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PROX-PENALIZATION AND SPLITTING METHODS FOR CONSTRAINED

VARIATIONAL PROBLEMS

HÉDY ATTOUCH, MARC-OLIVIER CZARNECKI & JUAN PEYPOUQUET

Abstract. This paper is concerned with the study of a class of prox-penalization methods for
solving variational inequalities of the form

Ax + NC(x) ∋ 0

where H is a real Hilbert space, A : H ⇉ H is a maximal monotone operator and NC is the
outward normal cone to a closed convex set C ⊂ H. Given Ψ : H → R ∪ {+∞} which acts as
a penalization function with respect to the constraint x ∈ C, and a penalization parameter βn,
we consider a diagonal proximal algorithm of the form

xn =
(

I + λn(A + βn∂Ψ)
)

−1

xn−1,

and an algorithm which alternates proximal steps with respect to A and penalization steps with
respect to C and reads as

xn = (I + λnβn∂Ψ)−1(I + λnA)−1
xn−1.

We obtain weak ergodic convergence for a general maximal monotone operator A, and
weak convergence of the whole sequence {xn} when A is the subdifferential of a proper lower-
semicontinuous convex function. Mixing with Passty’s idea, we can extend the ergodic con-
vergence theorem, so obtaining the convergence of a prox-penalization splitting algorithm for
constrained variational inequalities governed by the sum of several maximal monotone opera-
tors. Our results are applied to an optimal control problem where the state variable and the
control are coupled by an elliptic equation. We also establish robustness and stability results
that account for numerical approximation errors.

Introduction

Let H be a real Hilbert space, A : H ⇉ H a general maximal monotone operator, and C
a closed convex set in H. We denote by NC the outward normal cone to C. This paper is
concerned with the study of a class of prox-penalization and splitting algorithms for solving
variational inequalities of the form

(1) Ax + NC(x) ∋ 0,

which combine proximal steps with respect to A and penalization steps with respect to C. We
begin by describing two model situations that motivate our study:

1. Sum of maximal monotone operators. Let X be a real Hilbert space and set H = X×X .
Define A : H ⇉ H by A(x1, x2) = (A1x1, A2x2) where A1 and A2 are maximal monotone
operators on X . If C = {(x1, x2) ∈ X × X : x1 = x2} the inclusion (1) reduces to

(2) A1x + A2x ∋ 0.

Date: March, 15, 2010.
1991 Mathematics Subject Classification. 37N40, 46N10, 49M30, 65K05, 65K10,90B50, 90C25.
Key words and phrases. Nonautonomous gradient-like systems; monotone inclusions; asymptotic behaviour;

hierarchical convex minimization; splitting methods; optimal control.
With the support of the French ANR grant ANR-08-BLAN-0294-03. J. Peypouquet was partly supported by

FONDECYT grant 11090023 and Basal Proyect, CMM, Universidad de Chile.

1



2 ATTOUCH, CZARNECKI & PEYPOUQUET

In the line of Trotter-Kato formula, we would like to solve this problem by using splitting
methods which only require to compute resolvents (proximal steps) with respect to A1 and A2,
separately. A valuable guideline is a theorem from [24, Passty] which states that any sequence
{xn} generated by the algorithm

(3) xn = (I + λnA2)
−1(I + λnA1)

−1xn−1

converges weakly in average to some x satisfying (2) provided {λn} ∈ ℓ2(N) \ ℓ1(N). ¤

2. Structured convex minimization. Coupled variational problems where the coupling
occurs in the constraint play a central role in decision and engineering sciences. Consider the
minimization problem

(4) min {f1(x1) + f2(x2) : L1x1 = L2x2, (x1, x2) ∈ X1 ×X2} ,

where X1, X2 and Z are real Hilbert spaces and each Li is bounded linear (or affine) oper-
ator from Xi to Z. This type of structured variational problem appears in optimal control
of linear systems, in the study of domain decomposition methods for PDE’s, transport, imag-
ing and signal processing. Considering infinite dimensional spaces is crucial for these types
of applications. Problem (4) falls in our setting by taking A(x1, x2) = (∂f1(x1), ∂f2(x2)) and
C = {(x1, x2) ∈ X1 ×X2 : L1x1 = L2x2}. Splitting algorithms attached to such coupled vari-
ational problems have a rich interpretation in terms of best response dynamics for potential
games, see [4, Attouch, Bolte, Redont and Soubeyran]. ¤

In order to address these problems in a unified way, we use the links between algorithms and
continuous dissipative dynamical systems, and their asymptotic analysis by Liapunov meth-
ods. As we shall see, our algorithms can be derived by time discretization of the continuous
nonautonomous dynamical system

(5) ẋ(t) + Ax(t) + β(t)∂Ψ(x(t)) ∋ 0,

which has been recently introduced in [5, Attouch and Czarnecki], and whose trajectories (under
certain conditions on the function β(·)) asymptotically reach equilibria given by (1). In system
(5) above, the function Ψ : H → R ∪ {+∞} acts as an external penalization function with
respect to the constraint x ∈ C. The corresponding penalization parameter β(t) tends to +∞
as t → +∞.

Observe that an implicit discretization of the differential inclusion (5) gives

(6)
1

λn

(xn − xn−1) + Axn + βn∂Ψ(xn) ∋ 0,

where λn and βn are sequences of positive parameters. Inclusion (6) can be rewritten as

(7) xn =
(

I + λn(A + βn∂Ψ)
)−1

xn−1,

giving a diagonal proximal point algorithm. On the other hand, since the resolvent of the sum
of two maximal monotone operators may be hard to compute, we propose also an alternating
method:

(8) xn = (I + λnβn∂Ψ)−1(I + λnA)−1xn−1,

which combines proximal steps corresponding to the operator A and the set C.

The implicit scheme described by (8) makes sense for any maximal monotone operator A
and any Ψ ∈ Γ0(H). Under more restrictive assumptions on Ψ one may also consider a mixed
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explicit-implicit algorithm of the form

1

λn

(xn − xn−1) + Axn + βn∂Ψ(xn−1) ∋ 0,

which can be rewritten as

(9) xn = (I + λnA)−1(xn−1 − λnβnwn),

for wn ∈ ∂Ψ(xn−1). Explicit schemes (in general) have the advantage of being easier to com-
pute, which ensures enhanced applicability to real-life problems. However, they tend to be less
stable than the implicit ones. Assuming Ψ to satisfy some additional regularity properties, it
is reasonable to expect that algorithm (9) still enjoys good asymptotic convergence properties.
This interesting subject requires further studies, which go beyond the scope of this paper.

Diagonal algorithms of the form

1

λn

(xn − xn−1) + An(xn) ∋ 0

for general families of maximal monotone operators An have been studied [17, Kato], [18,
Kobayasi, Kobayashi and Oharu], [2, Alvarez and Peypouquet]; especially in terms of their
relationship with continuous-time trajectories solving a differential inclusion of the form

0 ∈ ẋ(t) + A(t)x(t).

In the special case where An = ∂fn, asymptotic properties of algorithms such as (6) are proved
in [7, Auslender, Crouzeix and Fedit] in the framework of exterior penalization. Further study
was carried out in [1, Alart and Lemaire] under variational convergence assumptions and in
[8, Bahraoui and Lemaire] and [21, Lemaire] using convergence of the subdifferentials in terms
of the Hausdorff excess function. Convergence in value is studied in [25, Peypouquet]. For
general penalization schemes in convex programming the reader can consult [13, Cominetti and
Courdurier] and the references therein.

There are natural links between prox-penalization and proximal methods involving asymp-
totically vanishing terms (viscosity methods). They both involve multiscale aspects and lead to
hierarchical minimization. Regarding their continuous versions, passing from one to the other
relies on time rescaling, see [5]. For Tikhonov regularization see [20, Lehdili and Moudafi] and
[14, Cominetti, Peypouquet and Sorin]. See [11, Cabot] for some further related results and
references.

As we shall see, the use of a penalization-like scheme for general maximal monotone operators
is an effective tool for finding solutions of constrained variational inequalities.

