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Abstract

This paper is devoted to the construction of a stochastic reduced order com-

putational model of structures having numerous local elastic modes in low

frequency dynamics. We are particularly interested in automotive vehicles

which are made up of stiff parts and flexible components. This type of struc-

ture is characterized by the fact that it exhibits, in the low frequency range,

not only the classical global elastic modes but also numerous local elastic

modes which cannot easily be separated from the global elastic modes. To

solve this difficult problem, an innovative method has recently been proposed

for constructing a reduced order computational dynamical model adapted to

this particular situation for the low frequency range. Then a new adapted

generalized eigenvalue problem is introduced and allows a global vector basis

to be constructed for the global displacements space. This method requires

to decompose the domain of the structure into sub-domains. Such a decom-

position is carried out using the Fast Marching Method. This global vec-
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tor basis is then used to construct the reduced order computational model.

Since there are model uncertainties induced by modelling errors in the com-

putational model, the non-parametric probabilistic approach of uncertainties

is used and implemented in the reduced order computational model. The

methodology is applied to a complex computational model of an automotive

vehicle.

Keywords: reduced order model; dynamical analysis; global elastic modes;

local elastic modes; fast marching method; uncertainty quantification.

1. Introduction

Automotive vehicles are complex three-dimensional dynamical systems

for which the prediction of vibration behavior requires highly advanced com-

putational tools. Automotive vehicles are made up of stiff parts such as

hollow bodies and flexible parts such as panels and many equipments. The

flexible parts of an automotive vehicle as well as equipments are not fully

defined during the advanced design phase, which is not the case for the stiff

parts. During this draft design, the flexible panels and equipments are not

yet completely defined. A vibration analysis in the low frequency (LF) range

is performed during the draft design. Since a vibration analysis in the LF

range has to be performed in order to assess the advanced design, it is impor-

tant to construct a robust reduced-order computational model for predicting

the LF vibrations of the stiff parts with respect to the design variations of

the flexible parts and the equipments, and with respect to uncertainties. The

novel approach is used to construct the reduced order model devoted to the

prediction of the global displacements on the stiff parts in the LF range. Such
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an unusual reduced order model will be defined as the ”Global Reduced Or-

der Model” (G-ROM).

In the present state of the art, reduced-order models can be efficiently

constructed using a large number of elastic modes (several thousands) which

are calculated with a very large computational model (several millions of

DOF). Today, such computation can be done and will be effectively carried

out in the application presented in Section 7. As explained above, the ob-

jective of this paper is to construct a robust G-ROM with respect to the

modifications of the design of the flexible parts of the structure during the

advanced design phase. This means that, even if a reduced order model is

constructed using a large number of elastic modes for a given structure (that

is to say for a given design of the stiff and flexible parts), it is necessary to

construct such a robust G-ROM, independently of the computational cost

aspects.

Although the noise is radiated by the whole skin of the body, panels are

mostly driven by the frame and requirements exist to ensure that no local

mode will increase the sound radiation. Unfortunately, during the advance

design phase, such requirement are not yet considered and consequently,

panel elastic modes often occur in the LF range. Since the G-ROM is defined

on the whole mesh, coupling with the cavity will not cause major difficulties,

but it was not yet investigated.

In the low frequency range, this type of structure is characterized by the
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fact that it exhibits, not only the classical global elastic modes (involving de-

flections covering the whole structure), but also numerous local elastic modes

(involving localized deflections). In this paper, the terminology ”global” in

sentences of the type ”global elastic mode” or ”global displacements” means

that we consider displacements fields which are not local displacements in the

structure but which are significant at almost all the points of the structural

domain. This means that the global displacements are predominant in a

displacement field which is identified as a ”global displacement”. With such

a complex heterogeneous structure, the global elastic modes cannot clearly

be separated from the local elastic modes because there are many small con-

tributions of the local deformations in the deformations of the global elastic

modes and conversely.

The objective of this work is to construct a spatial filtering of elastic modes

which have a small wavelength (local elastic modes) in order to only extract

the elastic modes which have a large wavelength (global elastic modes). In

the literature, there are few studies concerning the global elastic modes ex-

traction when there are mixed with a large number of local elastic modes.

In [1], the authors introduced a method to identify the global elastic mode

shape only based on geometrical considerations. This method is not really

adapted to the finite element computational model. Concerning the con-

struction of reduced order models (ROM) in the low frequency band for

automotive vehicles, the common methods are based on the use of modal

analysis, sub-structuring techniques and component mode synthesis (see, for

instance, [2, 3, 4, 5, 6, 7]). If there is a very large number of local elastic

modes in the low frequency band, which cannot easily be separated from the
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global elastic modes, then one obtains a ROM with a very high dimension

that is generally the situation encountered for the low frequency dynamical

analysis of automotive vehicles.

Considering this particular dynamical behavior of such structures in the LF

range, an unusual vector basis of the global displacements space is introduced

in order to construct the G-ROM with a small dimension and with the capa-

bility to predict the responses on the stiff parts in the LF range. This vector

basis is constructed solving an adapted generalized eigenvalue problem.

