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This paper is concerned with the study of a class of prox-penalization methods for solving variational inequalities of the form

where H is a real Hilbert space, A : H ⇉ H is a maximal monotone operator and NC is the outward normal cone to a closed convex set C ⊂ H. Given Ψ : H → R ∪ {+∞} which acts as a penalization function with respect to the constraint x ∈ C, and a penalization parameter βn, we consider a diagonal proximal algorithm of the form

and an algorithm which alternates proximal steps with respect to A and penalization steps with respect to C and reads as

We obtain weak ergodic convergence for a general maximal monotone operator A, and weak convergence of the whole sequence {xn} when A is the subdifferential of a proper lowersemicontinuous convex function. Mixing with Passty's idea, we can extend the ergodic convergence theorem, so obtaining the convergence of a prox-penalization splitting algorithm for constrained variational inequalities governed by the sum of several maximal monotone operators. Our results are applied to an optimal control problem where the state variable and the control are coupled by an elliptic equation. We also establish robustness and stability results that account for numerical approximation errors.

Introduction

Let H be a real Hilbert space, A : H ⇉ H a general maximal monotone operator, and C a closed convex set in H. We denote by N C the outward normal cone to C. This paper is concerned with the study of a class of prox-penalization and splitting algorithms for solving variational inequalities of the form [START_REF] Alart | Penalization in non-classical convex programming via variational convergence[END_REF] Ax + N C (x) ∋ 0, which combine proximal steps with respect to A and penalization steps with respect to C. We begin by describing two model situations that motivate our study:

1. Sum of maximal monotone operators. Let X be a real Hilbert space and set H = X ×X . Define A : H ⇉ H by A(x 1 , x 2 ) = (A 1 x 1 , A 2 x 2 ) where A 1 and A 2 are maximal monotone operators on X . If C = {(x 1 , x 2 ) ∈ X × X : x 1 = x 2 } the inclusion (1) reduces to

(2)

A 1 x + A 2 x ∋ 0.
In the line of Trotter-Kato formula, we would like to solve this problem by using splitting methods which only require to compute resolvents (proximal steps) with respect to A 1 and A 2 , separately. A valuable guideline is a theorem from [START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF]Passty] which states that any sequence {x n } generated by the algorithm [START_REF] Alvarez | Asymptotic almost-equivalence of abstract evolution systems[END_REF] x n = (I + λ n A 2 ) -1 (I + λ n A 1 ) -1 x n-1 converges weakly in average to some x satisfying (2) provided {λ n } ∈ ℓ 2 (N) \ ℓ 1 (N).

2. Structured convex minimization. Coupled variational problems where the coupling occurs in the constraint play a central role in decision and engineering sciences. Consider the minimization problem (4) min {f 1 (x 1 ) + f 2 (x 2 ) :

L 1 x 1 = L 2 x 2 , (x 1 , x 2 ) ∈ X 1 × X 2 } ,
where X 1 , X 2 and Z are real Hilbert spaces and each L i is bounded linear (or affine) operator from X i to Z. This type of structured variational problem appears in optimal control of linear systems, in the study of domain decomposition methods for PDE's, transport, imaging and signal processing. Considering infinite dimensional spaces is crucial for these types of applications. Problem (4) falls in our setting by taking A(x 1 , x 2 ) = (∂f 1 (x 1 ), ∂f 2 (x 2 )) and

C = {(x 1 , x 2 ) ∈ X 1 × X 2 : L 1 x 1 = L 2 x 2 }.
Splitting algorithms attached to such coupled variational problems have a rich interpretation in terms of best response dynamics for potential games, see [4, Attouch, Bolte, Redont and Soubeyran].

In order to address these problems in a unified way, we use the links between algorithms and continuous dissipative dynamical systems, and their asymptotic analysis by Liapunov methods. As we shall see, our algorithms can be derived by time discretization of the continuous nonautonomous dynamical system [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF] ẋ(t) + Ax(t) + β(t)∂Ψ(x(t)) ∋ 0, which has been recently introduced in [5, Attouch and Czarnecki], and whose trajectories (under certain conditions on the function β(•)) asymptotically reach equilibria given by (1). In system [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF] above, the function Ψ : H → R ∪ {+∞} acts as an external penalization function with respect to the constraint x ∈ C. The corresponding penalization parameter β(t) tends to +∞ as t → +∞.

Observe that an implicit discretization of the differential inclusion [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF] gives

(6) 1 λ n (x n -x n-1 ) + Ax n + β n ∂Ψ(x n ) ∋ 0,
where λ n and β n are sequences of positive parameters. Inclusion [START_REF] Attouch | Somme ponctuelle d'opérateurs maximaux monotones[END_REF] can be rewritten as [START_REF] Auslender | Penalty-proximal methods in convex programming[END_REF] x n = I + λ n (A + β n ∂Ψ)
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x n-1 , giving a diagonal proximal point algorithm. On the other hand, since the resolvent of the sum of two maximal monotone operators may be hard to compute, we propose also an alternating method: [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF] x n = (I + λ n β n ∂Ψ) -1 (I + λ n A) -1 x n-1 , which combines proximal steps corresponding to the operator A and the set C.

The implicit scheme described by [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF] makes sense for any maximal monotone operator A and any Ψ ∈ Γ 0 (H). Under more restrictive assumptions on Ψ one may also consider a mixed explicit-implicit algorithm of the form 1 λ n (x nx n-1 ) + Ax n + β n ∂Ψ(x n-1 ) ∋ 0, which can be rewritten as [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] x n = (I + λ n A) -1 (x n-1λ n β n w n ), for w n ∈ ∂Ψ(x n-1 ). Explicit schemes (in general) have the advantage of being easier to compute, which ensures enhanced applicability to real-life problems. However, they tend to be less stable than the implicit ones. Assuming Ψ to satisfy some additional regularity properties, it is reasonable to expect that algorithm (9) still enjoys good asymptotic convergence properties. This interesting subject requires further studies, which go beyond the scope of this paper.

Diagonal algorithms of the form

1 λ n (x n -x n-1 ) + A n (x n ) ∋ 0
for general families of maximal monotone operators A n have been studied [START_REF] Kato | Nonlinear semi-groups and evolution equations[END_REF]Kato], [START_REF] Kobayasi | Nonlinear evolution operators in Banach spaces[END_REF]Kobayasi,Kobayashi and Oharu], [START_REF] Alvarez | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces[END_REF]Alvarez and Peypouquet]; especially in terms of their relationship with continuous-time trajectories solving a differential inclusion of the form 0 ∈ ẋ(t) + A(t)x(t).

In the special case where A n = ∂f n , asymptotic properties of algorithms such as [START_REF] Attouch | Somme ponctuelle d'opérateurs maximaux monotones[END_REF] are proved in [START_REF] Auslender | Penalty-proximal methods in convex programming[END_REF]Auslender,Crouzeix and Fedit] in the framework of exterior penalization. Further study was carried out in [START_REF] Alart | Penalization in non-classical convex programming via variational convergence[END_REF]Alart and Lemaire] under variational convergence assumptions and in [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF]Bahraoui and Lemaire] and [START_REF] Lemaire | Bounded diagonally stationary sequences in convex optimization[END_REF]Lemaire] using convergence of the subdifferentials in terms of the Hausdorff excess function. Convergence in value is studied in [START_REF] Peypouquet | Asymptotic Convergence to the Optimal Value of Diagonal Proximal Iterations in Convex Minimization[END_REF]Peypouquet]. For general penalization schemes in convex programming the reader can consult [START_REF] Cominetti | Coupling general penalty schemes for convex programming with the steepest descent method and the proximal point algorithm[END_REF]Cominetti and Courdurier] and the references therein.

