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We are concerned with the study of a class of forward-backward penalty schemes for solving variational inequalities 0 ∈ Ax + NC (x) where H is a real Hilbert space, A : H ⇉ H is a maximal monotone operator, and NC is the outward normal cone to a closed convex set C ⊂ H. Let Ψ : H → R be a convex differentiable function whose gradient is Lipschitz continuous, and which acts as a penalization function with respect to the constraint x ∈ C. Given a sequence (βn) of penalization parameters which tends to infinity, and a sequence of positive time steps (λn) ∈ ℓ 2 \ ℓ 1 , we consider the diagonal forward-backward algorithm xn+1 = (I + λnA) -1 (xn -λnβn∇Ψ(xn)). Assuming that (βn) satisfies the growth condition lim sup n→∞ λnβn < 2/θ (where θ is the Lipschitz constant of ∇Ψ), we obtain weak ergodic convergence of the sequence (xn) to an equilibrium for a general maximal monotone operator A. We also obtain weak convergence of the whole sequence (xn) when A is the subdifferential of a proper lower-semicontinuous convex function. As a key ingredient of our analysis, we use the cocoerciveness of the operator ∇Ψ. When specializing our results to coupled systems, we bring new light on Passty's Theorem, and obtain convergence results of new parallel splitting algorithms for variational inequalities involving coupling in the constraint. We also establish robustness and stability results that account for numerical approximation errors. An illustration to compressive sensing is given.

Introduction

Let H be a real Hilbert space, A : H ⇉ H a general maximal monotone operator, and C a closed convex set in H. We denote by N C the outward normal cone to C. We are concerned with the study of a class of splitting algorithms for solving variational inequalities of the form [START_REF] Alart | Penalization in non-classical convex programming via variational convergence[END_REF] 0 ∈ Ax + N C (x).

Specifically, we consider diagonal forward-backward algorithms, where at each step one has to perform a proximal (backward or implicit) step with respect to A and a gradient (forward or explicit) step with respect to a penalization function for the constraint C. As we shall see, these algorithms offer several nice features which make them convenient for numerical purposes.

As a guiding principle of our study, we use the links between algorithms and continuous dissipative dynamical systems, and their asymptotic analysis by Lyapunov methods. Indeed, our algorithms can be derived by time discretization of the continuous nonautonomous differential inclusion [START_REF] Alvarez | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces[END_REF] 0 ∈ ẋ(t) + Ax(t) + β(t)∂Ψ(x(t)), which has been introduced in [6, Attouch and Czarnecki], and whose trajectoriesunder certain growth conditions on the function β(•)asymptotically reach equilibria given by [START_REF] Alart | Penalization in non-classical convex programming via variational convergence[END_REF]. In system [START_REF] Alvarez | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces[END_REF], Ψ : H → R ∪ {+∞} acts as an exterior penalization function with respect to the constraint x ∈ C. The corresponding penalization parameter β(t) tends to +∞ as t → +∞.

This work is closely related and complementary to [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF]Attouch,Czarnecki and Peypouquet], where the authors considered the implicit time discretization (backward-backward scheme) of (2) [START_REF] Alvarez | Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces[END_REF] x n = (I + λ n β n ∂Ψ) -1 (I + λ n A) -1 x n-1 , which makes sense for a general convex lower semicontinuous penalization function Ψ, and which combines proximal steps respectively relative to the operator A and the set C (see also [START_REF] Peypouquet | Coupling the gradient method with a general exterior penalization scheme for convex minimization[END_REF] for a purely explicit scheme). In [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF], convergence results to equilibria have been obtained for algorithm [START_REF] Alvarez | Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces[END_REF] under the key assumption that (4)

∞ n=1 λ n β n Ψ * p β n -σ C p β n < +∞ for each p ∈ R(N C ),
where Ψ * is the Fenchel conjugate of Ψ and R(N C ) denotes the range of N C . This condition is satisfied if ∞ n=1 λn βn < +∞ whenever Ψ can be bounded from below by a multiple of the square of the distance to C (see [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF]). This is the case, for instance, if C = Ker(L) and Ψ(x) = Lx 2 , where L is a bounded linear operator with closed range (see for example [START_REF] Brézis | Analyse fonctionnelle: théorie et applications[END_REF]Paragraph II.7]).

By contrast, when the penalization function Ψ is differentiable (which is generally the case), it is rather natural to consider the mixed explicit-implicit discretized version of (2) 0 ∈ 1 λ n (x nx n-1 ) + Ax n + β n ∇Ψ(x n-1 ), which provides the following forward-backward algorithm [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF] x n = (I + λ n A) -1 (x n-1λ n β n ∇Ψ(x n-1 )),

whose study is the central subject of this paper. Some of the ideas in [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] are useful for our purposes but the mixed implicit-explicit character of the algorithm described in [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF] poses a different challenge that requires more subtle techniques, in some sense. The forward-backward schemes (in general) have the advantage of being easier to compute than the backward-backward schemes, which ensures enhanced applicability to real-life problems. Iterations have lower computational cost and can be computed exactly. They naturally lead to parallel splitting methods for solving coupled systems. However, they tend to be less stable than the implicit ones. An abundant literature has been devoted to the study of the forward-backward algorithms, and their many applications, see [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF]Attouch,Briceño and Combettes], [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]Combettes and Wajs] and the references therein. Thus the main original aspect of our approach is to show how such algorithms can be combined with penalization methods.

Diagonal algorithms combine classical algorithms (gradient, proximal, alternate minimization, Newton) with approximations methods (penalization, regularization, vanishing viscosity, among others). A rich literature has been devoted to this subject, see for example [START_REF] Alart | Penalization in non-classical convex programming via variational convergence[END_REF], [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF], [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF], [START_REF] Cabot | Proximal point algorithm controlled by a slowly vanishing term. Applications to hierarchical minimization[END_REF], [START_REF] Cominetti | Coupling general penalty schemes for convex programming with the steepest descent method and the proximal point algorithm[END_REF], [START_REF] Lehdili | Combining the proximal algorithm and Tikhonov regularization[END_REF], [START_REF] Peypouquet | Asymptotic convergence to the optimal value of diagonal proximal iterations in convex minimization[END_REF] and the references therein. A unifying view on these algorithms can be obtained by considering them as time discretization of some corresponding continuous-time nonautonomous differential inclusions 0 ∈ ẋ(t) + A(t)x(t) (see [START_REF] Alvarez | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces[END_REF], [START_REF] Alvarez | Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces[END_REF]). In our situation, A(t)x = Ax + β(t)∂Ψ(x) involves multiscale aspects. Our algorithms are naturally linked with diagonal methods involving asymptotically vanishing terms (viscosity methods). Passing from one to the other relies on time rescaling, see [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF]. They both involve multiscale aspects and they asymptotically lead to a hierarchical selection principle. For Tikhonov regularization see [START_REF] Lehdili | Combining the proximal algorithm and Tikhonov regularization[END_REF]Lehdili and Moudafi] and [START_REF] Cominetti | Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization[END_REF]Cominetti,Peypouquet and Sorin]. See [START_REF] Cabot | Proximal point algorithm controlled by a slowly vanishing term. Applications to hierarchical minimization[END_REF]Cabot] for some further related results and references. This result is even clearer when A = ∂Φ is the subdifferential of a proper lower-semicontinuous convex function Φ : H → R∪{+∞}. Assuming that some qualification condition holds (for instance if Φ is continuous), the variational inequality (1) is equivalent to [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF] x ∈ Argmin{Φ(z) : z ∈ ArgminΨ}.

Therefore, our results can also be considered as numerical methods for hierarchical minimization.

Our main results. The main set of hypotheses is the following:

(H 0 )        i) T A, C = A + N C is maximal monotone and S = (T A, C ) -1 0 = ∅; ii) For each p ∈ R(N C ) (the range of N C ), ∞ n=1 λ n β n Ψ * p βn -σ C p βn < ∞; iii) (λ n ) ∈ ℓ 2 \ ℓ 1 .
Depending on the regularity of the function Ψ we shall use a supplementary assumption on the step sizes and penalization parameters. A discussion on these hypotheses will be given later on.