In classical penalization, most results rely on the smoothness and other special features of
the penalization function. Having in view a large range of applications, we shall not assume
any particular structure or regularity on the penalization function Ψ. Instead, we just suppose
that Ψ is convex, lower-semicontinuous and C = argmin Ψ 6= ∅. If A = ∂Φ for some proper
lower-semicontinuous convex function Φ : H → R ∪ {+∞} and some qualification condition
holds, the inclusion (1) is equivalent to

x ∈ argmin{Φ(z) : z ∈ argminΨ}.

Therefore, our results can also be considered from a multiscale or hierarchical point of view.

Our main results can be summarized as follows: Under certain hypotheses on the sequences
λn and βn, and assuming a geometric condition involving the Fenchel conjugate of Ψ (which we
shall state explicitly later on) we are able to prove the following results which can be classified
into the following categories A, B, C:
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Let {xn} be a sequence satisfying either (7) or (8) up to a numerical error εn (see Section 5 for
precise details) and let {zn} be the sequence of weighted averages

(10) zn =
1

τn

n
∑

k=1

λkxk, where τn =
n

∑

k=1

λk.

A. The sequence {zn} converges weakly to a solution of (1) (Theorems 2.3 and 3.3).

B. If A is strongly monotone then {xn} converges strongly (Theorems 2.4 and 3.4).

C. If A = ∂Φ for some proper lower-semicontinuous convex function Φ : H → R ∪ {+∞}
then {xn} converges weakly (Theorems 2.6 and 3.7).

This is the same type of asymptotic behavior as in the well-known proximal point algorithm
with variable time step λn, see [22, Lions] and [10, Brézis and Lions]. See also [26, Peypouquet
and Sorin] for a complete survey on the topic.

The paper is organized as follows: In section 1 we recall some basic facts about convex analysis
and monotone operators, we state and discuss on the standing assumptions, and present some
results from [23, Opial] and [24] that are useful for proving weak convergence of a sequence in
a Hilbert space without a priori knowledge of the limit. Sections 2 and 3 contain our main
results of type A, B and C for the algorithms given by (7) and (8), respectively. By mixing
our techniques with Passty’s idea [24], we obtain the convergence of a splitting algorithm for
constrained variational inequalities governed by the sum of M maximal monotone operators. In
section 4 we mention some applications of our results, with an illustrating example in optimal
control of linear systems. We also show a simple numerical experience. Finally, in section 5 we
provide some robustness and stability results concerning the dependence on the initial conditions
and the convergence of the algorithms when the iterates are computed inexactly.

1. Preliminaries

1.1. Some facts of convex analysis and monotone operators. Let H be a real Hilbert
space and let Γ0(H) denote the set of all proper lower-semicontinuous convex functions F : H →
R ∪ + {∞}. Given F ∈ Γ0(H) and x ∈ H, the subdifferential of F at x is the set

∂F (x) = {x∗ ∈ H : F (y) ≥ F (x) + 〈x∗, y − x〉 for all y ∈ H}.

The Fenchel conjugate of F is the function F ∗ ∈ Γ0(H) defined by

F ∗(x∗) = sup
y∈H

{〈x∗, y〉 − F (y)} .

For x, x∗ ∈ H one has F (x) + F ∗(x∗) ≥ 〈x∗, x〉 with equality if, and only if, x∗ ∈ ∂F (x).
Given a nonempty closed convex set C ⊂ H, its indicator function is defined as δC(x) = 0 if
x ∈ C and +∞ otherwise. The support function of C at a point x∗ is σC(x∗) = supc∈C〈x

∗, c〉.
The normal cone to C at x is

NC(x) = {x∗ ∈ H : 〈x∗, c − x〉 ≤ 0 for all c ∈ C}

if x ∈ C and ∅ otherwise. We denote by R(NC) the range of NC . Observe that δ∗C = σC and
∂δC = NC . Notice also that x∗ ∈ NC(x) if, and only if, σC(x∗) = 〈x∗, x〉.
A monotone operator is a set-valued mapping A : H ⇉ H such that

〈x∗ − y∗, x − y〉 ≥ 0

whenever x∗ ∈ Ax and y∗ ∈ Ay. It is maximal monotone if its graph is not properly contained in
the graph of any other monotone operator. The subdifferential of a function in Γ0(H) is maximal
monotone. For any maximal monotone operator A : H ⇉ H and for any λ > 0, the operator
I + λA is surjective by Minty’s Theorem (see [9, Brézis] or [26]). The operator (I + λA)−1 is a
contraction that is everywhere defined. It is called the resolvent of A of index λ.
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Finally, an operator A is strongly monotone with parameter α > 0 if

〈x∗ − y∗, x − y〉 ≥ α‖x − y‖2

whenever x∗ ∈ Ax and y∗ ∈ Ay. Observe that the set of zeroes of a strongly monotone operator
is nonempty and contains a single element.

1.2. Standing assumptions. Let A be a maximal monotone operator on H and Ψ ∈ Γ0(H)
with C = argmin Ψ 6= ∅. Without any loss of generality we assume min Ψ = 0 (Ψ enters into
the algorithm only via its subdifferential). Define the monotone operator TA, C = A + NC .

For our main results we shall make the following assumptions:

(H)



































(H1) The solution set S = T−1
A, C0 is nonempty.

(H2) The operator TA, C is maximal monotone.

(H3)
∞
∑

n=1
λn = +∞.

(H4) For each p ∈ R(NC),
∞
∑

n=1
λnβn

[

Ψ∗
(

p
βn

)

− σC

(

p
βn

)]

< +∞.

Some comments are in order:

(H1): This simply states that problem (1) has a solution.

(H2): The maximal monotonicity of TA, C gives the following characterization of the solution
set: a point z ∈ H belongs to S if, and only if,

〈w, z − u〉 ≤ 0 for all u ∈ C ∩ dom(A) and all w ∈ TA,Cu.

If A = ∂Φ for some Φ ∈ Γ0(H), the maximal monotonicity of TA, C simply states that ∂Φ+NC =
∂(Φ + δC). Thus z ∈ S if, and only if, 0 ∈ ∂(Φ + δC)(z), which is equivalent to

z ∈ argmin{Φ(x) : x ∈ C}.

This holds if Φ and δC satisfy some qualification condition, such as the Moreau-Rockafellar or
Attouch-Brézis.

(H3): Since λn has a natural interpretation as a time step λn = tn− tn−1 in the discretization of

(5), it is natural to assume
∞
∑

n=1
λn = +∞ in order to preserve the asymptotic convergence prop-

erties of the continuous dynamics (see [5]). In other words, (H3) is the discrete-time analogue
of t → +∞.

(H4): This is a discrete version of the following condition

(H1) For each p ∈ R(NC),

∫ ∞

0
β(t)

[

Ψ∗
(

p
β(t)

)

− σC

(

p
β(t)

)]

dt < +∞,

which was introduced in [5]. The analysis carried out in [5] remains valid in our discrete setting:
First, all the terms in the sum are nonnegative. Indeed, since Ψ(x) ≤ δC(x) for all x ∈ H, one
always has the reverse inequality for their Fenchel conjugates, namely Ψ∗(p)− σC(p) ≥ 0 for all
p ∈ H.

In the special case where Ψ(x) = 1
2dist(x,C)2, we have Ψ∗(p) − σC(p) = 1

2‖p‖
2 for all p ∈ H

and so

(11) (H4) ⇐⇒
∞

∑

n=1

λn

βn

< +∞.
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Suppose now that Ψ(·) ≥ θ
2dist(·, C)2 for some θ > 0. Then Ψ∗(p) − σC(p) ≤ 1

2θ
‖p‖2 for all

p ∈ R(NC) and so
∞

∑

n=1

λn

βn

< +∞ =⇒ (H4).

Moreover, if the sequence {βn} is chosen so that lim sup
n→∞

λnβn < +∞ and lim inf
n→∞

λnβn > 0 then

∞
∑

n=1

λn

βn

< +∞ ⇐⇒
∞

∑

n=1

λ2
n < +∞.

The particular case Ψ = 0 corresponds to C = H, which is the unconstrained case. In this
situation R(NC) = {0}, and since Ψ∗(0) = σC(0) = 0, condition (H4) is trivially satisfied.