There are natural links between prox-penalization and proximal methods involving asymptotically vanishing terms (viscosity methods). They both involve multiscale aspects and lead to hierarchical minimization. Regarding their continuous versions, passing from one to the other relies on time rescaling, see [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF]. For Tikhonov regularization see [START_REF] Lehdili | Combining the proximal algorithm and Tikhonov regularization[END_REF]Lehdili and Moudafi] and [START_REF] Cominetti | Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization[END_REF]Cominetti,Peypouquet and Sorin]. See [START_REF] Cabot | Proximal point algorithm controlled by a slowly vanishing term. Applications to hierarchical minimization[END_REF]Cabot] for some further related results and references.

As we shall see, the use of a penalization-like scheme for general maximal monotone operators is an effective tool for finding solutions of constrained variational inequalities.

In classical penalization, most results rely on the smoothness and other special features of the penalization function. Having in view a large range of applications, we shall not assume any particular structure or regularity on the penalization function Ψ. Instead, we just suppose that Ψ is convex, lower-semicontinuous and C = argmin Ψ = ∅. If A = ∂Φ for some proper lower-semicontinuous convex function Φ : H → R ∪ {+∞} and some qualification condition holds, the inclusion (1) is equivalent to

x ∈ argmin{Φ(z) : z ∈ argmin Ψ}.
Therefore, our results can also be considered from a multiscale or hierarchical point of view.

Our main results can be summarized as follows: Under certain hypotheses on the sequences λ n and β n , and assuming a geometric condition involving the Fenchel conjugate of Ψ (which we shall state explicitly later on) we are able to prove the following results which can be classified into the following categories A, B, C:

Let {x n } be a sequence satisfying either [START_REF] Auslender | Penalty-proximal methods in convex programming[END_REF] or [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF] up to a numerical error ε n (see Section 5 for precise details) and let {z n } be the sequence of weighted averages [START_REF] Brézis | Produits infinis de résolvantes[END_REF] z

n = 1 τ n n k=1 λ k x k , where τ n = n k=1 λ k .
A. The sequence {z n } converges weakly to a solution of (1) (Theorems 2.3 and 3.3).

B.

If A is strongly monotone then {x n } converges strongly (Theorems 2.4 and 3.4).

C. If A = ∂Φ for some proper lower-semicontinuous convex function Φ : H → R ∪ {+∞} then {x n } converges weakly (Theorems 2.6 and 3.7). This is the same type of asymptotic behavior as in the well-known proximal point algorithm with variable time step λ n , see [START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF]Lions] and [START_REF] Brézis | Produits infinis de résolvantes[END_REF]Brézis and Lions]. See also [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]Peypouquet and Sorin] for a complete survey on the topic.

The paper is organized as follows: In section 1 we recall some basic facts about convex analysis and monotone operators, we state and discuss on the standing assumptions, and present some results from [START_REF] Opial | Weak Convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]Opial] and [START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF] that are useful for proving weak convergence of a sequence in a Hilbert space without a priori knowledge of the limit. Sections 2 and 3 contain our main results of type A, B and C for the algorithms given by ( 7) and [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF], respectively. By mixing our techniques with Passty's idea [START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF], we obtain the convergence of a splitting algorithm for constrained variational inequalities governed by the sum of M maximal monotone operators. In section 4 we mention some applications of our results, with an illustrating example in optimal control of linear systems. We also show a simple numerical experience. Finally, in section 5 we provide some robustness and stability results concerning the dependence on the initial conditions and the convergence of the algorithms when the iterates are computed inexactly.

1. Preliminaries 1.1. Some facts of convex analysis and monotone operators. Let H be a real Hilbert space and let Γ 0 (H) denote the set of all proper lower-semicontinuous convex functions F : H → R ∪ + {∞}. Given F ∈ Γ 0 (H) and x ∈ H, the subdifferential of F at x is the set ∂F (x) = {x * ∈ H : F (y) ≥ F (x) + x * , yx for all y ∈ H}.

The Fenchel conjugate of F is the function F * ∈ Γ 0 (H) defined by

F * (x * ) = sup y∈H { x * , y -F (y)} .
For x, x * ∈ H one has F (x) + F * (x * ) ≥ x * , x with equality if, and only if, x * ∈ ∂F (x). Given a nonempty closed convex set C ⊂ H, its indicator function is defined as δ

C (x) = 0 if x ∈ C and +∞ otherwise. The support function of C at a point x * is σ C (x * ) = sup c∈C x * , c . The normal cone to C at x is N C (x) = {x * ∈ H : x * , c -x ≤ 0 for all c ∈ C} if x ∈ C and ∅ otherwise. We denote by R(N C ) the range of N C . Observe that δ * C = σ C and ∂δ C = N C . Notice also that x * ∈ N C (x) if, and only if, σ C (x * ) = x * , x .
A monotone operator is a set-valued mapping A : H ⇉ H such that x *y * , xy ≥ 0 whenever x * ∈ Ax and y * ∈ Ay. It is maximal monotone if its graph is not properly contained in the graph of any other monotone operator. The subdifferential of a function in Γ 0 (H) is maximal monotone. For any maximal monotone operator A : H ⇉ H and for any λ > 0, the operator I + λA is surjective by Minty's Theorem (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]Brézis] or [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]). The operator (I + λA) -1 is a contraction that is everywhere defined. It is called the resolvent of A of index λ.

Finally, an operator A is strongly monotone with parameter α > 0 if

x *y * , xy ≥ α xy 2 whenever x * ∈ Ax and y * ∈ Ay. Observe that the set of zeroes of a strongly monotone operator is nonempty and contains a single element. 1.2. Standing assumptions. Let A be a maximal monotone operator on H and Ψ ∈ Γ 0 (H) with C = argmin Ψ = ∅. Without any loss of generality we assume min Ψ = 0 (Ψ enters into the algorithm only via its subdifferential). Define the monotone operator T A, C = A + N C .

For our main results we shall make the following assumptions:

(H)                  (H 1 ) The solution set S = T -1 A, C 0 is nonempty. (H 2 ) The operator T A, C is maximal monotone. (H 3 ) ∞ n=1 λ n = +∞. (H 4 ) For each p ∈ R(N C ), ∞ n=1 λ n β n Ψ * p βn -σ C p βn < +∞.
Some comments are in order:

(H 1 ): This simply states that problem (1) has a solution.

(H 2 ): The maximal monotonicity of T A, C gives the following characterization of the solution set: a point z ∈ H belongs to S if, and only if, w, zu ≤ 0 for all u ∈ C ∩ dom(A) and all w ∈ T A,C u.

If A = ∂Φ for some Φ ∈ Γ 0 (H), the maximal monotonicity of T A, C simply states that

∂Φ+N C = ∂(Φ + δ C ). Thus z ∈ S if, and only if, 0 ∈ ∂(Φ + δ C )(z), which is equivalent to z ∈ argmin{Φ(x) : x ∈ C}.
This holds if Φ and δ C satisfy some qualification condition, such as the Moreau-Rockafellar or Attouch-Brézis.

(H 3 ): Since λ n has a natural interpretation as a time step λ n = t nt n-1 in the discretization of [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF], it is natural to assume

∞ n=1
λ n = +∞ in order to preserve the asymptotic convergence properties of the continuous dynamics (see [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF]). In other words, (H 3 ) is the discrete-time analogue of t → +∞.

(H 4 ): This is a discrete version of the following condition

(H 1 ) For each p ∈ R(N C ), ∞ 0 β(t) Ψ * p β(t) -σ C p β(t)
dt < +∞, which was introduced in [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF]. The analysis carried out in [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF] remains valid in our discrete setting: First, all the terms in the sum are nonnegative. Indeed, since Ψ(x) ≤ δ C (x) for all x ∈ H, one always has the reverse inequality for their Fenchel conjugates, namely Ψ * (p)σ C (p) ≥ 0 for all p ∈ H.

