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1 Introduction

By endowing the nonlinear innate of special absorber systems,
namely, NES devices, safe and appropriate control of mechanical
and structural systems for wide frequency bands is possible. A
good summary of theoretical background of these systems can be
found in Refs. �1,2�. Outstanding abilities of these devices in con-
trolling systems against vibratory forces are also verified experi-
mentally; from them we can mention to experimental studies of
McFarland et al. �3,4�, Kerschen et al. �5,6�, Gourdon et al. �7,8�,
Manevitch et al. �9�, and Lee et al. �10–12�. All of the above
mentioned theoretical and experimental studies were carried out
on structures with single NES devices. In this paper we will
present analytical methods for designing optimal parallel NES de-
vices that are accompanied by couple of experimental tests, which
are carried out at the Civil Engineering and Building Department
�DGCB� Laboratory of the ENTPE, France. The organization of
the paper is given as follows.

The academic representation of the system and necessary con-
dition for an optimized and efficient design of NESs are reported
in Sec. 2. The system under harmonic solicitation is investigated
in Sec. 3. Multiple solutions, linear stability analysis, and some
numerical examples are reported at the same section. Section 4
illustrates some experimental results on a 4DOF prototype struc-
ture with two parallel NESs at the last floor. Finally conclusion
remarks are gathered in Sec. 5.

2 Mathematical Model of the System

Figure 1 illustrates a p DOF linear system where Mn, Cn, Kn,

and Xn are mass, damping, stiffness, and displacement of each nth

DOF, n=1,2 , . . . , p, respectively. F= �F1¯Fn¯Fp�T is the ap-

plied external forcing vector to the system. Each DOF n is

coupled to nn parallel cubic NES: �n,j, cn,j, kn,j, and xn,j, j

=1,2 , . . .nn are mass, damping, stiffness, and the displacement of

the attached jth NES to the same DOF. So, the whole compound

system has �n1+n2+ ¯+np� NES. By shifting from physical do-

main to the modal domain by X=�q �� and q are mode shape
matrix and modal coordinate vector�, the mathematical represen-
tation of the system during its first mode �the one which is in-
tended to be controlled� reads as

�M1
�q̈1 + C1

�q̇1 + K1
�q1 + �

l=1

p

�
j=1

nl

�l,1�l,jẍl,j = �
l=1

p

�l,1Fl�t�

∀n = 1 ¯ p, ∀ j = 1 . . . nn

�n,jẍn,j + cn,j�ẋn,j − �n,1q̇1� + kn,j�xn,j − �n,1q1�3 = 0
� �1�

where M1
�, C1

�, and K1
� are first mode modal mass, damping, and

stiffness of the linear system while �n,1 is the first mode modal

shape of the linear system at DOF n. First of all we consider the

system under impulse loading �Fl�t�=0� with the following initial

conditions:

�q1�0� = 0, q̇1�0� � 0

xn,j�0� = ẋn,j�0� = 0, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

	 �2�

We are interested to investigate the system under 1:1 resonance.

Let us assume �n,j /M1
�=��n,j, �n=1

p � j=1
nl �n,j =1, cn,j /M1

�

=��n,j�n,j, kn,j /M1
�=��n,j�n,j�0

�4, C1
�
/M1

�=���, and K1
�
/M1

�=�0
�2.

Moreover, we shift the system to the new coordinates as follows:

�u = q1 + ��
l=1

p

�
j=1

nl

�l,1�l,jxl,j

vn,j = xn,j − �n,1q1, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

� �3�

The final form of Eq. �2� under impulse loading is given as fol-
lows:

�ü + �0
�2u� + �
��u̇ + �0

�2�
l=1

p

�
j=1

nl

�n,j�n,jvn,j�
− �
�0

�2�
l=1

p

�
j=1

nl

�n,j�n,j
2 u� + o��2� = 0 �4�

��v̈n,j + �0
�2

vn,j� + ��n,j�0
�2u + ��n,jv̇n,j + ��n,j�0

�4
vn,j

3 − ��0
�2

vn,j

+ o��2� = 0, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn �5�

Complex variables of Manevitch �13� and multiple scale expan-
sions �14� are introduced in Eqs. �4� and �5� according to the
following relations:

�0ei�0
�
t = u̇ + i�0

�u

�n,je
i�0

�
t = v̇n,j + i�0

�
vn,j, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

�0 = �00 + ��01 + �2�02 + ¯ �6�
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∀n = 1 ¯ p, ∀ j = 1 ¯ nn, �n,j = �nj0 + ��nj1 + �2�nj2 + ¯

for l = 0,1,2, . . . , Tl = �lt,
d

dt
=

�

�T0

+ �
�

�T1

+ �2
�

�T2

+ . . .