For the weak convergence of the sequence {xn} itself in the subdifferential case (Theorems 2.6
and 3.7) we shall assume an exponential-type growth condition on the sequence of parameters
{βn}, namely

(G) There is a constant K ∈ R such that
βn − βn−1

λn−1βn−1
≤ K for all sufficiently large n.

This is a discrete version of condition (H2) in [5]:

(H2) β̇(t) ≤ Kβ(t).

1.3. A tool for proving weak convergence. The following lemma gathers results from [23,
24] (see also [26]). It is a simple but very useful tool for proving weak convergence in Hilbert
spaces. What is interesting about this method is that one does not need to know the limit
beforehand, but only a set to which this limit is expected to belong. Let {xn} be any sequence

in H and define {zn} as in (10) (recall that, by (H3), τn =
n
∑

k=1

λk → +∞ as n → +∞).

Lemma 1.1 (Opial-Passty). Let F be a nonempty subset of H and let lim
n→∞

‖xn − x‖ exist for

each x ∈ F . If every weak cluster point of {xn} (resp. {zn}) lies in F , then {xn} (resp. {zn})
converges weakly to a point in F as n → +∞.

Proof. Since this result is less known in its ergodic form, let us prove it in this setting. Thus
we want to prove weak convergence of the sequence {zn}. Clearly the sequence {zn} is bounded.
The space being reflexive, it suffices to prove that {zn} has only one weak cluster point as
n → ∞. Suppose otherwise that zkn

⇀ z and zk′

n
⇀ z′. Since

2〈xn, z − z′〉 = ‖xn − z′‖2 − ‖xn − z‖2 − ‖z′‖2 + ‖z‖2,

we deduce the existence of lim
n→∞

〈xn, z−z′〉. But then lim
n→∞

〈zn, z−z′〉 exists as well, which implies

that 〈z, z − z′〉 = 〈z′, z − z′〉. We conclude that z = z′. ¥

2. Prox-penalization algorithm

In this section we study the prox-penalization algorithm given by (7), namely

xn = (I + λn(A + βn∂Ψ))−1 xn−1.

Our results remain true if we allow an error εn in the computation of xn. For the sake of clarity,
we present the results in this section with εn = 0 and refer the reader to Section 5 for the general
setting.
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In order to guarantee the well-posedness of (7), all along this section we make the following
standing qualification assumption (Qn):

(Qn) for each n ∈ N, the monotone operator A + βn∂Ψ is maximal monotone.

One can consult [9], [6, Attouch, Riahi and Théra] and the references therein, for general con-
ditions ensuring that the sum of two maximal monotone operators is still maximal monotone.
Observe that if A = ∂Φ this is true, for instance, under Moreau-Rockafellar or Attouch-Brézis
qualification condition.

For any initial data x0 ∈ H, this procedure generates a unique trajectory {xn}.
The preceding equality can be equivalently written as

xn + λnAxn + λnβn∂Ψ(xn) ∋ xn−1,

which means that there exist v1
n ∈ Axn and v2

n ∈ ∂Ψ(xn) such that

(12) xn + λnv1
n + λnβnv2

n = xn−1.

Let us denote by {xn} an arbitrary sequence generated by algorithm (7) (corresponding to an
arbitrary choice of the initial data x0 ∈ H). Let us recall that TA, C = A + NC . Consequently,
for each u ∈ D(A) ∩ C and w ∈ TA, Cu there exists p ∈ NC(u) with w − p ∈ Au.

Lemma 2.1. Take u ∈ D(A) ∩ C, w ∈ TA, Cu and let p ∈ NC(u) be such that w − p ∈ Au.
Then, for each n ≥ 1, the following inequality holds

‖xn − u‖2 − ‖xn−1 − u‖2 + ‖xn−1 − xn‖
2 + λnβnΨ(xn)

≤ 2λn〈u − xn, w〉 + λnβn

[

Ψ∗
(

2p
βn

)

− σC

(

2p
βn

)]

.

Proof. First observe that

‖xn−1 − u‖2 = ‖xn − u‖2 + ‖xn−1 − xn‖
2 + 2 〈 xn − u, xn−1 − xn 〉

= ‖xn − u‖2 + ‖xn−1 − xn‖
2 + 2 〈 xn − u, λnv1

n + λnβnv2
n 〉

where v1
n ∈ Axn and v2

n ∈ ∂Ψ(xn) are given by (12). The monotonicity of A gives

(13) 〈 (w − p) − v1
n, u − xn 〉 ≥ 0,

while the subdifferential inequality for Ψ yields

0 = Ψ(u) ≥ Ψ(xn) + 〈 u − xn, v2
n 〉.

Hence
〈u − xn, λnv1

n + λnβnv2
n〉 ≤ λn〈u − xn, w − p〉 − λnβnΨ(xn)

and so

2〈u − xn, λnv1
n + λnβnv2

n〉 + λnβnΨ(xn) ≤ 2λn〈u − xn, w − p〉 − λnβnΨ(xn).

Thus, if we set

En(u) = ‖xn − u‖2 − ‖xn−1 − u‖2 + ‖xn−1 − xn‖
2 + λnβnΨ(xn)

we see that

En(u) = 2 〈 u − xn, λnv1
n + λnβnv2

n 〉 + λnβnΨ(xn)

≤ 2λn〈u − xn, w − p〉 − λnβnΨ(xn).

But the right-hand side satisfies

2λn〈u − xn, w − p〉 − λnβnΨ(xn) = λnβn

[〈

2p
βn

, xn

〉

− Ψ(xn) −
〈

2p
βn

, u
〉]

+ 2λn〈u − xn, w〉

≤ λnβn

[

Ψ∗

(

2p

βn

)

− σC

(

2p

βn

)]

+ 2λn〈u − xn, w〉,
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where Ψ∗ is the Fenchel conjugate of Ψ. Finally

En(u) ≤ λnβn

[

Ψ∗
(

2p
βn

)

− σC

(

2p
βn

)]

+ 2λn〈 u − xn, w 〉,

which is the desired inequality. ¥

This immediately gives the following:

Corollary 2.2. Under hypotheses (H1) and (H4) we have:

i) lim
n→∞

‖xn − u‖ exists for each u ∈ S.

ii)
∑

n ‖xn−1 − xn‖
2 < +∞.

iii)
∑

n λnβnΨ(xn) < +∞.

iv) If lim inf
n→∞

λnβn > 0 then lim
n→∞

Ψ(xn) = 0 and every weak cluster point of the sequence

{xn} lies in C.

Proof. Since S 6= ∅ we can take u ∈ S, w = 0 and p ∈ NC(u) ∩ (−Au), so that Lemma 2.1
yields for each n ≥ 1

‖xn − u‖2 − ‖xn−1 − u‖2 + ‖xn−1 − xn‖
2 + λnβnΨ(xn) ≤ λnβn

[

Ψ∗

(

2p

βn

)

− σC

(

2p

βn

)]

.

Hypothesis (H4) immediately gives i), ii) and iii). Part iv) follows from iii) and the weak lower-
semicontinuity of Ψ. ¥

2.1. Ergodic convergence. We can now properly state and prove the weak ergodic convergence
of the sequence {xn} given by (7) (result of type A in the introduction). Recall from (10) that

τn =
n
∑

k=1

λk, zn = 1
τn

n
∑

k=1

λkxk, and that, by (H3), τn → +∞ as n → +∞.

Theorem 2.3 (Type A). Under hypothesis (H) the sequence {zn} converges weakly to a point
in S.

Proof. By virtue of Lemma 1.1 and Corollary 2.2 i) it suffices to prove that each cluster point
of the sequence {zn} lies in S. Take [u,w] ∈ TA,C. By Lemma 2.1, for each 1 ≤ k ≤ n

‖xk − u‖2 − ‖xk−1 − u‖2 ≤ 2λk〈u − xk, w〉 + λkβk

[

Ψ∗
(

2p
βk

)

− σC

(

2p
βk

)]

where positive terms on the left hand side have been omitted (they have no significant contribu-
tion since they asymptotically vanish). Summing up these inequalities, 1 ≤ k ≤ n, and dividing
by 2τn we obtain

−
‖x0 − u‖2

2τn

≤ 〈u − zn, w〉 +
1

2τn

∞
∑

k=1

λkβk

[

Ψ∗

(

2p

βk

)

− σC

(

2p

βk

)]

.