In the special case where Ψ

(x) = 1 2 dist(x, C) 2 , we have Ψ * (p) -σ C (p) = 1 2 p 2 for all p ∈ H and so (11) (H 4 ) ⇐⇒ ∞ n=1 λ n β n < +∞. Suppose now that Ψ(•) ≥ θ 2 dist(•, C) 2 for some θ > 0. Then Ψ * (p) -σ C (p) ≤ 1 2θ p 2 for all p ∈ R(N C ) and so ∞ n=1 λ n β n < +∞ =⇒ (H 4 ).
Moreover, if the sequence {β n } is chosen so that lim sup

n→∞ λ n β n < +∞ and lim inf n→∞ λ n β n > 0 then ∞ n=1 λ n β n < +∞ ⇐⇒ ∞ n=1 λ 2 n < +∞.
The particular case Ψ = 0 corresponds to C = H, which is the unconstrained case. In this situation R(N C ) = {0}, and since Ψ * (0) = σ C (0) = 0, condition (H 4 ) is trivially satisfied.

For the weak convergence of the sequence {x n } itself in the subdifferential case (Theorems 2.6 and 3.7) we shall assume an exponential-type growth condition on the sequence of parameters

{β n }, namely (G)
There is a constant

K ∈ R such that β n -β n-1 λ n-1 β n-1 ≤ K for all sufficiently large n.
This is a discrete version of condition (H 2 ) in [START_REF] Attouch | Asymptotic behavior of coupled dynamical systems with multiscale aspects[END_REF]:

(H 2 ) β(t) ≤ Kβ(t).

1.3.

A tool for proving weak convergence. The following lemma gathers results from [START_REF] Opial | Weak Convergence of the sequence of successive approximations for nonexpansive mappings[END_REF][START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF] (see also [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]). It is a simple but very useful tool for proving weak convergence in Hilbert spaces. What is interesting about this method is that one does not need to know the limit beforehand, but only a set to which this limit is expected to belong. Let {x n } be any sequence in H and define {z n } as in [START_REF] Brézis | Produits infinis de résolvantes[END_REF] (recall that, by (H 3 ), Proof. Since this result is less known in its ergodic form, let us prove it in this setting. Thus we want to prove weak convergence of the sequence {z n }. Clearly the sequence {z n } is bounded. The space being reflexive, it suffices to prove that {z n } has only one weak cluster point as n → ∞. Suppose otherwise that z kn ⇀ z and

τ n = n k=1 λ k → +∞ as n → +∞).
z k ′ n ⇀ z ′ . Since 2 x n , z -z ′ = x n -z ′ 2 -x n -z 2 -z ′ 2 + z 2 ,
we deduce the existence of lim

n→∞ x n , z -z ′ . But then lim n→∞ z n , z -z ′ exists as well, which implies that z, z -z ′ = z ′ , z -z ′ . We conclude that z = z ′ .

Prox-penalization algorithm

In this section we study the prox-penalization algorithm given by [START_REF] Auslender | Penalty-proximal methods in convex programming[END_REF], namely

x n = (I + λ n (A + β n ∂Ψ)) -1 x n-1 .
Our results remain true if we allow an error ε n in the computation of x n . For the sake of clarity, we present the results in this section with ε n = 0 and refer the reader to Section 5 for the general setting.

In order to guarantee the well-posedness of ( 7), all along this section we make the following standing qualification assumption (Q n ):

(Q n ) for each n ∈ N, the monotone operator A + β n ∂Ψ is maximal monotone.
One can consult [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], [6, Attouch, Riahi and Théra] and the references therein, for general conditions ensuring that the sum of two maximal monotone operators is still maximal monotone. Observe that if A = ∂Φ this is true, for instance, under Moreau-Rockafellar or Attouch-Brézis qualification condition.

For any initial data x 0 ∈ H, this procedure generates a unique trajectory {x n }. The preceding equality can be equivalently written as

x n + λ n Ax n + λ n β n ∂Ψ(x n ) ∋ x n-1 , which means that there exist v 1 n ∈ Ax n and v 2 n ∈ ∂Ψ(x n ) such that (12) x n + λ n v 1 n + λ n β n v 2 n = x n-1 .
Let us denote by {x n } an arbitrary sequence generated by algorithm (7) (corresponding to an arbitrary choice of the initial data

x 0 ∈ H). Let us recall that T A, C = A + N C . Consequently, for each u ∈ D(A) ∩ C and w ∈ T A, C u there exists p ∈ N C (u) with w -p ∈ Au. Lemma 2.1. Take u ∈ D(A) ∩ C, w ∈ T A, C u and let p ∈ N C (u) be such that w -p ∈ Au.
Then, for each n ≥ 1, the following inequality holds

x n -u 2 -x n-1 -u 2 + x n-1 -x n 2 + λ n β n Ψ(x n ) ≤ 2λ n u -x n , w + λ n β n Ψ * 2p βn -σ C 2p βn .
Proof. First observe that

x n-1 -u 2 = x n -u 2 + x n-1 -x n 2 + 2 x n -u, x n-1 -x n = x n -u 2 + x n-1 -x n 2 + 2 x n -u, λ n v 1 n + λ n β n v 2 n
where v 1 n ∈ Ax n and v 2 n ∈ ∂Ψ(x n ) are given by [START_REF] Combettes | Iterative construction of the resolvent of a sum of maximal monotone operators[END_REF]. The monotonicity of A gives [START_REF] Cominetti | Coupling general penalty schemes for convex programming with the steepest descent method and the proximal point algorithm[END_REF] (wp)v 1 n , ux n ≥ 0, while the subdifferential inequality for Ψ yields

0 = Ψ(u) ≥ Ψ(x n ) + u -x n , v 2 n . Hence u -x n , λ n v 1 n + λ n β n v 2 n ≤ λ n u -x n , w -p -λ n β n Ψ(x n ) and so 2 u -x n , λ n v 1 n + λ n β n v 2 n + λ n β n Ψ(x n ) ≤ 2λ n u -x n , w -p -λ n β n Ψ(x n ). Thus, if we set E n (u) = x n -u 2 -x n-1 -u 2 + x n-1 -x n 2 + λ n β n Ψ(x n )
we see that

E n (u) = 2 u -x n , λ n v 1 n + λ n β n v 2 n + λ n β n Ψ(x n ) ≤ 2λ n u -x n , w -p -λ n β n Ψ(x n ).
But the right-hand side satisfies

2λ n u -x n , w -p -λ n β n Ψ(x n ) = λ n β n 2p βn , x n -Ψ(x n ) -2p βn , u + 2λ n u -x n , w ≤ λ n β n Ψ * 2p β n -σ C 2p β n + 2λ n u -x n , w ,
where Ψ * is the Fenchel conjugate of Ψ. Finally

E n (u) ≤ λ n β n Ψ * 2p βn -σ C 2p βn + 2λ n u -x n , w ,
which is the desired inequality.

This immediately gives the following:

Corollary 2.2. Under hypotheses (H 1 ) and (H 4 ) we have: i) lim n→∞

x nu exists for each u ∈ S.

ii)

n x n-1 -x n 2 < +∞. iii) n λ n β n Ψ(x n ) < +∞. iv) If lim inf n→∞ λ n β n > 0 then lim n→∞ Ψ(x n ) =
0 and every weak cluster point of the sequence

{x n } lies in C.
Proof. Since S = ∅ we can take u ∈ S, w = 0 and p ∈ N C (u) ∩ (-Au), so that Lemma 2.1 yields for each n ≥ 1

x n -u 2 -x n-1 -u 2 + x n-1 -x n 2 + λ n β n Ψ(x n ) ≤ λ n β n Ψ * 2p β n -σ C 2p β n .
Hypothesis (H 4 ) immediately gives i), ii) and iii). Part iv) follows from iii) and the weak lowersemicontinuity of Ψ.