By progressing until the order �1, dropping secular terms, and
rewriting complex variables in the polar domain as

��00 = R0�T1�ei	0�T1�


nj0 = Rnj�T1�ei	n,j�T1�, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

	
�7�

one can reach the following systems of equations:

�
1

�0
�

�R0
2

�T1

= − ��R0
2 − �

l=1

p

�
j=1

nl

�n,j�n,jRnj
2

�n,j
2 R0

2 = 
�n,j
2 + �1 −

3�n,j

4
Rnj

2 
2�Rnj
2 , ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

� �8�

where ��=��
/�0

� and �n,j =�n,j /�0
�. Let us introduce Enj =�n,jRnj

2

and E0=�n,jR0
2, then Eq. �8� reads as

�E0

�T1

= − ��E0 − �
l=1

p

�
j=1

nl

�n,j�n,jEnj �9�

�n,j
2 E0 = 
�n,j

2 + �1 −
3

4
Enj
2�Enj, ∀ n = 1 . . . p, ∀ j = 1 . . . nn

�10�

where E0 and Enj are dimensionless variables that depend on ini-
tial conditions and the nonlinearity of the system.

�
E0 = �n,j��00�

2 = �n,j�u̇0
2 + �0

�2u0
2�

∀n = 1 ¯ p, ∀ j = 1 ¯ nn

Enj = �n,j�
nj0�2 = �n,j� lim
T0→�

�v̇nj0
2 + �0

�2
vnj0

2 ��� �11�

2.1 Tuning the NES. The two principles of linear additivity
and separated activity of parallel NESs underline that the effi-
ciency of each NES, in the first order approximation, is entirely

governed by its own physical parameters, i.e., mnj, cnj, and knj.
This leads us to be able to study the energy activation level for the
TET by considering the energy of the master structure, which is
donated to each single NES. Figure 2 shows the multiplicity of
solution computed from Eq. �10�. It has been demonstrated in
previous researches �15� that this multiplicity is responsible for
the TET. In fact, this bifurcation defines an area where the energy
can suddenly jump from high to low levels.

This area of bifurcation can be analytically studied from the
derivative of Eq. �10� as

dE0

dEnj0

=
1

�n,j
2 
27

16
Enj0

2 − 3Enj0 + �1 + �n,j
2 �� �12�

If �n,j � �0,1 /�3�, then we may obtain multiple solutions for Eq.

�12�. This is a known result in TET. The bifurcation that leads to

the energy pumping, due to multiplicity of solutions, only occurs
for small values of damping of absorbers �16�. There are two

extreme limits in the curve of Fig. 2: E0
+ and E0

−, respectively.
These coordinates are given by the nullity of derivative of Eq.
�12�. For the sake of simplicity we define the following functions:

�
��� = 9 −
27

4
�1 + �2�

�+��� =
24 + 8�
���

27
, �−��� =

24 − 8�
���
27

� �13�

��Enj0
− ;E0

+� = 
�−��n,j�;
1

�n,j
2 ��n,j

2 + �1 −
3

4
�−��n,j�
2
�−��n,j��

�Enj0
+ ;E0

−� = 
�+��n,j�;
1

�n,j
2 ��n,j

2 + �1 −
3

4
�+��n,j�
2
�+��n,j�� �

�14�

Depending on the initial E0, the system will behave differently.
Nguyen �17� demonstrated that the most efficient case that leads

quickly to a stable and an efficient TET is when E0�E0
+. In this

case the main system crosses the bifurcation and is quickly at-
tracted to the low branch of the curve, which leads to a jump
down for the energy of the main system. This jump demonstrates
an efficient TET from the main linear system to considered attach-
ments, and reduces significantly vibrations of the master structure.
This criterion will be endowed to design an efficient NES. As
soon as we know the initial condition of the system, i.e., an esti-

mation of the energy E0 to be controlled, we will be able to evalu-

Fig. 1 The general view of the system under consideration
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Fig. 2 Multiplicity of solution between dimensionless vari-
ables E0 and Enj0, with �nj=0.25 and �nj=1
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ate physical parameters of the NES that will immediately trigger
the energy pumping and will establish an efficient control. The

optimal case for E0 is to be just above E0
+; otherwise, if E0 is too

high, the system will take time to dissipate the energy before
reaching the threshold of the TET. A convenient design for the
NES is

�
E0 � �E0

+,E0
+ + ��

E0
+ =

1

�n,j
2 ��n,j

2 + �1 −
3

4
�−��n,j�
2
�−��n,j�

⇒�n,j��00�
2

� �E0
+;E0

+ + ��
� �15�

where � is a fraction of E0
+. We finally obtain the tuning for the

stiffness of the NES j, which is attached to the DOF n of the

modal shape �n,j as follows:

�
kn,j � �kopt,kopt + ��

kopt �
�n,j�0

�4

�n,j
2 ��00�

2��n,j
2 + �1 −

3

4
�−��n,j�
2
�−��n,j� � �16�

The main results of this analytical study presented in Eqs. �9�,
�10�, and �16� underline the interest of using parallel NESs instead

of a single NES. Let us consider a NES with the mass m, damping

c, and nonlinear stiffness knl. This NES can be easily replaced

with two identical parallel NESs with masses m /2 and damping c;
according to Eq. �16�, to keep the same level of activation, these

two NESs will only require a nonlinear stiffness of knl /2. We
notice that the use of parallel NESs allows disseminating the mass
along the structure and significantly reduces the required nonlin-
ear stiffness for activation, which could be very interesting for
practical applications. Moreover, according to Eq. �9�, the two

NESs in parallel will have an equivalent damping of 2c, which
means that this configuration will be more efficient than the cor-

responding single NES system. �The equivalent damping is 2c,

but each NES keeps a damping of c, with c below the critical
damping.� Finally, according to the principle of separated activa-
tion of Eq. �10�, the parallel NES configuration can also be inter-
esting to build NESs with several levels of activation that can
control several modes of a linear structure, by tuning each NES or
groups of NES on a chosen linear mode.

3 The System Under Harmonic Forcing

In this section the study of Sec. 2 is extended to the forced
system. We investigate the periodic solution of the system in the
vicinity of 1:1 resonance. Approximations of the system response,
stability, and bifurcations are analytically investigated; and a tun-
ing criterion is obtained. Then an application with two parallel
NESs is studied analytically and numerically for experimental
considerations. Let us consider the system of Eq. �1�, where the
linear system is under a harmonic excitation. Let us suppose that

�
l=1

p

�l,1

Fl�t�

M1
�

= ��0
�F cos��t� �17�

The analysis of harmonic solutions of the system is performed
using complexification methods in the vicinity of 1:1 resonance

with the external forcing ��0
�F cos��t�. We introduce global and

internal displacements as follows:

�u�t� = q1�t�

vn,j = xn,j − �n,1q1, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

	 �18�

Then Eq. �1� reads as

��ü + �0
�2u� + ���u̇ + ��

l=1

p

�
j=1

nl

�l,j�l,jv̈l,j + ��
l=1

p

�
j=1

nl

�l,j�l,j
2 ül,j = ��0

�F cos �t

�v̈n,j + �0
�2

vn,j� + �n,j�ü + �0
�2u� + �n,jv̇n,j + �n,j�0

�4
vn,j

3 − �0
�2

vn,j − �n,j�0
�2u = 0, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

� �19�

Manevitch’s complex variables �13� are introduced to investigate

periodic solutions in the vicinity of forcing pulsation � as follows:

�0ei�t = u̇ + i�0
�u

�20�
�nje

i�t = v̇n,j + i�0
�
vn,j, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

so

�
ü + �0

�2u = �̇0ei�t + i�� − �0
���0ei�t

∀n = 1 ¯ p, ∀ j = 1 ¯ nn

v̈n,j + �0
�2

vn,j = �̇nje
i�t + i�� − �0

���nje
i�t � �21�

i
�n,j���

2
�0 + i

���

2
�nj +

�n,j

2
�nj −

3i�n,j

8
��nj�

2�nj +
i�n,j

2
�0 +

i

2
�nj

= 0, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn �22�

with � /�0
�=1+���

/2. Steady-state regime of Eq. �22� is obtained
by demanding

�̇0 = 0

�23�
�̇nj = 0, ∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

so

�
∀n = 1 ¯ p, ∀ j = 1 ¯ nn

�1 + �����n,j�0 = �i�n,j − ��1 + ���� −
3i�n,j

4
��nj�

2

�nj �
�24�

By considering the complex conjugate of Eq. �24�, we obtain

�
∀n = 1 ¯ p, ∀ j = 1 ¯ nn


�n,j
2 + �X −

3�n,j

4
��nj�

2
2���nj�
2 = �n,j

2 X2��0�2 � �25�

where X=1+���. By introducing dimensionless variable Znj

=�n,j��nj�2, we obtain

It is possible to suggest that the evolution of modulation variables 
�0 and �nj  is slow compared with the excitation due to the exter-
nal force. Under this assumption the first approximation for modu-
lation variables may be obtained by averaging the complexifica-
tion of Eq. �19� with respect to this fast time scale.