Passing to the limit we deduce that every weak cluster point z of the sequence {zn} satisfies

0 ≤ 〈u − z, w〉 for each [u,w] ∈ TA,C.

By maximal monotonicity of TA, C , (assumption (H2), this implies z ∈ S. ¥
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2.2. Strong convergence for strongly monotone operators. Recall that A is strongly
monotone with parameter α > 0 if

〈x∗ − y∗, x − y〉 ≥ α‖x − y‖2

whenever x∗ ∈ Ax and y∗ ∈ Ay. As a distinctive feature, the set of zeroes of a strongly monotone
operator is nonempty, and it is equal to a singleton. We now prove the strong convergence of
the sequence {xn} defined by (7) (result of type B) when A is strongly monotone.

Theorem 2.4 (Type B). Under hypothesis (H), if the operator A is strongly monotone then
the sequence {xn} converges strongly to the unique u ∈ S.

Proof. Recall from (12) that there exist v1
n ∈ Axn and v2

n ∈ ∂Ψ(xn) such that

xn + λnv1
n + λnβnv2

n = xn−1.

Let A be strongly monotone with parameter α and let u be the unique element in S. Inequality
(13) becomes

〈 (w − p) − v1
n, u − xn 〉 ≥ α‖xn − u‖2.

We follow the arguments in the proof of Lemma 2.1 to obtain

2α‖xn − u‖2 + 2〈u − xn, λnv1
n + λnβnv2

n〉 + λnβnΨ(xn) ≤ 2λn〈u − xn, w − p〉 − λnβnΨ(xn).

Hence

(1 + 2αλn)‖xn − u‖2 − ‖xn−1 − u‖2 ≤ λnβn

[

Ψ∗
(

2p
βn

)

− σC

(

2p
βn

)]

.

Summation gives

2α

∞
∑

n=1

λn‖xn − u‖2 ≤ ‖x0 − u‖2 +

∞
∑

n=1

λnβn

[

Ψ∗
(

2p
βn

)

− σC

(

2p
βn

)]

< ∞.

Since
∞
∑

n=1
λn = +∞ and lim

n→∞
‖xn − u‖ exists, we must have lim

n→∞
‖xn − u‖ = 0. ¥

2.3. Weak convergence for subdifferentials. Let A = ∂Φ be the subdifferential operator
associated to some Φ ∈ Γ0(H). For each n ∈ N let us define Ωn ∈ Γ0(H) by

Ωn = Φ + βnΨ.

Since the operator ∂Φ + βn∂Ψ has been assumed to be maximal monotone, the algorithm can
be equivalently written as

xn = (I + λn∂Ωn)−1xn−1

= argminξ∈H

{

Φ(ξ) + βnΨ(ξ) +
1

2λn

‖ξ − xn−1‖
2

}

.

We are going to prove that the sequence {xn} defined by (7) converges weakly to a point in S.
We shall use the following auxiliary result:

Lemma 2.5. Assume hypothesis (H) holds. Then for each u ∈ S

∞
∑

n=1

λn [Φ(xn) − Φ(u) + βnΨ(xn)] < +∞ (possibly −∞).
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Proof. The subdifferential inequality gives

(14) Ωn(u) ≥ Ωn(xn) +
1

λn

〈xn−1 − xn, u − xn〉

for each u ∈ H. If u ∈ S one has Ωn(u) = Φ(u), hence

(15) 2λn

[

Φ(xn) − Φ(u) + βnΨ(xn)
]

≤ ‖xn−1 − u‖2 − ‖xn − u‖2 − ‖xn−1 − xn‖
2.

By summing these inequalities with respect to n = 1, 2, ..., we obtain

∞
∑

n=1

λn [Φ(xn) − Φ(u) + βnΨ(xn)] ≤
1

2
‖x0 − u‖2 < ∞,

which gives the result. ¥

Now we are in position to prove the following result of type C:

Theorem 2.6 (Type C). Let hypotheses (H) hold. Assume moreover that one of the following
conditions holds

i) lim inf
n→∞

λnβn > 0 and lim inf
n→∞

λn > 0;

ii) Hypothesis (G) holds and lim inf
n→∞

λnβn > 0; or

iii) Hypothesis (G) holds and lim
n→∞

βn = ∞.

Then the sequence {xn} converges weakly to some x∗ ∈ S.

Proof. By Lemma 1.1 and part i) of Corollary 2.2 it suffices to prove that every weak cluster
point of the sequence {xn} lies in S. In view of the weak lower-semicontinuity of Φ and Ψ, we
just need to verify that lim

n→∞
Ψ(xn) = 0 and lim sup

n→∞

Φ(xn) ≤ Φ(u) for all u ∈ S.

Assume condition i) holds. The fact that lim
n→∞

Ψ(xn) = 0 follows from part iv) in Corollary 2.2.

Next, Lemma 2.5 and the fact that
∑

λnβnΨ(xn) < +∞ together imply
∑

λn [Φ(xn) − Φ(u)] < +∞

and since lim inf
n→∞

λn > 0 we conclude that lim sup
n→∞

Φ(xn) ≤ Φ(u) for each u ∈ S.

In the settings ii) and iii), let us suppose (G) holds. As before, we just need to verify that
lim

n→∞
Ψ(xn) = 0 and lim sup

n→∞

Φ(xn) ≤ Φ(u) for all u ∈ S. By the definition of the algorithm one

has Ωn(xn) ≤ Ωn(xn−1). Setting u = xn−1 in (14) and using (G) we obtain

Ωn(xn) ≤ Ωn(xn−1) ≤ Ωn−1(xn−1) + Kλn−1βn−1Ψ(xn−1).

Since Ωn(xn) is bounded from below, part iii) in Corollary 2.2 ensures the existence of lim
n→∞

Ωn(xn).

Lemma 2.5 implies lim
n→∞

Ωn(xn) ≤ Φ(u) for any u ∈ S and so

lim sup
n→∞

Φ(xn) ≤ Φ(u).

The fact that lim
n→∞

Ψ(xn) = 0 follows from part iv) in Corollary 2.2 if lim inf
n→∞

λnβn > 0, and from

equality βnΨ(xn) = Ωn(xn) − Φ(xn) if lim
n→∞

βn = ∞. ¥
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3. Splitting prox-penalization algorithm

Let {βn} and {λn} be sequences of positive numbers. In this section we study the alternating
algorithm given by

(16)

{

yn = (I + λnA)−1xn−1

xn = (I + λnβn∂Ψ)−1yn

and give the corresponding convergence results. As we did in the preceding section, we shall
study the algorithm in its exact form (16) and refer the reader to Section 5 for the general
setting which accounts for computational errors. By contrast with the preceding section, where
we needed assumption (Qn) in order the algorithm to be well defined, here the algorithm is well
defined without any further assumptions. For any initial data x0 ∈ H, algorithm (16) generates
a unique sequence {xn}.

The following estimation, closely related to Lemma 2.1, will be useful throughout this discus-
sion:

Lemma 3.1. For u ∈ D(A) ∩ C take w ∈ TA, Cu so that w = v + p for some v ∈ Au and
p ∈ NC(u), by definition. For each n ≥ 1 the following inequality holds:

‖xn − u‖2 − ‖xn−1 − u‖2 + ‖xn−1 − yn‖
2 +

1

2
‖xn − yn‖

2 + λnβnΨ(xn)

≤ 2λn〈w, u − xn〉 + λnβn

[

Ψ∗

(

2p

βn

)

− σC

(

2p

βn

)]

+ 2λ2
n‖v‖

2.

Proof. We have xn−1−yn ∈ λnAyn and yn−xn ∈ λnβn∂Ψ(xn). The monotonicity of A implies

(17) 〈xn−1 − yn, yn − u〉 ≥ λn〈v, yn − u〉,

which can be rewritten as

(18) ‖xn−1 − u‖2 − ‖yn − u‖2 − ‖xn−1 − yn‖
2 ≥ 2λn〈v, yn − u〉.

