0
∞ ∩ Cn.t.).
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24. G. Ja. Lozanovskĭı, On some Banach lattices. IV, Sibirsk. Math. Z̆. 14 (1973), 140–155. 12
25. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin-New

York, 1979. 10, 13



20 YI HUANG

26. M. Mourgoglou, Endpoint solvability results for divergence form, complex elliptic equations,
Ph.D. Thesis, University of Missouri-Columbia, 2011. 3, 14

27. A. Schep, Products and factors of Banach function spaces, Positivity 14 (2010), no. 2, 301–319.
12

28. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Inte-

grals, Princeton University Press, Princeton, NJ, 1993. 8, 18
29. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, NY, 1986. 4

Univ. Paris-Sud, Laboratoire de Mathématiques, UMR 8628 du CNRS, F-91405
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