2.1. Ergodic convergence. We can now properly state and prove the weak ergodic convergence of the sequence {x n } given by (7) (result of type A in the introduction). Recall from [START_REF] Brézis | Produits infinis de résolvantes[END_REF] that 

τ n = n k=1 λ k , z n = 1 τn n k=1 λ k x k ,
≤ k ≤ n x k -u 2 -x k-1 -u 2 ≤ 2λ k u -x k , w + λ k β k Ψ * 2p β k -σ C 2p β k
where positive terms on the left hand side have been omitted (they have no significant contribution since they asymptotically vanish). Summing up these inequalities, 1 ≤ k ≤ n, and dividing by 2τ n we obtain

- x 0 -u 2 2τ n ≤ u -z n , w + 1 2τ n ∞ k=1 λ k β k Ψ * 2p β k -σ C 2p β k .
Passing to the limit we deduce that every weak cluster point z of the sequence {z n } satisfies

0 ≤ u -z, w for each [u, w] ∈ T A,C .
By maximal monotonicity of T A, C , (assumption (H 2 ), this implies z ∈ S.

2.2.

Strong convergence for strongly monotone operators. Recall that A is strongly monotone with parameter α > 0 if

x *y * , xy ≥ α xy 2 whenever x * ∈ Ax and y * ∈ Ay. As a distinctive feature, the set of zeroes of a strongly monotone operator is nonempty, and it is equal to a singleton. We now prove the strong convergence of the sequence {x n } defined by ( 7) (result of type B) when A is strongly monotone.

Theorem 2.4 (Type B). Under hypothesis (H), if the operator A is strongly monotone then the sequence {x n } converges strongly to the unique u ∈ S.

Proof. Recall from ( 12) that there exist

v 1 n ∈ Ax n and v 2 n ∈ ∂Ψ(x n ) such that x n + λ n v 1 n + λ n β n v 2 n = x n-1 .
Let A be strongly monotone with parameter α and let u be the unique element in S. Inequality [START_REF] Cominetti | Coupling general penalty schemes for convex programming with the steepest descent method and the proximal point algorithm[END_REF] becomes

(w -p) -v 1 n , u -x n ≥ α x n -u 2 .
We follow the arguments in the proof of Lemma 2.1 to obtain

2α x n -u 2 + 2 u -x n , λ n v 1 n + λ n β n v 2 n + λ n β n Ψ(x n ) ≤ 2λ n u -x n , w -p -λ n β n Ψ(x n ). Hence (1 + 2αλ n ) x n -u 2 -x n-1 -u 2 ≤ λ n β n Ψ * 2p βn -σ C 2p βn . Summation gives 2α ∞ n=1 λ n x n -u 2 ≤ x 0 -u 2 + ∞ n=1 λ n β n Ψ * 2p βn -σ C 2p βn < ∞. Since ∞ n=1
λ n = +∞ and lim n→∞

x nu exists, we must have lim n→∞

x nu = 0.

2.3.

Weak convergence for subdifferentials. Let A = ∂Φ be the subdifferential operator associated to some Φ ∈ Γ 0 (H). For each n ∈ N let us define Ω n ∈ Γ 0 (H) by

Ω n = Φ + β n Ψ.
Since the operator ∂Φ + β n ∂Ψ has been assumed to be maximal monotone, the algorithm can be equivalently written as

x n = (I + λ n ∂Ω n ) -1 x n-1 = argmin ξ∈H Φ(ξ) + β n Ψ(ξ) + 1 2λ n ξ -x n-1 2 .
We are going to prove that the sequence {x n } defined by [START_REF] Auslender | Penalty-proximal methods in convex programming[END_REF] converges weakly to a point in S.

We shall use the following auxiliary result:

Lemma 2.5. Assume hypothesis (H) holds. Then for each u ∈ S ∞ n=1 λ n [Φ(x n ) -Φ(u) + β n Ψ(x n )] < +∞ (possibly -∞).
Proof. The subdifferential inequality gives

(14) Ω n (u) ≥ Ω n (x n ) + 1 λ n x n-1 -x n , u -x n for each u ∈ H. If u ∈ S one has Ω n (u) = Φ(u), hence (15) 2λ n Φ(x n ) -Φ(u) + β n Ψ(x n ) ≤ x n-1 -u 2 -x n -u 2 -x n-1 -x n 2 .
By summing these inequalities with respect to n = 1, 2, ..., we obtain

∞ n=1 λ n [Φ(x n ) -Φ(u) + β n Ψ(x n )] ≤ 1 2 x 0 -u 2 < ∞,
which gives the result. Next, Lemma 2.5 and the fact that

λ n β n Ψ(x n ) < +∞ together imply λ n [Φ(x n ) -Φ(u)] < +∞ and since lim inf n→∞ λ n > 0 we conclude that lim sup n→∞ Φ(x n ) ≤ Φ(u) for each u ∈ S.
In the settings ii) and iii), let us suppose (G) holds. As before, we just need to verify that lim n→∞ Ψ(x n ) = 0 and lim sup n→∞ Φ(x n ) ≤ Φ(u) for all u ∈ S. By the definition of the algorithm one

has Ω n (x n ) ≤ Ω n (x n-1
). Setting u = x n-1 in ( 14) and using (G) we obtain

Ω n (x n ) ≤ Ω n (x n-1 ) ≤ Ω n-1 (x n-1 ) + Kλ n-1 β n-1 Ψ(x n-1 ). Since Ω n (x n ) is bounded from below, part iii) in Corollary 2.2 ensures the existence of lim n→∞ Ω n (x n ). Lemma 2.5 implies lim n→∞ Ω n (x n ) ≤ Φ(u) for any u ∈ S and so lim sup n→∞ Φ(x n ) ≤ Φ(u).
The fact that lim n→∞ Ψ(x n ) = 0 follows from part iv) in Corollary 2.2 if lim inf n→∞ λ n β n > 0, and from

equality β n Ψ(x n ) = Ω n (x n ) -Φ(x n ) if lim n→∞ β n = ∞.

Splitting prox-penalization algorithm

Let {β n } and {λ n } be sequences of positive numbers. In this section we study the alternating algorithm given by [START_REF] Kaplan | Regularized penalty method for non-coercive parabolic optimal control problems[END_REF] y n = (I + λ n A) -1 x n-1

x n = (I + λ n β n ∂Ψ) -1 y n and give the corresponding convergence results. As we did in the preceding section, we shall study the algorithm in its exact form [START_REF] Kaplan | Regularized penalty method for non-coercive parabolic optimal control problems[END_REF] and refer the reader to Section 5 for the general setting which accounts for computational errors. By contrast with the preceding section, where we needed assumption (Q n ) in order the algorithm to be well defined, here the algorithm is well defined without any further assumptions. For any initial data x 0 ∈ H, algorithm ( 16) generates a unique sequence {x n }.