On the other hand, the subdifferential inequality gives

0 = Ψ(u) ≥ Ψ(xn) +

〈

yn − xn

λnβn

, u − xn

〉

.

Thus 〈yn − xn, xn − u〉 ≥ λnβnΨ(xn), which is equivalent to

(19) ‖yn − u‖2 − ‖xn − u‖2 − ‖xn − yn‖
2 ≥ 2λnβnΨ(xn).

Adding inequalities (18) and (19) we deduce that

‖xn−1 − u‖2 − ‖xn − u‖2 ≥ ‖xn−1 − yn‖
2 + ‖xn − yn‖

2 + 2λn〈v, yn − u〉 + 2λnβnΨ(xn).

But

2λn〈v, yn − u〉 = 2λn〈v, xn − u〉 + 2〈λnv, yn − xn〉 ≥ 2λn〈v, xn − u〉 − 2λ2
n‖v‖

2 −
1

2
‖yn − xn‖

2.

Replacing in the previous inequality we obtain

‖xn−1−u‖2−‖xn−u‖2 ≥ ‖xn−1−yn‖
2 +

1

2
‖xn−yn‖

2 +2λn〈v, xn−u〉+2λnβnΨ(xn)−2λ2
n‖v‖

2

thus

‖xn − u‖2 − ‖xn−1 − u‖2 + ‖xn−1 − yn‖
2 +

1

2
‖xn − yn‖

2 + λnβnΨ(xn)

≤ 2λn〈v, u − xn〉 − λnβnΨ(xn) + 2λ2
n‖v‖

2.
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Finally recall that v = w − p so that, setting Dn = 2λn〈v, u − xn〉 − λnβnΨ(xn),

Dn = 2λn〈w, u − xn〉 + λnβn

[〈

2p

βn

, xn

〉

− Ψ(xn) −

〈

2p

βn

, u

〉]

≤ 2λn〈w, u − xn〉 + λnβn

[

Ψ∗

(

2p

βn

)

− σC

(

2p

βn

)]

,

which completes the proof. ¥

An immediate consequence of Lemma 3.1 is the following:

Corollary 3.2. Let hypotheses (H1) and (H4) hold. If
∑

λ2
n < ∞ then

i) For each u ∈ S, lim
n→∞

‖xn − u‖ exists.

ii) The series
∑

‖xn−1 − yn‖
2,

∑

‖xn − yn‖
2 and

∑

λnβnΨ(xn) are convergent.

In particular, lim
n→∞

‖xn−1 − yn‖ = lim
n→∞

‖xn − yn‖ = lim
n→∞

‖xn − xn−1‖ = 0.

Proof. For u ∈ S we can take w = 0 in Lemma 3.1 and conclude as in Corollary 2.2. As a
byproduct one obtains

∞
∑

n=1

‖xn−1 − yn‖
2 +

1

2

∞
∑

n=1

‖xn − yn‖
2 +

∞
∑

n=1

λnβnΨ(xn) ≤ ‖x0 − u‖2 + L,

where

(20) L =
∞

∑

n=1

λnβn

[

Ψ∗
(

2p
βn

)

− σC

(

2p
βn

)]

+ 2‖v‖2
∞

∑

n=1

λ2
n

is finite. ¥

Note that, as a difference with Corollary 2.2, we need to assume here that
∑

λ2
n < ∞.

3.1. Ergodic convergence. Keeping the notations of the preceding section let us set zn =

1
τn

n
∑

k=1

λkxk, where τn =
n
∑

k=1

λk. For the alternating algorithm given by (8) we need an additional

hypothesis on the step sizes in order to guarantee its stability. The following gives the weak
ergodic convergence of the sequence {xn} (result of type A):

Theorem 3.3 (Type A). Under hypothesis (H), if
∑

λ2
n < ∞ then the sequence {zn} converges

weakly to a point in S.

Proof. By Lemma 1.1 and Corollary 3.2, it suffices to prove that every weak cluster point of
the sequence {zn} lies in S. With the notation introduced in Lemma 3.1, if u ∈ D(A) ∩ C we
have

‖xn − u‖2 − ‖xn−1 − u‖2 ≤ λnβn

[

Ψ∗
(

2p
βn

)

− σC

(

2p
βn

)]

+ 2λ2
n‖v‖

2 + 2λn〈w, u − xn〉.

Summing up for n = 1, . . . ,m, neglecting the positive term on the left-hand side and dividing
by 2τm we obtain

−
‖x0 − u‖2

2τm

≤
L

2τm

+ 〈w, u − zm〉,

where L is given by (20). Therefore, if zmk
converges weakly to z, then 0 ≤ 〈w, u − z〉. Since

this is true for each w ∈ TA, Cu, we conclude from the maximality of TA, C that z ∈ S. ¥
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3.2. Strong convergence for strongly monotone operators. When A is strongly monotone
the sequence {xn} defined by (7) converges strongly to the unique u ∈ S (result of type B).

Theorem 3.4 (Type B). Under hypothesis (H), if A is strongly monotone and
∑

λ2
n < ∞ then

the sequence {xn} converges strongly to the unique u ∈ S.

Proof. Let A be strongly monotone with parameter α and let S = {u}. Inequality (18) becomes

‖xn−1 − u‖2 − ‖yn − u‖2 − ‖xn−1 − yn‖
2 ≥ 2λn〈v, yn − u〉 + 2α‖yn − u‖2.

Following the steps in the proof of Lemma 3.1 we obtain

2αλn‖yn − u‖2 ≤ ‖xn−1 − u‖2 − ‖xn − u‖2 + λnβn

[

Ψ∗
(

2p
βn

)

− σC

(

2p
βn

)]

+ 2λ2
n‖p‖

2,

where p ∈ (−Au) ∩ NC(u). Whence

2α
∞

∑

n=1

λn‖yn − u‖2 ≤ ‖x0 − u‖2 + 2L,

where L is given by (20) with v = −p. Inequality (19) gives ‖xn − u‖2 ≤ ‖yn − u‖2 and so

∞
∑

n=1

λn‖xn − u‖2 < ∞.

Since lim
n→∞

‖xn − u‖ exists and
∞
∑

n=1
λn = +∞, the sequence {xn} must converge strongly to u.¥

3.3. Weak convergence for subdifferentials. Let A = ∂Φ for Φ ∈ Γ0(H). Recall that, by
hypothesis (H2), S = argmin{Φ(x) | x ∈ argminΨ }. We shall prove that the sequences {xn}
and {yn} defined above converge weakly to an element of S. We need some preliminary results.
First define the energy-like function

En = Φ(yn) + βnΨ(xn) +
‖xn − yn‖

2

2λn

.

Notice the dissymmetry in the roles of xn and yn as respective arguments of Φ and Ψ. In order
to establish the weak convergence of the sequence {xn} we shall use two auxiliary results, which
we now prove:

Lemma 3.5. Under hypothesis (H), for each u ∈ S one has
∑∞

n=1 λn[En−Φ(u)] < +∞ (possibly
−∞).

Proof. From the subdifferential inequality and the properties of the inner product we have

‖xn−1 − u‖2 − ‖yn − u‖2 − ‖xn−1 − yn‖
2 ≥ 2λn[Φ(yn) − Φ(u)].

Now adding this to (19) we obtain

2λnβnΨ(xn) + 2λn[Φ(yn) − Φ(u)] + ‖xn − yn‖
2 ≤ ‖xn−1 − u‖2 − ‖xn − u‖2.

This completes the proof. ¥

Lemma 3.6. Let hypotheses (H) and (G) hold. Assume also that
∑

λ2
n < +∞ and that the

sequence 1
λn

− 1
λn−1

is bounded from above. Then lim
n→∞

En exists and does not exceed the value

Φ(u) for u ∈ S.
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Proof. From the subdifferential inequality we obtain

2λnΦ(yn) ≤ 2λnΦ(yn−1) + ‖xn−1 − yn−1‖
2 − ‖xn−1 − yn‖

2 − ‖yn − yn−1‖
2

2λnβnΨ(xn) ≤ 2λnβnΨ(xn−1) + ‖xn−1 − yn‖
2 − ‖xn − yn‖

2 − ‖xn − xn−1‖
2.