There are three objectives in this paper: (1) the first one is the construction

of a G-ROM with an adapted vector basis, (2) the second one is the construc-

tion of a stochastic G-ROM to take into account both the system-parameters

uncertainties and the model uncertainties induced by the irreducible errors

introduced by neglecting the local displacements contributions and the other

modelling errors, (3) the last one concerns the effective construction of the

sub-domains.

To achieve the first objective, one reuses the method proposed in [8] which al-

lows a vector basis to be extracted and a G-ROM to be deduced. Concerning

the second objective, the stochastic G-ROM is constructed using the non-

parametric probabilistic approach [9]. Finally, the third objective is reached

using the Fast Marching Method which allows a front to be propagated in a

complex mesh of a computational model. Section 3, is devoted to the con-

struction of the reference nominal reduced order model (RN-ROM) obtained

as the projection of the reference nominal computational model (RN-CM) on

the usual elastic modes. Section 4 deals with the construction of the G-ROM

while Section 5 is devoted to the stochastic G-ROM allowing uncertainties to
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be taken into account. Section 6 deals with the construction of sub-domains

using the Fast Marching Method (FMM). Finally, Section 7 is devoted to an

application related to an automotive vehicle.

2. Comments concerning notation used

In this paper, the following notations are used:

1. A lower case Latin or Greek letter is a real deterministic variable (e.g.

x1, u1, q1, λ).

2. A boldface lower case Latin or Greek letter is a real deterministic vector

(e.g. x, u, q, ϕ1).

3. An upper case Latin ”blackboard bold” letter is a real vector (e.g.

U,F).

4. An upper case Latin letter is a real random variable (e.g. Q).

5. A boldface upper case Latin letter is a real random vector (e.g. U).

6. An upper case Latin or Greek or ”blackboard bold” letter between

brackets is a real deterministic matrix (e.g. [A ], [Φ], [M ]).

7. A boldface upper case Latin letter between brackets is a real random

matrix (e.g. [M]).

3. Reference nominal computational model (RN-CM)

We are interested in predicting, in the frequency band of analysis B =

[ωmin, ωmax] with 0 < ωmin, the frequency response functions of a fixed damped

structure occupying a bounded domain Ω and referenced in a Cartesian sys-

tem of coordinates. We mean by ”fixed structure”, a deformable structure
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for which there are no rigid body displacements due to locked displace-

ments on a part of its boundary. If the damped structure is not fixed,

that is to say, if there are rigid body displacements (1 to 6 depending on

the locked body displacements, and equal to 6 for a completely free struc-

ture), then the proposed theory can straightforwardly be applied. The rigid

body modes then belong to the basis of the global displacements which will

be introduced in Section 4. Let x = (x1, x2, x3) be a point in Ω. For all

ω fixed in B, the complex vector-valued displacement field is denoted by

u(x, ω) = (u1(x, ω), u2(x, ω), u3(x, ω)). The computational model of the

structure is constructed using the Finite Element (FE) method (see [10]).

Let U(ω) be the complex vector of the m degrees of freedom (DOF) dis-

cretizing the displacement field. Let [M], [D] and [K] be the positive-definite

symmetric (m × m) mass, damping and stiffness matrices. The vector of

the discretized external forces is denoted by F(ω). For fixed ω, the complex

vector U(ω) is the solution of the following complex matrix equation,

(−ω2[M] + iω [D] + [K])U(ω) = F(ω) . (1)

The eigenvalues λα = ω2
α (square of the eigenfrequency ωα) and the associated

elastic modes ϕα of the conservative part of the dynamical computational

model are the solution of the following generalized eigenvalue problem,

[K]ϕα = λα[M]ϕα . (2)

An approximation at order n with n � m, of the solution U(ω) of Eq. (1),

can classically be constructed using modal analysis,

U(ω) �
n∑

α=1

qα(ω)ϕα = [Φ]q(ω) , (3)
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in which q(ω) = (q1(ω), . . . , qn(ω)) is the complex vector of the n generalized

coordinates and where [Φ] = [ϕ1 . . .ϕn] is the (m × n) real matrix of the

elastic modes associated with the n first eigenvalues.

The ”reference nominal computational model (RN-CM)” is defined by

Eq. (1) as the computational model for which the parameters are fixed to

their nominal values. In practice, the RN-CM corresponds to a large finite

element model with numerous degrees-of-freedom (DOF). Consequently, the

solution of the RN-CM can classically be approximated using the modal

analysis with a large number of elastic modes in order that convergence

of the approximation be reached. This approximation at order n, which is

constructed solving the ”reference nominal reduced order model” (RN-ROM)

defined by Eq. (3), is then considered as the solution of the RN-CM.

4. Construction of the G-ROM

In this section, we summarize the method introduced in [8] in which

theoretical details can be found. In addition, one presents complements con-

cerning the damping modelling for the low frequency band. This method

allows an adapted basis of the global displacements and a basis of the local

displacements to be constructed by solving two separated generalized eigen-

value problems. It should be noted that these two bases are not made up of

the elastic modes. This method is based on the construction of a projection

operator which introduces a kinematic reduction of the displacement field

for calculating the kinetic energy, while the elastic energy remains exact. A

adapted partition of domain Ω in sub-domains is introduced and allows the
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projection operator to be constructed.