The following estimation, closely related to Lemma 2.1, will be useful throughout this discussion: Lemma 3.1. For u ∈ D(A) ∩ C take w ∈ T A, C u so that w = v + p for some v ∈ Au and p ∈ N C (u), by definition. For each n ≥ 1 the following inequality holds:

x n -u 2 -x n-1 -u 2 + x n-1 -y n 2 + 1 2 x n -y n 2 + λ n β n Ψ(x n ) ≤ 2λ n w, u -x n + λ n β n Ψ * 2p β n -σ C 2p β n + 2λ 2 n v 2 .
Proof. We have x n-1y n ∈ λ n Ay n and y n -

x n ∈ λ n β n ∂Ψ(x n ). The monotonicity of A implies (17) x n-1 -y n , y n -u ≥ λ n v, y n -u ,
which can be rewritten as

(18) x n-1 -u 2 -y n -u 2 -x n-1 -y n 2 ≥ 2λ n v, y n -u .
On the other hand, the subdifferential inequality gives

0 = Ψ(u) ≥ Ψ(x n ) + y n -x n λ n β n , u -x n . Thus y n -x n , x n -u ≥ λ n β n Ψ(x n ), which is equivalent to (19) y n -u 2 -x n -u 2 -x n -y n 2 ≥ 2λ n β n Ψ(x n ).
Adding inequalities [START_REF] Kobayasi | Nonlinear evolution operators in Banach spaces[END_REF] and [START_REF] Lehdili | The barycentric proximal method[END_REF] we deduce that

x n-1 -u 2 -x n -u 2 ≥ x n-1 -y n 2 + x n -y n 2 + 2λ n v, y n -u + 2λ n β n Ψ(x n ). But 2λ n v, y n -u = 2λ n v, x n -u + 2 λ n v, y n -x n ≥ 2λ n v, x n -u -2λ 2 n v 2 - 1 2 y n -x n 2 .
Replacing in the previous inequality we obtain

x n-1 -u 2 -x n -u 2 ≥ x n-1 -y n 2 + 1 2 x n -y n 2 + 2λ n v, x n -u + 2λ n β n Ψ(x n ) -2λ 2 n v 2 thus x n -u 2 -x n-1 -u 2 + x n-1 -y n 2 + 1 2 x n -y n 2 + λ n β n Ψ(x n ) ≤ 2λ n v, u -x n -λ n β n Ψ(x n ) + 2λ 2 n v 2 .
Finally recall that v = wp so that, setting

D n = 2λ n v, u -x n -λ n β n Ψ(x n ), D n = 2λ n w, u -x n + λ n β n 2p β n , x n -Ψ(x n ) - 2p β n , u ≤ 2λ n w, u -x n + λ n β n Ψ * 2p β n -σ C 2p β n ,
which completes the proof.

An immediate consequence of Lemma 3.1 is the following:

Corollary 3.2. Let hypotheses (H 1 ) and (H 4 ) hold. If λ 2 n < ∞ then i) For each u ∈ S, lim n→∞ x n -u exists.
ii) The series

x n-1y n 2 ,

x ny n 2 and λ n β n Ψ(x n ) are convergent.

In particular, lim

n→∞ x n-1 -y n = lim n→∞ x n -y n = lim n→∞ x n -x n-1 = 0.
Proof. For u ∈ S we can take w = 0 in Lemma 3.1 and conclude as in Corollary 2.2. As a byproduct one obtains

∞ n=1 x n-1 -y n 2 + 1 2 ∞ n=1 x n -y n 2 + ∞ n=1 λ n β n Ψ(x n ) ≤ x 0 -u 2 + L, where (20) 
L = ∞ n=1 λ n β n Ψ * 2p βn -σ C 2p βn + 2 v 2 ∞ n=1 λ 2 n is finite.
Note that, as a difference with Corollary 2.2, we need to assume here that λ 2 n < ∞. λ k . For the alternating algorithm given by [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF] we need an additional hypothesis on the step sizes in order to guarantee its stability. The following gives the weak ergodic convergence of the sequence {x n } (result of type A): Theorem 3.3 (Type A). Under hypothesis (H), if λ 2 n < ∞ then the sequence {z n } converges weakly to a point in S.

Proof. By Lemma 1.1 and Corollary 3.2, it suffices to prove that every weak cluster point of the sequence {z n } lies in S. With the notation introduced in Lemma 3.1, if u ∈ D(A) ∩ C we have

x n -u 2 -x n-1 -u 2 ≤ λ n β n Ψ * 2p βn -σ C 2p βn + 2λ 2 n v 2 + 2λ n w, u -x n .
Summing up for n = 1, . . . , m, neglecting the positive term on the left-hand side and dividing by 2τ m we obtain

- x 0 -u 2 2τ m ≤ L 2τ m + w, u -z m ,
where L is given by [START_REF] Lehdili | Combining the proximal algorithm and Tikhonov regularization[END_REF]. Therefore, if z m k converges weakly to z, then 0 ≤ w, uz . Since this is true for each w ∈ T A, C u, we conclude from the maximality of T A, C that z ∈ S.

3.2.

Strong convergence for strongly monotone operators. When A is strongly monotone the sequence {x n } defined by ( 7) converges strongly to the unique u ∈ S (result of type B).

Theorem 3.4 (Type B). Under hypothesis (H), if A is strongly monotone and λ 2 n < ∞ then the sequence {x n } converges strongly to the unique u ∈ S.

Proof. Let A be strongly monotone with parameter α and let S = {u}. Inequality (18) becomes

x n-1 -u 2 -y n -u 2 -x n-1 -y n 2 ≥ 2λ n v, y n -u + 2α y n -u 2 .
Following the steps in the proof of Lemma 3.1 we obtain

2αλ n y n -u 2 ≤ x n-1 -u 2 -x n -u 2 + λ n β n Ψ * 2p βn -σ C 2p βn + 2λ 2 n p 2 , where p ∈ (-Au) ∩ N C (u). Whence 2α ∞ n=1 λ n y n -u 2 ≤ x 0 -u 2 + 2L,
where L is given by ( 20) with v = -p. Inequality ( 19) gives x nu 2 ≤ y nu 2 and so

∞ n=1 λ n x n -u 2 < ∞.
Since lim n→∞

x nu exists and

∞ n=1
λ n = +∞, the sequence {x n } must converge strongly to u.

3.3.

Weak convergence for subdifferentials. Let A = ∂Φ for Φ ∈ Γ 0 (H). Recall that, by hypothesis (H 2 ), S = argmin{Φ(x) | x ∈ argmin Ψ }. We shall prove that the sequences {x n } and {y n } defined above converge weakly to an element of S. We need some preliminary results. First define the energy-like function

E n = Φ(y n ) + β n Ψ(x n ) + x n -y n 2 2λ n .
Notice the dissymmetry in the roles of x n and y n as respective arguments of Φ and Ψ. In order to establish the weak convergence of the sequence {x n } we shall use two auxiliary results, which we now prove:

Lemma 3.5. Under hypothesis (H), for each u ∈ S one has ∞ n=1 λ n [E n -Φ(u)] < +∞ (possibly -∞).
Proof. From the subdifferential inequality and the properties of the inner product we have

x n-1 -u 2 -y n -u 2 -x n-1 -y n 2 ≥ 2λ n [Φ(y n ) -Φ(u)].
Now adding this to [START_REF] Lehdili | The barycentric proximal method[END_REF] we obtain

2λ n β n Ψ(x n ) + 2λ n [Φ(y n ) -Φ(u)] + x n -y n 2 ≤ x n-1 -u 2 -x n -u 2 .
This completes the proof.

Lemma 3.6. Let hypotheses (H) and (G) hold. Assume also that λ 2 n < +∞ and that the sequence 1 λn -1 λ n-1 is bounded from above. Then lim n→∞ E n exists and does not exceed the value

Φ(u) for u ∈ S.
Proof. From the subdifferential inequality we obtain

2λ n Φ(y n ) ≤ 2λ n Φ(y n-1 ) + x n-1 -y n-1 2 -x n-1 -y n 2 -y n -y n-1 2 2λ n β n Ψ(x n ) ≤ 2λ n β n Ψ(x n-1 ) + x n-1 -y n 2 -x n -y n 2 -x n -x n-1 2 . Thus Φ(y n ) + β n Ψ(x n ) ≤ Φ(y n-1 ) + β n Ψ(x n-1 ) + 1 2λ n x n-1 -y n-1 2 -x n -y n 2 . Now observe that Φ(y n-1 ) + β n Ψ(x n-1 ) ≤ Φ(y n-1 ) + β n-1 Ψ(x n-1 ) + (β n -β n-1 )Ψ(x n-1 ) ≤ Φ(y n-1 ) + β n-1 Ψ(x n-1 ) + Kλ n-1 β n-1 Ψ(x n-1 )
by hypothesis (G). On the other hand,

1 2λ n x n-1 -y n-1 2 -x n -y n 2 = b n-1 -b n + 1 λ n - 1 λ n-1 x n-1 -y n-1 2 2
,

where b n = 1 2λn x n -y n 2 . Hence E n -E n-1 ≤ Kλ n-1 β n-1 Ψ(x n-1 ) + 1 λ n - 1 λ n-1 x n-1 -y n-1 2 2
.