Thus

Φ(yn) + βnΨ(xn) ≤ Φ(yn−1) + βnΨ(xn−1) +
1

2λn

[

‖xn−1 − yn−1‖
2 − ‖xn − yn‖

2
]

.

Now observe that

Φ(yn−1) + βnΨ(xn−1) ≤ Φ(yn−1) + βn−1Ψ(xn−1) + (βn − βn−1)Ψ(xn−1)

≤ Φ(yn−1) + βn−1Ψ(xn−1) + Kλn−1βn−1Ψ(xn−1)

by hypothesis (G). On the other hand,

1

2λn

[

‖xn−1 − yn−1‖
2 − ‖xn − yn‖

2
]

= bn−1 − bn +

(

1

λn

−
1

λn−1

)

‖xn−1 − yn−1‖
2

2
,

where bn = 1
2λn

‖xn − yn‖
2. Hence

En − En−1 ≤ Kλn−1βn−1Ψ(xn−1) +

(

1

λn

−
1

λn−1

)

‖xn−1 − yn−1‖
2

2
.

Finally notice that En is bounded from below. Indeed, the sequence {yn} is bounded by Corol-
lary 3.2. Since Φ is convex, Φ(yn) is bounded from below and so is En. As a consequence,
lim

n→∞
En exists because the positive parts of the terms on the right-hand side of the previous

inequality are summable. Lemma 3.5 then implies lim
n→∞

En ≤ Φ(u) for u ∈ S. ¥

The hypotheses on the sequence {λn} are satisfied, for instance, if λn = 1
n
. We now prove

that the sequence {xn} converges weakly to a point in S (result of type C).

Theorem 3.7 (Type C). Let hypotheses (H) and (G) hold. Assume also that
∑

λ2
n < +∞ and

that the sequence 1
λn

− 1
λn−1

is bounded from above. Moreover, suppose that either lim inf
n→∞

λnβn > 0

or that lim
n→∞

βn = +∞. Then the sequence {xn} converges weakly to an element of S.

Proof. As before, by Lemma 1.1 and Corollary 3.2 it suffices to prove that every weak cluster
point of the sequence {xn} lies in S. Now Lemma 3.5 gives

lim sup
n→∞

Φ(yn) ≤ lim
n→∞

En ≤ Φ(u)

for all u ∈ S. This shows that every weak cluster point ȳ of the sequence {yn} satisfies
Φ(ȳ) ≤ Φ(u) for each u ∈ S. By Corollary 3.2, lim

n→∞
‖xn − yn‖ = 0 so these two sequences

have the same cluster points. In order to prove that lim
n→∞

ψ(xn) = 0, we use the argument in

the proof of Theorem 2.6: if lim inf
n→∞

λnβn > 0 it follows from part ii) in Corollary 3.2, whereas if

lim
n→∞

βn = +∞, it follows from the convergence of En. This completes the proof. ¥
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3.4. The case of M maximal monotone operators. By mixing the techniques developed
in the preceding sections with Passty’s idea, we are able to generalize the result of Theorem
3.3 to the case of M maximal monotone operators (M ∈ N). The main result of this section,
Theorem 3.9, includes Passty’s result (by taking Ψ = 0 and M = 2) and our Theorem 3.3 (by
taking M = 1).

Let us give M maximal monotone operators acting on H, A1, A2, ..., AM . We are interested

in computing a zero of the operator TA, C =
M
∑

m=1
Am + NC . In this setting, assumption (H2) is

naturally replaced by the maximal monotonicity of TA, C =
M
∑

m=1
Am + NC .

Given an arbitrary x0 ∈ H, let us consider the sequence {xn} generated by the following algo-
rithm:
Given xn−1 compute xn as follows: set y0

n = xn−1 and find

(21)

{

ym
n = (I + λnAm)−1ym−1

n for m = 1, . . . , M
xn = (I + λnβn∂Ψ)−1yM

n .

For u ∈ D(A) ∩ C take w ∈ TA, Cu and p ∈ NC(u) so that w = p +
M
∑

m=1
vm where vm ∈ Amu for

m = 1, . . . , M by definition.

Lemma 3.8. With the notation introduced above, the following inequality holds for all n ≥ 1:

‖xn−u‖2−‖xn−1−u‖2 ≤ 2λn〈w, u−xn〉+2λnβn

[

Ψ∗
(

p
βn

)

− σC

(

p
βn

)]

+M(M+1)λ2
n

M
∑

m=1

‖vm‖2.

Proof. For each m = 1, . . . , M one has ym−1
n − ym

n ∈ λnAmym
n . The monotonicity of Am gives

(22) ‖ym−1
n − u‖2 − ‖ym

n − u‖2 − ‖ym−1
n − ym

n ‖2 ≥ 2λn〈vm, ym
n − u〉.

On the other hand, since yM
n − xn ∈ λnβnΨ(xn), the subdifferential inequality yields

(23) ‖yM
n − u‖2 − ‖xn − u‖2 − ‖xn − yM

n ‖2 ≥ 2λnβnΨ(xn).

Summing up inequalities (22) and adding the result to (23) we obtain

‖xn−1−u‖2−‖xn−u‖2−
M
∑

m=1

‖ym−1
n −ym

n ‖2−‖xn−yM
n ‖2 ≥ 2λn

M
∑

m=1

〈vm, ym
n −u〉+2λnβnΨ(xn).

Since

M
∑

m=1

〈vm, ym
n − u〉 =

M
∑

m=1

[

〈vm, xn − u〉 + 〈vm, ym
n − xn〉

]

= 〈w − p, xn − u〉 +
M
∑

m=1

〈vm, ym
n − xn〉,

we deduce that

‖xn − u‖2 − ‖xn−1 − u‖2 + ‖xn − yM
n ‖2 +

M
∑

m=1

‖ym−1
n − ym

n ‖2
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≤ 2λn

[

〈w − p, u − xn〉 − βnΨ(xn)
]

+ 2λn

M
∑

m=1

〈vm, xn − ym
n 〉

≤ 2λn〈w, u − xn〉 + 2λnβn

[〈

p
βn

, xn

〉

− Ψ(xn) −
〈

p
βn

, u
〉]

+ 2λn

M
∑

m=1

〈vm, xn − ym
n 〉

≤ 2λn〈w, u − xn〉 + 2λnβn

[

Ψ∗
(

p
βn

)

− σC

(

p
βn

)]

+ 2λn

M
∑

m=1

〈vm, xn − ym
n 〉.

The proof will be complete if we verify that

2λn

M
∑

m=1

〈vm, xn − ym
n 〉 ≤ M(M + 1)λ2

n

M
∑

m=1

‖vm‖2 + ‖xn − yM
n ‖2 +

M
∑

m=1

‖ym−1
n − ym

n ‖2.

First observe that

2λn〈vm, xn − ym
n 〉 ≤ M(M + 1)λ2

n‖vm‖2 +
1

M(M + 1)
‖xn − ym

n ‖2.

Therefore, we only need to show that

M
∑

m=1

‖xn − ym
n ‖2 ≤ M(M + 1)

[

‖xn − yM
n ‖2 +

M
∑

m=1

‖ym−1
n − ym

n ‖2

]

.

Indeed,

‖xn − ym
n ‖ ≤ ‖xn − yM

n ‖ +

M
∑

k=m+1

‖yk
n − yk−1

n ‖ ≤ ‖xn − yM
n ‖ +

M
∑

k=1

‖yk
n − yk−1

n ‖

and so

M
∑

m=1

‖xn − ym
n ‖2 ≤ M

[

‖xn − yM
n ‖ +

M
∑

k=1

‖yk
n − yk−1

n ‖

]2

≤ M(M + 1)

[

‖xn − yM
n ‖2 +

M
∑

k=1

‖yk
n − yk−1

n ‖2

]

as required. ¥

This immediately implies the convergence of the sequence {‖xn − u‖} for u ∈ S under the
hypotheses of Corollary 3.2. We are in position to prove the ergodic convergence of the sequence
{xn}, namely

Theorem 3.9 (Type A). Let {xn} be defined by algorithm (21). Assume hypothesis (H) holds

and
∑

λ2
n < +∞. Then the sequence {zn} given by zn = 1

τn

n
∑

k=1

λkxk, where τn =
n
∑

k=1

λk,

converges weakly to a point in S.