4.1. Projection operator and projection of the mass matrix

In this section, we introduce a projection operator and the projection

of the mass matrix which allows the global displacements basis and a local

displacements basis to be computed. Domain Ω is decomposed into N non

overlapped sub-domains Ωj with j = 1, ..., N . For j equal to 1, ..., N ,

Ω =

N⋃
j=1

Ωj . (4)

The construction of such subdomains is very difficult for complex geometry of

domain Ω (such that for an automotive vehicle) and requires specific methods

which will be detailed in Section 6. Let u �→ hr(u) be the projection operator

defined by

{hr(u)}(x) =
N∑
j=1

1lΩj
(x)

1

mj

∫
Ωj

ρ(x′)u(x′) dx′ , (5)

in which x �→ 1lΩj
(x) = 1 if x is in Ωj and = 0 otherwise. For all j = 1, . . . , N ,

the local mass mj is defined by mj =
∫
Ωj

ρ(x) dx, where x �→ ρ(x) is the mass

density. Let [Hr] be the (m×m) matrix of the projection operator hr relative

to the finite element basis of the computational model. The vector U can be

written as U = Ur + Uc in which

Ur = [Hr]U (6)

Uc = [Hc]U = U− Ur , (7)

in which [Hc] = [Im]− [Hr] where [Im] is the (m×m) identity matrix. Then,

the projected (m×m) mass matrix, [Mr], is defined by

[Mr] = [Hr]T [M][Hr] , (8)
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and the complementary (m×m) mass matrix [Mc] is defined by

[Mc] = [Hc]T [M][Hc] . (9)

Using the properties of the projection operator defined by Eq. (5), it can be

shown [8] that

[Mc] = [M]− [Mr] . (10)

It should be noted that Eq. (5) corresponds to the theory of 3D continuous

media. In practice, the computational model of a complex structure such as

an automotive vehicle contains many types of finite elements such as spring,

beam, plate, shells, 3D solid elements. Consequently, there are translation

and rotation DOFs. For a sufficiently fine finite element mesh (that is the case

for the mesh of an automotive vehicle), the averaging of the rotation fields

over each subdomain does not induce a significant effect with respect to the

translation field as used in Eq. (5). Consequently, an efficient approximation

consists in setting to zero the elements in the matrix [Hr] corresponding to

rotation DOFs.

4.2. Construction of vector bases for the global and the local displacements

Two methods can be used to calculate the global displacements vector

basis that will be used to reduce the matrix equation for the low frequency

band: the direct method and the double projection method. For the direct

method, the vector basis of the global displacements is directly calculated

using the projection of mass matrix [M]. We then have to solve the following

generalized eigenvalue problem,

[K]φg = λg[Mr]φg , (11)
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in which λg is the eigenvalue and φg is the associated global displacements

eigenvector. The number of subdomains is N. The projection operator yields

a projected mass matrix (see Eq. (8)) whose rank is 3N (3translations). So

the generalized eigenvalue problem defined by Eq. ( 11) corresponds to a me-

chanical system with 3N dynamical DOFs and consequently, the maximum

number of global displacements eigenvectors is 3N.

It is also proven [8] that a local displacement vector basis, which will not

be used to construct the reduced order model in the low frequency band, can

be obtained solving the following generalized eigenvalue problem,

[K]φ� = λ�[Mc]φ� , (12)

where φ� is an local displacements eigenvector.

The double projection method [8], which will be used in this work, is less

intrusive with respect to the commercial software and less time-consuming

than the direct method. This method consists in approximating φg and φ�,

using Eq. (3), by φ̃
g
and φ̃

�
such that

φg = [Φ] φ̃
g

, φ� = [Φ] φ̃
�
. (13)

Then Eqs. (13), (11) and (12) yields

[K̃] φ̃
g
= λg[M̃ r] φ̃

g
, [K̃] φ̃

�
= λ�[M̃ c] φ̃

�
, (14)

in which [M̃ r] = [Φr]T [M] [Φr] and [K̃] = [Φ]T [K] [Φ]. In this equation, [Φr]

is the (m × n) real matrix such that [Φr] = [Hr] [Φ]. One has [M̃ c] =

[Φc]T [M] [Φc] in which [Φc] is an (m × n) real matrix such that [Φc] =
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[Hc] [Φ] = [Φ] − [Φr]. It can be proven [8] that the family {φg
1, . . . ,φ

g
3N ,

φ�
1, . . . , φ

�
m−3N} is a vector basis of Rm. The projection of U(ω) on this fam-

ily of real vectors associated with the ng first global displacements eigenvec-

tors such that ng ≤ 3N and with the n� first local displacements eigenvectors

such that n� ≤ m− 3N is written as

U(ng,n�)(ω) =

ng∑
α=1

qgα(ω)φ
g
α +

n�∑
β=1

q�β(ω)φ
�
β . (15)

It should be noted that, for the double projection method, n must be such

that ng + n� ≤ n.

