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ABSTRACT 
The crucial point in the field of seismic engineering is to 

diminish the induced vibration energy as much as possible in a 

fast and almost irreversible manner. Recently the concept of 

Nonlinear Energy Sink (NES) has been developed such that the 

imposed energy to a linear single Degree of Freedom (DoF) 

substructure is transferred to one or series of strongly nonlinear 

light attachments; the mechanism is based on a 1:1 resonance 

capture. Nonlinear attachments can be designed to passively 

vibrate with any frequency; hence the system is efficient for 

both of transient and periodic excitations. Some drawbacks of 

these systems are as follows: they cannot kill the first peak of 

oscillation in the free time response that is linked to the energy 

activation of NES; moreover, the transformation of energy 

vanishes in time due to decrease of the strength of energy 

pumping. Using NES in series even cannot accelerate the 

phenomenon of energy pumping and some strange behavior 

due to the delay in the cooperation of NES in series is noticed. 

In this study, the transient dynamic behavior of multiple DoF 

systems with trees of parallel NES at each DoF is investigated, 

then experimental and numerical results of a four DoF structure 

with two parallel NES at the top floor are demonstrated and 

commented upon. 

1  INTRODUCTION 

 Classical seismic mitigation devices mainly are linear and 

require the addition of significant mass to the structure. Novel 

designs of structures commonly seek to reduce the total 

structural mass. Thus, it is important to develop new absorption 

devices that reduce both stationary and transient responses as 

much as possible while adding extra mass to the structure as 

less as possible; moreover these devices should be able to 

absorb seismic effects for a broad band of frequencies. To this 

end, the concept of NES has been developed that the imposed 

energy to a linear single DOF system is transferred to one or 

series of strongly nonlinear light attachments in an irreversible 

manner; the mechanism is based on a 1:1 resonance capture. 

Theoretical background of these systems is quite well 

developed [1-7]. Manevitch et. al. [8] presented new analytical 

approach to the problem of energy pumping in strongly non 

homogeneous nonlinear 2DOF systems with single anchor 

spring under condition of initial impact. Their approach was 

based on the application of Laplace transformation to the 

principal asymptotic approximation of the equations of motion 

in complex form and using the power expansion of the solution 

in terms of time. Schmidt and Lamarque [9, 10] studied the 

phenomenon of energy pumping between an elasto-plastic 

oscillator coupled to an essentially nonlinear oscillator. They 

illustrated that under free excitation, a NES designed for 

underlying linear elastic oscillator is still efficient for the 

elasto-plastic case and leads to reduced oscillations in 

comparison with the behavior without coupled NES. They 

show that under periodic solicitation and the same design, 

efficiency of energy pumping can be reduced in the whole 

system, but that it is possible to improve the design by a 

numerical parametric study to get correct results. Experimental 

studies about the energy pumping phenomenon are quite 

limited. McFarland et. al [11] and Gourdon et. al [12, 13] 

experimentally verified theoretical effects of energy pumping 

with a single NES coupled with single and four DoF systems, 

respectively. They experimentally proved the efficiency of 

energy pumping systems with respect to classical tuned mass 

dampers. The phenomenon of energy pumping in structures 

with parallel NES never has been studied. To this end, this 

paper focuses on series of vibration tests that were carried out 

on a 4 DoF structure with two attached NES in parallel at the 

DGCB lab of the ENTPE, France. 

2 ACADEMIC MODEL OF A FOUR STOREY 
STRUCTURE WITH TWO NES IN PARALLEL 
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The system under study, illustrated on Fig. 1, is a 4 DoF 

structure. Mi, Ci, Ki and Xi are mass, damping coefficient, 

stiffness and displacements of the ith DoF, i=1, 2, …, 4. Two 

parallel NES are attached to the 4th DoF. 
4, j

μ , 
4, j

c , 
4, j

k   and

4, j
x are mass, damping coefficient, cubic nonlinear stiffness 

and displacements of the jth NES, j=1, 2. 