Proof. As in the proof of Theorem 3.3, it suffices to show that every weak cluster point of the
sequence {zn} lies in S. Summing up the inequalities in Lemma 3.8 obtained for n = 1, . . . , N,
then dividing by 2τN and letting N → +∞, one finally obtains that every weak cluster point z
of {zn} satisfies 0 ≤ 〈w, u − z〉. Whence z ∈ S by maximal monotonicity of TA, C . ¥
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Observe that this procedure uses the resolvents successively in order to find a point in the set

S = [A1 + · · · + AM + NC ]−1 0.

A special case of Theorem 3.9 is obtained by taking M = 2, Ψ = 0 and C = H, namely

Corollary 3.10 (Passty [24]). Let A1 and A2 be two maximal monotone operators such that
their sum A1 + A2 is maximal monotone. Suppose S = (A1 + A2)

−1(0) 6= ∅. Let us assume that
∞
∑

n=1
λn = +∞ and

∞
∑

n=1
λ2

n < +∞. Then any sequence {xn} generated by the algorithm

(24) xn = (I + λnA2)
−1(I + λnA1)

−1xn−1

converges weakly in average to some x ∈ S.

Let us remark that hypothesis (H4) is trivially satisfied, and there is no assumption on βn.

In the next section we describe an algorithm that provides a point in S but uses the resolvents
in parallel and then computes a barycenter.

4. Examples

4.1. Prox-projection. Take Ψ = δC , where C is a closed convex subset of H. Then the
algorithm described by (16) becomes

(25)

{

yn = (I + λnA)−1xn−1

xn = PCyn,

where PC denotes the projection onto the set C. This is a prox-projection algorithm. In that
case Ψ∗ = σC and hypothesis (H4) is automatically satisfied. Thus weak ergodic convergence

holds under the sole assumption
∞
∑

n=1
λn = +∞. Weak convergence of the whole sequence {xn}

holds for example with λn = 1
n
. Let us consider the two following special cases of particular

interest:
Let A = ∂Φ be the subdifferential of Φ ∈ Γ0(H), and let D be a closed convex subset of H.

(1) If Φ = δD, we recover the classical alternating projection method to find points in C ∩D
whenever this set is nonempty (S 6= ∅). Hypothesis (H) is satisfied trivially because the
resolvents do not depend on the parameters λn and βn.

(2) If Φ(x) = 1
2dist(x,D)2 then S is reduced to the point in C which is closest to D. Let us

explicit algorithm (25) in that case. We need to compute (I + λnA)−1x with A = ∇Φ.
Let us notice that ∇Φ is the Yosida approximation of index 1 of ∂φ with φ = δD, namely
∇Φ = (∂φ)1. By using the resolvent equation ((∂φ)1)λ = (∂φ)1+λ (see [9] Proposition
2.6) we obtain

(I + λnA)−1x = x − λn(∂φ)1+λn
(x)

= x − λn

1+λn
(x − PDx)

= 1
1+λn

(x + λnPDx) .
.

Thus the algorithm reads as
{

yn = 1
1+λn

(xn−1 + λnPDxn−1)

xn = PCyn.
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4.2. Barycenter. Let A1 and A2 be maximal monotone operators in a Hilbert space H. Set
H = H ×H and define the (maximal monotone) operator A on H by A(x1, x2) = (A1x

1, A2x
2).

Let Ψ(x1, x2) = 1
2‖x

1 − x2‖2 so that ∇Ψ(x1, x2) = (x1 − x2, x2 − x1).
The algorithm described by (16) gives

{

y1
n + λnA1y

1
n ∋ x1

n−1

y2
n + λnA2y

2
n ∋ x2

n−1

and
{

x1
n + λnβn(x1

n − x2
n) = y1

n

x2
n + λnβn(x2

n − x1
n) = y2

n.

Solving for (x1
n, x2

n) one obtains

(26)

{

x1
n = (1 − αn)y1

n + αny2
n

x2
n = αny1

n + (1 − αn)y2
n,

where αn = λnβn

1+2λnβn
∈ (0, 1

2). The second step amounts to computing two barycenters for the

points found in the first step. For this type of algorithm, the interested reader can consult
[19, Lehdili and Lemaire] and the references therein. Observe that condition (H) is satisfied if
λn ∈ ℓ2 \ ℓ1 and

∑

λn

βn
< ∞, so ergodic convergence is granted under these assumptions. In

particular, on can take βn = 1
λn

and (26) becomes

{

x1
n = 2

3y1
n + 1

3y2
n

x2
n = 1

3y1
n + 2

3y2
n.

The limit (x̄1, x̄2) satisfies

(A1x̄
1, A2x̄

2) + NC(x̄1, x̄2) ∋ 0,

where C = {(x, y) : x = y}. In particular, if A = ∂Φ with Φ(x1, x2) = f(x1) + g(x2) then

(x̄1, x̄2) ∈ argmin{f(x) + g(y) : x = y}

and so

x̄1 ∈ argmin{f(x) + g(x)}.

One obtains weak convergence (not only ergodic), for instance, if λn = 1
n

and βn = n.
This procedure can be easily generalized to M variables. Let A1, . . . AM be maximal montone

operators in a Hilbert space H. Set H = HM and denote ~x = (x1, . . . xM ). Define the operator
A on H by A(~x) = (A1x

1, . . . , AMxM ) and set Ψ(~x) = 1
2

∑

i<j

‖xi − xj‖2 so that

∇Ψ(~x) = M(~x)′ −

[

M
∑

k=1

xk

]

1M×1,

where 1i×j denotes the matrix of size i × j whose entries all equal 1. The algorithm described
by (16) gives

ym
n + λnAmym

n ∋ xm
n−1 for m = 1, . . . , M

and then

xm
n + λnβnMxm

n − λnβn

M
∑

k=1

xk = ym
n for m = 1, . . . , M.

The latter system of equations can be written in matricial form as

Mn~xn = ~yn with Mn = (1 + λnβnM)I − λnβn1M×M .
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Simple computations show that Mn is invertible and the (i, j)-th entry of M−1
n is

(M−1
n )i,j =

{

1+λnβn

1+λnβnM
if i = j

λnβn

1+λnβnM
if i 6= j.

As a consequence, M−1
n is symmetric and doubly stochastic, whence

~xn = M−1
n ~yn

represents the computation of each component xm
n of ~xn as a barycenter of the vectors y1

n, . . . , yM
n

according to the weights given in M−1
n .

4.3. Optimal control of linear systems. Consider an optimal control problem:

(27) min{Φ(y, u) : Ay = Bu},

where A : Y → Z and B : U → Z are linear operators (possibly unbounded), Y, U, Z are
Hilbert spaces and Φ : Y × U → R ∪ {+∞} is a proper, lower-semicontinuous convex function
representing the cost to be minimized. A classical approach introduced by J.-L. Lions consists
in taking the state equation as a constraint:

C = {(y, u) ∈ Y × U : Ay = Bu}.

A natural way to deal with this type of constraint is to use the penalization function

Ψ(y, u) =
1

2
‖Ay − Bu‖2

Z .

Set H = Y × U being equipped with the Hilbert product structure. Algorithm (7) takes the
form

(yn, un) = argmin
(y, u) ∈ Y ×U

{

Φ(y, u) +
βn

2
‖Ay − Bu‖2 +

1

2λn

[

‖y − yn−1‖
2
Y + ‖u − un−1‖

2
U

]

}

.

In view of (11), in order to fulfill our key hypothesis (H) it suffices to verify that Ψ is lower
semicontinuous and satisfies

(28) Ψ(y, u) ≥
θ

2
dist((y, u), C)2

for some θ > 0 (the distance is taken in H = Y ×U). Then one can take, for instance {λn} ∈ ℓ2\ℓ1

and βn = 1
λn

. Assuming Φ to be continuous, the qualification condition (H2) is satisfied.

Therefore, assuming that the set S of solutions of problem (27) is nonempty we obtain the weak
convergence of the sequence (yn, un) to some (y∗, u∗) ∈ S as well as the convergence of the values
Φ(yn, un) to the optimal value of the problem.