4.3. Global reduced order model

In this paper, the G-ROM is constructed using only the global displace-

ments vector basis introduced in Section 4.2. Then, the approximation

U(ng)(ω) of U(ω) is defined by

U(ng)(ω) =

ng∑
α=1

qgα(ω)φ
g
α . (16)

It should be noted that, in general, U(3N)(ω) is not equal to U(ω) because

the family {φg
1, . . . ,φ

g
3N}, which is a vector basis of the global displacements,

is not a vector basis of Rm. Nevertheless, because we are interested in con-

structing the G-ROM to predict the global displacements responses on the

stiff parts in the low frequency band, the 3N vector basis of the global dis-

placements is sufficient to give a good approximation of U(ω) for ω in B.
In addition and in general, it is not necessary to use the 3N vectors of the

basis but only ng < 3N . In this condition, the convergence of U(ng)(ω) can be

analysed for ng going to 3N . Nevertheless, approximation U(ng)(ω) converges
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to response U(ω) if 3N goes to m, that is to say if the number N of subdo-

mains increased and then if the size of subdomains goes to zero. Then, the

efficiency of the method directly depends on the domain decomposition in

subdomains which will be carried out in order to obtain a small and accurate

G-ROM to predict the global displacements responses in B. Using Eq. (1),

we obtain the following G-ROM defined by Eq. (16) and by the following

matrix equation,

(−ω2[Mgg] + iω[Dgg] + [Kgg]
)
qg(ω) = fg(ω) , (17)

where [Mgg] = [Φg]T [M][Φg] , [Dgg] = [Φg]T [D][Φg], [Kgg] = [Φg]T [K][Φg],

and fg = [Φg]TF, in which [Φg] = [φg
1 . . .φ

g
ng
] is the (m × ng) real matrix of

the global displacements eigenvectors.

It should be noted that the global displacements eigenvectors are not or-

thogonal to the local displacements eigenvectors with respect to the mass

and stiffness matrices. Consequently there is a coupling between the gen-

eralized coordinates qg and q�. In these coordinates, there is a transfer of

the mechanical energy from qg to q�, and at the equilibrium, the mechanical

energy stored by q� induces an apparent damping for the coordinates qg [2].

In order to take into account the presence of this apparent damping, in

Eq. (17), the reduced damping matrix [Dgg] is replaced by a modified damp-

ing matrix [Dgg,mod]. This modified matrix is identified in minimizing the

distance between the response given by the G-ROM and the response given

by the RN-CM. Since [Dgg,mod] is a full positive-definite (ng×ng) real matrix,

such a direct identification would correspond to a high dimensional inverse

problem in the set of all the positive-definite (ng × ng) real matrices, which

13



would be difficult to solve. One then introduces a parametric representa-

tion of matrix [Dgg] with ng unknown parameters a1, . . . , ang . Let [A] be

the diagonal matrix such that [A]jj = aj. The Cholesky decomposition of

matrix [Dgg] is written as [Dgg] = [Lgg][Lgg]T . The matrix [Dgg,mod] is then

constructed as follows

[Dgg,mod](a) = [Lgg][A][Lgg]T , (18)

in which a denotes the vector of components a1, . . . , ang . Consequently, for

ng fixed, the identification of matrix [Dgg,mod] consists in identifying vector

a. One then have to solve the following optimisation problem

aopt = arg min
a1>0,...,ang>0

∫
B
‖U(ω)− Umod(ω; a)‖2dω , (19)

in which ‖.‖ is the Hermitian norm, where U(ω) is the reference solution

calculated with Eq. (1) and where Umod;a(ω) is the solution of the following

modified G-ROM,

Umod(ω; a) =

ng∑
α=1

qg,mod
α (ω; a)φg

α , (20)

(−ω2[Mgg] + iω[Dgg,mod(a)] + [Kgg])qg,mod(ω; a) = fg(ω) . (21)

5. Probabilistic model of uncertainties for the G-ROM and identi-

fication

In this section, a stochastic model of uncertainties is constructed for the

G-ROM defined by Eqs. (20) and (21). Both the system-parameters uncer-

tainties and the model uncertainties induced by modelling errors are taken

into account using the non-parametric probabilistic approach of uncertainties

14



(see [9]). This method consists in replacing the generalized mass, damping

and stiffness matrices in Eq. (21) by random matrices. In the G-ROM de-

fined by Eqs. (20) and (21), a part of the modelling errors are induced by

the local displacements which are not taken into account. Another part of

the modelling errors is due to the RN-CM which is a representation of a

very complex mechanical system such as an automotive vehicle. The main

objective of this work is to validate the stochastic G-ROM, including the

stochastic model of uncertainties, in order to predict the response on the stiff

parts in the low frequency range. The non-parametric probabilistic model

of uncertainties has been identified and validated for automotive vehicle in

[11, 12, 13]. In particular, it has been proven that the confidence regions of

the random responses are not really sensitive to the damping uncertainties.

In this work, one reuses these results to construct a reference solution which

then includes uncertainties only for the mass and stiffness parts. The non-

parametric probabilistic model of uncertainties is implemented in the RN-

ROM. The dispersion parameters controlling uncertainties, for the random

mass matrix and the random stiffness matrix, are δrefM and δrefK and have been

identified in [11] for automotive vehicles using experimental measurements.

In this section, one identifies the stochastic G-ROM, using the random re-

sponse Uref(ω) of the stochastic RN-ROM.