By endowing the Hamiltonian principle, equations of 

motion for the mentioned system are as follows: 
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Figure 1. The 4DoF system with two 

nonlinear parallel NES coupled with 

the 4th DoF.  
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And in a compact form, system of equations will read: 

( )+ + + =MX CX KX L x F(t)&& & && (8) 

3
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We assume that the nonlinear behavior of NES won’t 

change the linear dynamics of the main system; this leads us to 

shift from physical domain to modal domain by changing 

variable with the X = φq system. φ  and q  are mode shape 

matrix and modal coordinate vector, respectively: 
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By applying the mentioned definition to Eq. (8), the new 

discrete system of equations will appear: 
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*
M , 

*
C and 

*
K  are modal mass, modal damping and 

modal stiffness of the main system, respectively. 

The energy pumping or the resonance capture phenomenon 

in the non conservative system under consideration can be 

understood and explained by studying the energy dependence 

of the nonlinear free periodic solutions of the corresponding 

conservative system that is obtained when all damping forces 

are eliminated [14]. So, the forcing term in Eq. (12) can be 

eliminated in the system under consideration. Let’s suppose 

that we are interested to pump the energy of the first mode, so 

Eq.  (12) will read: 
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Analytical developments are currently achieving to analyse 

the behaviour of such reduced systems.  

3  IDENTIFICATION OF THE MODAL PROPERTIES OF 
THE TEST STRUCTURE  

The prototype test structure as shown in Fig. 2, is a 4DoF 

steel structure. Two parallel NES with a very small mass 

compared to the main structural mass, are mounted on top of 

the structure as depicted in Fig. 3. 

The strongly cubic nonlinear attached oscillator is 

composed of two mobile parts in parallel; each mobile part is 

anchored by two springs. Optimal stiffness values of the 

nonlinear springs of the NES are obtained by experimental 

testing. Further theoretical and optimization developments are 

going on for evaluating the optimal stiffness values of 

nonlinear springs of the NES. Characteristics of the system are 

summarized in Table 1.  

Table 1. Main characteristics of the test structure 

Mass (g) Springs of the NES 

Main Structure Nes 1 Nes 2 Number Stiffness (N/m) 

2357 30 30 4 480 

As illustrated in Fig. 2, five ICP accelerometers are 

attached to the structure: three of them to the ground, second 

and last floors and two of them on top of the moving parts of 

each NES.  
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Figure 2.  Experimental test set up. 

Figure 3. Two parallel NES that were attached to the 4th DoF. 

In order to identify modal properties of the structure for 

feeding the nonlinear model with parallel NES, some series of 

vibration tests including shock hammer test, Chirp and 

sinusoidal ramp excitations, are repeated. The first two 

resonance frequencies of the structure are gathered in Table 2., 

while the Frequency Response Function (FRF) of the second 

and the last floors  during the shock hammer test are depicted 

in Fig. 4. 

Figure 4.  FRF of the second and the top floors during the shock 

hammer test. 

Damping of the structure is estimated by endowing the 

Hilbert transform [15] and the logarithmic decrement of the 

impulse response function during the sinusoidal ramp 

excitation in the decay part of the vibration in the 

displacements domain and the Bandwidth method in the FRF 

domain during the Chirp and the shock hammer tests [16].  A 

discrete-time analytic signal via the Hilbert transform can be 

evaluated from the impulse response function; its magnitude is 

the envelope of the original signal; so the rapid oscillations 

from original signal can be removed to produce a direct 

representation of the envelope alone. This envelope represents 

a straight line in the logarithmic domain which slope is 

proportional to the damping. Two different kinds of sinusoidal 

ramp excitation with frequencies equal to the first and second 

modes, i.e. f=4.44 Hz and 13.55 Hz, respectively are repeated. 

For endowing sinusoidal ramp excitation a linear modulus 

ramp should apply onto the sinusoidal oscillation to ensure that 

the payload is at rest at the beginning of the test.   Figures 5-10 

summarize response of the structure, Power Spectrum Density 

(PSD) for envisioning the frequency contents of the structure 

and the envelope of the selected decaying part of the response 

obtained via the Hilbert transform, during two above 

mentioned excitations. 