As an example consider the optimal control of the following elliptic boundary-value problem:
Let Ω be an open bounded subset of RN . Set Y = H1

0 (Ω), U = Z = L2(Ω) and let

C = {(y, u) ∈ H1
0 (Ω) × L2(Ω) : −∆y = u}.

This is a closed convex subset of H1
0 (Ω)×L2(Ω). Let us define Ψ : H1

0 (Ω)×L2(Ω) → R∪+ {∞}

Ψ(y, u) =

{

‖∆y + u‖2
L2(Ω) if ∆y ∈ L2(Ω)

+∞ otherwise.

Note that, by Agmon-Douglis-Nirenberg regularity result for elliptic equations, when Ω is suffi-
ciently smooth,

y ∈ H1
0 (Ω) and ∆y ∈ L2(Ω) ⇐⇒ y ∈ H1

0 (Ω) ∩ H2(Ω).
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One can easily verify that Ψ is convex and lower semicontinuous on H1
0 (Ω) × L2(Ω). We claim

that (28) holds for some θ > 0. Indeed, for any (y, u) ∈ H1
0 (Ω)×L2(Ω) such that Ψ(y, u) < +∞,

i.e. ∆y ∈ L2(Ω) (otherwise the inequality is trivially satisfied)

dist((y, u), C)2 ≤ ‖(y, u) − (−∆−1u, u)‖2
H1

0
×L2

= ‖y + ∆−1u‖2
H1

0

≤ c‖∆y + u‖2
L2 = cΨ(y, u)

where c is the operator norm of (−∆)−1 : L2(Ω) → H1
0 (Ω), which can be evaluated using the

Poincaré inequality. Finally it suffices to set θ = 2/c to verify (28). Let us mention that in [16],
Kaplan and Tichatschke have been studying numerically a penalization method for optimal
control problems like the one above.

4.4. A simple numerical illustration. Take H = R × R. We perform a numerical simula-
tion to find the point in the straight line 2u + v = 1 that minimizes the function Φ(u, v) =
2(u2 + uv + v2). We define Ψ(u, v) = 1

2 |2u + v − 1|2. All the hypothesis of theorems 2.6 and

3.7 are satisfied, for instance, with λn = 1
n

and βn = n2. The solution set is S = {(1
2 , 0)} and

the optimal value Φ(1
2 , 0)) = 1

2 . We run 10 iterations of algorithm (7) with initial point (1, 1).
Figures 1 and 2 show the evolution of the iterates (un, vn) and the values Φ(un, vn), respectively.
We obtain (0.49, 0.01) and 0.49. The same is done for algorithm (8) to get (0.42, 0.09) and 0.45.
The evolution is shown in Figures 3 and 4.
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5. Stability and robustness

5.1. Sensitivity with respect to initial data. We now derive some stability properties of
the algorithms described in the preceding sections with respect to perturbations of the initial
data.
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First, let us consider two trajectories {xn} and {x̂n} emanating respectively from x0 and x̂0

following the algorithm given by (7):

xn =
(

I + λn(A + βn∂Ψ)
)−1

xn−1

x̂n =
(

I + λn(A + βn∂Ψ)
)−1

x̂n−1.

As a resolvent, the operator (I + λn(A + βn∂Ψ))−1 is a contraction. Hence,

(29) ‖xn − x̂n‖ ≤ ‖xn−1 − x̂n−1‖ ≤ ... ≤ ‖x0 − x̂0‖.

This dissipation property is characteristic of proximal schemes for monotone operators.

Now recall that zn = 1
τn

n
∑

k=1

λkxk, where τn =
n
∑

k=1

λk. By the triangle inequality we have

‖zn − ẑn‖ ≤
1

τn

n
∑

k=1

λk‖xk − x̂k‖ ≤
1

τn

n
∑

k=1

λk‖x0 − x̂0‖ = ‖x0 − x̂0‖.

Let x∞ and x̂∞ denote the weak limits, as n → ∞, of the sequences {zn} and {ẑn}, respectively.
Their existence is guaranteed by Theorem 2.3 and coincide with the limits of the sequences {xn}
and {x̂n} whenever the latter exist. By the weak lower-semicontinuity of the norm we obtain

‖x∞ − x̂∞‖ ≤ ‖x0 − x̂0‖.

Finally, define L : H → H in the following way: for x ∈ H compute the sequence {xn} using (7)
and x0 = x. Then set L(x) = w- lim

n→∞
zn.

Proposition 5.1. The function L is nonexpansive.

In a similar way, if {xn} and {x̂n} are produced using (8), then

‖xn − x̂n‖ =
∥

∥(I + λnβn∂Ψ)−1yn − (I + λnβn∂Ψ)−1ŷn

∥

∥

≤ ‖yn − ŷn‖

=
∥

∥(I + λnA)−1xn−1 − (I + λnA)−1x̂n−1

∥

∥

≤ ‖xn−1 − x̂n−1‖,

so that the dissipation property (29) holds as well.

If we define M : H → H by M(x) = w- lim
n→∞

zn, where xn satisfies (8) we have

Proposition 5.2. The function M is nonexpansive.

5.2. Inexact computation of the iterates. Let us assume that we can compute the iterates
following the rule (7) only approximately. More precisely, assume the sequence {xn} satisfies

(30)

∥

∥

∥

∥

xn −
(

I + λn(A + βn∂Ψ)
)−1

xn−1

∥

∥

∥

∥

≤ εn.

We shall prove that if the errors are summable, the convergence properties of the algorithm
remain unaltered. To accomplish this, for n ∈ N and x ∈ H define U(n, n)x = x and

U(N,n)x =
N
∏

k=n+1

(

I + λk(A + βk∂Ψ)
)−1

x

for N ≥ n. Here the product denotes the composition of resolvents. The family of operators
{U(N,n)}N≥n is a contracting evolution system, as defined in [2, 3]. That is, it satisfies

i) U(n, n)x = x.



22 ATTOUCH, CZARNECKI & PEYPOUQUET

ii) U(M,N)U(N,n) = U(M, n) for M ≥ N ≥ n.
iii) ‖U(N, n)x − U(N,n)y‖ ≤ ‖x − y‖.

The last property follows from (29).

On the other hand, the sequence {xn} satisfies

‖xN − U(N, n)xn‖ = ‖xN − U(N, N − 1)U(N − 1, n)xn‖

≤ ‖xN − U(N, N − 1)xN−1‖

+‖U(N, N − 1)xN−1 − U(N, N − 1)U(N − 1, n)xn‖

≤ εN + ‖xN−1 − U(N − 1, n)xn‖.

By induction one easily shows that

‖xN − U(N,n)xn‖ ≤
N

∑

k=n+1

εk.

If
∑

εk < ∞ then

lim
n→∞

[

sup
N≥n

‖xN − U(N, n)xn‖

]

≤ lim
n→∞

[

∞
∑

k=n+1

εk

]

= 0,

so that {xn} is an almost-orbit of the evolution system U . By Propositions 9 and 12 in [3,
Alvarez and Peypouquet]1, the almost-orbits have the same asymptotic behavior and so we have

Proposition 5.3. The conclusions of Theorems 2.3, 2.4 and 2.6 remain true under the same
hypotheses if xn satisfies (30) with

∑

εn < ∞.

In an analogous way one can consider errors in the computation of the sequence generated by
(8):

(31)
‖yn − (I + λnA)−1xn−1‖ ≤ εn

‖xn − (I + λnβn∂Ψ)−1yn‖ ≤ δn.

Following the arguments presented above the reader may easily check the following:

Proposition 5.4. The conclusions of Theorems 3.3, 3.4 and 3.7 remain true under the same
hypotheses if xn satisfies (31) with

∑

εn < ∞ and
∑

δn < ∞.

Proposition 5.5. The same is true for Theorem 3.9 if xn satisfies

‖ym
n − (I + λnAm)−1ym−1

n ‖ ≤ εm,n for m = 1, . . . , M
‖xn − (I + λnβn∂Ψ)−1yM

n ‖ ≤ δn

with
M
∑

m=1

∞
∑

n=1
εm,n < ∞ and

∞
∑

n=1
δn < ∞.
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