5.1. Construction of the stochastic G-ROM

As explained above, uncertainties must be taken into account in the G-

ROM defined by Eqs. (20) and (21). Consequently, matrices [Mgg] and [Kgg]

are replaced [9] by the random matrices [Mgg(δMgg)] and [Kgg(δKgg)] which
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depend on the parameters δMgg and δKgg . These parameters must be iden-

tified using the response Uref(ω) and the maximum likelihood method. The

stochastic G-ROM is then written as

Ug(ω) =

ng∑
α=1

Qg
α(ω)φ

g
α , (22)

(−ω2[Mgg(δMgg)] + iω[Dgg,mod(aopt)] + [Kgg(δKgg)])Qg(ω) = fg(ω) . (23)

5.2. Identification of the stochastic G-ROM using the response of the stochas-

tic RN-ROM

It is assumed that nobs degrees of freedom (dof) are observed for nfreq

frequencies ω1, ..., ωnfreq
in the frequency band of analysis B. The random

observation vector Wobs(ω) = (log10 |Ug
1 (ω1)| , . . . , log10

∣∣Ug
1 (ωnfreq

)
∣∣ , . . . ,

log10
∣∣Ug

nobs
(ω1)

∣∣ , . . . , log10 ∣∣Ug
nobs

(ωnfreq
)
∣∣) is introduced. The corresponding

reference observation vector is denoted by Wref. Let wref,1, . . . ,wref,nexp be

nexp independent realizations of Wref calculated using the stochastic refer-

ence computational model. One introduces the admissible domain Cad of the

vector δ = (δMgg , δKgg). The maximum likelihood method yields

δopt = arg max
δ∈Cad

L(δ) , L(δ) =
nexp∑
j=1

{
log

(
pWobs(wref,j; δ

)}
, (24)

in which pWobs(wref,j; δ) is the value of the probability density function of

random vector Wobs for w = wref,j.

The optimization problem, defined by Eq. (24), is performed for the

identification of vector δ = (δMgg , δKgg) which belongs to an admissible set

Cad = [aMgg , bMgg ] × [aKgg , bKgg ]. The Monte Carlo method is used to solve
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the stochastic Eq. (23). Such a solver is very fast because the stochastic

G-ROM has generally a small dimension (the value of ng is a few tens). The

algorithm used is the following.

(i) A statistical reduction of the random observation vector Wobs (which is

in high dimension, several thousands) is performed using a principal com-

ponent analysis. The statistical reduced random observation vector is then

a new random vector denoted by Wobs
red in low dimension (a few tens or one

hundred).

(ii) The components of Wobs
red are uncorrelated (but statistically dependent)

random variables. An approximation of the log-likelihood function is used

consisting in replacing the joint pdf of the random vector Wobs
red by the prod-

uct of the pdf of its random components. Then, the one-dimensional Gaus-

sian kernel estimation method is used for estimating the value of the one-

dimension pdf, at the experimental points, of each random components.

(iii) Since there are only two scalar parameters, the trial method can be used

as an optimization algorithm. Since the cost function varies slowly on do-

main Cad, a coarse Cartesian mesh of [aMgg , bMgg ]× [aKgg , bKgg ] is introduced

for the trial method.

This approach yields a good and efficient approximation for the estimation

of the optimal value of δMgg and δKgg .
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6. Implementation of the Fast Marching Method for constructing

the subdomains

In this section, a methodology is proposed to construct of the subdomains

introduced in Section 4.1. The decomposition of domain Ω is carried out

using the mesh of the FE model. One then has to construct the groups of

nodes using the connectivities. For structures with complex curved geometry,

such a task is not easy to be carried out. There are several types of finite

elements in the computational model(3D, 2D, 1D and 0D elements). The

method one proposes for the decomposition of domain Ω in subdomains, is

based on the use of the FMM introduced in [14] which provides a method to

propagate a front (the notion of front will be defined below) on connected

parts from a starting point. In this section, the FMM is summarized and is

used to construct the subdomains.

6.1. Presentation of the Fast Marching Method (FMM)

Let x0 be a fixed point belonging to Ω. Let g(x) be the geodesic distance,

between a point x and the point x0. It should be noted that for a 3D volume,

the geodesic distance coincide with the Euclidean distance ‖x−x0‖ while for

a 2D curved surface, the geodesic distance between two points on the surface

is the length of the shortest distance between these two points in staying on

the surface. A front related to x0 is defined as the subset of all the points x

in Ω such that g(x) has a fixed value. The FMM [14] allows the front to be

propagated in the mesh from starting point x0. One then has to calculate

g(x) verifying the following non-linear Eikonal equation

‖∇g(x)‖ = s(x) , x ∈ Ω , (25)
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in which ∇ is the gradient with respect to x, and where s(x) is a given

arbitrary positive-valued function. The boundary condition associated with

Eq. (25), is written as g(x) = 0 on Γ0 which is a curved line or a surface

containing x0. Using the finite element mesh of Ω, Eq. (25) is discretized

using an upwind approximation (forward finite difference) for the gradient.

6.1.1. Simple case for explaining the methodology

gi  j+1

gi  j
gi+1  jgi-1  j

gi  j-1

Figure 1: Simple case: spatial discretisation for the Eikonale equation.