We are able to prove the following results A, B, C: Let (x n ) be a sequence satisfying Algorithm (5) up to a numerical error ε n (see section 6 for precise details), and let (z n ) be the sequence of weighted averages (7)

z n = 1 τ n n k=1 λ k x k , where τ n = n k=1 λ k .
A. The sequence (z n ) converges weakly to a solution of (1) (Theorems 5 and 12).

B. If A is strongly monotone then (x n ) converges strongly to the unique solution of (1) (Theorems 7 and 12).

C. If A = ∂Φ for some proper lower-semicontinuous convex function Φ : H → R ∪ {+∞}, and either Φ or Ψ is inf-compact, then (x n ) converges weakly to a solution of (6) (Theorem 16). Our results encompass the asymptotic behavior of the well-known proximal point algorithm with variable time step λ n , see [START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF]Lions] and [START_REF] Brézis | Produits infinis de résolvantes[END_REF]Brézis and Lions]. See also [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]Peypouquet and Sorin] for a complete survey on the topic. It also brings new light to the Passty's Theorem (see section 4), which can be considered as a special instance of our algorithm. The fact that λ n → 0 is a key assumption for our results. Its relevance is discussed in section 4, Remark 15.

Organization of the paper. In section 1 we recall some basic facts about convex analysis and monotone operators, we state and discuss on the standing assumptions, and present some results from [START_REF] Opial | Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]Opial] and [START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF]Passty] that are useful for proving weak convergence of a sequence in a Hilbert space without a priori knowledge of the limit. Section 2 contains a general abstract result which is at the core of our asymptotic analysis. Section 3 contains our main results of type A, B for Algorithm [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF] when ∇Ψ is supposed to be Lipschitz continuous. Section 4 makes the links with Passty's Theorem. In section 5, we prove the weak convergence of trajectories generated by our algorithm when A = ∂Φ is the subdifferential of some proper lower-semicontinuous convex function Φ : H → R ∪ {+∞} (result of type C). In section 6 we address some application issues: we consider inexact version of our algorithm, comment on particular instances for the function Ψ and mention several domains of application including compressive sensing, which we discuss in more detail.

1. Preliminaries 1.1. Some facts of convex analysis and maximal monotone operator theory. Let Γ 0 (H) denote the set of all proper lower-semicontinuous convex functions on a Hilbert space H. The norm and inner product in H are denoted by • and • , • , respectively. Given F ∈ Γ 0 (H) and x ∈ H, the subdifferential of F at x is the set

∂F (x) = {x * ∈ H : F (y) ≥ F (x) + x * , y -x for all y ∈ H}. Given a nonempty closed convex set C ⊂ H its indicator function is defined as δ C (x) = 0 if x ∈ C and +∞ otherwise. The support function of C at a point x * is σ C (x * ) = sup y∈C x * , y . The normal cone to C at x is N C (x) = {x * ∈ H : x * , y -x ≤ 0 for all y ∈ C} if x ∈ C and ∅ otherwise. Observe that ∂δ C = N C . We denote the range of N C by R(N C ).
A monotone operator is a set-valued mapping A : H ⇉ H such that x *y * , xy ≥ 0 whenever x * ∈ Ax and y * ∈ Ay. It is maximal monotone if its graph is not properly contained in the graph of any other monotone operator. It is convenient to identify a maximal monotone operator A with its graph, thus we equivalently write

x * ∈ Ax or [x, x * ] ∈ A. The inverse A -1 : H ⇉ H of A is defined by x ∈ A -1 x * ⇔ x * ∈ Ax.
It is still a maximal monotone operator. For any maximal monotone operator A : H ⇉ H and for any λ > 0, the operator I + λA is surjective by Minty's Theorem (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]Brézis] or [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]). The operator (I + λA) -1 is nonexpansive and everywhere defined. It is called the resolvent of A of index λ.

Let N C be the normal cone to the set C and let A be a maximal monotone operator on H. Suppose the monotone operator T A, C = A + N C is maximal monotone and

S = (T A, C ) -1 0 = ∅.
By maximal monotonicity of T A, C , a point z belongs to S if, and only if 0w, zu ≥ 0 for all (u, w) ∈ T A, C .

Equivalently, a point z belongs to S if, and only if the following property holds [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF] w, uz ≥ 0 for all u ∈ dom(T A, C ) = C ∩ dom(A) and all w ∈ T A, C u.

In the sequel we shall often use this relation as a characterization of the equilibria.

If A = ∂Φ for some Φ ∈ Γ 0 (H) and if u ∈ S then there exists p ∈ N C (u) such that -p ∈ ∂Φ(u).

Hence for each x ∈ C one has

Φ(x) ≥ Φ(u) + -p, x -u = Φ(u) + σ C (p) -p, x ≥ Φ(u) because (9) p ∈ N C (u) ⇒ σ C (p) = p, u .
Thus, when A = ∂Φ the maximal monotonicity of T A, C implies S = Argmin{Φ(x) : x ∈ C}.

An operator A is strongly monotone with parameter α > 0 if

x *y * , xy ≥ α xy 2 whenever x * ∈ Ax and y * ∈ Ay. Observe that the set of zeroes of a maximal monotone operator which is strongly monotone must contain exactly one element.

Finally recall that the subdifferential of a function in Γ 0 (H) is maximal monotone. For Ψ ∈ Γ 0 (H) we denote by Ψ * the Fenchel conjugate of Ψ:

Ψ * (x * ) = sup y∈H { x * , y -Ψ(y)} .
1.2. Some useful results. We now state some results that will be used throughout this paper.

The following lemma gathers results from [START_REF] Opial | Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF][START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF] (see also [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]). Though simple, it is a powerful tool for proving weak convergence in Hilbert spaces without a priori knowledge of the limit. Let (x n ) be any sequence in H. Being given a sequence (λ k ) of positive numbers such that k λ k = +∞, let us define (z n ) as in [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF]:

z n = 1 τ n n k=1 λ k x k , where τ n = n k=1 λ k .
Lemma 1 (Opial-Passty). Let F be a nonempty subset of H and assume that lim

n→∞ x n -x exists for all x ∈ F . If every weak cluster point of (x n ) (resp. (z n )) lies in F , then (x n ) (resp. (z n ))
converges weakly to a point in F as n → +∞.

Next, let us recall the following elementary fact concerning real sequences. We include the proof for the reader's convenience.

Lemma 2. Let (a n ), (b n ) and (ε n ) be real sequences. Assume that (a n ) is bounded from below, (b n ) is nonnegative, (ε n ) ∈ ℓ 1 and a n+1 -a n + b n ≤ ε n for every n ∈ N. Then (a n ) converges and (b n ) ∈ ℓ 1 .
Proof. Define the sequence (w n ) by w n = a n -n-1 k=1 ε k . The sequence (w n ) is bounded from below and nonincreasing, hence convergent. It follows that lim

n→+∞ a n = +∞ k=1 ε k + lim n→+∞ w n . Next observe that n k=1 b k ≤ a 1 -a n+1 + n k=1 ε k to conclude.
Finally, the Baillon-Haddad Theorem (see [START_REF] Baillon | Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones[END_REF]), stated below as Lemma 3, shows the relationship between the Lipschitz continuity and the cocoerciveness of the gradient of a convex differentiable function. It is a well established fact that the cocoerciveness of the operator, with respect to which the forward step is performed, is a crucial property for obtaining the convergence of the forward-backward algorithm, see [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF], [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF].