We are interested in the design of the NES, so we only consider 
the �n1 +n2+  . . .+np� last equations of Eq. �19�. By averaging of 
these equations one can reach the following system:

3




�n,j
2 + �X −

3

4
Znj
2�Znj = �n,j

2 X2�n,j��0�2

∀ n = 1 ¯ p, ∀ j = 1 ¯ nn

�26�

We denote that the principle of separated activity is also verified,
in the forced case, which permits using the same design method as
described in Sec. 2.1. It provides

d�n,j��nj�
2

dZn,j

=
1

X2�n,j
2 
27

16
Zn,j

2 − 3Zn,j + �X2 + �n,j
2 �� �27�

�
F��� = 9X2 −
27

4
�X2 + �2�

�F
−��� =

24X − 8�
F���
27

� �28�

Then the tuning stiffness for each NES reads as

�
∀n = 1 ¯ p, ∀ j = 1 ¯ nn

kn,j
opt =

�n,j�0
�4

�n,j
2 �1 + ����2��0�2

�
�1 + ���� −
3

4
�F

−��n,j��2

+ �n,j
2 
�F

−��n,j� � �29�

In the forced case the main point aims at finding a reasonable

value for ��0�2. Contrary to the impulse load case where initial

conditions are known, the steady-state response of the system is

unknown. The steady-state amplitude of the master system ��0�
seems to depend on variables �nj and can be obtained by solving

Eqs. �22� and �24�, which are not interesting for the design. But if

we consider the behavior of a system with the TET, and, in par-

ticular, the energy exchange, it seems that the main system be-

haves linearly until its energy reaches the energy pumping thresh-

old, and starts to be controlled. We can assume that the steady-

state can be obtained by considering that the system behaves

linearly until the energy pumping threshold is reached. Under this

assumption we will tune the NES under harmonic forcing by con-

sidering

��0�2 � �u̇2 + �0
�2u2�statio � �0

�2ustatio
2 �

�2�0
�2F2

��0
� − �̃�2 + �̃2���

�30�

where �̃ is the cut pulsation; i.e., the pulsation that triggers the

TET and ustatio �the stationary value for displacement u�t�� is at

pulsation �̃.

3.1 A Special Case: The System Under Harmonic Forcing
With Two NESs in Parallel. Let us suppose the linear system is

coupled with two parallel NESs at the DOF n with the mode

shapes �n,1 and �n,2. Mass, damping, and stiffness of each NES

are ��n,1 ,�n,2�, �cn,1 ,cn,2�, and �kn,1 ,kn,2�, respectively. In this

case Eq. �19� can be rewritten as

�
�ü + �0

�2u� + ���u̇ + ��n,1�n,1v̈n,1 + ��n,2�n,2v̈n,2 + �Y2ü = ��0
�F cos �t

�v̈n,1 + �0
�2

vn,1� + �n,1�ü + �0
�2u� + �n,1v̇n,1 + �n,1�0

�4
vn,1

3 − �0
�2

vn,1 − �n,1�0
�2u = 0

�v̈n,2 + �0
�2

vn,2� + �n,2�ü + �0
�2u� + �n,2v̇n,2 + �n,2�0

�4
vn,2

3 − �0
�2

vn,2 − �n,2�0
�2u = 0

� �31�

with Y2=�n,1�n,1
2 +�n,2�n,2

2 . By introducing complex variables and averaging equations in the vicinity of 1:1 resonance with the external
forcing we obtain the following system of equations:

�
�1 + �Y2�� 1

�0
�
�̇0 + i� �

�0
�

− 1
�0
 + ��n,1�n,1� 1

�0
�
�̇n1 + i� �

�0
�

− 1
�n1
 + �n,2�n2�� 1

�0
�2

�̇n2 + i� �

�0
�

− 1
�n2
 +
���

2
�0 +

i��n,1

2
�n1 +

i�n,2��n,2

2
�n2 +

i�

2
Y2�0 =

�F

2

�n,1� 1

�0
�
�̇0 + i� �

�0
�

− 1
�0
 + � 1

�0
�
�̇n1 + i� �

�0
�

− 1
�n1
 +
�n,1

2
�n1 −

3i�n,1

8
��n1�2�n1 +

i�n,1

2
�0 +

i

2
�n1 = 0

�n,1� 1

�0
�
�̇0 + i� �

�0
�

− 1
�0
 + � 1

�0
�
�̇n,2 + i� �

�0
�

− 1
�n2
 +
�n,2

2
�2 −

3i�n,2

8
��n2�2�n2 +

i�n,2

2
�0 +

i

2
�n2 = 0

�
�32�

We investigate the stationary response regime by requiring

�̇0 = �̇n1 = �̇n2 = 0 �33�

which yield to the following system:

�
�1 + �Y2�i���0 + ��n,1�n,1i���n1 + �n,2�n,2�i���n2 + ���0 + i�n,1�n,1�n1 + i�n,2�n,2�n2 + iY2�0 = F

i
�n,1���

2
�0 + i

���

2
�n1 +

�n,1

2
�n1 −

3i�n,1

8
��n1�2�n1 +

i�n,1

2
�0 +

i

2
�n1 = 0

i
�n,2���

2
�0 + i

���

2
�n2 +

�n,2

2
�n2 −

3i�n,2

8
��n2�2�n2 +

i�n,2

2
�0 +

i

2
�n2 = 0

� �34�
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By introducing Zn10=�n,1��0�2, Zn20=�n,2��0�2, Zn22=�n,2��n22�2,

and Zn11=�n,1��n1�2 and using polar form and calculating modu-
lus, one can find the following dimensionless equations:

�

�1 + ���� −
3

4
Zn11�2

+ �n,1
2 �Zn11 = �n,1

2 �1 + ����2Zn10



�1 + ���� −
3

4
Zn22�2

+ �n,2
2 �Zn22 = �n,2

2 �1 + ����2Zn20
�
�35�

Let us consider the case of two parallel NESs, which are attached

at the same DOF, with the same damping ��n,1=�n,2=�n and

�n,1=�n,2=�n�. This case is considered intestinally for the experi-
mental studies that will be presented later; nevertheless, the fol-

lowing analytical study could be undertaken for �n,1��n,2 with
similar method. The two NESs are tuned on the same level of
activation as follows:

kn,1

�n,1

=
kn,2

�n,2

⇒ �n,1 = �n,2 = �n �36�

Then we obtain algebraic relations between Zn11 and Zn22 as fol-
lows:

Zn11 = Zn22 �37�

Zn11 = −
1

2
Zn22 +

4X

3
�

1

6
�48XZn22 − 27Zn22

2 − 64�n
2 �38�

Equation �38� is not physically relevant as it does not verify Eq.
�35�. Then we have

��n1�2 = ��n2�2 ⇒ �n1 = �n2 �see Eq. �34�� �39�

and the following reduced system:

��i�XY + ��� + ����0 +
i

�n

XY�n1 = F

iX�n�0 + iX�n1 −
3i�n

4
��n1�2�n1 + �n�n1 = 0� �40�

After some mathematical manipulations the behavior of the sys-

tem in terms of �n1 can be expressed as

�
i�nXF��n − i�XY + ����

K
= 
i�X2Y�XY + ���

K
− X +

3�n

4
��n1�2
 − �X2Y

K
�� + �n
��n1

K = �XY + ���2 + ��2 � �41�

By evaluating the modulus, we find out that

�n
2X2ZF

K
= 
�X2Y�XY + ���

K
− X +

3

4
Zn
2

+ �X2Y

K
�� + �n
2�Zn

�42�
with ZF = �n��0�2 and Zn = �n��n1�2

Equation �42� is polynomial of order 3 in terms of Zn. It can be written under the following general form:

�
p3Zn

3 + p2Zn
2 + p1Zn + p0 = 0

with

p3 =
9

16

p2 = −
3X

2
+ ��� + XY�

3X2Y

2K

p1 = �X2 + ��2� +
2X2Y

K
��n�� − �� + X − X2Y� +

X4Y2

K2
���2 + ��� + XY�2�

p0 = −
�n

2X2ZF

K

� �43�

The roots of this polynomial are the values of Zn at each step of

frequency. The behavior of the main system can be expressed by

the following system:

ZF =
1

�n
2�1 + ����2

�1 + ���� −

3

4
Zn�2

+ �n
2�Zn

�44�

ustatio
2 �

ZF

�0
��n

3.2 Multiple Solutions and Linear Stability Analysis

3.2.1 Multiplicity of Periodic Solutions. The polynomial of
Eq. �43� can exhibit multiple solutions. We will investigate the
case of the shift between one single real solution and three real
solutions. The polynomial of Eq. �43� reads as

p3Zn
3 + p2Zn

2 + p1Zn + p0 = 0 �45�

which can be written in the Cardan form
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�
T3 + pT + q = 0

with

p =
p1

p3

−
p2

2

3p3
2

q =
p2

27p3

�2p2
2

p3

−
9p1

p3


 +
p0

p3

� �46�

According to the Cardan formulas the double roots T̄ can be ex-
pressed as

T̄ =
− 3q

2p
⇒ Z̄n =

p1p2 − 9p3p0

6p1p3 − 2p2
2

�47�

As a double root Z̄n is also solution of the first derivative of Eq.
�45� as

3p3Z̄n
2 + 2p2Z̄n + p1 = 0 �48�

Combination of Eqs. �47� and �48� gives the following equation
for the border between single periodic solution and three periodic
solutions:

3p3�p1p2 − 9p3p0�2 + 2p2�p1p2 − 9p3p0��6p1p3 − 2p2
2� + p1�6p1p3

− 2p2
2�2 = 0 �49�

3.2.2 Linear Stability Analysis. To prevent the system from
unpredicted behaviors, the stability of fixed points of Eq. �32�, i.e.,
solutions of polynomial of Eq. �43�, must be investigated. By
introducing Eq. �39� in Eq. �32� the following system is obtained:

��1 + �Y2�� 1

�0
�
�̇0 +

i���

2
�0
 +

�Y

�n

� 1

�0
�
�̇n1 +

i���

2
�n1
 + �� ��

2
+ iY
�0 +

i�Y2

2�n

�n1 = 0

�n� 1

�0
�
�̇0 +

i���

2
�0
 + � 1

�0
�
�̇n1 +

i���

2
�n1
 +

�n

2
�n1 −

3i�n

8
��n1�2�n1 +

i�n

2
�0 +

i

2
�n1 = 0� �50�

We first linearize Eq. �32� in the vicinity of the steady-state response to investigate the stability of fixed points. Let us introduce small
perturbations to the fixed points as follows:

��0 = �00 + �0, ��0� � ��00�

�n1 = �n10 + �n1, ��n1� � ��n10�
	 �51�

By progressing until second order expansions, the system of linearized equations can be expressed as

��1 + �Y2�� 1

�0
�
�̇0 +

i���

2
�0
 +

�Y2

�n

� 1

�0
�
�̇n1 +

i���

2
�n1
 + �� ��

2
+ iY
�0 +

i�Y2

2�n

�n1 = 0

�n� 1

�0
�
�̇0 +

i���

2
�0
 + � 1

�0
�
�̇n1 +

i���

2
�n1
 +

�n

2
�n1 −

3i�n

8
�n10

2 �̄n1 −
3i�n

4
��n10�

2�n1 +
i�n

2
�0 +

i

2
�n1 = 0� �52�

Equation �50� is a linear system that can be written in a matrix
form as

�
�̇0

�̇n1

�̄̇0

�̄̇n1

� = A�
�0

�n1

�̄0

�̄n1

� �53�

where

A = �0
��

a11 a12 0 a14

a21 a22 0 a24

0 ā14 ā11 ā12

0 ā24 ā21 ā22

� �54�

and

a11 = −
�

2
�i�� + Y� + �0�

a12 = 
�Y�2�a − 3i�a��n10�
2�

4�a

�
a14 = −

3i�a�Y

�a

�10

�55�

a21 = 
−
i

2
�a�1 + �Y� +

��a

2
�0 + i��aY�

a22 = 
�−
X

2
+

3i�a

4
��n10�

2 −
�a

2

�1 + �Y� +

�XY

2
�

a24 = 
3i�a

8
�1 + �Y��n10�

Then we can evaluate the characteristic equation of the matrix A,

which is a fourth order polynomial in terms of � with coefficient

depending on variable Zn=�n��n1�2 as follows:

P���= �4 + ��1 + �Y��a + ��0��3 + g2�Zn
2,Zn��2 + g1�Zn

2,Zn��

+ g0�Zn
2,Zn� �56�

where g2�Zn
2 ,Zn�, g1�Zn

2 ,Zn�, and g0�Zn
2 ,Zn� are functions that de-

pend on variables Zn
2 and Zn. By investigating the real parts of

roots of polynomial function P��� of Eq. �56�, we can establish

the stability of the different solutions. A Routh–Hurwitz criterion
is used to establish stable and unstable areas. To investigate the
equation of the Hopf bifurcation we look for purely imaginary

eigenvalues of matrix A. Let us introduce �= � i�, then Eq. �56�
gives

�4 − g1�2 + g0 = 0 �57�
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− ��1 + �Y��a + ��0��3 + g2� = 0 �58�

According to Eq. �58�

��g2 − ��1 + �Y��a + ��0��2� = 0 �59�

�=0 corresponds to the case ZF=0, which is the unforced case
and was studied previously; then we get

� = �� g2

��1 + �Y��a + ��0�
�60�

By introducing this result in Eq. �57� we obtain the border of the
Hopf bifurcation as

�g2
2 − g1g2��1 + �Y��a + ��0� + g3��1 + �Y��a + ��0�2 = 0

p3Zn
3 + p2Zn

2 + p1Zn + p0 = 0
	

�61�

3.3 Numerical Simulations. In this part numerical simula-
tions are performed in order to compare analytical predictions of
Sec. 3.1 with numerical integration of Eq. �1�. These numerical
simulations are performed for the case of two parallel NESs,
which are attached to the same degree of freedom. System param-
eters are given by the following.

All initial conditions before harmonic excitation are assumed to
be zero.