In order to simply explain the FMM, we consider a Cartesian mesh of a

plane square domain. Each finite element mesh is square. The mesh size is

h and the nodes of the finite element mesh are denoted by xij. One then has

to find gij = g(xij) satisfying the following equation (see Fig. 1)

{max(gij − gi−1 j, gij − gi+1 j, 0)}2
+ {max(gij − gi j−1, gij − gi j+1, 0)}2 = h2s2ij .

(26)

Since function s(x) can arbitrarily be chosen, sij can be taken at 1 for all

i and j. In Eq. (26), the information propagates in a unique way. This

equation allows the front to be propagated from the starting point. The use
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of the word Fast in FMM is due to the fact that the value gij of function g(x)

at node x = xij is calculated with Eq. (26) which corresponds to the spatial

discretization of Eq. (25) related to the Euclidean norm of the gradient of

function g and consequently, FMM uses only the nodes belonging to a small

domain (called a Narrow Band (NB) domain). In the FMM, the algorithm

introduces three groups of nodes:

(1) Alive node xij for which the value of gij is fixed and does not change,

(2) Trial node xij for which the value of gij is given but has to be updated

until it becomes an alive node. The set of all the trial nodes constitutes the

Narrow Band,

(3) Far node xij which has not been reached by the front and therefore

is such that gij = +∞.

The front is propagated using the following algorithm:

Initialization

• Choose a starting node x0, rewritten as x00, which is an alive node and

set g00 = g(x00) = 0 (see Fig. 2-(a)).

• The four neighbouring nodes xij of x00 become trial nodes for which

gij = hs00.

• All the other nodes xk� are far nodes for which gk� = +∞.

Loop

• Search among trial nodes, the node xij with the smallest value of gij.

• Remove xij from trial nodes and add xij to alive nodes (see Fig. 2-(b)).
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• For each neighbouring node xk� of node xij , there are two cases:

– if the neighbouring node is a far node, then add it to trial nodes

with gk� = gij + hsij .

– if the neighbouring node is a trial node, then the value of gk� is

updated solving Eq. (26).

The Loop is repeated until all the nodes are alive nodes (see Fig. 2-(d)).
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Figure 2: Diagram of the Fast Marching Method: step 1 (a), step 2 (b), step 3 (c) and

last step corresponding to the diagram, step 5 (d).
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6.1.2. Extension of the explanation for a triangular mesh

For triangular meshes, the algorithm described above is adapted. Let us

consider the case presented in Fig. 3 for which the value gc = g(xc) of g

for node xc is updated using the value ga = g(xa) of node xa and the value

gb = g(xb) of node xb, which are alive nodes. We then obtain the following

xaxb

xc

Figure 3: Triangular mesh (with acute angle) around node xc.

equation (
aT [Q]a

)
g2c +

(
2aT [Q]b

)
gc +

(
bT [Q]b

)
= s2c , (27)

in which a = (1, 1), b = (−ga,−gb) and where the matrix [Q] is written as

[Q] = ([P ][P ]T )−1 in which the matrix [P ] is defined by

[P ] =

⎡
⎣ xc − xa yc − ya zc − za

xc − xb yc − yb zc − zb

⎤
⎦ , (28)

in which (xa, ya, za), (xb, yb, zb) and (xc, yc, zc) are the coordinates of points

xa, xb and xc. It can be shown that Eq. (27) admits two positive solutions
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if the angle x̂axcxb is acute. If the mesh contains obtuse angles, then the

method has to be adapted using the unfolding step presented in [15].

6.2. Construction of subdomains

The subdomains {Ωj}j of Ω are constructed using the FMM. This con-

struction is performed in two steps. The first one consists in introducing

master points which are defined as the points which will be the centers of the

subdomains. The second one consists in generating the subdomains using

these master points as starting points.

(i) Selection of the master points

In the context of the present developments, we consider structures which

exhibit stiff parts and flexible parts. The master points are then chosen on

the stiff parts. The master points are chosen ”uniformly distributed” on

the structure and such that the distance between two neighbouring master-

points is of the order of the smallest wavelength of local displacements that

we want to filter. The choice of the master points should be fixed during

the step of construction of the computational model with the help of the

Computer Aided Design and information given by Engineering.

(ii) Generation of subdomains

To construct the subdomains {Ωj}j using a set of master points, the fronts

starting from the master points are simultaneously propagated until all the

nodes become alive nodes. Then, the boundaries of the generated subdo-

mains correspond to the meeting lines of the fronts.
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7. Application to the computational model of an automotive vehi-

cle

In this section, one applies the methodology to construct a G-ROM of an

automotive vehicle for which the RN-CM is available.

7.1. Description of the RN-CM

The mesh of the RN-CM is made up of 250, 000 nodes and contains various

types of finite elements such as volume, surface and beam elements. There are

1, 462, 698 degrees of freedom. The finite element model is shown in Fig. 4.

The structure has stiff parts (the frame) and flexible parts (the roof, the

windshield, etc.). The frequency band of analysis is B =]0, 120]× 2π rad.s−1.

Exc 1

Exc 2
Obs 1Obs 1

Obs 2Obs 2

Figure 4: Finite element model of the automotive vehicle.
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7.1.1. Generation of the subdomains

The FMM method presented in Section 6 is applied to the mesh of the

finite element model of the structure. The number of master points is chosen

as N = 90. Consequently, there will be 90 subdomains. The master points

are approximatively uniformly distributed on the stiff part of the structure

(see Fig. 5). The subdomains obtained from these master points are repre-

sented in Fig. 6.