Lemma 3 (Baillon-Haddad). Let Ψ : H → R be a convex differentiable function. The following are equivalent: i) ∇Ψ is Lipschitz continuous with constant θ. ii) ∇Ψ is 1 θ -cocoercive, which means that, for every x, y belonging to H ∇Ψ(y) -∇Ψ(x), y -x ≥ 1 θ ∇Ψ(y) -∇Ψ(x) 2 .

A general abstract result

In this section, we prove an abstract convergence result (Theorem 5) which is at the core of the asymptotic analysis of our algorithms. It is valid for a general convex lower semicontinuous penalization function Ψ. In the next section, we shall see that the assumptions of this theorem are satisfied when Ψ is a differentiable function whose gradient ∇Ψ is θ-Lipschitz continuous and the step sizes and penalization parameters satisfy a simple hypothesis with respect to θ. This approach allows us to better delineate the importance of this regularity assumption and opens the gate to possible further extensions.

Let us fix the notations. Let A : H ⇉ H be a maximal monotone operator, Ψ : H → R ∪ {+∞} a proper lower-semicontinuous convex function with C = Argmin(Ψ) = ∅ and min(Ψ) = 0. Finally consider (λ n ), (β n ) two sequences of positive real numbers. We are interested in sequences (x n ) generated by Algorithm (basic form): Fix x 1 ∈ H. For each n ∈ N set [START_REF] Baillon | Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones[END_REF] x

n+1 = (I + λ n A) -1 (x n -λ n β n w n ), w n ∈ ∂Ψ(x n ).
This is equivalent to

(11) x n -λ n β n w n ∈ x n+1 + λ n Ax n+1 and x n -x n+1 λ n -β n w n ∈ Ax n+1 .
This algorithm is well defined if, for example, Ψ is everywhere defined, which will be the case in the next section. In this section we do not discuss any further the well posedness of the algorithm. Instead, we take for granted the existence of sequences (x n ) satisfying [START_REF] Baillon | Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones[END_REF].

Set T A, C = A + N C , so that dom(T A, C ) = C ∩ dom(A) and S = T -1 A, C 0. If [u, w] ∈ T A, C there exist v ∈ Au and p ∈ N C (u) such that w = v + p. Recall that Ψ vanishes on Argmin(Ψ) = C. Lemma 4. Take [u, w] ∈ T A, C so that w = v + p for some v ∈ Au and p ∈ N C (u).
The following inequality holds for all n ∈ N:

x n+1 -u 2 -x n -u 2 ≤ 2λ n β n Ψ * p β n -σ C p β n +2λ 2 n β 2 n w n 2 +2λ 2 n v 2 +2λ n w, u-x n .
Proof. Since xn-x n+1 λn β n w n ∈ Ax n+1 and v ∈ Au, the monotonicity of A implies

x n -x n+1 -λ n (β n w n + v), x n+1 -u ≥ 0.
Therefore,

x n -x n+1 , u -x n+1 ≤ λ n β n w n + v, u -x n+1 . Since 2 x n -x n+1 , u -x n+1 = x n+1 -u 2 -x n -u 2 + x n+1 -x n 2
we have

x n+1 -u 2 -x n -u 2 ≤ 2λ n β n w n + v, u -x n+1 -x n+1 -x n 2 = 2λ n β n w n + v, u -x n + 2λ n β n w n + v, x n -x n+1 -x n+1 -x n 2 ≤ 2λ n β n w n + v, u -x n + λ 2 n β n w n + v 2 ≤ 2λ n β n w n + v, u -x n + 2λ 2 n β 2 n w n 2 + 2λ 2 n v 2 . ( 12 
)
The proof will be complete if we verify that [START_REF] Brézis | Produits infinis de résolvantes[END_REF] 

β n w n + v, u -x n ≤ β n Ψ * p β n -σ C p β n + w, u -x n .
To this end we first write ( 14)

β n w n + v, u -x n = β n w n , u -x n + v, u -x n .
Since u ∈ C, and w n ∈ ∂Ψ(x n ) the subdifferential inequality for the convex function Ψ gives

(15) 0 = Ψ(u) ≥ Ψ(x n ) + w n , u -x n .
Combining inequalities ( 14) and ( 15) and recalling that v = wp we obtain

β n w n + v, u -x n ≤ -β n Ψ(x n ) + v, u -x n = -β n Ψ(x n ) + w -p, u -x n = p, x n -β n Ψ(x n ) -p, u + w, u -x n = β n p βn , x n -Ψ(x n ) -p βn , u + w, u -x n ≤ β n Ψ * p βn -p βn , u + w, u -x n . (16) Since p ∈ N C (u), one has p, c -u ≤ 0 for all c ∈ C, thus p βn , u = sup c∈C p βn , c = σ C p βn .
Using this fact in [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF] we obtain [START_REF] Brézis | Produits infinis de résolvantes[END_REF], which completes the proof.

2.1. Ergodic convergence. Consider a sequence (x n ) satisfying [START_REF] Baillon | Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones[END_REF] and the sequence (z n ) of averages as defined in [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF].

Theorem 5. Let (H 0 ) hold. If (λ n β n w n ) ∈ ℓ 2 then the sequence (z n ) converges weakly as n → ∞ to a point in S.
Proof. By Opial-Passty Lemma 1, it suffices to prove that the two following properties hold: O1) for each u ∈ S the sequence ( x nu ) is convergent, O2) every weak cluster point of the sequence (z n ) lies in S.

For item O1), let u ∈ S. Then we can take w = 0 in Lemma 4 to obtain

x n+1 -u 2 -x n -u 2 ≤ 2λ n β n Ψ * p β n -σ C p β n + 2λ 2 n β 2 n w n 2 + 2λ 2 n v 2 .
Since the right-hand side is summable, and the sequence ( x nu ) is bounded from below, we immediately deduce that lim n→∞

x nu exists by Lemma 2.

For item O2), as we already observed in (8), since T A, C is maximal monotone, a point z belongs to S if, and only if, w, u

-z ≥ 0 for all [u, w] ∈ T A, C . Take u ∈ C ∩ dom(A) and w ∈ T A, C u. Recall from Lemma 4 that x n+1 -u 2 -x n -u 2 ≤ 2λ n β n Ψ * p β n -σ C p β n +2λ 2 n β 2 n w n 2 +2λ 2 n v 2 +2 w, λ n u-λ n x n .
Summing up for n = 1, . . . , N , discarding the nonnegative term x N +1u 2 and dividing by

2τ N = 2 N k=1 λ k we obtain (17) - x 1 -u 2 2τ N ≤ L 2τ N + w, u -z N
for some positive constant L. For example, take

L = 2 ∞ n=1 λ n β n Ψ * p β n -σ C p β n + 2 ∞ n=1 λ 2 n β 2 n w n 2 + 2 v 2 ∞ n=1 λ 2 n ,
which is finite in view of our assumptions. By passing to the limit in [START_REF] Donoho | Atomic decomposition by basis pursuit[END_REF] and using that τ N → +∞ as

N → +∞ (because (λ n ) / ∈ ℓ 1 ) we obtain lim inf n→∞ w, u -z n ≥ 0.
Finally, if some subsequence (z n k ) converges weakly to z, then 0 ≤ w, uz . Since this is true for each w ∈ T A, C u and T A, C is maximal monotone, we conclude that z ∈ S. 

(y n ) defined by y n = x n -λ n β n w n satisfies lim n→∞ x n -y n = 0.
2.2. Strong convergence for strongly monotone operators. Recall that A is strongly monotone with parameter α > 0 if

x *y * , xy ≥ α xy 2 whenever x * ∈ Ax and y * ∈ Ay. As a distinctive feature, the set of zeroes of a maximal monotone operator which is strongly monotone is a singleton (thus nonempty). We now prove the strong convergence of the sequences (x n ) defined by Algorithm [START_REF] Baillon | Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones[END_REF] when A is a maximal monotone operator which is strongly monotone.

Theorem 7. Let (H 0 ) hold. If (λ n β n w n ) ∈ ℓ 2
and the operator A is strongly monotone then any sequence (x n ) generated by Algorithm [START_REF] Baillon | Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones[END_REF] converges strongly to the unique u ∈ S.