The amplitude of the external excitation reads as F

=0.35 m s−1.
The modal parameters of the master structure are

M1
� = 0.835 kg, C1

� = M1
��0

��� N s m−1, K1
� = �2�

� 4.26�2 N m−1, ��� = 3%, �n = 1 �62�

The NES parameters are

�n,1 = �n,2 = 0.03 kg, cn,1 = cn,2 = 0.25 N s m−1, kn,1 = kn,2

= �0.7;1.95;4� � 105 N m−3 �63�

The level of activation and tuning calculated from Eq. �29� is

�Cut frequency:
�̃

�0
�

= �0.9,1.08��FRF level:5.5�

⇒kn
opt � 1.95 � 105 N m−3 � �64�

where the cut frequency �̃ defines the intersection between the
chosen activation threshold and the linear Frequency Response
Function �FRF� of the system. Mode shapes have been normalized
with respect to the infinite norm of mode shapes. The modal pa-
rameters represent the first mode modal parameters of a four sto-
rey prototype structure, which is used for experimental test. As we
are considering the first mode and the two NESs are attached to

the last storey of the structure, we have �n=1. Since the system is
under harmonic forcing, then we are interested to consider the
system in the frequency domain. We study the frequency response
of the system in the vicinity of 1:1 resonance for three different
nonlinearity values around an optimal value. Here, the optimal
value is not unique and is determined through a chosen threshold,
represented by the linear behavior level of FRF at the chosen cut

pulsation �̃. This threshold is investigated in Figs. 3 and 4, with

cut pulsation �̃ /�0
�= �0.9,1.08�. Let us analyze the frequency re-

sponse of the structure. We suppose that F is invariable and we

change the nonlinearity of the NES kn. Figures 3 and 4 represent

the frequency response function in the vicinity of pulsation �0
� for

values of kn under �Fig. 3�a��, above �Figs. 4�a� and 4�b��, and

near the optimal value kopt �Fig. 3�b��. In these figures we can
observe the theoretical linear behavior of the main structure in
dashed line, the analytical prediction of the nonlinear behavior,
which is obtained from Eq. �43�, in solid line, and the numerical
integration of Eq. �1� with circles. The numerical integration is
computed with a MATLAB RK45 scheme; data are taken during the
stationary regime, after enough periods of excitation. At each in-
crement of frequency the initial conditions are the conditions of
the previous point in the frequency sweep. This numerical sweep
goes from low to high frequencies. The stability of multiple ana-
lytical solutions is highlighted: Stable periodic solutions are in
solid line and unstable are plotted with dashed-dotted line. Mul-
tiple solution areas are identified by vertical dotted lines and the
chosen activation threshold is plotted with a horizontal solid line.
By increasing the stiffness of the nonlinear absorber, the fre-
quency response decreases and the resonance peak breaks until
the optimal design. It is obvious that the structure behaves linearly

(a)
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(b)

Fig. 3 FRF of the system in the vicinity of 1:1 resonance for different values of kn. „a… kn=7Ã104 N m−3; „b… kn=1.95
Ã105 N m−3

Ékopt. „– – –… Analytical linear behavior, „—… analytical prediction „stable…, „-.-.-.-… analytical prediction „un-
stable…, and „Œ Œ Œ… numerical integration.
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until it reaches the cut frequency, then strong nonlinear behavior
occurs; the resonance peak is broken and the system is kept under
the desired threshold, until it passes the resonance and behaves
linearly again. Figure 3�b� illustrates the case of the optimal
choice, when the NES is tuned on the chosen threshold. By in-
creasing the nonlinear stiffness �see Fig. 4�a��, a new resonant
peak is generated. If the nonlinear connection is increased until an
infinite rigidity between the linear system and the additional ab-
sorbers masses, then this new peak turns out to the initial linear
resonance peak shifted to low frequencies because of the embed-
ded mass to the main system, as presented in Fig. 4�b�. The oc-
currence of this new resonant peak reduces the efficiency of the
control and can be dangerous for the system, but the occurrence of
the phenomenon can be predicted by studying the multiplicity of
the periodic solution of the system calculated in Eq. �49� and
represented in Fig. 5. We denote also that the analytical predic-
tions represented in Figs. 3 and 4 are in good agreement with the
numerical simulations and we notice that in the unstable areas
numerical results suggest that the system has no periodic solu-
tions. The detected zones in Fig. 5 give us a good idea in choosing
the right nonlinear stiffness and predicting the behavior of the

system according to the chosen kn. Here we notice that the first

multiplicity of solution appears in the vicinity of kn�1.4

�105 N m−3; above the resonance frequency, the second area of

multiple solutions appears in the vicinity of kn�1.94

�105 N m−3, which is in good agreement with the behavior of
the system that is presented in Figs. 3�b� and 4. This argument
indicates the complex and important influence of the NES on the
overall behavior of the system during the TET and allows us to
prevent from hazardous and uncommon behaviors.

4 Experimental Studies: A 4DOF Structure With Two

Parallel NESs at the Last DOF

The test structure as shown in Fig. 6 is a four storey prototype

Fig. 6 The test setup and the structure

Fig. 7 Two parallel NESs at the top storey
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(b)

Fig. 4 FRF of the system in the vicinity of 1:1 resonance for high value of kn. „a… kn=4Ã105 N .m−3; „b… kn\+�. „– – –…
analytical linear behavior, „—… analytical prediction „stable…, „-.-.-.-… analytical prediction „unstable…, and „Œ Œ Œ… numerical
integration.