Finally notice that E n is bounded from below. Indeed, the sequence {y n } is bounded by Corollary 3.2. Since Φ is convex, Φ(y n ) is bounded from below and so is E n . As a consequence, lim n→∞ E n exists because the positive parts of the terms on the right-hand side of the previous inequality are summable. Lemma 3.5 then implies lim

n→∞ E n ≤ Φ(u) for u ∈ S.
The hypotheses on the sequence {λ n } are satisfied, for instance, if λ n = 1 n . We now prove that the sequence {x n } converges weakly to a point in S (result of type C). Theorem 3.7 (Type C). Let hypotheses (H) and (G) hold. Assume also that λ 2 n < +∞ and that the sequence 1 λn -1 λ n-1 is bounded from above. Moreover, suppose that either lim inf n→∞ λ n β n > 0 or that lim n→∞ β n = +∞. Then the sequence {x n } converges weakly to an element of S.

Proof. As before, by Lemma 1.1 and Corollary 3.2 it suffices to prove that every weak cluster point of the sequence {x n } lies in S. Now Lemma 3.5 gives

lim sup n→∞ Φ(y n ) ≤ lim n→∞ E n ≤ Φ(u)
for all u ∈ S. This shows that every weak cluster point ȳ of the sequence {y n } satisfies Φ(ȳ) ≤ Φ(u) for each u ∈ S. By Corollary 3.2, lim n→∞

x ny n = 0 so these two sequences have the same cluster points. In order to prove that lim n→∞ ψ(x n ) = 0, we use the argument in the proof of Theorem 2.6: if lim inf n→∞ λ n β n > 0 it follows from part ii) in Corollary 3.2, whereas if lim n→∞ β n = +∞, it follows from the convergence of E n . This completes the proof.

3.4.

The case of M maximal monotone operators. By mixing the techniques developed in the preceding sections with Passty's idea, we are able to generalize the result of Theorem 3.3 to the case of M maximal monotone operators (M ∈ N). The main result of this section, Theorem 3.9, includes Passty's result (by taking Ψ = 0 and M = 2) and our Theorem 3.3 (by taking M = 1).

Let us give M maximal monotone operators acting on H, A 1 , A 2 , ..., A M . We are interested in computing a zero of the operator

T A, C = M m=1
A m + N C . In this setting, assumption (H 2 ) is naturally replaced by the maximal monotonicity of

T A, C = M m=1 A m + N C .
Given an arbitrary x 0 ∈ H, let us consider the sequence {x n } generated by the following algorithm: Given x n-1 compute x n as follows: set y 0 n = x n-1 and find ( 21)

y m n = (I + λ n A m ) -1 y m-1 n for m = 1, . . . , M x n = (I + λ n β n ∂Ψ) -1 y M n . For u ∈ D(A) ∩ C take w ∈ T A, C u and p ∈ N C (u) so that w = p + M m=1 v m where v m ∈ A m u for m = 1, .
. . , M by definition.

Lemma 3.8. With the notation introduced above, the following inequality holds for all n ≥ 1:

x n -u 2 -x n-1 -u 2 ≤ 2λ n w, u-x n +2λ n β n Ψ * p βn -σ C p βn +M (M +1)λ 2 n M m=1 v m 2 .
Proof. For each m = 1, . . . , M one has

y m-1 n -y m n ∈ λ n A m y m n . The monotonicity of A m gives (22) y m-1 n -u 2 -y m n -u 2 -y m-1 n -y m n 2 ≥ 2λ n v m , y m n -u .
On the other hand, since y M nx n ∈ λ n β n Ψ(x n ), the subdifferential inequality yields

(23) y M n -u 2 -x n -u 2 -x n -y M n 2 ≥ 2λ n β n Ψ(x n ).
Summing up inequalities [START_REF] Lions | Une méthode itérative de résolution d'une inéquation variationnelle[END_REF] and adding the result to (23) we obtain

x n-1 -u 2 -x n -u 2 - M m=1 y m-1 n -y m n 2 -x n -y M n 2 ≥ 2λ n M m=1 v m , y m n -u + 2λ n β n Ψ(x n ). Since M m=1 v m , y m n -u = M m=1 v m , x n -u + v m , y m n -x n = w -p, x n -u + M m=1 v m , y m n -x n ,
we deduce that

x n -u 2 -x n-1 -u 2 + x n -y M n 2 + M m=1 y m-1 n -y m n 2
Observe that this procedure uses the resolvents successively in order to find a point in the set

S = [A 1 + • • • + A M + N C ] -1 0.
A special case of Theorem 3.9 is obtained by taking M = 2, Ψ = 0 and C = H, namely Corollary 3.10 (Passty [START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF]). Let A 1 and A 2 be two maximal monotone operators such that their sum

A 1 + A 2 is maximal monotone. Suppose S = (A 1 + A 2 ) -1 (0) = ∅. Let us assume that ∞ n=1 λ n = +∞ and ∞ n=1 λ 2 n < +∞.
Then any sequence {x n } generated by the algorithm

(24) x n = (I + λ n A 2 ) -1 (I + λ n A 1 ) -1 x n-1
converges weakly in average to some x ∈ S.

Let us remark that hypothesis (H 4 ) is trivially satisfied, and there is no assumption on β n .

In the next section we describe an algorithm that provides a point in S but uses the resolvents in parallel and then computes a barycenter.

Examples

4.1. Prox-projection. Take Ψ = δ C , where C is a closed convex subset of H. Then the algorithm described by ( 16) becomes [START_REF] Peypouquet | Asymptotic Convergence to the Optimal Value of Diagonal Proximal Iterations in Convex Minimization[END_REF] y n = (I + λ n A) -1 x n-1

x n = P C y n , where P C denotes the projection onto the set C. This is a prox-projection algorithm. In that case Ψ * = σ C and hypothesis (H 4 ) is automatically satisfied. Thus weak ergodic convergence holds under the sole assumption ∞ n=1 λ n = +∞. Weak convergence of the whole sequence {x n } holds for example with λ n = 1 n . Let us consider the two following special cases of particular interest: Let A = ∂Φ be the subdifferential of Φ ∈ Γ 0 (H), and let D be a closed convex subset of H.

(1) If Φ = δ D , we recover the classical alternating projection method to find points in C ∩ D whenever this set is nonempty (S = ∅). Hypothesis (H) is satisfied trivially because the resolvents do not depend on the parameters λ n and β n .

(2) If Φ(x) = 1 2 dist(x, D) 2 then S is reduced to the point in C which is closest to D. Let us explicit algorithm [START_REF] Peypouquet | Asymptotic Convergence to the Optimal Value of Diagonal Proximal Iterations in Convex Minimization[END_REF] in that case. We need to compute (I + λ n A) -1 x with A = ∇Φ. Let us notice that ∇Φ is the Yosida approximation of index 1 of ∂φ with φ = δ D , namely ∇Φ = (∂φ) 1 . By using the resolvent equation ((∂φ) 1 ) λ = (∂φ) 1+λ (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] Proposition 2.6) we obtain

(I + λ n A) -1 x = x -λ n (∂φ) 1+λn (x) = x -λn 1+λn (x -P D x) = 1 1+λn (x + λ n P D x) .
.