Proof. Recall that xn-x n+1 λn β n w n ∈ Ax n+1 . Let u be the unique element in S. Hence there exists v ∈ Au and p ∈ N c (u) such that v + p = 0. The strong monotonicity of A implies

x n -x n+1 -λ n (β n w n + v), x n+1 -u ≥ λ n α x n+1 -u 2 .
We follow the arguments in the proof of Lemma 4 (with w = 0) to obtain successively

2αλ n x n+1 -u 2 + x n+1 -u 2 -x n -u 2 ≤ 2λ n β n w n + v, u -x n+1 -x n+1 -x n 2 ,
and

2αλ n x n+1 -u 2 + x n+1 -u 2 -x n -u 2 ≤ 2λ n β n Ψ * 2p βn -σ C 2p βn +2λ 2 n β 2 n w n 2 +2λ 2 n v 2 . Summation gives 2α ∞ n=1 λ n x n+1 -u 2 ≤ x 1 -u 2 +2 ∞ n=1 λ n β n Ψ * 2p βn -σ C 2p βn +2 ∞ n=1 λ 2 n β 2 n w n 2 +λ 2 n v 2 < ∞. Since ∞ n=1
λ n = +∞ and lim n→∞

x nu exists, we must have lim n→∞

x nu = 0.

3. The cocoercive case.

When the penalty function Ψ is smooth enough, we are going to exhibit conditions that only involve the given data of the problem, and which guarantee the summability assumption on the sequence (λ n β n w n ). Throughout this section we assume that Ψ is a differentiable function whose gradient ∇Ψ is θ-Lipschitz continuous. By virtue of Lemma 3 this is equivalent to ∇Ψ being 1 θcocoercive. Then w n = ∇Ψ(x n ) and our basic algorithm now writes Algorithm (cocoercive case): Fix x 1 ∈ H. For each n ∈ N set [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] x n+1 = (I +

λ n A) -1 (x n -λ n β n ∇Ψ(x n )).
Consider a sequence (x n ) satisfying [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. Lemma 10 below is a refinement of Lemma 4 that will be used later to show our main convergence result (Theorem 12). We shall first prove two intermediate results:

Lemma 8. Take u ∈ C ∩ dom(A) and v ∈ Au. Then for all η ≥ 0 and all n ∈ N we have

(19) x n+1 -u 2 -x n -u 2 + η 1 + η x n+1 -x n 2 + 2η 1 + η λ n β n Ψ(x n ) ≤ λ n β n (1 + η)λ n β n - 2 θ(1 + η) w n 2 + 2λ n v, u -x n+1 . Proof. Since v ∈ Au and x n -x n+1 -λ n β n w n ∈ λ n Ax n+1 , the monotonicity of A implies (20) x n -x n+1 -λ n β n w n -λ n v, x n+1 -u ≥ 0 so that x n -x n+1 , u -x n+1 ≤ λ n β n w n + v, u -x n+1 ,
which in turn gives

(21) x n+1 -u 2 -x n -u 2 + x n+1 -x n 2 ≤ 2λ n β n w n + v, u -x n+1 .
By developping the right-hand side, we deduce the following inequality

(22) x n+1 -u 2 -x n -u 2 + x n+1 -x n 2 ≤ 2λ n β n w n , u -x n + 2λ n β n w n , x n -x n+1 + 2λ n v, u -x n+1 .
We now focus on the first term of the right-hand side of [START_REF] Donoho | Sparse nonnegative solutions of underdetermined linear equations by linear programming[END_REF]. We give two different bounds of the term w n , ux n , each of which will be essential in the following. First, the cocoercivness of ∇Ψ writes at points x n and u

∇Ψ(x n ) -∇Ψ(u), x n -u ≥ 1 θ ∇Ψ(x n ) -∇Ψ(u) 2 .
Since ∇Ψ(x n ) = w n and ∇Ψ(u) = 0, we have

(23) w n , u -x n ≤ - 1 θ w n 2 .
Second, the subdifferential inequality

Ψ(u) ≥ Ψ(x n ) + ∇Ψ(x n ), u -x n gives, since Ψ(u) = 0, ( 24 
) w n , u -x n ≤ -Ψ(x n ).
Take η ≥ 0, and bound the first term on the right-hand side of ( 22) by using a convex combination of inequalities ( 23) and [START_REF] Kaplan | Regularized penalty method for non-coercive parabolic optimal control problems[END_REF], namely [START_REF] Lehdili | Combining the proximal algorithm and Tikhonov regularization[END_REF] 2λ

n β n w n , u -x n ≤ - 2 θ(1 + η) λ n β n w n 2 - 2η 1 + η λ n β n Ψ(x n ).
For the remaining term 2λ n β n w n , x nx n+1 , use the identity

1 1 + η x n+1 -x n + (1 + η)λ n β n w n 2 = 1 1 + η x n+1 -x n 2 + (1 + η)λ 2 n β 2 n w n 2 + 2λ n β n w n , x n+1 -x n ,
to obtain the bound

(26) 2λ n β n w n , x n -x n+1 ≤ 1 1 + η x n+1 -x n 2 + (1 + η)λ 2 n β 2 n w n 2 .
Inequalities ( 22), ( 25) and ( 26) together give

x n+1 -u 2 -x n -u 2 + η 1 + η x n+1 -x n 2 + 2η 1 + η λ n β n Ψ(x n ) ≤ λ n β n (1 + η)λ n β n - 2 θ(1 + η) w n 2 + 2λ n v, u -x n+1
and the proof is complete. 

x n+1 -u 2 -x n -u 2 + a x n+1 -x n 2 + λ n β n Ψ(x n ) + λ n β n w n 2 ≤ 2λ n v, u -x n + bλ 2 n v 2 .
Proof. We begin by analyzing the last term on the right-hand side of [START_REF] Cominetti | Coupling general penalty schemes for convex programming with the steepest descent method and the proximal point algorithm[END_REF]. Observe that

2λ n v, u -x n+1 = 2 λ n v, x n -x n+1 + 2λ n v, u -x n ≤ η 2(1 + η) x n+1 -x n 2 + 2(1 + η) η λ 2 n v 2 + 2λ n v, u -x n .
Replacing this in inequality [START_REF] Cominetti | Coupling general penalty schemes for convex programming with the steepest descent method and the proximal point algorithm[END_REF], and adding a term η 1+η λ n β n w n 2 to each side, we deduce that

x n+1 -u 2 -x n -u 2 + η 2(1 + η) x n+1 -x n 2 + 2η 1 + η λ n β n Ψ(x n ) + η 1 + η λ n β n w n 2 ≤ λ n β n (1 + η)λ n β n - 2 θ(1 + η) + η 1 + η w n 2 + 2(1 + η) η λ 2 n v 2 + 2λ n v, u -x n .
To conclude, since lim sup

n→∞ λ n β n < 2/θ, there exists N ∈ N such that λ n β n < 2/θ for all n ≥ N . Notice that lim η→0 λ n β n (1 + η)λ n β n - 2 θ(1 + η) + η 1 + η = λ n β n λ n β n - 2 θ < 0.
Therefore, it suffices to take η 0 > 0 small enough, then set

a = η 0 2(1 + η 0 ) and b = 2(1 + η 0 ) η 0
to obtain [START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF].

Without any loss of generality we may assume that λ n β n < 2/θ for all n ∈ N and that inequality [START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF] holds for all n ∈ N.

With the notation of the preceding lemma, for u ∈ C ∩ dom(A) set

D n (u) = x n+1 -u 2 -x n -u 2 + a x n+1 -x n 2 + λ n β n 2 Ψ(x n ) + λ n β n w n 2 .
Notice the difference with the left-hand side of inequality [START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF].