Fig. 5 Evolution of the multiplicity of periodic solutions in the
�

plane „� /�0 ,kn…
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steel structure. The supports of this structure are connected to a
small-scale uniaxial shaking table, which is designed, built, and
tested at the DGCB Laboratory of the ENTPE. The table itself is
driven by a computer controlled Linmot actuator, which horizon-
tally moves the table along linear ball bearing guide rails. The
endowed acquisition system is the PAK5.4 Muller-BBM VAS,
which is capable of postprocessing measured data. Two parallel
NESs with a very small mass compared with the main structural
mass are mounted on top of the structure, as depicted in Fig. 7.
The strongly cubic nonlinear attached oscillator is composed of
two mobile parts in parallel; each mobile part is anchored by two
springs. Optimal stiffness values of the nonlinear springs of the
NESs are obtained via the developed method, which is explained
in Secs. 2 and 3. Gourdon et al. �7� illustrated that equivalent

nonlinear spring for each NES system is knonlinear,j,4�k4,j / l2, j

=1,2; where l stands for the length of each linear spring of each
NES. The characteristics of the system are summarized in Table 1.
As illustrated in Fig. 6, five Integrated Circuit Piezoelectric �ICP�
accelerometers are attached to the structure: three of them to the
ground, second, and last floors; and two of them on top of mobile
parts of each NES. In order to identify modal properties of the
structure for feeding the nonlinear model with parallel NESs,
some series of vibration tests, including shock hammer test, chirp,
and sinusoidal ramp excitations, are repeated. The total mass of
NESs is much smaller than the mass of the master structure, so the
NES will not affect the dynamics of the master structure. In order
to prevent activation of the NES system during identification pro-
cess of the master system, their mobile parts are fixed. Identified
frequencies and dampings of the system are reported in Table 2.
The aim of this experimental studying is to transfer the energy of
the first mode of the main structure to two parallel NES systems
by a 1:1 resonance capture. The structure is excited by a chirp
signal with sweeping frequencies between 3 Hz and 5 Hz. The
absolute values of FRF of the top floor for linear case without the
TET and for nonlinear case with the TET are illustrated in Fig. 8.
This figure proves the capability of parallel NESs in absorbing
most of the energy of the first mode. Figures 9 and 10 summarize
the absolute value of the FRF of each NES during the linear and
nonlinear behaviors of the structure under chirp excitations. These
figures illustrate that although the main substructure endows the
NES system for pumping its imposed energy, the system of NES
has much less amplitudes compared with the linear case without
any evidence of pumping. This means that each NES device col-
laborates very well with the main substructure in absorbing its
energy, while during the linear state the parallel NES system be-
comes part of the main structure without any passive control of
the induced excitation. The amplitude and phase values of parallel
NESs during the pumping phenomenon are depicted in Figs. 11
and 12. Both parallel NESs move in-phase during the energy

pumping phenomenon with almost equal accelerations. This be-
havior shows a good cooperation of parallel NESs in absorbing
irreversible energy during the excitation.

5 Conclusion

An analytical method for optimized design of NES devices is
proposed in order to control intended modes of a linear structure

Table 1 Main characteristics of the test structure

Mass
�g� Springs of the NES

Main structure NES 1 NES 2 No. of springs
l

�m�
k4,j

�N/m�
knonlinear,j,4

�N /m3�

2357 30 30 4 5�10−2 480 1.92�105

Table 2 Identified frequencies and damping of the structure

Frequency
�Hz�

Damping
�%�

First mode 4.44 0.41
Second mode 13.55 0.26
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Fig. 8 The FRF of the last floor of the structure during the
chirp excitation
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Fig. 9 The absolute values of the FRF of NES 1
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Fig. 10 The absolute values of the FRF of NES 2
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Fig. 11 The absolute values of the FRF of the NES system
during the energy pumping phenomenon

Fig. 12 The scaled phase values of the FRF of the NES system
during the energy pumping phenomenon

efficiently by using the TET phenomenon. This technique is based
on the study of the bifurcation, which occurs during an optimized
and appropriate TET for systems under harmonic solicitations.
The method leads us to comment on the efficiency of systems
with parallel NESs compared with single ones; even though the
effect of NES damping is not so clear in the forced case, the main
conclusions are that parallel NESs offer better repartition of
masses, multiple levels of activation, lower the required nonlinear
stiffness, and finally result more efficient. Thanks to the developed
technique, necessary parameters of the parallel NES system of a
four storey prototype test structure are obtained. During seismic
excitation of the structure, the nonlinear innate of two parallel
NESs controlled the intended mode of the system very well. Two
parallel NESs cooperated very well from the phase and amplitude
points of view, and this cooperation made the main structure be-
have in an acceptable and controlled manner.
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