Thus the algorithm reads as

y n = 1 1+λn (x n-1 + λ n P D x n-1 )
x n = P C y n . 4.2. Barycenter. Let A 1 and A 2 be maximal monotone operators in a Hilbert space H. Set H = H × H and define the (maximal monotone) operator A on H by A(x 1 , x 2 ) = (A 1 x 1 , A 2 x 2 ). Let Ψ(x 1 , x 2 ) = 1 2 x 1x 2 2 so that ∇Ψ(x 1 , x 2 ) = (x 1x 2 , x 2x 1 ). The algorithm described by [START_REF] Kaplan | Regularized penalty method for non-coercive parabolic optimal control problems[END_REF] gives

y 1 n + λ n A 1 y 1 n ∋ x 1 n-1 y 2 n + λ n A 2 y 2 n ∋ x 2 n-1 and x 1 n + λ n β n (x 1 n -x 2 n ) = y 1 n x 2 n + λ n β n (x 2 n -x 1 n ) = y 2 n . Solving for (x 1 n , x 2 n ) one obtains (26) x 1 n = (1 -α n )y 1 n + α n y 2 n x 2 n = α n y 1 n + (1 -α n )y 2 n ,
where α n = λnβn 1+2λnβn ∈ (0, 1 2 ). The second step amounts to computing two barycenters for the points found in the first step. For this type of algorithm, the interested reader can consult [START_REF] Lehdili | The barycentric proximal method[END_REF]Lehdili and Lemaire] and the references therein. Observe that condition (H) is satisfied if λ n ∈ ℓ 2 \ ℓ 1 and λn βn < ∞, so ergodic convergence is granted under these assumptions. In particular, on can take β n = 1 λn and ( 26) becomes

x 1 n = 2 3 y 1 n + 1 3 y 2 n x 2 n = 1 3 y 1 n + 2 3 y 2 n . The limit (x 1 , x2 ) satisfies (A 1 x1 , A 2 x2 ) + N C (x 1 , x2 ) ∋ 0,
where C = {(x, y) : x = y}. In particular, if A = ∂Φ with Φ(x 1 , x 2 ) = f (x 1 ) + g(x 2 ) then (x 1 , x2 ) ∈ argmin{f (x) + g(y) : x = y} and so x1 ∈ argmin{f (x) + g(x)}.

One obtains weak convergence (not only ergodic), for instance, if λ n = 1 n and β n = n. This procedure can be easily generalized to M variables. Let A 1 , . . . A M be maximal montone operators in a Hilbert space H. Set H = H M and denote x = (x 1 , . . . x M ). Define the operator A on H by A( x) = (A 1 x 1 , . . . , A M x M ) and set Ψ( x) = 1 2 i<j

x ix j 2 so that

∇Ψ( x) = M ( x) ′ - M k=1 x k 1 M ×1 ,
where 1 i×j denotes the matrix of size i × j whose entries all equal 1. The algorithm described by [START_REF] Kaplan | Regularized penalty method for non-coercive parabolic optimal control problems[END_REF] gives

y m n + λ n A m y m n ∋ x m n-1 for m = 1, .
. . , M and then

x m n + λ n β n M x m n -λ n β n M k=1
x k = y m n for m = 1, . . . , M.

The latter system of equations can be written in matricial form as

M n x n = y n with M n = (1 + λ n β n M )I -λ n β n 1 M ×M .
Simple computations show that M n is invertible and the (i, j)-th entry of

M -1 n is (M -1 n ) i,j = 1+λnβn 1+λnβnM if i = j λnβn 1+λnβnM if i = j.
As a consequence, M -1 n is symmetric and doubly stochastic, whence

x n = M -1 n y n represents the computation of each component x m n of x n as a barycenter of the vectors y 

C = {(y, u) ∈ Y × U : Ay = Bu}.
A natural way to deal with this type of constraint is to use the penalization function

Ψ(y, u) = 1 2 Ay -Bu 2 Z .
Set H = Y × U being equipped with the Hilbert product structure. Algorithm [START_REF] Auslender | Penalty-proximal methods in convex programming[END_REF] takes the form

(y n , u n ) = argmin (y, u) ∈ Y ×U Φ(y, u) + β n 2 Ay -Bu 2 + 1 2λ n y -y n-1 2 Y + u -u n-1 2 U 
.

In view of [START_REF] Cabot | Proximal point algorithm controlled by a slowly vanishing term. Applications to hierarchical minimization[END_REF], in order to fulfill our key hypothesis (H) it suffices to verify that Ψ is lower semicontinuous and satisfies for some θ > 0 (the distance is taken in = Y ×U ). Then one can take, for instance {λ n } ∈ ℓ 2 \ℓ 1 and β n = 1 λn . Assuming Φ to be continuous, the qualification condition (H 2 ) is satisfied. Therefore, assuming that the set S of solutions of problem ( 27) is nonempty we obtain the weak convergence of the sequence (y n , u n ) to some (y * , u * ) ∈ S as well as the convergence of the values Φ(y n , u n ) to the optimal value of the problem.

As an example consider the optimal control of the following elliptic boundary-value problem:

Let Ω be an open bounded subset of R N . Set Y = H 1 0 (Ω), U = Z = L 2 (Ω) and let C = {(y, u) ∈ H 1 0 (Ω) × L 2 (Ω) : -∆y = u}. This is a closed convex subset of H 1 0 (Ω) × L 2 (Ω). Let us define Ψ : H 1 0 (Ω) × L 2 (Ω) → R ∪ + {∞} Ψ(y, u) = ∆y + u 2 L 2 (Ω) if ∆y ∈ L 2 (Ω) +∞ otherwise.
Note that, by Agmon-Douglis-Nirenberg regularity result for elliptic equations, when Ω is sufficiently smooth,

y ∈ H 1 0 (Ω) and ∆y ∈ L 2 (Ω) ⇐⇒ y ∈ H 1 0 (Ω) ∩ H 2 (Ω).
One can easily verify that Ψ is convex and lower semicontinuous on H 1 0 (Ω) × L 2 (Ω). We claim that (28) holds for some θ > 0. Indeed, for any (y, u) ∈ H 1 0 (Ω) × L 2 (Ω) such that Ψ(y, u) < +∞, i.e. ∆y ∈ L 2 (Ω) (otherwise the inequality is trivially satisfied)

dist((y, u), C) 2 ≤ (y, u) -(-∆ -1 u, u) 2 H 1 0 ×L 2 = y + ∆ -1 u 2 H 1 0 ≤ c ∆y + u 2 L 2 = cΨ(y, u)
where c is the operator norm of (-∆) -1 : L 2 (Ω) → H 1 0 (Ω), which can be evaluated using the Poincaré inequality. Finally it suffices to set θ = 2/c to verify (28). Let us mention that in [START_REF] Kaplan | Regularized penalty method for non-coercive parabolic optimal control problems[END_REF], Kaplan and Tichatschke have been studying numerically a penalization method for optimal control problems like the one above.

4.4.