Lemma 10. Let u ∈ C ∩ dom(A). Take w ∈ T A, C u, v ∈ Au and p ∈ N C (u), so that v = w -p.
The following inequality holds:

(28) D n (u) ≤ aλ n β n 2 Ψ * 4p aβ n -σ C 4p aβ n + 2λ n w, u -x n + bλ 2 n v 2 .
Proof. First observe that

2λ n v, u -x n - aλ n β n 2 Ψ(x n ) = 2λ n w, u -x n + 2λ n p, x n - aλ n β n 2 Ψ(x n ) -2λ n p, u = 2λ n w, u -x n + aλ n β n 2 4p aβ n , x n -Ψ(x n ) - 4p aβ n , u ≤ 2λ n w, u -x n + aλ n β n 2 Ψ * 4p aβ n - 4p aβ n , u . Since 4p aβn ∈ N C (u), the support function satisfies σ C ( 4p aβn ) = 4p aβn , u . Whence 2λ n v, u -x n ≤ aλ n β n 2 Ψ(x n ) + 2λ n w, u -x n + aλ n β n 2 Ψ * 4p aβ n -σ C 4p aβ n .
Using inequality [START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF] and regrouping the terms containing Ψ(x n ) we obtain [START_REF] Opial | Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]. ii) The series

∞ n=1 x n+1 -x n 2 , ∞ n=1 λ n β n Ψ(x n ) and ∞ n=1 λ n β n w n 2 are convergent.
In particular, lim

n→∞ x n+1 -x n = 0. If moreover lim inf n→∞ λ n β n > 0 then lim n→∞ Ψ(x n ) = lim n→∞ w n = 0
and every weak cluster point of (x n ) lies in C.

Proof. Since u ∈ S one can take w = 0 in [START_REF] Opial | Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]. By hypothesis the right-hand side is summable and all the conclusions follow using Lemma 2.

Recall that z n = 1 • (weak ergodic convergence) A being a general maximal monotone operator, the sequence (z n ) converges weakly as n → ∞ to a point in S. • (strong convergence) A being maximal monotone and strongly monotone, the sequence (x n ) converges strongly as n → ∞ to a point in S.

Proof. By Proposition 11, item ii), we have

∞ n=1 λ n β n w n 2 < ∞. Since the sequence (λ n β n ) is
bounded from above by some constant c, it follows that

λ 2 n β 2 n w n 2 ≤ c λ n β n w n 2 < +∞.
Therefore the results follow from Theorems 5 and 7, respectively.

Strong coupling and Passty's Theorem

Our method sheds new light on Passty's Theorem [29, Theorem 1], which is a classical splitting alternating algorithm for finding zeroes of the sum of two maximal monotone operators. Passty's Theorem, which is itself an extension of a result by P. L. Lions [START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF], is in the line of the Lie-Trotter-Kato formulae, and can be stated as follows.

Theorem 13 (Passty). Let A 1 and A 2 be two maximal monotone operators on a Hilbert space, maximal monotone sum A 1 + A 2 , and such that (A 1 A 2 ) -1 (0) = ∅. Let (µ n ) be a sequence of positive real numbers, which belongs to ℓ 2 \ ℓ 1 . Every sequence (x n ) generated by the algorithm [START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF] x 

n = (I + µ n A 2 ) -1 (I + µ n A 1 ) -1 x n-
A(x 1 , x 2 ) = (A 1 x 1 , A 2 x 2 ). Set C = {(x 1 , x 2 ) : x 1 = x 2 } and observe that N C (x) = C ⊥ = {(p 1 , p 2 ) : p 1 + p 2 = 0} if x ∈ C and is empty otherwise. We deduce that (x 1 , x 2 ) ∈ S ⇔ x 1 = x 2 = u for some u ∈ H and A 1 u+A 2 u ∋ 0.
Let Ψ be the (strong) 1 coupling function

Ψ(x 1 , x 2 ) = 1 2 x 1 -x 2 2 so that ∇Ψ(x 1 , x 2 ) = (x 1 -x 2 , x 2 -x 1 ). Set x n = (x 1 n , x 2 n ), n ∈ N.
In our situation, the cocoercive Algorithm (18) becomes Algorithm (strong coupling):

(30) x 1 n+1 = (I + λ n A 1 ) -1 x 1 n -λ n β n x 1 n -x 2 n x 2 n+1 = (I + λ n A 2 ) -1 x 2 n -λ n β n x 2 n -x 1 n .
The limiting case λ n β n = 1 is of particular interest since (30) simplifies to

x 1 n+1 = (I + λ n A 1 ) -1 x 2 n x 2 n+1 = (I + λ n A 2 ) -1 x 1 n . This implies (31) x 1 n+1 = (I + λ n A 1 ) -1 (I + λ n-1 A 2 ) -1 x 1 n-1 x 2 n+1 = (I + λ n A 2 ) -1 (I + λ n-1 A 1 ) -1 x 2 n-1
and we recover Passty's algorithm on the sequence (x 2 2n ) provided λ 2n+1 = λ 2n = µ n . Let us consider the conditions of Theorem 12 in this situation (strong coupling case):

1 For strong coupling versus weak coupling see section 6.

i) Take (λ n ) ∈ ℓ2 \ ℓ 1 . ii) Because of the quadratic property of the function Ψ, the condition

∞ n=1 λ n β n Ψ * p β n -σ C p β n < ∞ for all p ∈ R(N C ) is equivalent to ∞ n=1 λ n β n < ∞.
ii) An elementary computation shows that ∇Ψ is 2-Lipschitz continuous (θ = 2), or equivalently that ∇Ψ is 1 2 -cocoercive. The condition lim sup

n→∞ λ n β n < 2/θ is equivalent to lim sup n→∞ λ n β n < iv) The maximal monotonicity of A + N C is equivalent to that of A 1 + A 2 :
Proof. By Minty's Theorem it suffices to prove that the surjectivity of I + (A + N C ) in H × H is necessary and sufficient for the surjectivity of 2I +(A 1 +A 2 ) in H. 2 For necessity, let (y 1 , y 2 ) ∈ H×H and take x 1 ∈ H such that 2x 1 +z 1 +z 2 = y 1 +y 2 , where

z i ∈ A i x 1 . Then set -p 2 = p 1 = y 1 -x 1 -z 1 . Clearly (p 1 , p 2 ) ∈ N C (x 1 , x 1 ) and (I + (A + N C ))(x 1 , x 1 ) ∋ (y 1 , y 2 ).
For sufficiency, let y ∈ H and choose (x 1 , x 2 ) such that (I + (A + N C ))(x 1 , x 2 ) ∋ (y, 0). This implies x 1 = x 2 and there exists p ∈ H such that

x 1 + A 1 x 1 + p ∋ y and x 1 + A 2 x 1 -p ∋ 0. Whence 2x 1 + A 1 x 1 + A 2 x 1 ∋ y.
Clearly, items i)-iii) are satisfied if one takes (λ n ) ∈ ℓ 2 \ ℓ 1 and λ n β n = γ for some γ < 1. By combining the previous results we obtain the following: Proposition 14 (Strong coupling). Let A 1 and A 2 be two maximal operators on a Hilbert space H with maximal monotone sum A 1 + A 2 , and such that (A 1 + A 2 ) -1 (0) = ∅. Let (λ n ) be a sequence of positive real numbers, which belongs to ℓ 2 \ ℓ 1 . Take 0 < γ < 1.

i) Every sequence (x 1 n , x 2 n ) generated by the algorithm

(32) x 1 n+1 = (I + λ n A 1 ) -1 (1 -γ)x 1 n + γx 2 n x 2 n+1 = (I + λ n A 2 ) -1 (1 -γ)x 2 n + γx 1 n
converges weakly in average to some element (u, u) with u being equal to a zero of

A 1 + A 2 .
ii) Suppose moreover that A 1 + A 2 is strongly monotone. Then the sequences (x 1 n ) and (x 2 n ) strongly to the unique zero of A 1 + A 2 .