Figure 5: Master points as the centres of the subdomains.

7.1.2. Elastic modes, global and local displacements eigenvectors

The elastic modes are calculated with the FE model. A convergence

analysis has been performed to reach convergence in the frequency band of

analysis B yielding n = 160 elastic modes. The number of elastic modes

in frequency band B is 128. The first elastic mode ϕ1 and the third elastic

mode ϕ3 are respectively displayed in Fig. 7 and Fig. 8. It can be seen that

ϕ1 is a local elastic mode while ϕ3 is a global one. Some elastic modes are
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Figure 6: subdomains generated (one per color).

composed of global and local displacements. For example, the 11th elastic

mode ϕ11, which is displayed in Fig. 9, is a global elastic mode with a high

local displacement in the roof.

The global and local displacements eigenvectors are constructed using the

double projection method presented in Section 4.2. In the frequency band

]0 , 120] Hz, there are ng = 36 global displacements eigenvectors and n� = 124

local displacements eigenvectors. The fourth global displacements eigenvec-

tor is plotted in Fig. 10. One can see that this global displacements eigen-

vector is similar to the 11th elastic mode but the local displacements contri-

butions has been filtered.
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Mode 1 - 24.2 Hz

Figure 7: First elastic mode (mode 1 at 24.2 Hz).

Mode 3 - 39.1 Hz

Figure 8: Thirst elastic mode (mode 3 at 39.1 Hz).

7.2. Deterministic frequency response functions

For all ω in B, the structure is subjected to two externals point loads

equal to 1 N applied in each direction OX and OZ to nodes Exc 1 and

Exc 2 located in a stiff part (see Fig. 4).

The observations are Obs 1 and Obs 2 which are master points (consequently,

are on stiff parts) and which are represented in Fig. 4. The responses are

calculated for the different projections associated with the following vectors
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Mode 11 - 48.9 Hz

Figure 9: Eleventh elastic mode (mode 11 at 48.9 Hz) with global displacements and

presenting local displacements on the roof.

bases: (1) with the RN-CM and its approximation constructed with the RN-

ROM presented in Section 3 using the elastic modes (U , n = 160), (2) with

the G-ROM constructed with the global displacements vectors basis defined

by Eqs. (16) and (17) using only global displacements eigenvectors (U(ng)

, ng = 36 and n� = 0), (3) with the modified G-ROM constructed with

the global displacements vectors basis and the modified damping, defined

by Eqs. (20) and (21) using only global displacements eigenvectors (Umod ,

ng = 36 and n� = 0), and for which the optimal value aopt of a has been cal-

culated by Eq. (19), and finally, (4) with the reduced computational model

defined by Eq. (15) using the global and the local displacements eigenvec-
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Eigenvalue 4 - 44.7 Hz

Figure 10: Fourth global displacements eigenvector (fourth eigenvalue 4 at 44.7 Hz) cor-

responding to the eleventh elastic mode (see Fig. 9) for which local displacements on the

roof have been filtered.

tors (U(ng,n�) , ng = 36 and n� = 124). The modulus in log10-scale of the

displacements following OZ (vertical direction on the figures) are displayed

in Fig. 11 and Fig. 12 for nodes Obs 1 and Obs 2.

It can be seen that the responses calculated using global and local displace-

ments eigenvectors are exactly the same as the response calculated using the

elastic modes (reference solution). We can see that the frequency response

function calculate with the global displacements eigenvectors only provides a

good approximation of the exact frequency response function (calculate with

the elastic modes). The correction improves the responses of the reduced
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Figure 11: Modulus in log10-scale of the frequency response function for observation,

Obs 1. Comparisons between different projection bases: elastic modes (thick line - refer-

ence solution), global displacements eigenvectors only (mixed line), global displacements

eigenvectors only with damping modification (thin line), global and local displacements

eigenvectors (solid line superimposed to the thick line).

model.

7.3. Reference confidence regions

The reference nominal frequency response functions for which the results

have been presented in Section 7.2 have been calculated using Eq. (3) with

n = 160) and for which the reference nominal computational model has

been defined in Section 7.1. The stochastic reference computational model is
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Figure 12: Modulus in log10-scale of the frequency response function for observation,

Obs 2. Comparisons between different projection bases: elastic modes (thick line - refer-

ence solution), global displacements eigenvectors only (mixed line), global displacements

eigenvectors only with damping modification (thin line), global and local displacements

eigenvectors (solid line superimposed to the thick line).

thus constructed with the above reference nominal computational model and

using the non-parametric probabilistic approach of uncertainties as explained

in [11]. The values of the dispersion parameters δrefM and δrefK are those

identified in [11]. All the calculations are carried out with the Monte Carlo

simulation method for which 1, 000 independent realisations are used. The

confidence regions corresponding to a probability level Pc = 0.95 have been

calculated and are plotted in Fig. 13 and Fig. 14 (dark grey regions). These
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confidence regions will be called the reference confidence regions.