A simple numerical illustration. Take H = R × R. We perform a numerical simulation to find the point in the straight line 2u

+ v = 1 that minimizes the function Φ(u, v) = 2(u 2 + uv + v 2 ). We define Ψ(u, v) = 1 2 |2u + v -1| 2 .
All the hypothesis of theorems 2.6 and 3.7 are satisfied, for instance, with λ n = 1 n and β n = n 2 . The solution set is S = {( 1 2 , 0)} and the optimal value Φ( 12 , 0)) = 1 2 . We run 10 iterations of algorithm [START_REF] Auslender | Penalty-proximal methods in convex programming[END_REF] with initial point (1, 1). Figures 1 and2 show the evolution of the iterates (u n , v n ) and the values Φ(u n , v n ), respectively. We obtain (0.49, 0.01) and 0.49. The same is done for algorithm [START_REF] Bahraoui | Convergence of diagonally stationary sequences in convex optimization[END_REF] to get (0.42, 0.09) and 0.45. The evolution is shown in Figures 3 and4 Sensitivity with respect to initial data. We now derive some stability properties of the algorithms described in the preceding sections with respect to perturbations of the initial data.

First, let us consider two trajectories {x n } and {x n } emanating respectively from x 0 and x0 following the algorithm given by ( 7):

x n = I + λ n (A + β n ∂Ψ) x n-1 ≤ ε n .

We shall prove that if the errors are summable, the convergence properties of the algorithm remain unaltered. To accomplish this, for n ∈ N and x ∈ H define U (n, n)x = x and

U (N, n)x = N k=n+1 I + λ k (A + β k ∂Ψ) -1
x for N ≥ n. Here the product denotes the composition of resolvents. The family of operators {U (N, n)} N ≥n is a contracting evolution system, as defined in [START_REF] Alvarez | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces[END_REF][START_REF] Alvarez | Asymptotic almost-equivalence of abstract evolution systems[END_REF]. That is, it satisfies i) U (n, n)x = x.

ii) U (M, N )U (N, n) = U (M, n) for M ≥ N ≥ n.

iii) U (N, n)x -U (N, n)y ≤ xy . The last property follows from (29).

On the other hand, the sequence {x n } satisfies In an analogous way one can consider errors in the computation of the sequence generated by ( 8): 

Lemma 1 . 1 (

 11 Opial-Passty). Let F be a nonempty subset of H and let lim n→∞ x nx exist for each x ∈ F . If every weak cluster point of {x n } (resp. {z n }) lies in F , then {x n } (resp. {z n }) converges weakly to a point in F as n → +∞.

  Now we are in position to prove the following result of type C: Theorem 2.6 (Type C). Let hypotheses (H) hold. Assume moreover that one of the following conditions holds i) lim inf n→∞ λ n β n > 0 and lim inf n→∞ λ n > 0; ii) Hypothesis (G) holds and lim inf n→∞ λ n β n > 0; or iii) Hypothesis (G) holds and lim n→∞ β n = ∞. Then the sequence {x n } converges weakly to some x * ∈ S. Proof. By Lemma 1.1 and part i) of Corollary 2.2 it suffices to prove that every weak cluster point of the sequence {x n } lies in S. In view of the weak lower-semicontinuity of Φ and Ψ, we just need to verify that lim n→∞ Ψ(x n ) = 0 and lim sup n→∞ Φ(x n ) ≤ Φ(u) for all u ∈ S. Assume condition i) holds. The fact that lim n→∞ Ψ(x n ) = 0 follows from part iv) in Corollary 2.2.

3 . 1 .

 31 Ergodic convergence. Keeping the notations of the preceding section let us set z n = 1 τn n k=1 λ k x k , where τ n = n k=1

  .

1 xn- 1 .τ n n k=1 λ k x k -xk ≤ 1 τ n n k=1 λ k x 0 -Proposition 5 . 1 . 5 . 2 .

 1105152 + λ n (A + β n ∂Ψ) -As a resolvent, the operator (I + λ n (A + β n ∂Ψ)) -1 is a contraction. Hence, (29)x nxn ≤ x n-1xn-1 ≤ ... ≤ x 0 -x0 .This dissipation property is characteristic of proximal schemes for monotone operators.Now recall that zn = 1 τn n k=1 λ k x k , where τ n = n k=1λ k . By the triangle inequality we havez nẑn ≤ 1 x0 = x 0 -x0 .Let x ∞ and x∞ denote the weak limits, as n → ∞, of the sequences {z n } and {ẑ n }, respectively. Their existence is guaranteed by Theorem 2.3 and coincide with the limits of the sequences {x n } and {x n } whenever the latter exist. By the weak lower-semicontinuity of the norm we obtainx ∞ -x∞ ≤ x 0 -x0 .Finally, define L : H → H in the following way: for x ∈ H compute the sequence {x n } using (7) and x 0 = x. Then set L(x) = w-lim n→∞ z n . The function L is nonexpansive.In a similar way, if {x n } and {x n } are produced using (8), thenx nxn = (I + λ n β n ∂Ψ) -1 y n -(I + λ n β n ∂Ψ) -1 ŷn ≤ y nŷn = (I + λ n A) -1 x n-1 -(I + λ n A) -1 xn-1 ≤ x n-1xn-1 ,so that the dissipation property (29) holds as well.If we define M : H → H by M (x) = w-lim n→∞ z n , where x n satisfies (8) we have Proposition 5.2. The function M is nonexpansive. Inexact computation of the iterates. Let us assume that we can compute the iterates following the rule (7) only approximately. More precisely, assume the sequence {x n } satisfies (30) x n -I + λ n (A + β n ∂Ψ) -1

x 1 + 5 . 3 .

 153 N -U (N, n)x n = x N -U (N, N -1)U (N -1, n)x n ≤ x N -U (N, N -1)x N -U (N, N -1)x N -1 -U (N, N -1)U (N -1, n)x n ≤ ε N + x N -1 -U (N -1, n)x n .By induction one easily shows thatx N -U (N, n)x n ≤ N k=n+1 ε k . If ε k < ∞ then lim n→∞ sup N ≥n x N -U (N, n)x n ≤ lim n→∞ ∞ k=n+1 ε k = 0, so that {x n } isan almost-orbit of the evolution system U . By Propositions 9 and 12 in [3, Alvarez and Peypouquet] 1 , the almost-orbits have the same asymptotic behavior and so we have Proposition The conclusions of Theorems 2.3, 2.4 and 2.6 remain true under the same hypotheses if x n satisfies (30) with ε n < ∞.

Proposition 5 . 4 .Proposition 5 . 5 .

 5455 (31)y n -(I + λ n A) -1 x n-1 ≤ ε n x n -(I + λ n β n ∂Ψ) -1 y n ≤ δ n .Following the arguments presented above the reader may easily check the following: The conclusions of Theorems 3.3, 3.4 and 3.7 remain true under the same hypotheses if x n satisfies (31) with ε n < ∞ and δ n < ∞. The same is true for Theorem 3.9 if x n satisfiesy m n -(I + λ n A m ) -1 y m-1 n ≤ ε m,n for m = 1, . . . , M x n -(I + λ n β n ∂Ψ) -1 y M n

  where A : Y → Z and B : U → Z are linear operators (possibly unbounded), Y, U, Z are Hilbert spaces and Φ : Y × U → R ∪ {+∞} is a proper, lower-semicontinuous convex function representing the cost to be minimized. A classical approach introduced by J.-L. Lions consists in taking the state equation as a constraint:

	according to the weights given in M -1 n .	1 n , . . . , y M n
	4.3. Optimal control of linear systems. Consider an optimal control problem:
	(27)	min{Φ(y, u) : Ay = Bu},

The result for the convergence of the whole sequence {xn} can also be found in[START_REF] Alvarez | Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces[END_REF].
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The proof will be complete if we verify that

First observe that

Therefore, we only need to show that

Indeed,

as required.

This immediately implies the convergence of the sequence { x nu } for u ∈ S under the hypotheses of Corollary 3.2. We are in position to prove the ergodic convergence of the sequence {x n }, namely Theorem 3.9 (Type A). Let {x n } be defined by algorithm [START_REF] Lemaire | Bounded diagonally stationary sequences in convex optimization[END_REF]. Assume hypothesis (H) holds