Remark 15. The above algorithm, just like Passty's, is a splitting algorithm: at each step, it only requires the computation of the resolvents of the operators A 1 and A 2 , separately. We point out two noticeable differences between our algorithm and Passty's algorithm.

(1) The algorithm ( 32) is a parallel splitting algorithm. By contrast, Passty's algorithm is naturally described as an alternating algorithm. Indeed they are naturally linked as shown by ( 31) by considering the sequences x 1 2n+1 and x 1 2n . (2) In Proposition 14 it is assumed that 0 < γ < 1. The case γ = 1, which corresponds to Passty's Theorem, does not fit directly into our framework, which is based on the cocoercivness property of the coupling function. Indeed, we shall prove in the next subsection that the case γ = 1 can be obtained by adapting our approach to this specific situation.

(3) To better understand the importance of the assumption λ n → 0 in our algorithms, take [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]. An elementary computation shows that the stationary points of ( 32) are the minimizers of the function f 1 (x 1 )+f 2 (x 2 )+ 1 2λ x 1 -x 2 2 (which is different from the original problem and approaches it only when λ → 0). This is a specific feature of our approach that makes it different from other decoupling algorithms.

λ n ≡ λ > 0, γ = 1/2, A 1 = ∇f 1 , A 2 = ∇f 2 in
Barycenter. In (32) take A 1 = ∂δ C 1 and A 2 = ∂δ C 2 , where C 1 and C 2 are nonempty closed convex sets in H. Then the resolvent (I + λ n A i ) -1 is the projection onto C i . The iteration described in (32) becomes

x 1 n+1 = P C 1 (1 -γ)x 1 n + γx 2 n x 2 n+1 = P C 2 (1 γ)x 2 n + γx 1 n .
Observe that we recover the classical barycentric projection method.

The case of M variables. This procedure can be easily generalized to M variables. Let A 1 , . . . A M be maximal montone operators in a Hilbert space H. Set H = H M and denote x = (x 1 , . . . x M ). Define the operator A on H by

A( x) = (A 1 x 1 , . . . , A M x M ) and set Ψ( x) = 1 2 i<j x i -x j 2 . The j-th partial derivative of Ψ is given by ∂Ψ ∂x j ( x) = (M -1)x j -k =j x k and ∇Ψ is Lipschitz with constant θ = 2(M -1). Let λ n β n < 2 θ = 1 M -1 . If we set α n = λ n β n (M -1)
then we can write

x j n+1 = (I + λ n A j ) -1   (1 -α n )x j n + α n M -1 k =j x k n   , for j = 1, . . . , M.
We now show that, in the specific situation of the Passty's Theorem, the convergence result still holds in the limiting (equality) case. This provides an alternative proof for Theorem 13.

4.2.

A approach to Passty's Theorem. Under the considerations and notation of the preceding subsection, setting γ = 1, we obtain (31):

x 1 n+1 = (I + λ n A 1 ) -1 (I + λ n-1 A 2 ) -1 x 1 n-1 x 2 n+1 = (I + λ n A 2 ) -1 (I + λ n-1 A 1 ) -1 x 2 n-1
, which is precisely Passty's algorithm on the sequence (x 2 2n ) provided λ 2n+1 = λ 2n = µ n . Proof of Theorem 13. With the notation of the preceding subsection, first remark that

∇Ψ(x) = (x 1 -x 2 , x 2 -x 1 ) = x -sx,
where we have written x = (x 1 , x 2 ) and sx = ( [START_REF] Cominetti | Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization[END_REF] gives

x 2 , x 1 ). Let u ∈ C ∩ dom(A) and v ∈ Au. That is, u = (u 1 , u 1 ) with u 1 ∈ dom(A 1 ) ∩ dom(A 2 ) and v = (v 1 , v 2 ) with v 1 ∈ A 1 u 1 and v 2 ∈ A 2 u 1 . Since w n = ∇Ψ(x n ) = x n -sx n , inequality
sx n -x n+1 , x n+1 -u ≤ λ n v, u -x n+1 . Since x n -u = sx n -u , we deduce that (33) x n+1 -u 2 -x n -u 2 + x n+1 -sx n 2 ≤ 2λ n v, x n -x n+1 + 2λ n v, u -x n . Noticing that 0 ≤ x n+1 -sx n + λ n v 2 = x n+1 -sx n 2 + 2λ n v, x n+1 -sx n + λ 2 n v 2 ,
we obtain the two following inequalities

x n+1 -u 2 -x n -u 2 ≤ 2λ n v, u -sx n + λ 2 n v 2 (34) x n+1 -u 2 -x n -u 2 ≤ 2λ n v, u -x n+1 . (35) But su = u and v, u -sx n = sv, u -x n , thus (36) x n+1 -u 2 -x n -u 2 ≤ 2λ n sv, u -x n + λ 2 n v 2 .
Write (36) at rank 2n + 1, and (35) at rank 2n

x 2n+2 -u 2 -x 2n+1 -u 2 ≤ 2λ 2n+1 sv, u -x 2n+1 + λ 2 2n+1 v 2 x 2n+1 -u 2 -x 2n -u 2 ≤ 2λ 2n v, u -x 2n+1
Since λ 2n+1 = λ 2n , summing the two above inequalities we obtain (37)

x 2n+2 -u 2 -x 2n -u 2 ≤ 2λ 2n v + sv, u -x 2n+1 + λ 2 2n+1 v 2 .
Take

u 1 ∈ (A 1 + A 2 ) -1 (0) and v = (v 1 , -v 1 ). From x 2n+2 -u 2 -x 2n -u 2 ≤ λ 2 2n+1 v 2
and Lemma 2 we deduce the convergence of x 2nu . Next, from (34) and (35), we deduce the convergence of x 2n+1u to the same limit. We now consider the sequences of averages. First set

z odd n = n k=0 λ 2k+1 x 2k+1 n k=0 λ 2k+1
and let z ∞ be a weak cluster point of (z odd n ) as n → ∞. In view of (37), since λ 2n = λ 2n+1 we have

x 2n+2 -u 2 -x 0 -u 2 n k=0 λ 2k+1 ≤ 2 v + sv, u -z odd n + n k=0 λ 2 2k+1 v 2 n k=0 λ 2k+1
.

Passing to the limit we obtain

0 ≤ v + sv, u -z ∞ , thus 0 ≤ v 1 + v 2 , u 1 -z ∞,1 and 0 ≤ v 1 + v 2 , u 1 -z ∞,2
. This being true for every u 1 ∈ dom(A 1 ) ∩ dom(A 2 ), and every v 1 +v 2 ∈ (A 1 +A 2 ) u 1 , we deduce that (A 1 +A 2 ) z ∞,1 ∋ 0 and (A 1 +A 2 ) z ∞,2 ∋ 0. The Opial Lemma, implies the weak convergence of and (z odd n ) to a zero of (A

1 + A 2 ) × (A 1 + A 2 ). Now set z even n = n k=0 λ 2k x 2k n k=0 λ 2k .
From [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF], we deduce that lim n→∞ x n+1sx n 2 = 0. This implies that the sequences (z even n ), and (sz odd n ) have the same weak limits. We conclude that the sequence of averages

z n = n k=0 λ k x k n k=0 λ k also converges to a zero of (A 1 + A 2 ) × (A 1 + A 2 ).
Observe that Passty's Theorem is not contained in Theorem 12 but the proof uses the same ideas. An interesting question is whether or not there exist conditions on the function Ψ (more general than strong coupling) such that convergence can still be granted in the limiting case λ n β n ≡ 2/θ.