7.4. Random frequency response functions calculated with the stochastic G-

ROM

The random frequency response functions are calculated with the stochas-

tic G-ROM defined by Eqs. (22) and (23). All the calculations are carried

out with the Monte Carlo simulation method for which 1, 000 independent

realisations are used. The first step consists in calculating the optimal values

of the dispersion parameters δoptMgg and δoptKgg using the maximum likelihood

method presented in Section 5.2. The 2-D contour plot of the log-likelihood

function (δMgg , δKgg) �→ L(δMgg , δKgg) is displayed in Fig. 15. The maximum

of the log-likelihood function is located in the figure by the coordinates of the

optimal point δoptMgg and δoptKgg . In a second step, for these optimal values of the

dispersions parameters, the confidence regions corresponding to a probability

level Pc = 0.95 have been calculated and are plotted in Fig. 13 and Fig. 14

(light grey regions).

The validation of the new stochastic G-ROM, which is adapted to the

prediction of the frequency responses on the stiff parts in the LF range,

can be obtained in comparing the confidence regions constructed with the

stochastic G-ROM with the confidence regions constructed with the stochas-

tic RN-CM, for observations on the stiff parts. It is recalled that the solution

of the stochastic RN-CM is approximated by the solution of the stochastic

RN-ROM (as explained at the end of Section 3). We then have to precise how

these confidence regions must be compared in order to perform the validation.

The stochastic RN-CM corresponds to the reference which has been experi-
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Figure 13: Random frequency response for observation Obs 1. Reference confidence region

(dark grey region). Confidence region constructed with the stochastic G-ROM with the

global displacements vector basis(light grey region).
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Figure 14: Random frequency response for observation Obs 2. Reference confidence region

(dark grey region). Confidence region constructed with the stochastic G-ROM with the

global displacements vector basis(light grey region).
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Figure 15: 2-D contour plot of log-likelihood function (δMgg , δKgg ) �→ L(δMgg , δKgg ). The

optimal values are denoted by δoptMgg and δoptKgg .

mentally identified and experimentally validated in [11, 12]. In the G-ROM,

there is an additional modeling error (with respect to the RN-CM) induced by

the projection which is performed only on the global displacements eigenvec-

tors (the local displacements contributions for the prediction of the responses

on the stiff part, in the LF range, are neglected). Consequently, the level of

uncertainties is larger in the G-ROM than in the RN-ROM and therefore, the

confidence regions predicted by the stochastic G-ROM must be larger than

the confidence regions predicted by the stochastic G-ROM. The validation

is obtained if, for each observation, the confidence region computed with the

stochastic G-ROM is included in the confidence region computed with the

stochastic RN-CM, for most of the frequencies of band B, that is the case.
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8. Conclusion

In this paper, we have validated an approach which allows a stochastic

G-ROM to be constructed in order to predict the responses on the stiff parts,

and in the low frequency domain, of a complex structure having numerous

local elastic modes which cannot easily be separated from the global elastic

modes with the usual reduction methods. This validation has been performed

for a very complex dynamical system consisting in an automotive vehicle

and includes the validation of the Fast Marching Method which is adapted

to complex geometry and which allows the computational subdomains to be

constructed.
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List of figure captions

Figure 1: Simple case: spatial discretisation for the Eikonale equation.

Figure 2: Diagram of the Fast Marching Method: step 1 (a), step 2 (b),

step 3 (c) and last step corresponding to the diagram, step 5 (d).

Figure 3: Triangular mesh (with acute angle) around node xc.

Figure 4: Finite element model of the automotive vehicle.

Figure 5: Master points as the centres of the subdomains.

Figure 6: subdomains generated (one per color).

Figure 7: First elastic mode (mode 1 at 24.2 Hz).

Figure 8: Thirst elastic mode (mode 3 at 39.1 Hz).

Figure 9: Eleventh elastic mode (mode 11 at 48.9 Hz) with global displace-

ments and presenting local displacements on the roof.

Figure 10: Fourth global displacements eigenvector (fourth eigenvalue 4 at

44.7 Hz) corresponding to the eleventh elastic mode (see Fig. 9) for which

local displacements on the roof have been filtered.
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Figure 11: Modulus in log10-scale of the frequency response function for

observation, Obs 1. Comparisons between different projection bases: elas-

tic modes (thick line - reference solution), global displacements eigenvectors

only (mixed line), global displacements eigenvectors only with damping mod-

ification (thin line), global and local displacements eigenvectors (solid line

superimposed to the thick line).

Figure 12: Modulus in log10-scale of the frequency response function for

observation, Obs 2. Comparisons between different projection bases: elas-

tic modes (thick line - reference solution), global displacements eigenvectors

only (mixed line), global displacements eigenvectors only with damping mod-

ification (thin line), global and local displacements eigenvectors (solid line

superimposed to the thick line).

Figure 13: Random frequency response for observation Obs 1. Reference

confidence region (dark grey region). Confidence region constructed with

the stochastic reduced order model with the global displacements vector ba-

sis(light grey region).

Figure 14: Random frequency response for observation Obs 2. Reference

confidence region (dark grey region). Confidence region constructed with

the stochastic reduced order model with the global displacements vector ba-

sis(light grey region).

Figure 15: 2-D contour plot of log-likelihood function (δMgg , δKgg) �→ L(δMgg , δKgg).
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The optimal values are denoted by δoptMgg and δoptKgg .
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