Figure 5.  Response of the structure during sinusoidal ramp 

excitation with f=4.44 Hz. 
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Figure 6.  PSD of the response during the sinusoidal ramp 

excitation with f=4.45 Hz. 

Figure 7.  The envelope of the selected decaying part of the 

response of the structure during sinusoidal ramp excitation with 

f=4.44 Hz. 

Figure 8.  Response of the structure during sinusoidal ramp 

excitation with f=13.55 Hz. 

To evaluate the expected value of all identified damping 

values that are obtained from different tests with different 

techniques for the first and the second mode, the assumption of 

the Normal Distribution for evaluated data are retained. In 

order to justify this assumption, the Normal probability plots 

are used to assess whether data comes from a normal 

distribution. Normal probability plots for the evaluated 

damping of the first and the second modes are illustrated in Fig. 

11 and Fig. 12, respectively. 

Figure 9.  PSD of the response during the sinusoidal ramp 

excitation with f=13.55 Hz. 

Figure 10.  The envelope of the selected decaying part of the 

response of the structure during sinusoidal ramp excitation with 

f=13.55 Hz. 

Figure 11.  The Normal probability plot for evaluated damping 

values of the first mode. 
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Figure 12.  The Normal probability plot for evaluated damping 

values of the second mode. 

All the data points in normal probability plots fall near the 

lines; therefore an assumption of normality is reasonable. The 

normal Cumulative Distribution Functions (CDF) for evaluated 

damping are depicted in Fig. 13 and Fig. 14. 

Figure 13. The CDF of the evaluated dampings related to the 

first mode. 

Figure 14.  The CDF of the evaluated dampings related to the 

second mode. 

With the aforementioned assumption for data, the expected 

values of damping for the first and the second modes are 

collected in Table 2.  

Table 2. Identified frequencies and damping of the structure 

Frequency (Hz) Damping (%) 

Mode I 4.44 0.41 

Mode II 13.55 0.26 

4  EXPLORATION OF NONLINEAR DYNAMICS OF 
THE TEST STRUCTURE 

The aim of this study is to transfer the energy of the first 

mode of the main structure to two parallel NES systems by a 

1:1 resonance capture. The structure is excited by a Chirp 

signal with sweeping frequencies between 3-5 Hz. The absolute 

value FRF of the top floor for linear case without energy 

pumping and for nonlinear case with energy pumping are 

illustrated in Fig. 15. This figure proves the capability of 

parallel NES in absorbing most of the energy of the first mode. 

Figures 16-19 summarize absolute and phase values of FRF of 

each NES during the linear and nonlinear behavior of the 

structure under chirp excitations.  

Figure 15.  The FRF of the last floor of the structure during the 

chirp excitation.  

Figure 16.  The absolute values of the FRF of the NES 1. 
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Figure 17.  The absolute values of the FRF of the NES 2. 

Figure 18.  The phase values of the FRF of the NES 1. 

Figure 19.  The phase values of the FRF of the NES 2. 

The absolute and phase values of parallel NES during the 

pumping phenomenon are depicted in Fig. 20 and Fig. 21. Both 

parallel NES move in-phase during the energy pumping 

phenomenon with almost equal accelerations. This behavior 

shows a good cooperation of parallel NES in absorbing 

irreversible energy during the excitation. 

Figure 20.  The absolute values of the FRF of the NES system 

during the energy pumping phenomenon. 

Figure 21.  The scaled phase values of the FRF of the NES 

system during the energy pumping phenomenon. 

5  CONCLUSIONS 

Governing equations of a four degrees of freedom 

structure with two parallel NES at the top storey has been 

demonstrated. Experimental results showed the efficiency of 

parallel NES system in absorbing most of the seismic energy by 

cooperating with each other. More detailed theoretical 

developments are going on in order to find the optimal stiffness 

of parallel NES system and to compare experimental results 

with theoretical ones. 
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