Weak convergence for subdifferentials

In this section, we consider algorithm [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] in the special case where A = ∂Φ is the subdifferential of a proper lower-semicontinuous convex function Φ : H → R ∪ {+∞}. Assuming that ∂Φ + N C is maximal monotone, the solution set S is equal to

S = (∂Φ + N C ) -1 (0) = Argmin C Φ.
In the following theorem, we are going to prove that the sequence (x n ) generated by algorithm [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] converges weakly to a point in S. We will need to make an inf-compactness assumption on the functions Φ or Ψ. Recall that a function f : H → R ∪ {+∞} is said to be inf-compact if, ∀r > 0, ∀λ ∈ R, {x ∈ H : x ≤ r, f (x) ≤ λ} is relatively compact in H.

Let dist(•, S) denote the distance function to the closed convex set S and set d(x) = 1 2 dist(x, S) 2 . Then d is a convex differentiable function and ∇d(x) = x -P S x, where P S denotes the projection onto the set S.

It is convenient to reformulate algorithm ( 18) as ( 38)

ϕ n+1 := x n -x n+1 λ n -β n w n ∈ ∂Φ(x n+1 ),
where w n = ∇Ψ(x n ).

Theorem 16. Assume that ∂Φ + N C maximal monotone, ∇Ψ is θ-Lipschitz continuous, and

Φ or Ψ is inf-compact. Suppose that 0 < lim inf n→∞ λ n β n ≤ lim sup n→∞ λ n β n < 2/θ, (λ n ) ∈ ℓ 2 \ ℓ 1 and ∞ n=1 λ n β n Ψ * p βn -σ C p βn
< ∞ for all p ∈ R(N C ). Then lim n→∞ d(x n ) = 0 and the sequence

(x n ) converges weakly as n → ∞ to a point in S. Convergence is strong if Ψ is inf-compact.
Proof. The key part is that lim 

d(x n ) ≥ d(x n+1 ) + x n+1 -P S x n+1 , x n -x n+1 = d(x n+1 ) + λ n x n+1 -P S x n+1 , ϕ n+1 + λ n β n x n+1 -P S x n+1 , w n , (39) 
where ϕ n+1 is given by (38). Let

α = min{Φ(z) : z ∈ C}.
From the convexity of Φ and (38) we deduce that α = Φ(P S x n+1 ) ≥ Φ(x n+1 ) + ϕ n+1 , P S x n+1x n+1 and so (40) ϕ n+1 , x n+1 -P S x n+1 ≥ Φ(x n+1 )α.

Since ∇Ψ(P S x n+1 ) = 0, the 1/θ cocoercivity of ∇Ψ implies

w n , x n -P S x n+1 ≥ 1 θ w n 2 , whence w n , x n+1 -P S x n+1 ≥ 1 θ w n 2 + w n , x n+1 -x n ≥ - θ 4 x n+1 -x n 2 . (41)
We may suppose, without loss of generality, that sup n∈N λ n β n ≤ 2/θ. Replacing (40) and ( 41) in (39) we obtain

(42) d(x n+1 ) -d(x n ) + λ n [Φ(x n+1 ) -α] ≤ 1 2 x n+1 -x n 2 .
Observe that, by virtue of part ii) in Proposition 11 the right-hand side of the previous inequality is summable. Since x n+1 need not be in C one cannot guarantee that Φ(x n+1 )α ≥ 0 for all n ∈ N. We shall analyze the two possible situations separately, namely Case I: There exists n 0 ∈ N such that Φ(x n ) ≥ α for all n ≥ n 0 .

Case II: For each n ∈ N there exists n ′ > n such that Φ(x n ′ ) < α.

In our analysis we follow the arguments in [START_REF] Cabot | Proximal point algorithm controlled by a slowly vanishing term. Applications to hierarchical minimization[END_REF]Cabot], [6, Attouch-Czarnecki] which can be traced back to [START_REF] Baillon | A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming[END_REF]. Case I: For every n ≥ n 0 we have

d(x n+1 ) -d(x n ) ≤ 1 2 x n+1 -x n 2 .
Since d(x n ) is bounded from below and the right-hand side is summable, we conclude that lim

n→∞ d(x n )
exists by Lemma 2. In order to verify that this limit must be 0 it suffices to find a subsequence that converges to 0. Let us sum up inequality (42) for n = n 0 , . . . , N to obtain

d(x N +1 ) -d(x n 0 ) + N n=n 0 λ n [Φ(x n+1 ) -α] ≤ 1 2 N n=n 0 x n+1 -x n 2 .
Letting N → ∞ we deduce that

∞ n=n 0 λ n [Φ(x n+1 ) -α] < +∞. Since (λ n ) / ∈ ℓ 1 we must have lim inf n→∞ Φ(x n ) ≤ α. Consider a subsequence (x kn ) such that lim n→∞ Φ(x kn ) = lim inf n→∞ Φ(x n ).
Clearly the sequence (Φ(x kn )) is bounded. By part i) in Proposition 11, the sequence (x n ) is bounded and so (Ψ(x kn )) is bounded as well. The inf-compactness assumption ensures the existence of subsequence (x k ′ n ) that converges strongly to some x, that must belong to C by Proposition 11. From the weak lower-semicontinuity of Φ we deduce that

α ≤ Φ(x) ≤ lim n→∞ Φ(x k ′ n ) = lim inf n→∞ Φ(x n ) ≤ α.
This shows that x ∈ S and so lim 

(x N ) -d(x τ N ) ≤ 1 2 N -1 n=τ N x n+1 -x n 2 . If N = τ N then d(x τ N ) = d(x N ).
In either case we have In particular, the sequence (Φ(x τn )) is bounded. As before, the same is true for (Ψ(x τn )) and using the inf-compactness assumption one concludes, as in case I, that a subsequence converges strongly to a point in S, which guarantees that lim n→∞ d(x n ) = 0.

d(x N ) -d(x τ N ) ≤ 1 2 ∞ n=τ N x n+1 -x n

Application issues

In this section we discuss on the implementation and applicability of this method. We begin by establishing that the main conclusions remain true if the iterates are computed inexactly. Next we discuss on some specializations to the case of coupled constraints and when the objective function has a decomposable structure. These appear frequently in real problems. We finish by mentioning several domains of application and develop in further depth the problem of compressive sensing.

Inexact version.

Let us assume that we can compute the iterates following the rule (10) only approximately. More precisely, assume the sequence ( x n ) satisfies (43)

x n+1 = (I + λ n A) -1 [ x n -λ n β n ∇Ψ( x n ) + ζ n ] + ξ n .
We shall establish that if the errors are summable then the sequences computed via (43) have the same asymptotic behavior as those computed exactly using [START_REF] Baillon | Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones[END_REF]. To this end we make use of the following result: Lemma 17. [2, Proposition 6.1] Let (F n ) be a family of nonexpansive functions on a Banach space X and assume that every sequence (z n ) satisfying z n+1 = F n (z n ) converges in a sense 3 . Then so does every sequence ( z n ) satisfying z n+1 = F n ( z n ) + ε n provided ∞ n=1 ε n < +∞. Proposition 18. Assume that λ n β n ≤ 2/θ for all (sufficiently large) n. The conclusions of Theorems 12 and 16 remain true under the same hypotheses if x n satisfies (43) with ∞ n=1 ζ n < +∞ and ∞ n=1 ξ n < +∞.

Proof. For n ∈ N write R n = (I + λ n A) -1 and T n = Iλ n β n ∇Ψ. Since A is monotone we have

(44) R n (u) -R n (v) ≤ u -v .
On the other hand,

T n (u) -T n (v) 2 = (u -v) -λ n β n (∇Ψ(u) -∇Ψ(v)) 2 = u -v 2 + λ 2 n β 2 n ∇Ψ(u) -∇Ψ(v) 2 -2λ n β n u -v, ∇Ψ(u) -∇Ψ(v) ≤ u -v 2 + λ n β n λ n β n - 2 θ ∇Ψ(u) -∇Ψ(v) 2
≤ uv 2 . (45) 3 Here the expression in a sense can be replaced by: strongly, weakly, strongly in average, or weakly in average, among others (see [START_REF] Alvarez | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces[END_REF]).

For n ≥ 1 define F n and ε n as follows:

F 2n-1 = T n F 2n = R n and ε 2n-1 = ζ n ε 2n = ξ n .
Consider the following nonexpansive algorithm defined by

z n+1 = F n (z n ).
Then the sequence (x n ) computed via the error-free algorithm (10) satisfies

x n = z 2n .

By Remark 6, the sequence (y n ) given by

y n = x n -λ n β n ∇Ψ(x n ) = z 2n-1
satisfies lim n→∞

x n -y n = 0 so that the sequences (x n ) and (z n ) have the same convergence properties to the extent of the results presented in this paper. By Lemma 17 the sequence ( z n ) computed approximately following the rule

z n+1 = F n ( z n ) + ε n
also has the same convergence properties as (z n ). We conclude by noticing that x n = z 2n . The Lipschitz constant of ∇Ψ can be bounded above by p k=1 τ k |||M k ||| 2 . Now let H = H 1 × • • • × H N and assume that the objective function Φ can be decomposed as Φ(x) = N i=1 φ i (x i ), where each φ i is proper, lower-semicontinuous and convex. Then ∂Φ = (∂φ 1 , . . . , ∂φ N ).

On the other hand, assume also that each M k can be expressed as 

M k x = N i=1 M i k x i ,

Remark 6 .

 6 Under the hypotheses of Theorem 5 one has lim n→∞ λ n β n w n = 0. Thus the sequence

Lemma 9 .

 9 Assume lim sup n→∞ λ n β n < 2/θ. Then there exist a > 0, b > 0 and N ∈ N such that for all n ≥ N , any u ∈ C ∩ dom(A) and any v ∈ Au we have[START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF] 

Proposition 11 .

 11 Let (H 0 ) hold and lim sup n→∞ λ n β n < 2/θ. Then we have the following: i) For each u ∈ S, lim n→∞ x nu exists.

τn n k=1 λ k x k , where τ n = n k=1 λ k . Theorem 12 .

 12 Let (H 0 ) hold and lim sup n→∞ λ n β n < 2/θ. Then

  n→∞ d(x n ) = 0. Once this is done, for the weak convergence, since lim n→∞ d(x n ) = 0 every weak cluster point of the sequence (x n ) as n → ∞ belongs to S. This fact, along with part i) of Proposition 11, gives the weak convergence of the sequence by virtue of Opial's Lemma. Finally observe that, since lim n→∞ Ψ(x n ) = 0, if Ψ is inf-compact the weak convergence of the relatively compact sequence (x n ) implies its strong convergence. Let us prove now that lim n→∞ d(x n ) = 0. Since d is convex we have

  n→∞ d(x k ′ n ) = 0 by the continuity of d. Case II: For all sufficiently large n the number τ n = max{k ≤ n : Φ(x k ) < α} is well defined. Observe that we have lim n→∞ τ n = +∞. Take N ∈ N (large enough for τ N to exist). If τ N < N then Φ(x n+1 ) ≥ α for n = τ N , . . . , N -1. Inequality (42) then gives d

2

  and so letting N → ∞ we deduce that 0 ≤ lim supn→∞ d(x n ) ≤ lim sup n→∞ d(x τn ).It suffices to prove that lim sup n→∞ d(x τn ) = 0. Since Φ(x τn ) < α for all n one has lim sup n→∞ Φ(x τn ) ≤ α.

6. 2 .

 2 Some specializations. A special case is when C is of the formC = {x ∈ H : M x ∈ D},where M is a bounded linear operator from H to another Hilbert space G and D is a nonempty closed convex subset of G. This accounts for bilateral (subspace) and unilateral (conic) constraints, among others. Let us denote by |||M ||| the operator norm of M . Let ψ : G → R be a convex differentiable function such that ∇ψ is τ -Lipschitz and ψ vanishes on D = Argminψ. Observe that if D is a hyperplane then ψ(x) = x -P D (x) 2 has this property and is easy to compute (P D denotes the orthogonal projection onto D). Set Ψ = ψ • M . Then Ψ is differentiable and its gradient ∇Ψ is given by ∇Ψ(x) = M * ∇ψ(M x),where M * is the adjoint of M . The function ∇Ψ is Lipschitz with constant bounded by τ |||M ||| 2 . This situation can be easily extended to several constraints of the form given above. LetC = {x ∈ H : M k x ∈ D k , k = 1, . . . ,p}, where each D k is a closed convex subset of a Hilbert space G k . For k = 1, . . . , p take ψ k such that ∇ψ k is τ k -Lipschitz and ψ k vanishes on D k = Argminψ k and define Ψ(x) = p k=1 ψ k (M k x). Then ∇Ψ(x) = p k=1 M * k ∇ψ k (M k x).

  where each M i k is a bounded linear operator on H i . Observe that in this case |||M k ||| 2 = N i=1 |||M i k ||| 2 if all the norms are defined in the canonical fashion. As before, the Lipschitz constant of ∇Ψ can be bounded by p k=1 N i=1 τ k |||M i k ||| 2 .

The maximal monotonicity of an operator is equivalent to the maximal monotonicity of any positive multiple.
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Our algorithm is given by the following system of equations:

 + ξ i n , for i = 1, . . . , N.

Domains of application.

The method developed in this paper can be applied to find Wardrop equilibria for network flows and construct best approximations for the convex feasibility problem (see [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF]), as well as domain decomposition methods for PDE's [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems, Applications to dynamical games and PDE's[END_REF] and optimal control problems [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] or best response dynamics for potential games [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems, Applications to dynamical games and PDE's[END_REF]. Here we discuss on the problem of finding the sparsest solutions of underdetermined systems of equations.

Sparse solutions for underdetermined systems of equations. Let A be a matrix of size J × N and let b ∈ R J . When the system Ax = b is underdetermined, an important problem in signal compression and statistics (see [START_REF] Donoho | Compressed sensing[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]) is to find its sparsest solutions. That is,

where • 0 denotes the counting norm (number of nonzero entries). The convex relaxation of this nonconvex problem is

Under some conditions on the matrix A (see [START_REF] Donoho | Sparse nonnegative solutions of underdetermined linear equations by linear programming[END_REF]) solutions of (P 0 ) can be found by solving (P 1 ). We define Φ(x) = x 1 and Ψ

As in Remark 6 we write

) and ∂Φ(x) = ∂φ(x 1 ), . . . , ∂φ(x N ) . The algorithm explicitly reads (46)

for i = 1, . . . , N.

Related ℓ 1 -regularization approaches can be found in [START_REF] Candès | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Donoho | Atomic decomposition by basis pursuit[END_REF][START_REF] Friedlander | Exact regularization of convex programs[END_REF]. The LASSO method [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] is different because it considers a constraint of the form x 1 ≤ T and minimizes Axb 2 . A simple illustration. The following academic example aims at illustrating the procedure, certainly not at testing its numerical performance. Consider the system Ax = b, where

The solutions form a two-dimensional affine subspace of R 5 among which the sparsest point is

Here θ = |||A * A||| = 4. We implement our algorithm in SCILAB with λ n = 1/n, λ n β n ≡ 0.49 < 2/θ, starting from 10 randomly generated initial points in [-2, 2] 5 . The average outcome after 50 iterations was x = (0 0 -0.9796 0 0) ′ and the average processing time was 0.05 seconds in a laptop computer with a U9300 Intel(R) Core(TM)2 CPU and 3 GB of RAM.

Remark 19. Some variants:

(1) For the problem with inequality constraints min{ x 1 : Ax ≤ b} one defines

, where r j is the j-th row of A and [s] + denotes the positive part of s ∈ R. In that case

r i j r j , x n-1b j + and one computes x i n from y i n using (46). (2) For stable signal recovery [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF], where the constraint Ax = b is replaced by Axb ≤ ε one can write Ψ(x) = Axb 2ε 2 if Axb ≥ ε and Ψ(x) = 0 otherwise.